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Abstract— Manipulating deformable linear objects (DLOs)
such as ropes is challenging due to their complex dynamics.
To address these issues, we present a novel assistive tele-
operation framework that combines human expertise with
autonomous assistance. Our approach integrates a vision-based
module to identify grasp poses, a shared autonomy mechanism
that balances human input with autonomous guidance, and
an optimization-based inverse kinematic solver for smooth,
collision-free manipulation. Additionally, a virtual reality (VR)
interface provides intuitive control and real-time feedback to
the operator. A user study on knot untangling under time-
delayed and non-delayed conditions shows that shared auton-
omy enhances task performance under delay while reducing
the operator’s physical and mental workload. These findings
highlight the potential of shared autonomy to improve teleop-
eration systems for complex DLO manipulation, particularly in
environments affected by communication delays or uncertain-
ties.

I. INTRODUCTION

Manipulating deformable objects remains one of the most
critical challenges in robotics. In particular, deformable linear
objects (DLOs) are a specific subset characterized by their
one-dimensional structures, infinite degrees of freedom, and
tendency to form self-intersections. These properties make
DLOs particularly challenging for perception, planning, and
control, as their configurations are highly sensitive to small
perturbations. Existing manipulation strategies for DLO ma-
nipulation tasks such as knot untangling typically rely on
a set of predefined motions and heavily depend on their
perception pipelines, making them susceptible to variations
in configuration, material, and texture [1], [2], [3], [4]. These
challenges indicate that complex manipulation tasks like knot
untangling can be addressed by integrating human’s intelli-
gence and decision-making capability, particularly when pre-
planned strategies are prone to failure or when operating in
critical environments.

Teleoperation offers a promising solution by leveraging
human situational awareness and planning capabilities. How-
ever, teleoperated robotic systems face their own set of
challenges, including limited scene visibility, embodiment
mismatch, and communication delays, which can degrade
the performance of the human operator [5]. To address these
issues, our work proposes a context-aware shared autonomy
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Fig. 1. System architecture integrating perception, optimization, and shared
autonomy modules. The arbitration mechanism adjusts autonomy levels
by blending human input uh and vision-based autonomy input ua to
compute the target pose ug . This pose, including position and orientation
in task space, is then processed by a non-linear optimization-based inverse
kinematics solver to generate joint angles ΘL,R for the left and right robots.

framework, depicted in Figure 1, that preserves human
intentionality while compensating for latency-induced per-
formance degradation. To assess the efficacy of the proposed
framework, we conducted experiments with five participants
and measured how both time delay and shared autonomy
influence teleoperation performance during a knot-untangling
task.

The key contributions of our paper include 1) Real-time
estimation of grasping positions for DLOs using a vi-
sion-based state estimator, 2) Generation of collision-free and
smooth motions through a constrained optimization-based
inverse kinematics solver, and 3) Adaptive blending of hu-
man inputs with autonomous grasping suggestions to achieve
shared autonomy.

II. RELATED WORK

Teleoperation for complex manipulation tasks has attracted
considerable attention, particularly in scenarios where fully
autonomous strategies fall short. In this section, we briefly
review prior work on shared autonomy in teleoperation and
vision-based state estimation for DLOs.

Shared Autonomy in Teleoperation Shared autonomy (or
shared control) frameworks balance human input with au-
tonomous assistance to enhance task performance while
preserving the operator’s sense of control [6]. Several ap-
proaches have focused on estimating human intention and
blending it with robotic control. For example, research
leveraged Gaussian Hidden Markov Models with gaze in-
put [7] to infer user intent and employed behavioral state
machines in virtual reality (VR) setups for remote bimanual
operations [8]. Additionally, methods based on Partially



Observable Markov Decision Processes (POMDPs) have
been used to optimize teleoperation under uncertainty [9].
Although some teleoperation frameworks have addressed
DLOs manipulation in structured industrial settings [10], they
did not address possible unpredictable configurations and
non-linear dynamics as in knot untangling.

Vision-Based State Estimation for DLOs Accurate state
estimation is critical for manipulating DLOs. Existing al-
gorithms such as HANDLOOM [3], FastDLO [11], RT-
DLO [12], and mBest [13] typically rely on fixed or sim-
plified camera setups and make assumptions about object
geometry. While effective in controlled environments, these
methods often struggle with complex scenarios, such as
knots, where self-intersections (occlusion) and dynamic de-
formations occur. In contrast, our approach employs wrist-
mounted cameras to capture dynamic viewpoints, allowing
robust vision-based estimation even in the presence of oc-
clusions and significant deformations.

Together, these studies highlight the challenges of relying
solely on autonomous systems for complex DLO manipula-
tion, and they motivate our integrated teleoperation frame-
work that combines shared autonomy with robust vision-
based state estimation.

III. KNOT UNTANGLING FOR ASSISTIVE
TELEOPERATION

In this section, we introduce our assisted teleoperation
framework, which consists of an inverse kinematic solver,
rope state estimator, and shared autonomy blending mecha-
nism.

Optimization-based Inverse Kinematics: Building on
the RelaxedIK solver proposed by Rakita et al. [14], our
system employs a constrained optimization formulation to
compute collision-free, smooth motions for 7-DoF robotic
arms. This optimization minimizes a weighted sum of task-
specific objectives, such as motion smoothness, self-collision
and singularity avoidance, while enforcing joint limits and
ensuring sufficient separation between the arms.

Rope State Estimation: Our system uses wrist-mounted
cameras to capture images of the rope, which are segmented
using FastSAM with a text prompt (e.g., “rope”) [15].
The initial segmentation is refined through morphological
processing. Contours are then extracted from the segmented
masks, and a Voronoi-based graph is constructed to identify
key structural points (intersections and terminal nodes). Rope
segments are defined between these key points; the center
node of each segment provides the grasping pixel, while the
tangent at that pixel determines the grasping angle. Finally,
by converting from pixel space to task space, we obtain
the grasp suggestions for rope segments as an autonomous
input ua.

Shared Autonomy Blending: In our framework, the
human input uh and the autonomous suggestion ua consist
of both position and orientation components, i.e., uh =
(ph,oh) and ua = (pa,oa). However, the arbitration pro-
cess is applied only to the positional component. We dy-
namically blend the two position inputs using the arbitration
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Fig. 2. Performance metrics in teleoperation with conditions: No Time
Delay/No Shared Autonomy (NTD/NSA), No Time Delay/Shared Auton-
omy (NTD/SA), Time Delay/No Shared Autonomy (TD/NSA), and Time
Delay/Shared Autonomy (TD/SA). (a) Percent change in Task Completion
Time relative to baseline (NTD/NSA), higher values indicate longer comple-
tion times. (b) NASA Task Load Index relative changes from baseline across
Mental Demand (MD), Physical Demand (PD), Temporal Demand (TD),
Performance (P), Effort (E), and Frustration (F).

equation
pg = αph + (1− α)pa,

where ph is the human-specified target position and pa is
the suggested position derived from the vision pipeline. The
arbitration factor α ∈ [0, 1], computed via a sigmoid function
based on the proximity between ph and pa, determines the
balance of authority [6]. The final target pose is then given by
ug = (pg,oh), meaning that the orientation remains entirely
under human control.

IV. EXPERIMENTS

We evaluated our teleoperation framework for rope un-
tangling using two Franka Emika Panda arms in a simulated
environment. Five participants performed the knot untangling
task under four conditions, varying the presence of time
delay (2 seconds bidirectional communication delay) and
shared autonomy, while task completion time (TCT) and
NASA TLX workload metrics were recorded. The main task
required the participants to untangle the rope by manipulating
the robot arms until the rope was free of self-intersections.

The results indicate that communication delay increases
TCT and mental, physical, and temporal demands, leading
to higher effort and frustration and reducing perceived task
success, as shown in Figure 2. Shared autonomy helped
mitigate these negative effects under time delay, although its
benefits varied among participants and sometimes increased
complexity during real-time operations. Task completion
times varied based on individual differences in how partici-
pants approached and solved the task.

V. CONCLUSION

We introduced an assistive teleoperation and simulation
framework integrating a vision-based rope state estimator, an
optimization-based inverse kinematics solver, and a shared
autonomy module to support DLO manipulation. The study
demonstrated that while shared autonomy can compensate
for the adverse effects of communication delays, its impact
depends on the user’s interaction style.

Future work will focus on refining the vision-based rope
state estimator, enhancing the shared autonomy interface by
integrating human intention estimation over multiple goals
and conducting comprehensive real-world robot experiments.
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