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Abstract

The framework of Reinforcement Learning has led to astonishing results in games that
were previously dominated by humans, such as Atari arcade games or the complex board
game Go, and also in real-world applications such as robotics. While the focus of RL
research has been predominantly on single-agent environments, the recent development
of a growing number of environments involving multiple intelligent systems has yielded
the need for methods that can efficiently solve complex tasks in multi-agent systems,
especially systems that require cooperation like network routing or traffic flow control.
Many multi-agent reinforcement learning algorithms have the downside that they require
the agents to learning to communicate with each other, or base their method on joint
action learning both of which incurs a computational overhead. Analogously to humans
encouraging cooperation in other humans by incentivizing them with some reward, we
investigate methods that use reward-sharing to promote actions that are beneficial to
reaching the shared goal. To this end, we present an extension to an existing reward-
sharing algorithm and a novel approach and evaluate both of them on diverse environments.



Zusammenfassung

Reinforcement Learning-Algorithmen haben erstaunliche Ergebnisse in Aufgaben erzieh-
len können, die zuvor von Menschen beherrscht wurden, so zum Beispiel in Spielen der
Atari-Konsole oder dem komlexen Brettspiel Go, und ebenso in realen Anwendungsfällen
wie der Robotik. Während der Schwerpunkt der RL-Forschung vorwiegend auf Einzelagen-
tenumgebungen lag, hat die jüngste Entwicklung einer wachsenden Zahl von Umgebungen
mit mehreren intelligenten Systemen zu einem Bedarf an Methoden geführt, die effi-
zient komplexe Aufgaben lösen können, die Kooperation benötigen, wie zum Beispiel
Netzwerkrouting oder Verkehrsflusskontrolle.
Viele Multi-Agent Reinforcement-Learning-Algorithmen haben den Nachteil, dass die
Agenten lernen müssen, miteinander zu kommunizieren, oder basieren auf dem lernen
gemeinsamer Aktionen, was beides mit erhöhter Komplexität verbinden ist. Analog zu
Menschen, die andere Menschen zur Kooperation bewegen, indem sie einen Anreiz durch
Belohnungen schaffen, untersuchen wir Methoden, die das Teilen von Belohnungen benut-
zen, um Aktionen zu fördern, die für das Erreichen eines gemeinsamen Ziels zuträglich
sind. Zu diesem Zweck stellen wir eine Erweiterung eines bestehenden Algorithmus sowie
einen neuen Ansatz vor und evaluieren beide in verschiedenen Umgebungen.
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1. Introduction

Cooperation between intelligent systems plays a more and more important role as the
world becomes increasingly connected and tasks can be solved by smart agents. From
robots picking stock for orders in a warehouse to self-driving cars on the roads, a growing
number of problems are no longer constrained to a single agent acting detached from
the outside world but usually involve multiple agents interacting with and influencing
each other. Additionally, in many environments where multiple agents play a role, they
are faced with a common goal that they need to work towards together (e.g. minimizing
the wait time of orders before they can be packed and shipped, or optimizing traffic flow
while ensuring the safety of all vehicles), where it typically does not suffice to act selfishly.
Because of this, and the fact that reinforcement learning offers an extensible and well-
studied framework for modeling such environments, Multi-Agent Reinforcement Learning
(MARL), and especially cooperation in MARL is a growing field of research. While there
are multiple approaches to training agents in a MARL setting to cooperate with each
other, such as introducing communication channels [1] [2] [3], learning joint actions [4]
[5] or supplying the agents with additional information [6] [7], in this thesis, we focus
on investigating methods that share rewards between agents. This has the benefit that
we can directly influence the objective that the agents are already optimizing and can
use this signal as an implicit form of communication without having to learn a separate
communication protocol.
Our two main contributions are to modify an existing reward-sharing method (LToS
[8]) to improve its performance and make it more robust, by letting agents learn a
representation of other agents’ policies that they condition their action selection on (we
call this extension Policy-Encoded Reward Exchange, or PERC), and our own novel method
(Bribes for Incentivizing Behavior, or BRIBE) which uses a more principled way to modify
the reward signal of the agents by approximating the expected advantage that another
agent’s action has on our reward compared to other actions they might take and rewarding
actions which are advantageous.
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In Chapter 2, we will first introduce the reinforcement learning and multi-agent rein-
forcement learning frameworks, as well as key concepts and algorithms needed for our
methods. We then give an overview of related work in this field in Chapter 3 and explain
LToS, the method that we extend, in detail. Chapter 4 then presents our two methods,
explaining the motivation behind them and their architecture. Chapter 5 introduces
different cooperative MARL environments and presents the results of our algorithms in
these environments, which we discuss in Chapter 6, where we also give some pointers to
future work in this field.
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2. Background

In this chapter, we introduce the key concepts needed to understand this thesis. We start
by examining the formal definition of a reinforcement learning problem in Section 2.1
and then extend it to the multi-agent setting in Section 2.2, where we also introduce some
key challenges. Lastly, we discuss some common deep reinforcement learning algorithms
which will be fundamental building blocks for MARL algorithms later on.

2.1. Reinforcement Learning

Reinforcement learning concerns itself with a class of problems in which an agent interacts
with an environment by selecting an action from a predefined action space in each step,
based on the state that the environment is currently in. The goal of the agent is to
maximize the reward that it is given after each interaction with the environment. Because
the agent does not know the underlying logic that hands out these rewards, it has to
learn in which states to take which actions by repeatedly trying different strategies and
adjusting to the rewards it receives.

2.1.1. Markov Decision Process

Wewill nowmore formally define the setting and goal of reinforcement learning algorithms.
Environments can be modeled as a Markov Decision Processes (cf. [9]):

Definition 2.1.1 (Markov Decision Process). A Markov Decision Process (MDP) is a tuple
(S,A, P,R, I) where

• S is a set of states that the environment can be in,
• A is a set of actions that the agent can take,
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• P : S × A × S → [0, 1] is the transition probability function that determines the
probability P (s, a, s′) of transitioning into state s′ when being in state s and taking
action a,

• R : S × A → R is the reward function that returns a real-valued reward for each
state-action pair, and

• I : S → [0, 1] is the initial state distribution, where I(s) determines the probability
that s is the initial state.

It obeys the Markov Property, stating that the evolution of the stochastic process is not
dependent on its history because the transition probability function only depends on the
current state and the current action taken, but not on previous states that the agent has
been in.

Environment

Agent

𝑜𝑖 𝑎𝑖 ∼ 𝜋 𝑜𝑖 𝑟𝑖, 𝑜𝑖+1

1. 3.

2.

Figure 2.1.: Agent-Environment interaction
in a MDP

An interaction between an agent and an
environment can be depicted as follows:
The environment starts in state s0 drawn
from the initial state distribution I. The
agent then decides on an action a0 ∈ A to
take, usually by drawing it from its learned
policy π : S×A→ [0, 1]. The environment
then transitions into the next state s1 by
using its transition function P . The agent
receives a reward r0 that was determined
by the reward function R and continues
the process by choosing a new action in
the new state according to its policy. This process is also illustrated in Fig. 2.1.

2.1.2. Objective

This interaction between the agent and the environment is repeated until the environ-
ment reaches a terminal state. If there is no natural terminal state in the domain of the
environment, one usually lets the interaction terminate after a fixed number of steps T .
The interaction up until that point, which can be described by the list of states, actions,
and rewards s0, a0, r0, s1, a1, r1, ..., sT , at, rT is called an episode.
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We can measure the quality of an episode τ by its return, which defines a measure of
quality over an episode and is usually a weighted sum of the rewards:

G0(τ) =

T∑︂
t=0

γtrt (2.1)

Here, γ ∈ [0, 1] is the discount factor and is usually close to 1. It determines how much
influence rewards that lie in the future should have on the maximization objective. In the
case of γ = 1, the return is called undiscounted. However, in most problems, it is natural
to assume that we care more about immediate rewards than rewards in the future and it
is also mathematically convenient to do so. Generally, we define Gi(τ) to be the return
of the subsequence τi = si, ai, ri, ..., sT , aT , rT . Also note that in cases where we don’t
terminate an episode after a fixed number of steps, all definitions still work by replacing T
with∞. The goal of the agent usually is to learn a policy π that maximizes the expected
return over all episodes

max Eπ[G0(τ)] = max Eπ[
T∑︂
t=0

γtrt]. (2.2)

The key idea behind a lot of reinforcement learning algorithms is to learn how "good" it is
to be in certain states and then try to choose actions that lead to the best possible state
in the next step. More formally, the "goodness" of a state is called its value V π(s) and is
equal to the expected return that the agent gains when it starts from state s and follows
policy π from then on:

V π(si) = Eπ[
T∑︂
t=i

γtrt|st = si]. (2.3)

Notice that the value function is always defined with respect to a policy π that the agent
follows, but if that policy is clear from the context, we sometimes omit it and write V (s).
Because it is sometimes useful to work with the value of state-action pairs instead of just
states, we can define the "quality" of a state-action pair with respect to a policy by the
Q-function Qπ(s, a) which is equal to the expected return that the agent gets when it starts
from state s by taking action a and then follows the policy π afterwards:

Qπ(si, ai) = E[
T∑︂
t=i

γtrt|st = si, at = ai]. (2.4)
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Because of the recursive property that the return follows (Gt = γt + γt+1Gt+1), both the
value- and Q-function can also be defined recursively:

V π(s) = Ea∼π(s), r,s′∼P (s,a)[r + γV π(s′)]. (2.5)

More importantly, we know that an optimal policy π∗, i.e. a policy that yields more or
equally as much expected return in all states as any other policy, has to follow the Bellman
optimality equation

V π∗
(s) := v∗(s) = max

a∈A
Er,s′∼P (s,a)[r + γv∗(s)]. (2.6)

This equation is important because it can easily be turned into an update rule

V (s)← maxaEr,s′∼P (s,a)[r + γV (s′)], (2.7)

where the expectation on the right-hand side can be approximated by one or multiple
samples in practice. This update rule is at the core of many value-based reinforcement
learning algorithms and also plays a key role in Deep Q-Learning, which we will introduce
in Section 2.3.1.
An important extension to the MDP defined in this section are environments in which the
agent cannot observe the entire current state. In these partially observable MDPs (POMDP),
the agent observes an observation of the current state o(si) = oi ∈ O, which can be any
representation of the state that can be expressed as a function of it, for example, a feature
vector or a local region centered around the current position of the agent. The definitions
introduced in this section, e.g. the definition of the agent’s policy, are still valid if one
replaces the state s with the corresponding observation o(s).

2.2. Multi-Agent Reinforcement Learning

The definitions and formalisms we have defined so far have been developed under the
assumption that only a single agent interacts with the environment. However, a variety
of problems involve multiple decision-making entities, such as players in a game, robots
in a warehouse, or network nodes in a packet routing process. Although we could
technically model multiple entities as one agent and reduce the problem to a single-agent
reinforcement learning problem, we will later see that this is not efficient and introduces
unwanted assumptions. Therefore, we will introduce stochastic games, which we can use
to model multi-agent environments (cf. [10]):
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Definition 2.2.1 (Stochastic game). A stochastic game for n agents is a tuple (S,A, P,R, I)
where

• S is a set of states that the environment can be in,
• A = {A1, ..., An}, with Ai being the set of actions agent i can be in.
• P : S×A×S → [0, 1], whereA = A1×...×An, is the transition probability function

that determines the probability P (s,a, s′) of transitioning into state s′ when being
in state s and the agents having taken the joint action [a1, ..., an],

• R = {R1, ..., Rn}, where Ri : S ×A→ R is the reward function for agent i, and
• I : S → [0, 1] is the initial state distribution.

Environment

Agent 1

𝑜1
𝑡

𝑎2
𝑡 ∼ 𝜋 𝑜2

𝑡

𝑟1
𝑡, 𝑜1

𝑡+1

Agent 2

𝑜2
𝑡

𝑎1
𝑡 ∼ 𝜋 𝑜1

𝑡

𝑟2
𝑡, 𝑜2

𝑡+1

𝒂𝑡

×

1.

2.

3.

Figure 2.2.: Agent-Environment interaction
in MARL

Here, we can also restrict agents to only be
able to make decisions based on observa-
tions of the state, not the entire state itself.
Now, each agent gets a different observa-
tion of the current state oi(sti) = oti. Since it
is common to restrict the agents’ knowledge
about the environment in MARL settings,
we will continue our notation including this
extension.
The dynamics of the game are similar to
MDPs described for single-agent environ-
ments in Section 2.1, with every agent
choosing an action ai ∈ Ai to take and
the environment transitioning into a new
state s1 by drawing it from the transition probability function P (s1|s0, [a01, ..., a0n]) which
depends on the actions of all agents a, also called the joint action. Each agent i then
receives a reward r0i that was determined by the reward function Ri. Fig. 2.2 shows this
process. When dealing with multiple agents, we add the agent’s index as the subscript to
the definitions in Section 2.1.2 and denote the timestep as the superscript if necessary
(e.g. Gt

a(τ) is the return of agent a starting at timestep t).

As this definition is quite broad, there are a lot of different environments and situations
that can be modeled as a stochastic game [11]. One can model games in which agents act
as adversaries to each other and fight against each other for reward or model agents as
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belonging to one of multiple groups that have different motives. In this thesis though, we
will focus on settings in which agents work towards a shared goal and need to learn to
cooperate.

2.2.1. Goals & Challenges

To be able to develop adequate algorithms to solve multi-agent reinforcement problems,
one first needs to define the goal of the desired algorithm (i.e. the property that the
solution should fulfill). Common solution concepts are (cf. [10]):

• Nash equilibrium: For all agents i, given the set of fixed policies of all other agents,
the policy of agent i should maximize the expected return for that agent. This comes
from a game theory background. However, there can be many sets of policies that
fulfill the Nash equilibrium criterion with different expected returns, and therefore
agents can converge to suboptimal Nash equilibria.

• Pareto optimality [12]: In addition to being in a Nash equilibrium, this criterion
demands that there is no other policy that yields a higher expected reward for one
agent while not decreasing the expected reward for all other agents. This tries to
account for the aforementioned problem with Nash equilibria.

• Fairness [13]: A policy is fairness-optimal if it maximizes the product of all agents’
expected returns.

• Welfare [14]: A policy is welfare-optimal if it maximizes the sum of all agents’
expected returns.

In this thesis, we will try to learn policies that maximize the agents’ welfare. This is
reasonable as we consider environments in which agents work towards a common goal
whose success is measured by the reward the environment hands out to any agent.

As mentioned previously, it is possible to model a MARL problem as a single-agent problem.
This can be done in two ways:

(1) One can introduce a super-agent who takes in the observations from all agents
o = {ot1, ..., otn}, decides on a joint action a = {at1, ..., atn} ∈ A and then receives some
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function of the agents’ rewards (i.e. the sum of them)1. From the outside, i.e. from the
perspective of the environment, we are now only dealing with one agent and can apply all
algorithms and formalisms we know from single-agent RL. The main drawback is that this
super-agent’s action space is now exponentially bigger than that of any single agent of the
original problem (assuming that the action spaces of all agents are equally large). Another
downside is that we cannot let the agents execute their policies separately from each other,
even after training is finished, because they have to be controlled by the super-agent. This
is a limitation that is problematic in situations where agents are not able to communicate
with each other or the outside world after they are deployed.
(2) Another way to reduce the MARL problem to a single-agent problem is to train each
agent independently from the others (cf. [15]). This does not have the drawbacks of
exploding action space or limited application to certain environments as the centralized-
control approach. Breaking down a multi-agent environment in multiple single-agent
environments does however break the Markov property. From the perspective of a single
agent i the next state should only depend on the current state, the agent’s action, and the
transition probability function of the environment, which should not change over time (i.e.
P (s′|s, a) should always be the same probability distribution during the training process).
In reality, the environment transition probability function depends on all agents’ actions,
and therefore on their policies, which change over time as they are being learned. From a
single agent’s perspective, P (s′|s, a) thus seems to change change over time. This problem
is called non-stationarity and is the reason why most of the convergence guarantees from
single-agent RL do not translate to independent MARL and what makes it challenging to
develop universal algorithms in this field.

When developing custom MARL algorithms that don’t reduce to a single-agent problem in
one of the ways described above, one can categorize different approaches in training and
execution based on what information they are allowed to have access to (cf. [10]):

• Centralized Training, Centralized Execution: The algorithm uses privileged infor-
mation during training time such as other agents’ policies or observations, and also
relies on this information during execution. This can help make training more stable
and increase performance, however might not be applicable in some environments as
sharing information between agents after deployment might not always be possible.

1It might also be challenging to find a suitable function for some environments, e.g. when the sum of all
agents rewards is always 0.
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• Decentralized Training, Decentralized Execution: Agents don’t rely on centralized
or shared information at all. This is the most general approach as it works with all
environments but might suffer from stationarity problems.

• Centralized Training, Decentralized Execution: This approach combines the
advantages of bothmethods above. As long as agents don’t rely on shared information
when choosing their next action, there is no downside to using this information
during training.

The algorithms we present in this thesis will mainly fall into the third category, although
we will make a well-grounded exception when it comes to sharing information between
the agents during execution time.

2.3. Deep Reinforcement Learning Algorithms

𝑠𝑖

𝑄𝑖(𝑎1) . . . 

𝑄𝑖 𝑎𝑐 =  𝑄𝑖(𝑠, 𝑎 = 𝑎𝑐)

𝑄𝑖(𝑎2) 𝑄𝑖(𝑎|𝐴|)

Figure 2.3.: The Q-network of agent i, tak-
ing in the current state and pre-
dicting Q-values for all different
actions.

So far, we have only hinted at a concrete
reinforcement learning algorithm by intro-
ducing the Bellman Optimality Equation
(Eq. (2.6)) and transforming it into an up-
date rule to iteratively learn the value of
different states. In this section, we will
introduce two classic deep reinforcement
learning algorithms that build on this idea
and leverage the power of neural networks
as universal function approximators [16].
These algorithms can be used in single-
agent RL and will also be fundamental
building blocks in the MARL algorithms
we will present in Chapter 4.

2.3.1. Deep Q-Networks (DQN)

The approach of Q-learning is for the agent
to learn the quality of state-action pairs (i.e.
the Q-function), so that, during execution
time, it can follow the policy of choosing
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Algorithm 1 Deep Q-networks (DQN)
1: Initialize Q-network Q with parameters θ
2: Initialize target network Q′ with parameters θ′ ← θ
3: Initialize replay buffer R = {}
4: for t = 0, . . . do
5: Observe st, choose action with ϵ-greedy policy
6: Store sample (st, at, rt, st+1) in replay buffer, reset environment if st+1 is terminal
7: Draw minibatch D = {(si, ai, ri, s′i)} of b samples from replay buffer R
8: if s′i is terminal then
9: Set target yi ← ri

10: else
11: Set target yi ← ri + γmaxaQ

′(s′i, a)
12: end if
13: Update θ by minimizing L(θ) = 1

b

∑︁b
k=1(y

k −Q(sk, ak))
14: if tmod update frequency = 0 then
15: Update target network: θ′ ← θ
16: end if
17: end for

the action that has maximal Q-value for the current state. Deep Q-Networks [17] do this
by training a neural network to approximate the Q-function Qπ(s, a). The neural network
gets the observation at the current timestep ot as input and outputs a real-valued number
for every action a ∈ A. An illustration of this network is shown in Fig. 2.3. Note that
action space must be discrete and finite to be able to approximate Q-values in this way.
The training process consists of two steps:
(1) Collecting samples: This is done by letting the agent interact with the environment.
Usually, the agent follows an ϵ-greedy policy, meaning it chooses a random action with
probability ϵ and otherwise chooses the action that maximizes the current approximation
of the Q-function. This policy realizes the tradeoff between exploration and exploitation
and the parameter ϵ will usually decrease as the algorithm is being trained to exploit good
states after the state space has been explored sufficiently.
The samples (s, a, r, s′) are then stored in a replay buffer, which holds the k newest samples.
The benefit of sampling batches from this buffer when training the network is that one
can reuse old samples improving sample efficiency and can do batchwise updates.
(2) Training the network: We sample a batch of interactions from the replay buffer. All
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the following calculations can be done batch-wise: First, the target y is calculated following
the equation Eq. (2.7) that we have derived from the Bellman optimality equation (where
the Q-value of the next state s′ is omitted if the state is terminal). We then update the
network by taking a step in the gradient direction of the loss which we calculate to be the
error between the predicted Q-value and the target y, averaged over all samples in the
batch.
An important thing to note is that we use a separate target network to compute the target,
which has the same architecture as the Q-network and is not trained, but only updated
with the parameters of the Q-network once every fixed number of steps. This helps combat
the moving target problem where we would update the same network that we use for
calculating our target if we were to not use two separate networks [18]. Algorithm 1
shows pseudocode for this algorithm.
Although DQN is a widely-used algorithm in RL, both standalone and as a building block
for more complex algorithms, it has the drawback that it cannot be used in environments
with discrete action spaces. This is because we are computing the target y using the
maximum Q-value in the next state (cf. line 11), which we can only do if there is a finite
amount of states.

2.3.2. Deep Deterministic Policy Gradient (DDPG)

An approach that aims to mitigate this problem is the family of policy gradient algorithms.
The idea is to train a policy network µ directly, which takes in the current state and
outputs a mean action in the continuous action space. A stochastic policy can then be
used to handle the tradeoff between exploration and exploitation based on this mean
action. This has the benefit that the policy is more flexible than an ϵ-greedy policy over a
Q-network (it can approximate any probability distribution), but most importantly we can
train this policy network directly. There are many variants of policy gradient algorithms,
but the idea behind all of them is to update the policy network by a gradient that makes
action (-sequences) with high returns more likely and ones with low returns less likely.
The simplest algorithm REINFORCE minimizes the loss

L(ϕ) = − 1

T

T∑︂
t=0

(

T−1∑︂
i=0

γi−tri) log π(at|st) (2.8)

which is calculated from a whole episode.
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Deep Deterministic Policy Gradient (DDPG) combines the approach of learning a Q-
function approximation from DQN and uses it to update the policy network by calculating
a bootstrapped gradient. Pseudocode for this algorithm can be found in Algorithm 2.
Additionally to the Q-network, we now also have a network µ that takes in the current
state s and outputs a mean action a. Collecting samples is done in the same way as in
DQN, only that we use our policy network for choosing the actions. Here, we usually
apply a noise function to realize the trade-off between exploration and exploitation. The
original paper [19] uses additive Gaussian noise, but other options include time-correlated
noise processes such as the Ornstein-Uhlenbeck process. We also train the Q-network in
the same way as in 2.3.1, with the small adjustment that we don’t use the action from
the replay buffer but recompute what action we would take under our current policy (cf.
line 11). This is necessary because the original policy gradient theorem assumes that the
expected return is calculated under the current policy and samples from the replay buffer
might already be outdated.
After having trained the Q-network, we update the parameters of the policy network by
taking a step in the direction of the gradient that maximizes the Q-network. Instead of
doing "hard" target updates (setting the parameters of the target networks to the current
parameters of the network every fixed number of steps), DDPG updates the targets "softly".
This is done by updating them in every step, but only by a weighted sum of the current
weights and the target weights (with weighting parameter τ) in order to improve stability
during training.
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Algorithm 2 Deep Deterministic Policy Gradient (DDPG)
1: Initialize policy network µ with parameters ϕ, Q-network Q with parameters θ
2: Initialize target networks µ′, Q′ with parameters ϕ′ ← ϕ, θ′ ← θ
3: Initialize replay buffer R = {}
4: for t = 0, . . . do
5: Observe st, choose action with exploration noise a = µ(s) + ϵ
6: Store sample (st, at, rt, st+1) in replay buffer, reset environment if st+1 is terminal
7: Draw minibatch D = {(si, ai, ri, s′i)} of b samples from replay buffer R
8: if s′i is terminal then
9: Set target yi ← ri

10: else
11: Set target yi ← ri + γmaxaQ

′(s′i, ϕ(s
′
i))

12: end if
13: Update θ by minimizing L(θ) = 1

b

∑︁b
k=1(y

k −Q(sk, ak))

14: Update ϕ by maximizing 1
b

∑︁b
k=1Q(sk, ϕ(sk))

15: Update target networks softly: ϕ′ ← τϕ′ + (1− τ)ϕ and θ′ ← τθ′ + (1− τ)θ
16: end for
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3. Related Work

In this chapter, we will first give an overview of different approaches to solving the
cooperate MARL problem and then focus in on methods that reshape the reward signal
in order to incentivize cooperation. We will then present some approaches to model the
policy of other agents, which can help better predict the evolution of the environment
and thus improve learning performance. We will use this technique in one of our methods
as well, which we describe in more detail in section Chapter 4. Lastly, since one of our
contributions is to extend the algorithm Learning To Share (LToS) presented in [8], we
introduce this method in detail.

3.1. Cooperative MARL

There have been numerous different approaches to solving the problem of cooperative
MARL. Foerster et al. [7] use an actor-critic method with decentralized actors and a
centralized critic which is trying to solve the multi-agent credit assignment problem (i.e.
the problem of determining which agent was responsible for how much of the attained
reward) by rewarding the agent based on the advantage of the taken action over a baseline.
The disadvantage here is that the method still requires a central critic whose complexity
scales with the number of agents (and actions) in the environment.
Sunehag et al. [20] try to decompose the joint value function into multiple agent-specific
value functions that sum to the global one. QMIX from Rashid et al. [21] improves on this
idea by realizing that the constraint that the local value function must sum to the global
one at all points can be relaxed to only holding in the arg max case. This makes them
able to represent a larger class of value functions. Wang et al. [22] introduce QPLEX,
splitting the Q-function approximation into a value network and an advantage network,
which are both decomposed for each agent. Variations of this also don’t decompose the
value function for each agent individually, but build factors. For these kinds of value

16



decomposition, it can however be hard to find the combination of factors that yields the
best performance, and it is especially hard to do this dynamically.
Zhang et al. [23] also use a centralized critic, which is updated by the consensus of all
individual updates. Qu et al. [24] propose intention propagation between agents, updating
each agent’s policy based on the intentions shared by other agents. This can however
converge slowly because the intentions have to be propagated through the network of
agents.
Chu et al. [25] devise a communication protocol where agents exchange both their current
observations and beliefs, as well as a fingerprint. This communication is however costly
and provides a significant overhead in computation.

3.2. Reward Shaping

The methods we presented above mostly tackled the MARL problem by adding means
of communication between agents or tried to bridge the gap between joint learning and
independent learning by supplying the networks with additional information. There is
also related work that takes the approach of modifying the agents’ rewards in order to
promote cooperation:
Peysakhovich et al. [26] have limited their research to two-player stag hunt games,
examining how agents with different prosociality (receiving some convex combination of
the individual rewards) play against each other. However, the prosociality values (similar
to our sharing weights) are fixed and hand-tuned. Jaques et al. [27] give out additional
rewards to agents who choose actions that cause a high change in the probabilities of
other agents’ actions, maximizing mutual information and also add a message channel
where messages are rewarded in the same manner.
Mguni et al. [28] also modify the reward function, but use black-box optimization that is
trying to learn the optimal way to give out additional rewards given some fixed budget of
reward. These however stay the same during an entire episode and can thus not react to
dynamic environments and have no guarantees, as the modification of the reward signal is
unprincipled. When dealing with environments that give out only a global reward, Wang
et al. [29] redistribute this reward by using the idea of the Shapley value, which measures
each player’s marginal contribution in all possible coalitions. Yang et al. [30] learn an
incentive function to give additional rewards to other agents.
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Hostallero et al. [31] change the reward function of the stochastic game iteratively by
evaluating the current performance and employing a kind of temporal difference error.
However, because of this iterative process, it can take time to converge, and there are
situations where convergence is not guaranteed. In the method from Kölle et al. [32],
agents hold shares of other agents, based on which they receive parts of their reward and
they can decide to acquire more shares or reduce their number of shares in each step.
Their experiment setups and initial share distribution are however still hand-crafted.
Lupu et al. [33] also investigate the idea of letting agents give out additional rewards
to other agents (which they call gifting). Agents can gift rewards from a finite pool, but
this is not chosen in a principled manner, and the gifted reward goes to all other agents
equally, making it impossible to incentivize agents differently in more complex scenarios.
Wang et al. [34] extend this idea and analyze it theoretically.

3.3. Agent Modeling

The idea of modeling other agent’s behavior to better predict how the environment is
gonna evolve has also been studied in a few papers: Lowe et al. [6] introduce Multi-Agent
DDPG (MADDPG), where the critic is augmented with information about other agents’
policies.
He et al. [35] indirectly model opponents by extending the Q-function with opponent
features. Jin et al. [36] try to learn what action other agents will take by training a
function that takes in two environment states and tries to predict the action taken to
transfer the environment from one state to another. Because they are however always one
step behind, as they can only know the next state of the environment after the current
action has been taken, the performance varies.
Foerster et al. [37] take a different approach and refrain from actually modeling other
agents based on their behavior. Instead, they additionally condition the agent’s policy on a
fingerprint that contains information about at which point on their learning trajectory they
currently are. This can be for example the number of training iterations or the value of
the exploration parameter. The goal is to mitigate the problem that other agents’ policies
change as they are being trained. This is however also an advantage we get for free when
we model another agent’s behavior (although with more computational cost).
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3.4. Learning to Share (LToS)

The underlying idea of reward sharing as it is done in LToS is that agents can decide to
share parts of the reward they receive with other agents on a per-step basis. This leads
the agent receiving the shared reward to have an incentive to select its action in a way
that is also beneficial to the agent that shares its reward, as this will directly influence
its own reward. This assumes that the actions of agents have an effect on the reward of
other agents, which is given in most MARL environments where cooperation is needed,
especially between agents that are spatially close to each other. The fraction being shared
(also called the sharing weight) is communicated to each agent before they choose the
action they want to execute so that agents can base their choice of action on how the
rewards are gonna be redistributed in this step.
The further goal of LToS is that agents do not just incentivize all other agents to cooperate
with them equally and at all times, but rather that agents can choose who and how much
they want to incentivize to cooperate at each step, dependent on the current state of the
environment. This makes the method flexible and not environment-dependent and should
make it possible for agents to learn the optimal sharing behavior without any need for
hand-crafted communication.
The LToS approach formulates this setting as a bi-level optimization problem, where
the high-level problem is to optimize the way to choose the sharing weights (which we
will call the high-level policy), given the current policies of all agents (which we call the
low-level policy) and the low-level problem is to optimize the way to choose an action in the
environment given the current high-level policies of all agents. We will now describe how
this problem is solved by in turn updating the low-level and high-level policy. A diagram
of the interaction between the different policies and agents can be found in Fig. 3.1 and
pseudocode for the training process is shown in Algorithm 3.

Each agent has two components, an actor-network ϕ that chooses the high-level action
(i.e. the sharing weights) and a Q-network Q that tries to approximate the quality of the
triple (state, high-level action, low-level action) Q(s, win, a). The Q-network is used to
sample the low-level action, as well as being the critic for the actor ϕ.
(1) Collecting Samples: The agents’ interaction with the environment is now split into
two steps. First, each agent k chooses the sharing weights wout

k by following a noisy policy
over the actor ϕ (we use noise generated by an Ornstein-Uhlenbeck process). The vector
wout
k has n entries (wout

kj denotes the fraction of reward agent j will get from agent k)
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Algorithm 3 Learning to Share (LToS)
1: Initialize high-level network ϕk with parameters θk and target network ϕ′k with

parameters θ′k for every agent k
2: Initialize low-level network Qk with parameters µk and target network Q′

k with
parameters µ′k for every agent k

3: Initialize replay buffer R = {}
4: for t = 0, . . . do
5: for each agent k do
6: Observe stk, choose high-level action wout,t

k ← ϕk(s
t
k) with noisy policy

7: Exchange wout,t
k to get win,t

k

8: Choose low-level action atk with ϵ-greedy policy from Q(stk, w
in,t
k , a)

9: Store sample (stk, w
out,t
k , atk, r

t
k, s

t+1
k ) in replay buffer, reset environment if st+1

k is
terminal

10: end for
11: for each agent k do
12: Draw minibatch D = {(sik, w

out,i
k aik, r

i
k, s

′i
k)} of b samples from replay buffer R

13: Draw next high-level action w′out
k ← ϕ′k(s

′
k) and exchange to get w′in

14: if s′k is terminal then
15: Set target yk ← rk
16: else
17: Set target yk ← rk + γmaxaQ

′
k(s

′
k, w

in′
k , a)

18: end if
19: Update θk by minimizing L(θ) = 1

b

∑︁b
i=1(y

i
k −Qk(s

i
k, w

in,i
k , aik))

20: Redraw wout
k ← ϕk(sk) and exchange to get win

k

21: Compute gink = ∇win
k
argmaxaQk(sk, w

in
k , a) and exchange to get goutk

22: Update µk by maximizing 1
b

∑︁b
i=1(∇θkϕk(s

i
k))

T gout,ik

23: Update target networks softly
24: end for
25: end for
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Figure 3.1.: The LToS method from [8] in an environment with two agents

which are between 0 and 1 and all entries sum to 1, as all of the reward that agent k gets
should be redistributed (to other agents or to agent k itself). We make sure that this is the
case by applying a softmax over the output of the last layer of the network and additionally
renormalizing the sharing weights after the noise policy has been applied. The agents then
exchange the sharing weights and each agent receives a vector win

k =
(︂
wout
1k . . . wout

nk

)︂
of sharing weights directed to them.
Second, the agents choose a low-level action ak by following an ϵ-greedy policy over
Qk(s, w

in
k , a). Note that this is only possible if the action space of the environment is

discrete (and finite). It would also be possible to extend this method to continuous
action spaces by employing a similar strategy to DDPG, but we only concern ourselves with
discrete action spaces in this thesis. Lastly, the agents execute a step in the environment and
each receive a reward, which is calculated based on the base rewards of the environment
r̂ti and the sharing weights and is calculated by

rti =

n∑︂
j=1

wout,t
ji r̂tj . (3.1)
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(2) Training: We again train on a minibatch sampled from the replay buffer where all
calculations can be done batch-wise. First, the low-level Q-network is trained, similar to
the process in DQN. The only difference is that in order to compute the bellman target,
we need to draw the high-level actions in the next state s′ (and exchange the sharing
weights between the agents) because we need both the next state and the next high-level
actions to determine the next maximum Q-value. After we have updated the parameters
of the Q-network, we only need to update the parameters of actor ϕ by taking a step in
the direction of the gradient of the Q-function with respect to its parameters θ.
To this end, we can see that the gradient with respect to the high-level parameters of
agent k of the Q-value of agent j with fixed state and action is

Gkj = ∇ϕk
max
a

Qj(s, w
in
k , a)

= ∇smax
a

Qj(s, w
in
k , a)∇θs

+∇win
k
max
a

Qj(s, w
in
k , a)∇θϕθ(s)

+∇amax
a

Qj(s, w
in
k , a)∇θa

≈ ∇win
k
max
a

Qj(s, w
in
k , a)∇θϕθ(s).

(3.2)

Because the sharing weights of all agents influence the Q-value, we need to sum over all
gradients Gkj when updating the parameters of agent k:

θk ← θk + α
n∑︂

i=1

Gki. (3.3)

Because we need gradient information from all agents in order to update a single agent’s
parameters, we need to exchange this information (in the pseudocode and actual im-
plementation we exchange goutkj = ∇win

k
maxaQj(s, w

in
k , a) instead of Gkj and multiply

them with ∇θϕθ(s) afterward in line 24). Lastly, we update both the high-level and
low-level target networks softly, which are being used in calculating the next Q-value in
the calculation of the bellman target.
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4. Methods

In this chapter, we introduce the two MARL algorithms we have developed for training
agents in a stochastic game to maximize the total welfare. As previously mentioned, there
are multiple different approaches to making agents learn to cooperate. We want to confine
ourselves to methods that can be executed decentralized to keep the range of applicable
problem settings broad. We don’t allow access to the joint action of all agents or other
privileged information during execution that would break the scalability of the method.
However, in many MARL algorithms, a communication channel either between all agents
or between agents that share some form of locality is allowed to aid communication.
Communication can be modeled as being part of the agent’s action, however not influencing
the environment state. Communication actions (or messages) can be of different forms:
They can be selected from a set of possible messages, which can either have a predefined
meaning assigned to them that the agents know about or agents might need to learn
a common language. They can also be continuous or even noisy if one models the
communication channel as unreliable. For our first method, PERC (Policy-Encoded Reward-
Communication), we allow a reliable communication channel between local agents with
continuous actions.
Many other methods that use a communication channel between agents require the agents
to learn a common language (and to use that language properly) to develop a helpful
messaging system or share hand-crafted information with each other such as properties
of the current state. This has the downside of being quite dependent on the messaging
system being developed by the agents or the helpfulness of environment features being
communicated.
Our methods try to circumvent this problem by using rewards as a means of communication.
As the agents are already trying to maximize their own rewards, it is natural to let other
agents modify this signal in order to influence the behavior. Our methods are thus general
enough to work with any environment and just reshape the reward function each agent
tries to maximize.
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We present two methods in this chapter:
PERC (Policy-Encoded Reward Sharing): Our first method, which we will present in
Section 4.1 is an extension to the LToS (Learning to Share) framework proposed in [8],
which lets agents dynamically share parts of their reward with other agents, which they
communicate to them.
BRIBE (Bribes for Incentivizing Behavior): In Section 4.2, we will describe our second
method, in which agents can specify an additional reward (which we call bribe) that is
given to another agent if it takes the action specified by the bribing agent.

4.1. Policy-Encoded Reward-Exchange (PERC)

In our method PERC, we extend LToS in order to improve two main aspects: Firstly,
because the high-level network draws the sharing weights wout

k in one forward pass as a
single vector, the high-level network needs to learn which agent corresponds to which
index in the vector. If the environment changes (i.e. agents disappear, new agents get
added or agents change indices in some other way), this relationship gets lost and has to
be learned anew.

Secondly, we hypothesize that it would be beneficial if the agent had more information
about another agent’s policy when deciding on the sharing weights. The intuition behind
this is that in order to decide what fraction of its reward an agent should share with
another agent, it should determine whether and in which way cooperation with that agent
is needed in the next step. Other papers that we have presented in Section 3.3 have shown
that conditioning policies on models of other agents can have a significant impact on
performance. To that end, it would be beneficial to condition the high-level policy on a
representation of the other agent’s policy (which ideally would hold information about
the next action that the agent takes).
In the original LToS method, this information about other agents’ policies has to be
implicitly learned from experience samples. This is an extra layer of complexity and is
especially a problem in environments where agents’ policies change during training. In
those cases, it can be beneficial to explicitly condition the agent’s policy on the policies of
all other agents in order to be able to use up-to-date information about the behavior of
other agents.
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In an ideal world, we would like to use the actual actions that all other agents are going to
take in this step, but this is mostly not feasible as we don’t have access to all actions in the
decentralized execution paradigm after deployment. Furthermore, we would introduce
a circular dependency because the action of one agent would depend on the actions of
all other agents. Another approach would be to use the policy of all other agents. This
has the downside that in deep reinforcement learning, policies are usually represented by
neural networks, i.e. by a large number of parameters, typically too large to effectively
condition policies on efficiently.
This leads us to the idea of learning a compact representation of the agents’ policies that
is small enough to be able to be used efficiently when drawing actions, but large enough
to capture the policies’ characteristics sufficiently. Encoder-decoder networks have been
found to work well with learning compact representations of larger data and then making
predictions from them. Because we want to predict an agent’s next action ai from the
current state s (as this is the only information available to us), we train an encoder ei
and a decoder di for every agent. The encoder receives the current state and outputs an
intermediate representation (or latent state) ei(s) = li, where the dimensionality of li is
sufficiently small. The decoder then takes in the latent state and outputs a vector, which
we aim to approximate the action probabilities of agent i: ds(li) = âi =

(︂
â1i . . . â

|A|
i

)︂
,

where we want to train the encoder-decoder network, such that âki approximates the
probability with which agent i takes action k in the current step. We achieve this by
training the encoder and decoder jointly each time a training step in LToS is done by
minimizing the cross-entropy loss between the predicted action probability of the network
and the true action that the agent has taken which we observe from the sample:

minL(âi, ai) = log(
exp(âaii )∑︁|A|
k=1 exp(â

k
i )
). (4.1)

This way, the encoder learns to encode information into li which is important for predicting
the action probabilities of agent i and the decoder learns to use that information correctly.
When we now draw a high-level action (the sharing weights), we could give the network
both the state s and the encodings for all other agents l−i = {l1, . . . , li−1, li+1, . . . , ln} or
alternatively choose to directly condition on the predicted action probabilities â−i instead
of the encodings. The advantage of using the predicted action probabilities directly is that
we make the information more explicit, whereas the idea behind using the encodings is
that the encoder-decoder has hopefully learned to structure this information in a more
usable way during the training process. We will investigate the difference between these
two ideas in Chapter 5.
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Figure 4.1.: A PERC agent’s interaction with the environment, using information about
other agents’ policies.

26



However, conditioning agent i’s policy on all other agents’ policies when drawing all
sharing weights in one single pass has two main drawbacks. Firstly, since we draw all
sharing weights in one pass, the high-level agent has to learn which encoding it should pay
attention to when computing the sharing weight for a specific agent. Conversely, when
deciding on the sharing weight wout

ij , all encodings except for lj should not be of much
value. So, we unnecessarily blow up the input space of the high-level policy and make it
harder to learn the relationships between the policy encodings. Secondly, drawing the
weights in one pass would carry over the problem of LToS that the architecture is not
flexible towards changes in the environment due to tying agents to indices in the sharing
weight vector.
To circumvent these problems, we change the high-level agent’s network such that it takes
in the state s and one policy-encoding lj and only outputs a single sharing weight wout

ij . We
then determine the sharing weights by separately drawing the individual sharing weights
and then applying a softmax (which we now cannot have as the last layer of the network
anymore):

wout
i = σ

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝
ϕi(s, l1)

...
ϕ(s, ln)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ . (4.2)

Fig. 4.1 shows a diagram of this process. The full pseudocode for PERC can be found in
Appendix A.
The modifications compared to LToS are listed below:

Algorithm 4 Modifications to LToS for PERC
Initialize encoder ek and decoder dk with parameters ψd

k and ψd
k for every agent k

· · ·
Observe stk, draw encodings lj and predicted action âtj for every agent j, choose high-
level action wout,t

k ← σ(ϕk(s
t
k, l1), . . . , ϕk(s

t
k, ln)) with noisy policy

· · ·

Update ψd
k and ψd

k jointly by minimizing 1
b

∑︁b
i=1(log(

exp(â
aik
i )∑︁|A|

c=1 exp(â
c
i )
))
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4.2. Bribes for Incentivizing Behavior (BRIBE)

Most cooperative MARL methods that follow the idea of sharing rewards between agents
or influencing the reward of other agents in some other way (including LToS & PERC)
influence the actions of other agents only indirectly through a modified reward signal. This
reward signal can however be unreliable at times. For example, even if agent i chooses an
action that is beneficial to agent j, it might not get a high reward signal, because agent
j itself chose a suboptimal action (especially during the start of training time when the
exploration parameter of the policy is still high) or because either some other agent or
the stochastic environment transition led to a suboptimal state by chance.
Additionally, some reward-shaping methods like LToS give agents a lot of freedom in how
to share/modify rewards. Because the reward landscape from the point of view of a single
agent depends so much on the modification that other agents make, its policy can show a
high variance depending on what the current reward signal looks like. This added layer
of dimensionality to the original reinforcement learning problem can lead to more local
optima or cases where agents don’t converge to a coordinated way of modifying each
other’s reward signal.
This is why we developed a method that creates an explicit way for agents to suggest
to other agents which action they should take and give them an incentive to do so.
Additionally, both the suggested action and the incentive are chosen in a principled way
based on the current learned state values.
The idea behind Bribes for Incentivizing Behavior (BRIBE) is that each agent i, additionally
to selecting an action ai, selects an action for each other agent j that it wants this agent
to take. We call this action bij the bribe action. Additionally, it attaches a reward to this
action, which agent j will receive if aj = bij . We call this additional reward the bribe value
vij . This is the only modification compared to the standard MARL setting, i.e. the agents’
policies are still only conditioned on the current observation, not on the bribe actions
and bribe values of other agents. This is because we want to avoid additional complexity
when learning the policies and additional overhead that this communication step would
entail. We suppose that solely reshaping the reward function of the agents in this way -
encouraging single actions explicitly - will suffice to learn to cooperate.
As explained above, we want to choose the bribe actions in a principled way, actually
reflecting what agents currently believe to be the best action another agent can take (i.e.
which maximizes their expected reward). Similarly, we want to choose the bribe value
in such a way that it accurately reflects, how beneficial this single action is for them. We
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Figure 4.2.: The bribe network predicts the Q-values for agent i given which action agent
j takes in this step.

achieve this by giving out additional rewards equal to how much higher the expected
return given that the other agent executes the bribe action is, compared to the average
expected return over all possible actions.
In order to do this, we need two Q-networks per agent Qk and Q̂k. Qk is trained to predict
the Q-value of state-action pairs using the shaped rewards r, which include the additional
rewards gained from bribes. This network is used to train the agents, just as in DQN. Q̂k

is trained to predict the Q-values of state-action pairs using the base rewards r̂ which do
not include the bribe values. It will become apparent later on why we need this additional
network per agent.
The third component is another Q-network B, which we will use to predict the expected
value for agent i taking action ai in state s and agent j taking action aj . Therefore, the
inputs to this network are oi, oj and ai, and each of its |A| outputs acj denotes the Q-value
for agent i if agent j takes action acj . An illustration of this network architecture is shown
in Fig. 4.2.
(1) Collecting samples: When drawing the next action ai, agents choose them as they
normally would in DQN, using the Q-network with shaped rewardsQi. Agents then choose
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the bribe action for agent j bij by

bij = argmax
aj

B(s, ai, aj). (4.3)

This corresponds to choosing the action for agent j that maximizes the expected return for
agent i in the current state-action pair. Additionally, the agent calculates the bribe value
vij as the reward-over-average of this action, which can be determined by first calculating
the expected return-over-average

Ḡij = argmax
aj

B(s, ai, aj)−
∑︂
aj∈A

1

|A|
B(s, ai, aj). (4.4)

We now want to convert this expected return to an expected reward, because the bribe
values we hand out should have the same magnitude as the rewards an agent usually gets.
Because we don’t know how the expected return is distributed over future rewards, we
assume that all rewards are equal in our calculation. Additionally, we don’t know how
many steps are still to go until the environment terminates after T steps. On average,
there are still T/2 steps to go, which is why we use this in our calculation. Together, we
thus have

Ḡij ≈
T/2∑︂
t=0

γtr

⇔ r = Ḡ
1− γ

1− γT/2
,

(4.5)

where vij = r is an approximation of the reward-over-average that the agent selects as
the bribe value.
The agents interact with the environment as normal, storing both the environmental
rewards r̂ and the modified rewards r, which include possible rewards from bribes if
agents have chosen the corresponding bribe action in the replay buffer.
(2) Training: Having drawn a minibatch from the replay buffer, we first train the Q-
networks Qk and Q̂k for every agent as in DQN. We then want to train the bribe network
so that it predicts the correct Q-values. To that end, the target for Bk(s, ak, aj) should be
equal to the environmental reward that agent k received in this step r̂k plus the maximum
Q-value without bribes in the next state maxaQ̂′

k(s
′, a), where we use the target network.

The parameters of the bribe network are then updated by minimizing the standard DQN
loss using the target described above.
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Figure 4.3.: In BRIBE, an agent i chooses an action ai, and a bribe action bij and a bribe
value vij for every other agent j, using the bribe network Bi. Agent j then
additionally gets vij reward if it chose action bij .

An important note and the reason why two separate Q-networks (one for environmental
rewards and one for shaped rewards) are necessary, is that we need to use environmental
rewards and Q-values here. Were we to use Q-values that have been calculated based on
shaped rewards, we would have created a feedback loop: Giving out bribe values increases
the expected Q-values using shaped rewards (as there are additional rewards from bribes
now). This leads to the bribe network also predicting higher Q-values and thus the agents
giving out higher bribes. This process would continue indefinitely and the bribe values
would increase with every training step. Therefore, we use solely environmental rewards
to update the bribe network’s parameters. Lastly, the parameters of all networks are
updated softly. Algorithm 5 shows pseudocode for this process, which is also illustrated in
Fig. 4.3.
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Algorithm 5 Bribes for Incentivizing Behavior (BRIBE)
1: Initialize Q-network Qk with parameters θk and target network Q′

k with parameters
θ′k for every agent k

2: Initialize Q-network without bribes Q̂k with parameters θ̂k and target network Q̂′
k

with parameters θ̂′k for every agent k
3: Initialize Q-network for bribe actions and bribe values Bk with parameters ϕk and

target network B′
k with parameters ϕ′k for every agent k

4: Initialize replay buffer R = {}
5: for t = 0, . . . do
6: for each agent k do
7: Observe stk, choose action atk with ϵ-greedy policy
8: Chose bribe-action bk = (bk1, . . . , bkn) fromB where bkj = argmaxatj B(stk, a

t
k, a

t
j)

9: Set bribe-value vk = (vk1, . . . , vkn) where vkj = (B(stk, a
t
k, b

t
j) −∑︁

a∈A
1
|A|B(stk, a

t
k, a))

1−γ
1−γh/2

10: Observe base rewards r̂tk and rewards with bribes rtk and store sample
(stk, a

t
k, r̂

t
k, r

t
k, s

t+1
k ) in replay buffer, reset environment if st+1

k is terminal
11: end for
12: for each agent k do
13: Draw minibatch D = {(sik, aik, r̂

t
k, r

i
k, s

′i
k)} of b samples from replay buffer R

14: Compute targets yk, ŷk for Qk, Q̂k and update θk, θ̂k by minimizing the corre-
sponding loss (difference between target and prediction)

15: Set target yB ← r̂k +maxa Q̂
′
k(s

′
k, a)

16: for j ̸= k do
17: Update ϕk by minimizing L(ϕk) = 1

b

∑︁b
i=1(y

B −Bk(s
i
k, a

i
k, a

i
j))

18: end for
19: Update all target networks softly
20: end for
21: end for
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5. Experiments

In this chapter, we will describe the experiments we have conducted in order to test our
methods on different environments, examine different modifications on our methods,
and understand their limitations. We will first give an overview of some important
implementation details and describe our training process. A more comprehensive list of
hyperparameters can also be found in Appendix B. We used the framework MushroomRL
[38] for our experiments. Then, we will present the results of our algorithms’ performances
in three different environments, each having its own challenges. We will also investigate
the reward-sharing mechanisms that are being learned as well as perform some ablation
studies of different parts of the algorithms. Lastly, we will discuss the results and identify
limitations of our methods and how those could be tackled.

5.1. Setup & Training

5.1.1. LToS

In our implementation of LToS, we try to stick to the implementation of the original paper
[8] as closely as possible. For the actor-network of the high-level policy (which takes
in the current state and outputs the weights shared with all agents), we use a standard
neural network with two fully connected hidden layers with 128 neurons, each with a
ReLU activation function. Since the outputs of the network should sum to one, a softmax
is applied after the last layer.
During training, samples from the high-level policy are drawn with a time-correlated
Ornstein-Uhlenbeck noise, because it increases state-space coverage compared to a non-
correlated Gaussian noise. Because the noise modifies the sharing weights randomly and
they might not sum to one after manipulation, we normalize the sharing weights after
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applying the policy in order to ensure that rewards are just redistributed and not lost or
created.
For the low-level agent, the original LToS paper uses a graph convolutional network [39],
which convolves features of the observations of neighboring agents like a convolutional
neural network (CNN). We decide to use a simple DQN instead, because it is well-studied,
easier to implement, and does not introduce an additional layer of complexity during
training. Also, the environments we test our methods on don’t have an inherent notion of
adjacency, so it would take additional work to dynamically model a graph between the
agents given their current positions.
Our Q-network has the same architecture as the high-level network, only that the number
of output neurons correspond to the size of the action space of the current environment
and there is no need to apply a softmax over the last layer as we want to predict Q-values.
During training, we use an ϵ-greedy policy to draw samples, where we let ϵ decay during
training.
We start training by collecting enough samples to fill the replay buffer without fitting our
networks. We then train our algorithms for multiple epochs, where we simulate 2,000
environment steps (i.e. agents observe the current state, choose actions, observe reward
and next state) in every epoch. Fitting the agents happens every third environment step,
which we found to be a good trade-off between training often and experiencing diverse
samples from the replay buffer. Because the high-level agent should be updated more
slowly than the low-level agent, we adjust the learning rates such that three updates of
the high-level agent correspond to one update of the low-level agent.

5.1.2. PERC

For PERC, the architecture of the high- and low-level networks are the same as for LToS,
except that the high-level policy now additionally takes in the latent state of the encoder-
decoder. The encoder-decoder is a simple neural network with the encoder having one
hidden layer of size 128, and its output layer being the latent state. The decoder has the
same architecture, only that the input layer takes in the latent state of the encoder and the
output layer corresponds to the number of actions in the environment. As with all other
networks, we train this encoder-decoder with Adam [40]. We train the encoder-decoder
jointly with cross-entropy loss with the target being the action that the other agent actually
took, with the training frequency being the same as the one of the low-level network,
because it is the function we want to approximate.
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During our experiments, we find that conditioning the low-level policy with the predicted
action probabilities âi (i.e. the output of the decoder) instead of the latent state li (i.e.
the output of the encoder) also to be a viable option. We present more data on this in
Section 5.3.
We also experimented with adding a regularization term to our loss function that penalizes
the high-level policy for choosing sharing weights that deviate too much from sharing the
reward equally to all agents, as erratic sharing weights could lead to instability during
training, but we found this to only have a very marginal effect on the overall performance
and the weighting of this penalty would be a parameter that would need to be fine-tuned
for each environment separately.

5.1.3. BRIBE

For BRIBE, we use the same architecture for the low-level DQN agent as we use for the
low-level network in LToS. The bribe agent is also a simple neural network that has two
hidden layers and outputs the expected q-values for agent i given which action agent
j takes. We train the bribe network whenever we train the Q-network, using the same
sample. In order to do that, we must store the joint action of all agents for each sample in
the replay buffer, because we need to know which action the other agent took for training
the bribe network.
During our experiments, we also compare the performance of BRIBE in two settings:
Either every agent uses the same bribe network which thus has to learn to differentiate
which agent is the giving agent and which one is the receiving agent, based on information
contained in the observations. Or every agent has its own bribe network that is only
trained with that agent in the position of the agent that gives out bribes and thus might
not need to generalize as much. We present more data on this in Section 5.3.

5.2. Environments

5.2.1. Trapped Agent

Trapped Agent is a social dilemma environment that we have devised. It is played on a 2x3
grid world with 3 agents, where one agent is "trapped" and cannot move (i.e. no matter
which action it takes, it will always stay on the square it started on). The other two agents
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1 3

Figure 5.1.: The starting configuration of the Trapped Agent environment with one trapped
agent (grey) and two free agents (orange). The optimal behavior to maximize
the joint reward would be e.g. both agent 1 and agent 2 to move right on
their first step, agent 2 to move back in the next step (and agent 2 staying in
its new position), and finally agent 2 to move down onto the square with the
blue button.

can move freely (up, down, left or right) in the confinement of the grid as long as the
square is not occupied by another agent already. Fig. 5.1 shows the environment in its
starting configuration. The trapped agent receives a constant negative reward of -1 until
it is "freed". That only happens after both free agents have moved onto the square with
the button one after the other.
Inherently, the free agents have no incentive to do so and even incur a small negative
reward of 0.1 if they step onto the square with the button. Once the trapped agent is
freed, it no longer receives a negative reward. We have set up the environment like this
because independently training the agents will not lead to the trapped agent being freed,
thus not achieving the highest possible joint reward. It is required that the agents (in
particular the trapped agent) create some incentive (in our case in the form of shared
reward or reward from bribes) to maximize the welfare. We always let the environment
terminate after 10 steps so that the returns are comparable across different episodes and
there is an incentive to free the trapped agent as early as possible.
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5.2.2. Jungle

attack

attack+1

+2 -4

Figure 5.2.: A 3x4 Jungle environment with 3 agents (shown as orange triangles) and 2
fruits (apples). An agent receives more reward for attacking an agent than
"eating" food, but the attacked agent receives a high negative reward, such
that the cumulative reward over all participating agents in the attack scenario
is lower than in the eating scenario.

Jungle is a grid-world environment that also poses a social dilemma to the agents. In an
MxN grid with A agents, F stationary fruits are spawned in each episode. Agents can
move (up, down, left or right) in the confinements of the grid as long as the square is not
occupied by another agent yet. They can also attack a neighboring square (up, down, left
or right).
When an agent attacks a square that is occupied by another agent, it receives a reward of
+2 and the attacked agent receives a reward of −4. When an agent attacks a square that
is occupied by a fruit, the agent receives a reward of +1. Fig. 5.2 illustrates these two
scenarios. The same fruit or agent can be attacked by multiple agents at the same time.
When an agent attacks an empty square, it receives a small penalty of −0.1 in order to
prevent excessive attacking.
Thus, a single agent will inherently favor attacking another agent over attacking a food,
since that gives it a higher reward. However, when all agents follow this strategy, which
leads to a Nash equilibrium, both the reward of a single agent and the total reward of
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all agents will be suboptimal because the penalty for being attacked is higher than the
reward for attacking. If all agents only eat food and refrain from attacking, both the total
reward and the reward for a single agent will be higher than in the scenario above. To
that end, agents need to create incentives for other agents not to attack them in order to
reach the optimal strategy of collaborating and only eating fruit.

5.2.3. Give Way

Figure 5.3.: Two agents (big circles) and their current velocity vector (thin lines from
their center) in the Give Way environment.

The last environment that we conduct experiments in is a two-player environment taken
from [41], who provide a series of vectorized multi-agent environments. Two agents
start at opposite ends of a corridor and their objective is to reach their respective goals,
which are positioned where the other agent starts. In the discretized version of this
environment, which we use, the agents can accelerate in one of 8 directions, which then
updates their (continuous) velocity or do nothing (keeping their current velocity). The
agents get rewarded based on whether they reduced the distance to their goal, and an
additional reward if they reached their goal in the last step. In order for the agents to pass
each other and reach their corresponding goals, they have to coordinate so that one agent
"gives way" to the other by moving up into the nook at the halfway point. The agent that
makes way forgoes some of its potential reward because it does not decrease the distance
to its goal while making space for the other agent, which is why it should be helpful to
train the agents with some incentive mechanism that promotes cooperation.

5.3. Results

We train our algorithms PERC and BRIBE for 100 epochs in the Trapped Agent environment.
To compare their performances, we also train our implementation of LToS.We also compare
our methods against training all agents individually with DQN, each agent maximizing
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Figure 5.4.: The mean environmental return over all agents during an episode in the
Trapped Agent environment. The solid lines represent the mean over five
runs and the shaded area is a 90% confidence interval.

their own rewards, which we call Independent Q-Learning (IQL), and against training all
agents individually, but with each agent receiving the average reward of all agents in the
environment, which we call Average Reward. IQL and Average Reward can also be seen as
special cases of LToS, where the sharing weights are fixed and set to wij = δij (IQL) or
wij = 1/n where n is the number of agents (Average Reward).
All plots we show in this section are averaged over five runs with different random seeds
and show the mean return over all agents in one episode, averaged over all runs, as well as
a 90% confidence interval. Fig. 5.4 shows the performance of all algorithms. As expected,
IQL does not solve the environment (i.e. the agents don’t learn to cooperate and free the
trapped agent), which is logical as the free agents have no incentive to accept the negative
reward for stepping onto the button, because they don’t get compensated for it.
We can see that all other algorithms manage to solve the environment. PERC performs
slightly better than LToS, gaining more return more quickly and showing less variance

39



over the different runs. Furthermore, BRIBE shows an even better and more consistent
performance.

Figure 5.5.: For every environment step in Trapped Agent, we show a matrix of bribe
actions and values that are handed out. A square (i, j) in the matrix shows
the bribe action aij (from agent i to agent j) as an arrow (up, down, left or
right) and the bribe value bij as the background color (darker red is higher).
For example, the bottom left square in the first matrix shows that agent 3
gives agent 1 an additional reward of 1.2, if agent 1 moves right in the first
step.

To investigate the learning process of BRIBE further, we can look at further statistics
about how bribes are being handed out and if agents learn to accept them. Fig. 5.5 shows
a matrix of which bribe actions and bribe values are being handed out by the different
agents in each environment step. We can see that, as expected, only the trapped agent
(index 3) gives out significant bribes. This is because its reward directly depends on the
actions of the other two agents, whereas the free agents’ rewards only depend on their
own actions, more precisely on whether they step onto the square with the button or not.
We can also observe that the actions suggested to the free agents exactly correspond to
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a solution in the environment: First, both agents move to the right (agent 1 moves onto
the button), then agent 1 moves to the right again, and agent 2 does not move (it hits
the upper wall of the environment) and finally, agent 2 moves down onto the button.
After the button has been pressed by both agents, the trapped agent is freed and we can
observe that it is no longer handing out significant bribe values, as its reward now does
not depend on the other agents’ actions anymore.

(a) The return from bribes for all agents
in the Trapped Agent environment
throughout training.

(b) Mean bribe values being handed out
in a single step for all agents in the
Trapped Agent environment through-
out training.

Figure 5.6.: Bribe values and how they are being earned by other agents during training.

Fig. 5.6 shows how much reward from bribes the agents get throughout the training and
the mean bribe value the agents give out in a single step. Since agents only get the bribe
reward when they choose the action that was suggested to them, we can observe whether
and how fast the agents learn to conform to the actions that are being suggested to them.
In Fig. 5.6a, we can see that immediately after the warmup phase (first 10 epochs), agents
1 and 2 learn to follow the bribe action and gain rewards from bribes. Conversely, Fig. 5.6b
shows that agent 3 quickly learns to give out bribes. If we compare the two plots, we can
see that agents 1 and 2’s return from bribes closely matches the mean bribe value that
agent 3 hands out, i.e. they learn to conform to the bribe actions quickly.
Lastly, we compare the performance when using a single bribe network across all agents
to using agent-specific bribe networks. Fig. 5.7 shows the return for both variants. We
can observe that the performance is virtually the same. We suspect this to be the case
because the environment is relatively simple and because the agents’ observations already
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Figure 5.7.: Comparison of the environmental reward when using a shared bribe network
across all agents or using one bribe network per agent.

include the index of the agent whose observation it is. Thus, the bribe network can easily
determine which agent is currently in the position of giving bribe values and receiving
bribe values. Additionally, in this environment, agents have a limited range of motion,
and thus agent indices can relatively easily be determined from the agent’s position.
We will now look into some more statistics of PERC, in particular how well the encoder-
decoder is able to approximate the actions taken by other agents and what information is
more helpful for the high-level policy to be conditioned on.
Fig. 5.8 shows the accuracy of the encoder-decoder over the course of training, which
corresponds to the percentage of correctly predicted maximum-probability actions. We
can see that the accuracy rises relatively quickly, settling around 40%. While this shows
us that the encoder-decoder is able to learn a connection between the current state and
the chosen action of an agent, it still seems like there is potential for improvement. A
reason why the accuracy does not rise even more could be that there are multiple ways to
solve this environment that are all equally good in terms of total reward. Therefore, it is
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Figure 5.8.: The accuracy of the encoder-decoder in PERC (i.e. how often the action that
the encoder-decoder assigned the highest probability was taken by the other
agent) in the Trapped Agent environment throughout training.

hard for the encoder-decoder to predict, which of these solutions is being taken in the
current episode, reducing the accuracy statistic.
Additionally, during training, we use an ϵ-greedy policy for choosing the actions, such
that even though the encoder-decoder might have predicted the maximum likely action
correctly, the agent chose their action randomly. Lastly, since we only look at the action
that the encoder-decoder assigned the highest probability to, there could be cases where
the actual action taken was also assigned a high probability by the encoder-decoder, but
not the maximum.
As mentioned in Section 4.1, we initially use the latent state of the encoder-decoder li
to pass it to the high-level policy as additional information about agent is policy. We
compare this with instead passing the predicted action probabilities âi, and passing only
the action with maximal predicted probability argmax âi. In theory, the advantage of
using the latent state could be that the encoder-decoder has learned to represent useful
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Figure 5.9.: The environmental return in the Trapped Agent environment throughout
training for PERC, once conditioning the high-level policy on the hidden
state of the encoder-decoder and once on the predicted action probabilities
directly.

information to predict the taken action in a structured way.
However, using the predicted action probabilities directly is more explicit and since they
are the key information we care about supplying the high-level policy with, we could
hope that it is easier to use this explicit form of information. Fig. 5.9 shows a comparison
of these variations. We can see that the difference between the modifications is only
marginal, but directly passing the most probable action to the high-level policy yields a
slightly better return and shows the lowest variance across different runs, so we use this
modification in all further experiments.
Fig. 5.10 shows the mean return of all agents in the Jungle environment during training
over the course of 500 epochs. We set up the environment on a 4x4 grid, two fruits at a
time and three agents.
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Figure 5.10.: The mean environmental return over all agents during an episode in the
Jungle environment. The solid lines represent the mean over five runs and
the shaded area is a 90% confidence interval.

Fig. 5.11 shows the same plot for two agents in the Give Way environment over 200 epochs.
In both environments, we can see that our algorithms PERC and BRIBE, as well as LToS
gradually increase the environmental return, but perform worse than the baselines Average
Reward and IQL. PERC performs slightly better than LToS and also exhibits a lower variance
across different runs, but the difference is only marginal. BRIBE’s performance settles in
the same range as PERC and LToS.
In terms of the behavior of the agents in the Jungle environment, LToS, PERC, and BRIBE
all learn to not attack other agents but fail to optimally eat all fruits in the fastest way
possible, while the baselines are able to do that consistently. In the Give Way environment,
all algorithms learn to swap positions, but the baselines give way in a more coordinated
manner and thus the agents pass each other more quickly, while our algorithms take
longer until one agent decides to make way for the other, receiving less environmental
reward in the process.
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Figure 5.11.: The mean environmental return over all agents during an episode in the
Give Way environment. The solid lines represent the mean over five runs
and the shaded area is a 90% confidence interval.
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6. Discussion

We have seen that our methods show some promising results in simple social dilemmas
such as the Trapped Agent environment and have analyzed some of their behavior and
modifications in more detail. There we could observe, that the BRIBE approach did help to
promote actions to other agents, that were part of the optimal solution when optimizing
for maximum welfare and that the agents quickly learned to modify their policies so that
they conform to those actions and maximize the reward from bribes. However, we found
that BRIBE could not translate this performance to the other environments we tested it
on. This could have multiple reasons: As the observation space and the action space of the
environment increase, the bribe network’s approximation task becomes significantly more
complex. Not only does the size of the input increase but since the possible combination of
the state that agent i observes and the state that agent j observes increases quadratically
with the observation space, the bribe network will in the worst case see much fewer
samples for a given state-state-action pair. This could demand a deeper or more elaborate
network structure than the one that we tried our experiments with.
Furthermore, environments such as Give Way, where the action space is naturally continu-
ous, but discretized into a finite set of actions could be challenging for BRIBE. Because
there are oftentimes multiple ways to execute a continuous action with multiple discrete
actions, it is harder for BRIBE to know which composition of the desired continuous action
it should promote. Since the algorithm only promotes one single action at each step, no
matter if other actions were similarly beneficial to the bribing agent, there can be situa-
tions where this has an unwanted impact on the reward landscape. A modification that
could mitigate this effect could be to not only hand out bribe values to the most beneficial
action of the bribing agent, but to the top N actions, or even to all actions. The bribe
values could then be calculated in the same way, if one allows for negative bribe values.
Or, independently from this change, one could use a different measure of advantage for
computing the bribe values which behaves differently to the linear reward-over-mean
approach we used, or additionally considers other factors such as regularity in its action
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selection.

Concerning PERC, we could see that our modifications to LToS yielded an improvement in
environmental return. However, in more complex environments, neither LToS nor PERC
were able to learn the best possible policy and were beaten by Average Reward. Although
our baselines performed well in the environments we presented, one has to note that
they are very inflexible. They perform well here because both of the environments can be
solved with symmetrical cooperation and even approximated well with selfish behavior.
We have already seen in the Trapped Agent environment that selfish behavior can often
not solve cooperative environments, and similarly, there are situations where symmetric
cooperation between all agents is not the best behavior.
Another reason why the performance of our methods lags behind the baselines in our
experiments could be that due to the added layer of complexity in order to train the
weight-sharing policy (and the encoder-decoder in PERC), the space of the optimization
problem grows and the corresponding reward landscape could develop some new local
optima. We have briefly looked into regularizing the weight-sharing network by adding
a regularization penalty, and this approach could be built upon in order to reduce the
degrees of freedom that were introduced into the optimization problem. Additionally, due
to a limitation in computing resources, our neural networks used in both the high-level
and low-level agent might be not powerful enough to efficiently and robustly learn an
optimal policy. Although we have tried to stick to the implementation that was detailed
in the original LToS paper [8] as closely as possible, there are still some differences, the
biggest one being that we used a standard DQN for our low-level policy where Yi et al.
used graph convolutional reinforcement learning. Although a standard DQN approach
was also used in our baselines, showing good results, the ability of graph convolutional
networks to directly take into account relations to neighboring agents could provide
needed stability when it comes to training our more complex algorithms.

6.1. Future Work

As seen in Section 5.3, we did not manage to translate the results of our methods in smaller
environments to more complex ones, but we have ideas for further improvements that
might be promising. First of all, as our implementation of LToS seems to perform worse
than the results reported in the original paper [8], it would be worth implementing the
graph convolutional network from [39] and using it instead of a standard DQN approach.
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Increasing the size of the networks, which we did not get around to because of limiting
computation time is also an area for improvement potential. In order to use computation
time more efficiently, one could also make use of the feature of VMAS [41] to run multiple
environment instances in parallel. This batching would require adapting the reinforcement
framework MushroomRL [38] to handling vectorized environments, but would enable us
to obtain more samples efficiently. Also, since PERC seemed to be too unstable during
training for more complex environments, enforcing more regularity when drawing the
sharing weights could be an area of improvement. We have already briefly tried using a
penalty term for sharing weights that deviate too much from sharing reward equally, but
analogously rewarding smoothness of the high-level policy across adjacent inputs (states)
could be conceivable. Another area of improvement could be experimenting with different
architectures for encoding the policy of other agents, such as CNNs for grid-based states.
Concerning BRIBE, a natural extension would be to not only hand out bribe values for
the best action but for the best N or even all actions, if one allows to give out negative
rewards to discourage bad actions. Also, different measures of "goodness" of an action
from the perspective of another agent than our approach of reward-over-average could be
experimented with, such as rewarding agents for being predictable or taking into account
joint actions with third agents. One could also deviate from our current approach for
handing out bribes and allow agents to choose them in a black-box optimization manner.
Another area that would be interesting to investigate and which we have not gotten
around to inspect due to time constraints is to conduct experiments in environments that
change throughout training, or in which agents get added, removed, or changed from
teammate to adversary. There has been little research in these types of environments, so
evaluating our methods in these settings would be interesting. Similarly, the methods
introduced in this thesis could be applied to semi-cooperative environments, for example
in environments where different groups of agents compete against each other, but agents
need to work together within their groups, e.g. predator-prey environments [42].
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A. Full algorithm of PERC
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Algorithm 6 Policy-Encoded Reward-Exchange (PERC)
1: Initialize high-level network ϕk parameters θk and target network ϕ′k with parameters
θ′k for every agent k

2: Initialize low-level network Qk parameters µk and target network Q′
k with parameters

µ′k for every agent k
3: Initialize encoder ek and decoder dk with parameters ψd

k and ψd
k for every agent k

4: Initialize replay buffer R = {}
5: for t = 0, . . . do
6: for each agent k do
7: Observe stk, draw encodings lj and predicted action âtj for every agent j, choose

high-level action wout,t
k ← σ(ϕk(s

t
k, l1), . . . , ϕk(s

t
k, ln)) with noisy policy

8: Exchange wout,t
k to get win,t

k

9: Choose low-level action atk with ϵ-greedy policy from Q(stk, w
in,t
k , a)

10: Store sample (stk, wout,t
k , âtk, a

t
k, r

t
k, s

t+1
k ) in replay buffer, reset environment if st+1

k

is terminal
11: end for
12: for each agent k do
13: Draw minibatch D = {(sik, w

out,i
k , âik, a

i
k, r

i
k, s

′i
k)} of b samples from replay buffer

R

14: Update ψd
k and ψd

k jointly by minimizing 1
b

∑︁b
i=1(log(

exp(â
aik
i )∑︁|A|

c=1 exp(â
c
i )
))

15: Draw next high-level action w′out
k ← ϕ′k(s

′
k) and exchange to get w′in

16: if s′k is terminal then
17: Set target yk ← rk
18: else
19: Set target yk ← rk + γmaxaQ

′
k(s

′
k, w

in′
k , a)

20: end if
21: Update θk by minimizing L(θ) = 1

b

∑︁b
i=1(y

i
k −Qk(s

i
k, w

in,i
k , aik))

22: Redraw wout
k ← ϕk(sk) and exchange to get win

k

23: Compute gink = ∇win
k
argmaxaQk(sk, w

in
k , a) and exchange to get goutk

24: Update µk by maximizing 1
b

∑︁b
i=1(∇θkϕk(s

i
k))

T gout,ik

25: Update target networks softly
26: end for
27: end for
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B. Hyperparameters

Hyperparamater Value

discount factor γ 0.99
batch size 32
encoder-decoder latent state size 32
capacity of replay memory 10,000
ϵstart, ϵend (reached after 2/3 num. epochs) 1, 0.1
Ornstein-Uhlenbeck σ, θ, µ 0.01, 0.15, 1e-2
optimizer Adam
learning rate high-level agent 1e-4
learning rate low-level agent 3e-4
τ for soft update 0.01
update interval 3 steps
steps per epoch 2,000

Figure B.1.: Hyperparameters used for training our methods during the experiments
detailed in Chapter 5.
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