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Abstract

Teleoperation allows a human operator to control a robot arm remotely and is important
in situations where direct interaction is not possible or not safe. However, teleoperation
becomes difficult in cluttered environments. Limited perception, communication delays,
and the mismatch between the robot’s many degrees of freedom and the low-dimensional
user input make the task demanding, and operators often struggle to move the robot ac-
curately. Several shared-autonomy methods have been developed to reduce this workload
by combining human input with autonomous assistance. While these approaches can
improve task performance, most of them do not guarantee safety and may still lead to
collisions in narrow or highly constrained spaces.
This thesis proposes a shared-autonomy controller that combines a Control Lyapunov
Function (CLF) with Control Barrier Functions (CBFs) in a single optimization framework.
The method fuses user input, an autonomously generated helper target, and formal
safety constraints into one quadratic program. A state-dependent arbitration mechanism
adjusts how strongly the CLF influences the motion: the robot provides more assistance
when precise positioning is needed, while the user retains full control during larger,
unconstrained motions.
We evaluate the controller in three simulated teleoperation environments and compare
it with BarrierIK and two shared-autonomy baselines. In both predefined-trajectory
experiments and a user study, the proposed method maintains positive clearance, avoids
collisions, and produces smoother and more reliable motion than the other approaches.
These results show that combining shared autonomy with formal safety tools can make
teleoperation safer and easier to use in cluttered environments.
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1 Introduction

1.1 Motivation

Teleoperation enables a human operator to control a robot arm from a distance and
remains essential in environments where direct manual operation is infeasible or unsafe,
such as nuclear waste handling, micro-scale manipulation, and underwater or space
missions [1, 2].
Despite its advantages, teleoperation is fundamentally limited by restricted field of view,
insufficient perceptual feedback, and communication delays [3, 4]. These factors increase
the cognitive demands placed on the operator, who must interpret incomplete sensory
information, coordinate multiple degrees of freedom, and react to uncertainty in real time.
Prior work in human–robot interaction has shown that such elevated workload not only
degrades task efficiency but also increases the likelihood of operator error [5, 6]. Studies
on motion-mapping interfaces report that teleoperators experience physical and cognitive
fatigue during long or precise tasks, which reduces accuracy and increases error rates even
when the task appears simple [7]. Consequently, many teleoperation scenarios exceed
what a human can reliably accomplish unaided. This has motivated the development of
shared-autonomy frameworks, in which autonomous assistance is integrated with user
inputs to reduce workload and improve the stability and overall effectiveness of remote
manipulation [8, 9].
When developing teleoperated robotic systems, especially in tasks where the robot must
physically interact with the environment, collision avoidance becomes a central concern. In
many practical settings, the workspace is narrow, cluttered, or partially occluded, making
it difficult for the operator to judge distances or anticipate contacts based on limited
visual information [10]. Studies have established that teleoperation becomes especially
unreliable when the environment is cluttered or when the operator must react quickly to
changing conditions [11]. In teleoperation and multi-robot studies, researchers found
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that operators easily become overwhelmed when they must simultaneously control motion
and avoid nearby obstacles, which often leads to inconsistent or unsafe behavior [12].
Even small errors in motion can lead to unintended impacts with surrounding objects,
which may compromise both task performance and safety [13]. These findings suggest
that obstacle avoidance can be as demanding as the primary manipulation task itself and
highlight the need for assistance mechanisms that help maintain safety margins during
remote operation.
Taken together, these difficulties show that teleoperation requires not only assistance for
task execution but also mechanisms that can maintain safety during motion. Developing
a framework that integrates user guidance with real-time collision avoidance is therefore
essential for reliable operation in practical environments.
While these challenges highlight the need for assistance during teleoperation, many
different approaches have been proposed to reduce operator workload and improve safety
in complex environments. Existing work explores a wide range of strategies. Each of these
methods addresses part of the problem, but they differ significantly in how they combine
user input with autonomous support and in how they maintain safety near obstacles. The
following section therefore summarizes related work on shared autonomy, safety-aware
teleoperation, and assistance mechanisms for reliable teleoperation.

1.2 Related Work

1.2.1 Shared Autonomy

Shared autonomy has been widely explored as a way to reduce the burden of direct
teleoperation by blending human commands with robot assistance. Early work established
the idea of combining user input with autonomous control to make teleoperation more
reliable, especially when perception or actuation channels are limited [8, 9]. A common
strategy is to infer the operator’s intended goal and adjust the level of assistance accordingly.
Javdani et al. formalize this idea using a POMDP with uncertainty over the user’s goal
and propose a hindsight-optimization approximation that assists over a distribution of
possible targets rather than committing to one [14]. Such methods have shown that
shared autonomy can reduce input effort and speed up task execution, although users
often report a trade-off between efficiency and their sense of control.
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More recent work focuses on adapting the level and structure of assistance to the user.
Atan et al. introduce an adaptive shared-autonomy controller that adjusts assistance based
on the user’s performance, enabling inexperienced operators to complete manipulation
tasks more efficiently than with direct teleoperation [15]. Bowman and Zhang argue that
using a single arbitration weight across all degrees of freedom can lead to over-dominance
of the robot; they propose a dimension-specific arbitration policy that independently
regulates assistance along each motion dimension, improving agreement between human
and robot strategies during telemanipulation [16].
Assistance mechanisms have also been integrated into shared-autonomy frameworks to
support obstacle avoidance and improve robustness. Lima et al. develop an MPC-based
controller that augments teleoperation with predictive motion planning, improving task
performance during object-picking tasks without removing user control authority [17].
Haptic-assistance systems follow a similar principle: Coffey and Pierson show that force
cues can help operators avoid unsafe motions without removing their control author-
ity [18].
Shared autonomy has also been applied to more complex telemanipulation settings.
Ozdamar et al. propose a reconfigurable control framework that allows operators to control
multiple robot arms individually or cooperatively, showing that shared autonomy can
scale to higher-dimensional manipulation tasks with multi-arm systems [19]. These works
highlight the potential of shared-autonomy techniques across a variety of teleoperation
scenarios.
However, despite these advances, most shared-autonomy methods focus on predicting user
intent, blending commands, or offering haptic or motion-level guidance. They typically
improve behavior but do not provide formal safety guarantees, especially in narrow or
cluttered workspaces where small errors can lead to collisions. Potential-field methods
can become unreliable near local minima, and learning-based strategies depend heavily
on the training distribution. Even MPC-based approaches may fail to guarantee constraint
satisfaction under model mismatch or fast user inputs. These limitations suggest that
shared autonomy alone is often not enough for ensuring reliable operation in safety-
critical telemanipulation. This motivates integrating shared autonomy with structured
safety mechanisms, such as Control Barrier Functions, to ensure that the robot remains
safe even when user inputs are aggressive or misaligned with safe directions.
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1.2.2 Obstacle Avoidance in Teleoperation

Obstacle avoidance has long been a central topic in robotics, and many teleoperation
assistance methods build on early artificial potential field (APF) formulations. Khatib’s
real-time framework [20] models obstacles as repulsive potentials that produce continuous
forces steering the robot away from collisions while preserving goal-directed motion. These
methods are intuitive and computationally efficient but are sensitive to parameter choices
and prone to local minima. To address these limitations, Rimon and Koditschek introduced
navigation functions that construct global, smooth potentials guaranteeing collision-free
convergence in structured environments [21]. While theoretically well-founded, such
field-based approaches remain difficult to deploy in highly cluttered or narrow workspaces,
which frequently arise in teleoperation.
Subsequent research shifted toward optimization-based collision avoidance. Trajectory-
optimization frameworks [22] use signed-distance fields and gradient costs to compute
smooth, collision-free motions, whereas real-time inverse-kinematics methods such as
CollisionIK embed differentiable collision terms into per-frame nonlinear optimization [23].
These approaches achieve higher responsiveness than global planners, making them
suitable for interactive control, but still do not provide formal guarantees of safety under
aggressive user inputs or in tight environments.
Beyond explicit collision-avoidance strategies, safety in manipulation and teleoperation has
also been studied through collision detection and reactive control. Haddadin et al. [24]
demonstrated that fast torque-based detection and compliant reaction strategies can
significantly reduce impact forces in physical human–robot interaction, complementing
avoidance mechanisms rather than replacing them. More recently, safety-critical control
formulations based on Control Barrier Functions (CBFs) have been explored to guarantee
constraint satisfaction under uncertainty. CBF theory has been formalized and applied
across a range of robotic systems [25]. While these methods provide strong safety
guarantees, their integration into high-DoF teleoperation remains limited and risk-tunable
CBF controllers have been proposed for human–robot collaboration [26].

1.3 Contributions and Overview

This thesis makes three main contributions toward safe and reliable assisted teleoperation
in cluttered environments. First, we introduce a unified CLF–CBF shared-autonomy con-
troller that combines a Control Lyapunov Function for task regulation with Control Barrier
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Functions for real-time safety filtering. Unlike previous shared-autonomy approaches that
rely on heuristic blending or soft potential-based costs, the proposed method embeds
user commands, helper guidance, and safety constraints directly into a single quadratic
program, enabling the robot to reason jointly about stability, intent alignment, and safety.
Second, we propose a state-dependent arbitration mechanism that adjusts the influence
of the CLF objective according to the discrepancy between the user’s command and
the assistance target. Instead of overriding the operator when the input is unsafe, the
controller gradually increases CLF assistance as the robot approaches the target, enabling
more precise and stable convergence while still allowing the user to retain control during
larger, exploratory motions.
Third, we evaluate the controller across three cluttered environments and compare it
against BarrierIK and two shared-autonomy baselines: one that blends user with au-
tonomous trajectories through a hierarchical switching scheme, and another that combines
them within an optimization-based formulation. The results from reference trajectories
and a user study show that the proposed CLF–CBF controller maintains positive clearance,
prevents collisions, and provides more stable and predictable behavior than the alternative
approaches.
The remainder of this thesis is organized as follows. Chapter 2 reviews the necessary back-
ground in robot kinematics and the fundamentals of Control Lyapunov and Control Barrier
Functions. Chapter 3 introduces the overall methodology used in this work, including
the formulation of the teleoperation framework, the proposed CLF–CBF shared-autonomy
controller, the associated optimization formulation, and the state-dependent arbitration
mechanism. Chapter 4 describes the experimental setup, the simulated environments,
the baseline controllers, and the evaluation metrics, and reports the results of both the
predefined-trajectory experiments and the user study. Finally, Chapter 5 summarizes the
findings and discusses limitations and directions for future research.
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2 Foundations

This chapter introduces the fundamental concepts that form the basis of the controller
developed in this work. We begin by reviewing the kinematic representation of a robotic
system, which describes how the state of the robot evolves through its underlying dif-
ferential equations. Building on this, Lyapunov stability theory provides a systematic
way to analyze whether the system converges to a desired equilibrium, and it offers the
mathematical foundation for designing stabilizing controllers. Control Lyapunov Func-
tions (CLFs) extend this classical method to controlled nonlinear systems by turning the
qualitative notion of stability into a constructive condition on the control input. Together
with Control Barrier Functions (CBFs), which impose safety constraints on the system
state, these tools support the optimization-based controller architecture used later in
this thesis. Introducing these concepts here clarifies how the theoretical foundations in
this chapter directly connect to the safe shared-autonomy framework developed in the
subsequent chapters.

2.1 Robot Kinematic Modeling

Kinematics describes the motion of a robot without considering the forces or torques that
generate it[27]. It specifies the geometric relationship between the robot’s joint variables
and the position and orientation of its end-effector, which is important for motion planning
and control [28]. For an n-joint robot, the joint configuration is written as

q =
�
q1 q2 . . . qn

�T ∈ Rn. (2.1)

Each variable qi represents the generalized coordinate associated with the i-th joint. The
physical meaning of qi depends on the mechanical structure of the joint. For a revolute
joint, qi corresponds to its rotation angle, whereas for a prismatic joint, qi corresponds
to its linear displacement. In all cases, the value of qi specifies the current position of
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the joint along its allowable degree of freedom and serves as one of the coordinates that
define the robot’s configuration in joint space.
The pose of the end-effector in Cartesian space is described by its position and orientation.
In this work, the position is represented by a three-dimensional vector p and the orientation
r is represented by a unit quaternion. With this choice, the end-effector pose is written as

x =

�
p
r

�
∈ R7, (2.2)

which completely specifies the position and orientation of the end-effector in three-
dimensional space. Although the pose is written as a 7D vector, its time derivative
can be expressed using a 6D spatial velocity (linear and angular). This quantity, known
as the twist, is composed of the linear velocity and angular velocity of the end-effector,

ẋ =

�v
ω

�
∈ R6, (2.3)

which together characterize the full instantaneous motion of a rigid body in Cartesian
space.
The forward kinematics defines a nonlinear differentiable mapping from the joint space to
the Cartesian pose of the end-effector,

x = f(q), (2.4)

where q ∈ Rn denotes the joint configuration and x ∈ R7 is the corresponding end-effector
pose expressed by its position and orientation.
The differential of the forward kinematics defines the Jacobian,

J(q) = ∂f
∂q(q) ∈ R6×n, (2.5)

which is the first-order linearization of the mapping f evaluated at the current joint
configuration q. The reduction from seven to six rows arises because the time derivative
of the pose is expressed as a spatial velocity (the twist), consisting of linear and angular
velocity [29, 30, 31]. Evaluating this mapping at the configuration q yields the familiar
relationship between joint and end-effector velocities,

ẋ = J(q) q̇. (2.6)
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The inverse kinematics problem seeks a joint configuration q that satisfies

q = f−1(xd). (2.7)

Here xd is a desired end-effector pose, expressed by its position and quaternion orien-
tation. To compute joint velocities that achieve a desired end-effector velocity ẋd, the
inverse differential kinematics problem must be solved. When the Jacobian is square and
nonsingular, this mapping can be inverted directly,

q̇ = J(q)−1 ẋd. (2.8)

For redundant or kinematically singular configurations, the Moore–Penrose pseudoinverse
provides a least-squares solution,

q̇ = J†(q) ẋd, (2.9)

where J† denotes the pseudoinverse of the Jacobian [29, 31]. This expression is widely used
in robotics for real-time motion generation, redundancy resolution, and the enforcement
of kinematic constraints.
The Jacobian provides a local linear approximation of the nonlinear kinematic mapping
and links small changes in joint coordinates to instantaneous end-effector motion. It
is widely used in velocity control, singularity analysis, and the enforcement of motion
constraints, forming the basis for the control design used in later sections.

2.2 Operational-Space Control Fundamentals

Operational-Space Control (OSC) [32, 33] provides a task-level representation of ma-
nipulator motion. It describes how joint velocities influence the end-effector twist and
enables control laws that act directly in task space. In this work, we focus on the kinematic
form of OSC, which regulates task-space velocities rather than full robot dynamics. The
end-effector motion is expressed as Cartesian velocity defined in (2.3).
A task-space controller regulates the end-effector pose x(t) toward a desired pose xdes(t)
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by constructing a desired Cartesian velocity:

νdes(t) = −Kp,o

�p(t)− pdes(t)
δφ(t)

�
,

δφ(t) = 2 vec(rerr(t)) ,

rerr(t) = r(t)⊗ r−1
des(t)

(2.10)

Here Kp,o ∈ R6×6 is a positive-definite gain that weights the position and orientation
feedback terms. The variables p(t) and r(t) denote the current end-effector position
and quaternion orientation, while pdes(t) and rdes(t) denote the desired position and
quaternion orientation extracted from the target pose. δφ(t) denotes the orientation
error in a minimal 3D representation. The quaternion error encodes the relative rotation
between the desired and current orientations, and the mapping δφ(t) = 2 vec(rerr(t))
extracts its vector part to obtain the smallest 3D rotation that aligns the two orientations.
The corresponding joint velocity is obtained from

q̇task = J†(q)νdes, (2.11)
where J† is the Moore–Penrose pseudoinverse of the end-effector Jacobian. This gives the
minimum-norm joint motion that achieves the desired task-space behavior [34, 35, 36].
For redundant robots (n > 6), additional objectives can be introduced through the
Jacobian null space

N(q) = In − J†(q) J(q),

q̇N = N(q)Kp,j

�qdes − q(t)�,
(2.12)

where N(q) projects joint velocities into the subspace that does not affect the end-effector
motion and In denotes the n×n identity matrix, qdes is a preferred joint configuration, and
Kp,j > 0 is a proportional gain that governs how strongly the posture error is corrected
within the null space.
Combining task-space and null-space components yields the nominal joint velocity

q̇nom = q̇task + q̇N . (2.13)

This decomposition plays an important role in the safety-critical control framework de-
veloped in this thesis. It defines the nominal task behavior, separates task-relevant and
redundant motions, and provides the structure through which safety constraints can be
formulated in operational space.
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2.3 Control Lyapunov Functions (CLF)

The idea of a Control Lyapunov Function (CLF) provides a systematic way to design
stabilizing controllers for nonlinear systems. Unlike heuristic approaches such as PID
tuning or feedback linearization, a CLF gives a general condition that guarantees asymptotic
stability under a suitable feedback law. It connects classical Lyapunov stability analysis
with the synthesis of nonlinear feedback controllers [37, 38].
Consider first an autonomous nonlinear system

ż = f(z), (2.14)

where z ∈ Rn is the state and f : Rn → Rn is the locally Lipschitz dynamics mapping,
ensuring existence and uniqueness of solutions.
For a nonlinear robot model, the closed-form solution of the system trajectories is generally
unavailable, and it is therefore difficult to reason directly about whether the state will
converge to a desired equilibrium or remain bounded near it. What we ultimately want is
a principled way to evaluate the stability properties of the dynamics and, later, to impose
such properties through feedback in the controller design. Lyapunov functions provide
exactly this mechanism: they act as an energy-like measure whose evolution along the
system trajectories reveals whether the equilibrium is stable or attractive. Instead of
relying on explicit solutions of Equation (2.14), stability can be inferred from the sign of
the Lyapunov derivative. This viewpoint is foundational for the Control Lyapunov Function
framework introduced later, in which stability requirements are converted into algebraic
inequalities that can be enforced within an optimization-based controller.
A continuously differentiable function V : Rn → R≥0 is called a Lyapunov function
candidate if V (0) = 0 and V (z) > 0 for all z �= 0. If, in addition, V (z) → ∞ as �z� → ∞,
the function is radially unbounded. From classical Lyapunov theory [39], the equilibrium
z = 0 of (2.14) is

• Lyapunov stable if V̇ (z) ≤ 0 in a neighborhood of the origin, and
• asymptotically stable if V̇ (z) < 0 for all z �= 0 and V̇ (0) = 0.

These conditions verify stability but do not explain how to choose a control law that
enforces them. This limitation motivates the extension of Lyapunov’s method to the
Control Lyapunov Function framework.
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Most robotic systems can be written in the control-affine form

ż = f(z) + g(z)u, (2.15)

where u ∈ Rm is the control input. The vector field f describes the drift dynamics, and g
determines how the control inputs influence the evolution of the state. The dimension n
corresponds to the number of system states as defined in Eq. (2.1), and m represents the
number of independent control inputs.
For a differentiable function V (z), its time derivative along solutions of (2.15) follows
from the chain rule,

V̇ (z,u) = ∇V (z)Tż, (2.16)
and substitution of (2.15) yields

V̇ (z,u) = ∇V (z)T�f(z) + g(z)u�. (2.17)

The first term defines the Lie derivative of V along f, and the second term defines the Lie
derivative of V along g,

LfV (z) = ∇V (z)Tf(z),
LgV (z) = ∇V (z)Tg(z).

(2.18)

The expressions LfV and LgV quantify how the Lyapunov function V (z) changes when
the state evolves along the vector fields f and g, respectively. The Lie derivative LfV (z)
evaluates the directional change of V in the direction of the autonomous dynamics f at
the state z, while LgV (z) measures how V changes due to the influence of the control
input through the vector field g(z). In other words, LfV captures the natural evolution of
V under the system dynamics, and LgV characterizes how the control input can increase
or decrease V [37, 38].
Using these definitions, the time derivative of V can be written compactly as

V̇ (z,u) = LfV (z) + LgV (z)u, (2.19)

which expresses how V evolves under the system’s natural dynamics and the control input.
A positive-definite and continuously differentiable function V is called a Control Lyapunov
Function if, for every nonzero state z, there exists an input u such that

LfV (z) + LgV (z)u+ γ(V (z)) ≤ 0, (2.20)

11
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Figure 2.1: Example of a Control Lyapunov Function (CLF) surface for a two-dimensional
nonlinear system. The contour lines represent level sets of V (z), and the
plotted trajectory illustrates how the state converges toward the equilibrium
point where the Lyapunov function attains its minimum.
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where γ is a class-K function [39]. Equivalently, this condition can be written as

inf
u∈Rm

[LfV (z) + LgV (z)u+ γ(V (z))] ≤ 0, ∀ z �= 0. (2.21)

inf
u∈Rm

�
LfV (z) + LgV (z)u+ γ(V (z))

�
≤ 0 ∀ z �= 0. (2.22)

If this holds, then for every state one can choose a control input that ensures V̇ (z,u) ≤ 0,
meaning the system is stabilizable.
For single-input systems (m = 1), Sontag [38] derived an explicit continuous stabilizing
feedback law. In this special case, the control input u is scalar and can be written as

u(z) = −
LfV (z) +

��
LfV (z)�2 + �

LgV (z)�4

LgV (z) ,

provided LgV (z) �= 0. Generalizations for multi-input systems are available in the litera-
ture.
Geometrically, a CLF can be viewed as an energy landscape over the state space. Each
level set of V (z) represents a surface of constant energy, and enforcing V̇ < 0 moves the
state toward regions of lower energy until the equilibrium is reached. The function γ(V )
controls how quickly V decreases and therefore influences the system’s convergence rate.
An example of such a CLF surface is shown in Fig. 2.1.
In summary, the CLF framework extends Lyapunov’s classical method to controlled non-
linear systems. It converts the qualitative notion of stability into a constructive and
control-affine inequality, which can be incorporated directly into quadratic programs or
other optimization-based controllers. By ensuring the existence of inputs that always
decrease a positive-definite function, CLFs provide a general characterization of stabiliz-
ability and form the basis of the CLF–CBF controllers widely used in modern safe robotic
control [40, 41].

2.4 Control Barrier Functions

Control Barrier Functions (CBFs) provide a systematic approach for guaranteeing safety in
nonlinear control systems. While Control Lyapunov Functions (CLFs) encode convergence
toward a goal, CBFs ensure that the system state remains within a predefined admissible
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region for all time. This duality of stability and invariance enables a unified optimization-
based treatment of performance and safety in modern robotic control [41, 42, 43].
This admissible region is formally represented by the safe set. The safe set is defined as
the superlevel set of a continuously differentiable function h : Rn→R,

C = {z ∈ Rn | h(z) ≥ 0},
∂C = {z ∈ Rn | h(z) = 0}. (2.23)

In this formulation, states z satisfying h(z) > 0 are considered safe, while the condition
h(z) = 0 characterizes the boundary of the safe set. The objective of a CBF-based controller
is to guarantee that the set C remains forward invariant under the closed-loop dynamics,
ensuring that once the system starts in the safe region it will never leave it [42].
Formally, forward invariance requires that any trajectory starting inside the set stays inside
for all future time [43],

z(0) ∈ C =⇒ z(t) ∈ C, ∀ t ≥ 0. (2.24)

For the control-affine system
ż = f(z) + g(z)u, (2.25)

this can be expressed as a constraint on the time derivative of h along trajectories:

ḣ(z,u) = Lfh(z) + Lgh(z)u. (2.26)

The control input u ∈ Rm represents the actionable command applied to the system. The
functions f(z) and g(z) describe the drift and control vector fields of the control-affine
dynamics in (2.25).
A continuously differentiable h is called a Control Barrier Function if there exists at least
one control input u such that

Lfh(z) + Lgh(z)u+ α
�
h(z)� ≥ 0, (2.27)

for all z ∈ C and for a class-K function α(·). This inequality ensures that once h(z) becomes
nonnegative, it cannot decrease below zero again, and hence the safe set C remains
invariant. This variant is referred to as the Zeroing Control Barrier Function (ZCBF)
[41]. The ZCBF condition is closely connected to the classical Nagumo theorem for set
invariance, which characterizes when the vector field along the boundary of a set prevents
trajectories from leaving it. This connection provides a formal interpretation of how ZCBFs
guarantee forward invariance of the safe set without imposing unnecessary restrictions on
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the motion [44]. An important property of Zeroing Control Barrier Functions is that they
are minimally restrictive. Nagumo’s theorem states that a closed set C is forward invariant
if, at every boundary point z ∈ ∂C, the system vector field does not point outside the set.
Among all control laws that guarantee forward invariance of the safe set C, the ZCBF
condition in (2.27) is both necessary and sufficient on compact sets. Intuitively, the barrier
constraint only excludes those control inputs that would decrease h(z) in a way that
violates safety, while allowing the controller to freely optimize performance everywhere
else. Thus, CBFs encode safety with the least possible conservativeness.
In practical robotic applications, several independent safety conditions must hold simul-
taneously, such as joint limits, obstacle avoidance, and self-collision constraints. Each
condition is represented by hi(z) ≥ 0, i = 1, . . . , N , where N denotes the number of
independent safety conditions, yielding affine inequalities

Lfhi(z) + Lghi(z)u+ αi

�
hi(z)

�
≥ 0, ∀i. (2.28)

The intersection C =
�

i Ci defines the overall safe set. Since all constraints are affine in
u, the feasible input set is convex, which facilitates efficient optimization-based control
synthesis [41, 43]. A commonly used control synthesis method is the CLF–CBF Quadratic
Program (QP) [25, 45]. It computes the minimally modified control input u close to a
nominal command udes, while enforcing safety and stability conditions and is given by:

minu �u− udes�2 (2.29a)
s.t.
LfV (z) + LgV (z)u+ γ(V (z)) ≤ 0, (2.29b)
Lfhi(z) + Lghi(z)u+ αi(hi(z)) ≥ 0, (2.29c)
umin ≤ u ≤ umax. (2.29d)

Here, the term V (z) is a Control Lyapunov Function, enforcing convergence toward the
task objective through this condition. Each safety constraint is encoded by a Control
Barrier Function hi. The bounds umin and umax enforce actuator limits and guarantee that
the computed control input remains feasible for the robot.
Under mild regularity assumptions, the resulting optimal control u�(z) is unique and
locally Lipschitz in z [42, 41]. The function α(·) governs how aggressively the controller
reacts near the boundary. Linear functions such as α(s) = λs yield exponential-like buffers,
while higher-order or saturating forms can mitigate stiffness and chattering. In practice,
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normalization of constraint gradients and small margin inflations (h←h − ε) improve
numerical stability.
In summary, Control Barrier Functions provide a constructive mechanism to encode
safety as affine constraints on the control input. Since safety is commonly defined as
keeping the system state inside a prescribed admissible set, guaranteeing invariance of
this safe set is a natural and essential requirement. When combined with CLFs in the QP
framework, they yield a least-intrusive safety filter that minimally modifies the nominal
control while guaranteeing invariance of the safe set. This framework has been validated
in diverse robotic domains such as adaptive cruise control, obstacle avoidance, joint-limit
enforcement, and legged locomotion [41, 43].
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3 Methodology

This chapter introduces the control methodology implemented in this work. The goal is
to combine human intention with autonomous safety guarantees so that the robot can
assist the operator without restricting natural motion or causing collisions. To this end,
the chapter builds up the components that form our final CLF–CBF controller.
Section 3.1 reviews the RelaxedIK formulation [46], which provides an optimization-based
inverse kinematics baseline and defines the task-space objectives for manipulation. Section
3.2 then presents the shared-autonomy arbitration module that blends the operator’s input
with an autonomous target to generate nominal end-effector commands. Section 3.3
develops the Operational-Space Control Barrier Function (OSCBF) framework [47], which
imposes geometric safety constraints while preserving task-consistent robot behavior.
Finally, Section 3.4 integrates these elements into a unified CLF–CBF quadratic program
that computes safe joint-velocity commands with formal safety guarantees under shared
autonomy.

3.1 RelaxedIK

RelaxedIK [46] formulates inverse kinematics as a general constrained optimization
problem, rather than relying on analytic kinematic inversion. At each control cycle, the
solver constructs a set of differentiable task features Fm(q) that quantify end-effector
pose error, joint-limit proximity, motion smoothness, manipulability, and self-collision risk.
Instead of enforcing end-effector pose as a hard constraint, RelaxedIK computes the next
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joint configuration by minimizing a weighted sum of groove-shaped task costs:

minq
K�

i=1

wiGi(Fi(q)) (3.1a)

s.t. qmin ≤ q ≤ qmax, (3.1b)
σmin(J(q)) ≥ ε (3.1c)

where qmin and qmax denote the joint-limit bound vectors. All other motion objectives,
such as end-effector pose tracking, joint motion smoothness, self-collision avoidance,
and manipulability, are incorporated as soft penalty terms through the feature functions
Fi(q), each corresponding to the i-th task objective function. They are associated with
groove normalization functions Gi(·), rather than being imposed as explicit inequality
constraints. In this constraint, the quantity σmin(J(q)) denotes the smallest singular value
of the Jacobian J(q). The singular value decomposition (SVD) of the Jacobian is given by

J(q) = Udiag(σ1, . . . ,σr)VT,

σ1 ≥ σ2 ≥ · · · ≥ σr > 0,

σmin(J(q)) = σr,

σmin(J(q)) ≥ ε.

(3.2)

Here, U ∈ Rm×m and V ∈ Rr×r are orthogonal matrices containing the left and right
singular vectors of the Jacobian J(q), respectively. Equation (3.2) summarizes the manipu-
lability constraint. The Jacobian J(q) is factorized via singular value decomposition (SVD),
where the singular values σ1, . . . ,σr quantify the robot’s ability to generate Cartesian
velocities from joint velocities. The smallest singular value σmin = σr measures the dis-
tance to kinematic singularity: as it approaches zero, certain Cartesian directions require
unbounded joint velocities. Enforcing the inequality σmin(J(q)) ≥ ε thus guarantees a
minimum manipulability margin and prevents the robot from entering ill-conditioned or
singular configurations.
A characteristic element of RelaxedIK is the use of a parametric Groove function to map
each raw feature Fi(q) into a numerically cost [46], as illustrated in Fig. 3.1.

Gi(Fi(q)) = (−1)ni exp
�
−(Fi(q)− si)

2

2c2i

�
+ ri (Fi(q)− si)

4, (3.3)
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Figure 3.1: Examples of Groove-shaped normalization functions used in RelaxedIK. Each
curve corresponds to a different parameter set {ni, si, ci, ri}, demonstrating
how the Gaussian “groove” around the target value si combines with a quartic
term to produce a smooth, numerically stable cost landscape. These functions
normalize heterogeneous task features into comparable ranges and yield well-
behaved gradients for real-time IK optimization.

where {ni, si, ci, ri} are term-specific shape parameters. The Gaussian component forms
a narrow “groove’’ around the desired target value si, while the surrounding quartic term
yields stable growth away from this region. This normalization places heterogeneous task
features into comparable numeric ranges, provides smooth gradients for real-time opti-
mization, and allows the static weights wi to function as intuitive importance multipliers.

With this structure, RelaxedIK can jointly encode end-effector position and orientation
tracking within a single differentiable objective function. The problem (3.1) is solved in real
time using a constrained nonlinear optimizer such as SLSQP. Because all motion goals enter
as soft costs, exact satisfaction of individual objectives is not guaranteed. Instead, the solver
automatically relaxes lower-priority features in favor of higher-priority ones when conflicts
arise. In environments containing external obstacles or potential robot–environment
contact, this motivates augmenting the objective with explicit environment-distance terms
and, in our work, further extending the formulation toward constraint-based methods

19



such as CollisionIK and BarrierIK.
CollisionIK [23] extends the RelaxedIK optimization framework by explicitly incorporating
environment–robot proximity information as an additional objective term. The method
follows the same instantaneous IK optimization used in RelaxedIK, while introducing an
additional distance term that increases the cost when the robot approaches obstacles.
Let Do(q) denote the minimum distance between a robot link and the o-th obstacle.
CollisionIK defines a differentiable collision cost Fenv(q) by aggregating distances over a
set of obstacles:

Fenv(q) =
�

o∈O(t)

(5ε)2

Do(q) 2
, (3.4)

where ε > 0 is a user-selected safety margin and O(t) is a set of obstacles. The inverse-
square structure ensures rapidly increasing cost as the robot approaches an obstacle, while
remaining smooth and differentiable for use in gradient-based optimization.
CollisionIK augments the RelaxedIK objective by adding an environment–robot proximity
term while keeping all original features inside the objective, such as pose tracking, joint-
limit proximity, motion smoothness, manipulability, and self-collision avoidance. The
instantaneous IK update is obtained by solving

minq
K�

i=1

wiGi

�
Fi(q)

�
+ λenvGenv(Fenv(q)) (3.5a)

s.t. qmin ≤ q ≤ qmax, (3.5b)
σmin(J(q)) ≥ ε (3.5c)

where Fenv(q) penalizes proximity to obstacles and Genv(·) is the same Groove-shaped
normalization function used in RelaxedIK. Since obstacle avoidance appears only as a soft
penalty term, CollisionIK improves practical collision behavior but does not guarantee
forward invariance or strict safety under competing objectives.
BarrierIK [48] advances this work by replacing CollisionIK’s soft obstacle-avoidance
penalties with hard safety constraints expressed through Control Barrier Functions (CBFs).
Instead of discouraging proximity to obstacles via a cost term, BarrierIK explicitly enforces
forward invariance of a safety set, ensuring that the IK update remains within the safety
set under the CBF constraints.
In place of a separate signed-distance function, BarrierIK reuses the distance metric Do(q)
already defined in CollisionIK, where Do(q) denotes the minimum distance between the
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robot and the o-th obstacle. A control barrier function is constructed as

ho(q) = Do(q)− dsafe,

with dsafe > 0 a user-defined safety margin. Ensuring ho(q) ≥ 0 keeps the robot outside
the inflated obstacle boundary.
To maintain this condition during each IK update, the joint position q is required to satisfy
the CBF constraint,

∇ho(q)�q̇+ α
�
ho(q)

�
≥ 0, (3.6)

where α(·) is an extended class-K function determining how aggressively the method
reacts as the boundary of the safe set is approached. When multiple obstacles are present,
enforcing each CBF constraint individually can lead to abrupt switching between active con-
straints. To avoid such nonsmooth behavior, BarrierIK constructs a smooth approximation
of the worst-case CBF constraint.
For each obstacle o ∈ O(t), define the corresponding CBF safety margin as

Bo(q) = ∇ho(q)�q̇+ α
�
ho(q)

�
, (3.7)

which quantifies how safely the current velocity command q̇ moves the robot relative to
obstacle o. Positive values indicate satisfaction of the CBF condition, whereas negative
values indicate an imminent violation of the safety boundary.
Rather than enforcingBo(q) ≥ 0 for every obstacle individually that can lead to nonsmooth
switching between active constraints, BarrierIK aggregates all obstacle-wise CBF conditions
using a smooth log-sum-exp formulation

B̃(q) = 1

κ
log

� �

o∈O(t)

exp�κBo(q)
�
�
, (3.8)

where κ > 0 controls the sharpness of the approximation. As κ→∞, the expression
approaches maxBo(q), recovering the most restrictive CBF constraint.
BarrierIK enforces the multi-obstacle safety requirement by imposing

B̃(q) ≥ 0, (3.9)

which ensures that the commanded joint velocity remains within the safe set defined by
all obstacles in O(t).
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With the obstacle-wise CBF constraints as (3.9), BarrierIK formulates inverse kinematics
as a constrained optimization problem that preserves the flexible objective structure of
RelaxedIK while guaranteeing geometric safety through CBF-enforced velocity limits. At
each control cycle, the method computes a safe joint configuration q� by solving

minq
K�

i=1

wiGi(Fi(q)) (3.10a)

s.t. B̃(q) ≥ 0, (3.10b)
qmin ≤ q ≤ qmax, (3.10c)
σmin(J(q)) ≥ ε (3.10d)

Here, the objective retains all RelaxedIK feature terms, while the aggregated CBF constraint
B̃(q) ≥ 0 ensures forward invariance of the collision-free set.
In this way, BarrierIK preserves the responsiveness and flexibility of optimization-based
inverse kinematics while providing strict safety guarantees that soft-penalty formulations
such as RelaxedIK and CollisionIK cannot offer.

3.2 Shared Autonomy

Shared autonomy aims to combine the operator’s teleoperation input with robotic assis-
tance to enhance manipulation performance, reduce user load, and prevent task failures
in cluttered or constrained environments. In teleoperated manipulation, users typically
specify motion commands or desired end-effector targets, while the robot must interpret
these commands in the context of workspace geometry, joint limits, and task feasibility.
This dual-objective structure, preserving user intent while ensuring feasible and safe execu-
tion, forms the foundation of modern shared autonomy research. A widely used approach
is linear blending, where the final command is obtained as a weighted combination of
human and autonomous actions [8, 49, 50]:

ublend = (1− α)uhuman + αuauto, (3.11)

Here, uhuman denotes the operator-provided motion command, obtained from the teleop-
eration interface as a desired end-effector pose or an incremental motion target. The term
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uauto represents the autonomously generated motion suggested by the system, typically
produced from the xauto(t) or other task-level guidance signals. The end-effector pose of
the manipulator is represented as (2.2). Both the operator-specified target pose xhuman(t)
and the autonomous target xauto(t) are represented in this form. The arbitration weight
α(t) is computed from the discrepancy between the operator-specified target pose and the
autonomous target. It reflects the consistency between human intention and autonomous
guidance by combining both translational and rotational discrepancies. The position error
is computed as the Euclidean distance

ep(t) =
��phuman(t)− pauto(t)

��, (3.12)

while the orientation error is defined using the quaternion geodesic distance [51]

eR(t) = 2 arccos
����rhuman(t), rauto(t)�

��
�
, (3.13)

where �·, ·� denotes the quaternion inner product, ensuring invariance to the double cover
of SO(3). These errors are then mapped to a smooth arbitration coefficient through a
sigmoid-based shaping function:

α(t) = σ

�
cp

ep(t)

rp
+ cR

eR(t)

rR
− h

�
, σ(s) =

1

1 + e−s
, (3.14)

where cp, cR > 0 determine the steepness of the transition, rp, rR > 0 normalize the
position and rotation scales, and h > 0 acts as a threshold. When the human and
autonomous target are consistent, α(t) ≈ 0; as their difference grows, α(t) increases
smoothly toward 1.
In this work, the teleoperation signal is provided by an external interface that continuously
specifies a desired end-effector pose xhuman(t). To regularize this user-specified motion
and provide task-level guidance, an autonomous target xauto(t) ∈ R7 is computed from a
higher-level task model, similar to assisted policies in manipulation tasks. The two poses
are fused through the state-dependent arbitration weight α(t) defined in (3.14), which
measures the positional and rotational discrepancies between the human target and the
autonomous target.
The blended nominal pose is obtained by linearly interpolating the position and applying
spherical linear interpolation (SLERP) [51] to the orientation:

pnom(t) = (1− α(t))phuman(t) + α(t)pauto(t), (3.15)

rnom(t) = slerp�rhuman(t), rauto(t), α(t)
�
, (3.16)
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yielding

xnom(t) =
�
pnom(t)
rnom(t)

�
∈ R7.

This pose-blending strategy enables continuous and intuitive transitions between teleop-
eration and autonomous assistance, without abrupt switching effects reported in earlier
shared-control systems.
The blended pose xnom(t) is converted into a desired end-effector velocity using the
operational-space tracking controller provided by the OSCBF framework [47]. Given the
current end-effector pose x(t), the controller computes a Cartesian velocity command
vnom(t) whose detailed formulation will be presented in Section 3.3.
The resulting Cartesian velocity is then mapped into joint space through the manipulator
Jacobian, using the differential kinematic relationship in (2.9):

unom(t) = J†(q) vnom(t), (3.17)

yielding a joint-velocity-level representation of the shared-autonomy intent. Rather than
executing unom(t) directly, we pass it to the OSCBF safety filter described in Section 3.3,
ensuring that all executed commands respect geometric safety constraints such as obstacle
avoidance, joint limits, and self-collision avoidance.

3.3 Operational-Space Control Barrier Functions

Control Barrier Functions (CBFs) introduced in Section 2.4 provide a general mecha-
nism for enforcing safety through affine constraints of the form hi(z) ≥ 0. For robotic
manipulators, constraints must operate in concert with the operational-space control
framework described in Section 2.2, where end-effector behavior and redundancy resolu-
tion are handled explicitly. OSCBFs [47] extend classical CBFs to this setting by embedding
safety constraints directly within the operational-space hierarchy, ensuring that safety
interventions remain consistent with the intended task behavior.
Following the kinematic OSC formulation, the nominal end-effector motion is first ex-
pressed as a proportional operational-space twist. Given a desired end-effector pose
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xdes = [pTdes rTdes]T and the current pose x = [pT rT]T, we construct a proportional
operational-space twist by combining the position and orientation errors:

νnom = νdes −Kp,o

�
p− pdes

δφ

�
, (3.18)

where Kp,o ∈ R6×6 is a positive (semi-)definite gain matrix, and δφ ∈ R3 denotes the
instantaneous angular error between the current and desired orientations. The term
νdes represents a feedforward operational-space twist, originating from higher-level task
specifications such as reference motion commands. When no explicit feedforward twist is
provided, a common choice also used in our implementation is to set νdes = 0, so that the
nominal twist is fully determined by the proportional correction on the pose error. The
angular error is obtained using the quaternion representation of the current and desired
orientations. r, rdes ∈ R4 denote the unit quaternions representing the current and desired
orientations, respectively. The relative quaternion is

rerr = r⊗ r−1
des, (3.19)

and the instantaneous orientation error is given by the vector part of this relative quater-
nion:

δφ = 2 vec(rerr) ∈ R3. (3.20)
Equation (3.18) thus defines a task-consistent desired twist that drives the end-effector
pose toward xdes with proportional feedback in both position and orientation. The corre-
sponding joint-space motion is obtained from the Moore–Penrose pseudoinverse of the
manipulator Jacobian:

q̇task = J†(q)νnom. (3.21)

To regulate redundancy, a proportional posture term is projected into the Jacobian null
space, given by (2.12)

q̇N = N(q) �q̇des −Kp,j

�q− qdes
��

,

N(q) = In − J†(q) J(q),
(3.22)

Here, q̇des denotes an optional feedforward joint-space velocity provided by the higher-
level task specification. The term Kp,j > 0 is a scalar proportional gain that regulates
the null-space posture, penalizing the joint deviation q− qdes within the projector N(q).
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Combining the task-space and null-space components yields the nominal joint velocity
prior to safety filtering in (2.13):

q̇nom = q̇task + q̇N . (3.23)

This expression enforces strict task hierarchy: redundancy objectives are pursued only
when they do not conflict with task execution [52].
A crucial requirement in extending CBFs to operational space is task consistency. Within
the OSC hierarchy, the end-effector task has strict priority, while redundancy objectives
are confined to the Jacobian null space. Any safety-induced modification to the joint
velocity must therefore preserve this hierarchy: corrections should be injected first in
the null space and only affect the primary task when no feasible null-space adjustment
exists. This property ensures that the safety filter does not introduce unintended motions
in operational space or distort the task-consistent behavior defined by the OSC controller
[47, 53].
In contrast to the general CBF formulation introduced in Section 2.4, the control input
for a velocity-controlled manipulator is the joint velocity q̇. Consequently, the safety
constraints hi(z) ≥ 0 are enforced directly at the joint-velocity level, using the same
Lie-derivative structure but now expressed with respect to q̇. Because the system input is
q̇, the CBF condition takes the form

Lfhi(z) + Lghi(z) q̇+ αi

�
hi(z)

�
≥ −δi, (3.24)

where the slack variable δi ≥ 0 ensures feasibility when multiple constraints become
simultaneously active. A key distinction from joint-space CBFs is that OSCBFs naturally
incorporate task-space constraints through the Jacobian mapping. This allows OSCBFs
to reason about both joint-level and task-level safety within a unified formulation, while
remaining compatible with the operational-space control structure introduced in Sec-
tion 2.2.
The aim of the OSCBF filter is to compute a safe joint velocity q̇� that remains as close as
possible to the nominal operational-space behavior while satisfying all CBF constraints.
To preserve task hierarchy, deviations are penalized separately in task space and null
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space [47]. This leads to the optimization problem:

min
q̇, δ1, . . . , δN

��q̇− q̇nom
��2 +

N�

i=1

ρ δ2i (3.25a)

s.t. Lfhi(z) + Lghi(z) q̇+ αi

�
hi(z)

�
≥ −δi, i = 1, . . . , N, (3.25b)

q̇min ≤ q̇ ≤ q̇max, (3.25c)
δi ≥ 0, i = 1, . . . , N (3.25d)

The quadratic objective penalizes deviation from the nominal joint velocity q̇nom, which
already encodes both task-space tracking and null-space regulation as defined in (3.22)
and (3.23). Thus, the QP solution remains as close as possible to the desired OSC behavior
while enforcing safety through CBF constraints, and the CBF constraints guarantee forward
invariance of the safe set. Under standard assumptions, the QP is convex and admits a
unique, locally Lipschitz solution [41, 43, 47].
The OSCBF formulation extends classical CBF-based filtering into the operational space by
tightly coupling three components: the task-consistent motion generated by operational-
space control, the redundancy resolution provided through null-space regulation, and
the safety constraints expressed at the joint-velocity level. By embedding these elements
within a single quadratic program, the OSCBF controller acts as a minimally invasive
safety filter: whenever all safety constraints are satisfied, the solution q̇� coincides with
the nominal OSC command q̇nom, and deviations only occur when required to maintain
forward invariance of the safe set. This property ensures that safety enforcement remains
aligned with the intended task behavior and preserves the hierarchical structure of OSC.

3.4 Unified CLF–CBF Quadratic Program

The control input in this method is the joint velocity command u ∈ Rn. Consequently, the
configuration q evolves according to the velocity level

q̇ = u. (3.26)

This formulation allows the CLF and CBF conditions to be written using the Lie derivative
with respect to the input vector field. The human target xhuman enters the controller
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through the operational-space tracking law introduced as (3.18), (3.21) and (3.22),

νnom = νdes −Kp,o

� p(q)− phuman
δφ

�r(q), rhuman
�
�
,

q̇nom = J†(q)νnom +N(q)�q̇des −Kp,j (q− qdes)
�
,

(3.27)

Here p(q) and r(q) denote the end–effector position and quaternion orientation obtained
from (2.4). The terms phuman and rhuman represent the position and quaternion extracted
from the human-specified target xhuman. The vector δφ

�r(q), rhuman
�
∈ R3 is the instanta-

neous orientation error defined in (3.20), obtained from the vector part of the relative
quaternion between r(q) and rhuman.
The matrix J†(q) is the Moore–Penrose pseudoinverse of the end–effector Jacobian, and
N(q) projects motions into the Jacobian null space.
The autonomous target xauto specifies the reference for the Control Lyapunov Function
associated with the end-effector task,

V (q) = 1
2

��x(q)− xauto
��2,

LfV (q) + LgV (q)u+ γ
�
V (q)� ≤ δclf,

(3.28)

where LfV (q) and LgV (q) are the Lie derivative of V along the control vector field. The
function γ(·) is a class-K function.
An important motivation of our design is to adjust the influence of the CLF and CBF terms
based on the current configuration and task conditions. When the human operator is
exploring or moving coarsely, the controller should give more authority to the human input.
In contrast, when the robot is close to the autonomous target, autonomous assistance
must become more dominant. To achieve this behavior, we introduce state-dependent
relaxation weights for both the CLF and the CBF. To modulate the influence of the CLF,
the discrepancy between the human and autonomous target is defined as

dref =
��phuman − pauto

��. (3.29)

The quantity dref in (3.29) measures the Euclidean distance between the human-specified
target position phuman and the autonomous target pauto. When the two targets are far
apart, the operator is still exploring and the CLF should exert little influence and when
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Figure 3.2: Logistic weighting used for CLF arbitration. The weighting wclf decreases as
the reference discrepancy dref between the human target and the autonomous
target increases, so that the CLF has strong influence only when the two
targets are close. Varying the sharpness parameter s changes how abruptly
this decline occurs, while varying the offset parameter r shifts the distance at
which the weight begins to drop. A smaller dref thus yields a higher CLF weight,
promoting precise convergence, whereas larger discrepancies suppress the
CLF and allow the operator to retain full control authority.

the targets nearly coincide, precise convergence is desired and the CLF should dominate.
We model this transition using a smooth logistic weighting

wclf(xhuman, xauto) =
wmax

1 + exp(s (dref − r))
, (3.30)

in this expression, wmax > 0 specifies the maximum emphasis on the CLF when the two
targets coincide. The parameter s > 0 controls the sharpness of the transition, while
r > 0 determines the distance at which the CLF begins to lose influence. These effects
are illustrated in Fig. 3.2, where varying s changes the steepness of the logistic curve and
varying r shifts the point at which the weight starts to decay.
In parallel, the CBF relaxation weight increases as the system moves closer to the safety
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boundary. The smallest safety margin is defined as

hmin = min
i

hi(q), (3.31)

and the state-dependent penalty is given by

wcbf(q) = w0

�
1 + exp(−k hmin)

�
, (3.32)

which grows rapidly as hmin → 0+, causing the CBF constraints to dominate the opti-
mization near the boundary. In this expression, w0 > 0 determines the baseline penalty
far from constraints, while k > 0 controls how sharply the weight increases as the robot
approaches a potential violation. To prioritize safety over performance, the maximum
CBF penalty is chosen to dominate the maximum CLF penalty,

w0 � wclf,max. (3.33)

In all experiments we set

w0 = 104, wclf,max = 2× 102, (3.34)

so that relaxing a CBF constraint is orders of magnitude more expensive than relaxing the
CLF constraint, ensuring that safety is never traded for convergence.
Combining the nominal velocity generated from the human target, the autonomous target
based Control Lyapunov Function, and the set of safety constraints encoded by the Control
Barrier Functions leads naturally to a constrained optimization problem. The control input
u and the relaxation variables associated with the CLF and CBF conditions are treated as
optimization variables. The objective balances three contributions: deviation from the
human-driven nominal command unom, the relaxation required to satisfy the CLF condition,
and the relaxation needed to keep the CBF constraints feasible. The state-dependent
penalties wclf and wcbf modulate the relative influence of these contributions. In particular,
wclf increases when the human and autonomous target are close and decreases when
they diverge, enabling a smooth transition between operator-dominated and autonomy-
dominated behavior. Similarly, wcbf strengthens the effect of the safety constraints as the
system approaches the boundary of the admissible set.
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min
u, δclf, δcbf

��u− unom
��2 + wclf(xhuman, xauto) δ2clf + wcbf(q) δ2cbf (3.35a)

s.t. LfV (q) + LgV (q)u+ γ
�
V (q)� ≤ δclf, (3.35b)

Lfhi(q) + Lghi(q)u+ α
�
hi(q)

�
≥ − δcbf, i = 1, . . . , N, (3.35c)

δclf, δcbf ≥ 0, (3.35d)
umin ≤ u ≤ umax (3.35e)

Under this formulation, the controller no longer simply follows the nominal velocity.
Instead, it selects the joint command that balances human intent, helper-guided task
convergence, and safety preservation, with their relative influence adjusted automatically
through the state-dependent weighting functions. These elements come together in a
unified optimization framework, in which the controller continuously reconciles operator
input, autonomous assistance, and safety requirements, producing a joint velocity that
reflects the appropriate priority dictated by the current state.
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4 Experiments

This chapter presents a comprehensive evaluation of the proposed shared-autonomy CLF–
CBF control framework on the Franka Emika Panda manipulator. The experiments are
conducted across several cluttered and geometrically constrained teleoperation scenarios
to examine how the controller balances operator intent with real-time safety guarantees.
The evaluation focuses on situations where user-specified motion commands frequently
conflict with environmental constraints such as obstacles, narrow passages, and joint-limit
boundaries.

4.1 Experimental Setup

All experiments are carried out using a Franka Emika Panda robot simulated with the
JAXSim accelerated physics framework [54], which internally relies on the NVIDIA PhysX
engine, together with ROS and a Unity-based teleoperation interface. The system is
designed to run at 100Hz, although the actual frequency depends on the controller, since
each method requires a different amount of computation.
The operator controls the robot through a keyboard interface in Unity. At each control
cycle, the keyboard provides small position and rotation increments, which are integrated
into a continuous human target pose xhuman(t). This pose is updated at the same rate
as the controller so that user commands are passed directly into the shared-autonomy
module and the CLF–CBF controller. The autonomous target xauto(t) is defined from fixed
reference poses and corresponds to the desired grasping location in each scene.
Three environments of increasing difficulty are used to evaluate the teleoperation per-
formance. The simplest scenario contains only two static obstacles that form a relatively
wide narrow passage, providing a low-difficulty setting in which the fundamental behavior
of the CLF–CBF controller can be observed. The second scenario, illustrated on the left
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Human Target

Object / Helper Pose

Figure 4.1: Overview of the two simulated environments used in the teleoperation exper-
iments. Left: narrow-passage scenario containing multiple closely spaced
obstacles. Right: shelf scenario in which the robot reaches toward a red cube
placed inside a confined box-like structure.

side of Fig. 4.1, increases the complexity by placing four closely spaced obstacles around
the approach path. This arrangement creates a much tighter corridor, in which small
deviations of the human target pose can trigger strong safety interventions. The most
challenging scenario, shown on the right side of Fig. 4.1, embeds the target cube inside
a shelf-like structure, requiring the end-effector to maneuver within limited clearance
and making shared autonomy particularly beneficial when the human input becomes
imprecise.
All obstacle geometries are modeled as capsules, and the robot–obstacle signed distance is
computed using a differentiable proximity function [55]. These distances are used inside
the OSCBF constraints to enforce joint limits, avoid self-collision, and maintain clearance
from obstacles. During teleoperation, the end-effector tracks the human target pose, while
the shared-autonomy module slowly increases the influence of the autonomous target pose
as the robot approaches the cube. Fine alignment and the final grasping motion remain
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under full human control, with safety constraints active throughout the entire task.

Controller-behavior evaluation: In the first set of experiments, the human target is not
provided by a real operator. Instead, it follows a predefined smooth trajectory generated
in Unity. This trajectory passes near the autonomous target pose, but does not involve
grasping. By removing human variability, this experiment provides a clear view of how the
CLF–CBF controller reacts when approaching obstacles, moving through narrow passages,
and entering or leaving the autonomous target’s influence. The robot first follows the
reference human target and then gradually shifts toward the autonomous target pose
as the arbitration weight increases, before returning to the reference trajectory once the
target moves away. Each scene is evaluated with five repeated trials. It is performed only
in the simple two-obstacle narrow-passage and shelf scenes.

Teleoperated grasping tasks The second set of experiments involves real human op-
erators controlling the target pose to reach and grasp a red cube placed among clutter.
The three workspace layouts—ranging from a simple narrow passage to the dense nar-
row passage and the shelf environment in Fig. 4.1, offer increasing levels of difficulty.
Each participant performs three trials in every scene. Operators attempt to drive the
end-effector toward the cube, while the shared-autonomy module increases the influence
of the autonomous target when the target enters the grasping region. The assistance does
not override the operator: final alignment, orientation adjustment, and the last part of the
reach-to-grasp motion remain fully under human control. Across all scenes, the controller
should enforce joint limits, maintain clearance from obstacles, and prevent self-collision,
thereby allowing users to focus on task execution without manually accounting for safety.

4.2 Baselines

Three controllers are used as baselines for evaluating the proposed shared-autonomy
CLF–CBF framework. All baselines receive the same human-provided end-effector pose
commands but differ in how autonomy is introduced and how safety constraints are
enforced.
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BarrierIK BarrierIK [48] is used as the pure-teleoperation baseline. Unlike velocity-level
CBF controllers, BarrierIK formulates obstacle avoidance directly at the configuration level:
at every control cycle, the method computes the next joint configuration q� by solving
a position-based inverse-kinematics optimization as (3.10). The operator’s desired end-
effector pose is mapped to an IK objective, and BarrierIK enforces safety by constraining
the joint increment Δq using discrete-time Control Barrier Functions.
As a baseline, BarrierIK represents a purely teleoperated controller. The robot tracks
the human-provided pose command directly, without any form of shared autonomy or
autonomous assistance. It guarantees geometric safety at the configuration level but does
not guide the operator toward the red cube or modify the commanded motion based on
task intent.

Baseline 2 The second baseline evaluates shared-autonomy blending in combination
with OSCBF-based safety filtering as (3.25). At each control cycle, the operator specifies a
target end-effector pose xhuman(t), while the system provides an autonomous target pose
xauto(t). The arbitration weight α(t) is computed using the sigmoid formulation defined
in (3.14), and the blended nominal pose is constructed as

pnom(t) = α
�xhuman(t), xauto(t)

� phuman(t) +
�
1− α

�xhuman(t), xauto(t)
��pauto(t),

rnom(t) = slerp�rhuman(t), rauto(t), α
�xhuman(t), xauto(t)

��
.

(4.1)

yielding the blended pose xnom(t)
The nominal pose xnom(t) is converted into a desired operational-space twist using the
OSC formulation introduced in (3.18). Given the current pose x(t), the operational-space
tracking law produces

νnom(t) = −Kp,o

�
p(t)− pnom(t)

δφ(t)

�
, (4.2)

where δφ(t) denotes the instantaneous angular error. This twist is mapped to joint
space through the Jacobian pseudoinverse, representing the nominal shared-autonomy
command.

udes(t) = q̇nom(t) = J†(q)νnom(t), (4.3)

The nominal joint velocity udes(t) is then passed to the OSCBF safety filter described in
(3.25). The filter solves the QP, treating udes(t) as the reference motion while enforcing
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joint-limit, self-collision, and obstacle-avoidance CBF constraints. This yields the safe joint
velocity q̇�(t) which is guaranteed to remain within the safe set.
This baseline therefore evaluates shared-autonomy blending combined with OSCBF-based
safety filtering, but without any CLF objective. The robot follows the blended human–
helper intention as long as all safety constraints are satisfied, and deviations occur only
when required to maintain forward invariance of the safe set.

Baseline 3 The third baseline evaluates an alternative shared-autonomy strategy in
which blending is performed directly inside the safety-filtering optimization. Unlike the
previous baseline, which first computes a blended nominal pose and then converts it into a
nominal joint velocity q̇nom, this method delivers two separate nominal joint velocities to
the OSCBF controller: a human-driven velocity q̇human and an autonomous velocity q̇auto.
At each control cycle, the operational-space controller described in (3.18) and (3.21)
is used to generate two nominal joint velocities q̇human and q̇auto. Both commands are
generated using identical OSC tracking gains and the same end-effector Jacobian, ensuring
comparable structure across the two velocity fields.
A state-dependent arbitration weight whuman(xhuman, xauto) ∈ [0, 1] is computed from
the discrepancy between the human target and autonomous target pose, following the
shared-autonomy blending function described in (3.14). The complementary weight

wauto(xhuman, xauto) = 1− whuman(xhuman, xauto) (4.4)

determines the influence of the autonomous component.
Instead of forming a blended nominal velocity externally, the OSCBF QP receives the two
components separately and embeds the blending directly inside its cost function. The
safety filter then computes a safe joint velocity q̇� by solving the following quadratic
program:

min
q̇, δ1, . . . , δN

whuman(t)
��q̇− q̇human

��2 + wauto(t)
��q̇− q̇auto

��2 +
N�

i=1

ρ δ2i (4.5a)

s.t. Lfhi(z) + Lghi(z) q̇+ αi(hi(z)) ≥ −δi, i = 1, . . . , N, (4.5b)
q̇min ≤ q̇ ≤ q̇max, (4.5c)
δi ≥ 0, i = 1, . . . , N (4.5d)
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Here, the variables δi ≥ 0 are CBF slack variables that ensure the QP remains feasible when
the human-driven and autonomous driven velocity fields temporarily conflict with the
safety constraints. A large penalty ρ = 104 is applied to δ2i so that any relaxation is heavily
discouraged and only activated when strictly necessary. In practice, the slacks remain near
zero in all experiments, indicating that the safety constraints are effectively preserved
while maintaining numerical feasibility of the optimization. This formulation causes the
safety filter to interpolate between the two velocity fields within the optimization itself.
When the human and autonomous target poses are aligned, whuman(t) ≈ 1 and the QP
solution converges toward the operator’s intended motion. As the discrepancy increases,
the autonomous component receives greater weight, guiding the manipulator toward
the autonomous target pose while still satisfying all CBF constraints such as obstacle
avoidance and joint-limit enforcement. This baseline tests whether blending inside the
optimization yields improved task performance or smoother arbitration compared with
pre-filter blending (Baseline 2), while maintaining strict geometric safety.

4.3 Results

We evaluate the proposed shared-autonomy CLF–CBF controller in two types of exper-
iments that together show its safety properties and its effect on teleoperation. Taken
together, the reference trajectories describe the controller’s baseline behavior under repeat-
able conditions, while the user study shows its practical benefit during real teleoperation.

4.3.1 Controller Behavior Under Reference Trajectories

We use several simple and commonmetrics to compare the controllers. Minimum clearance,
collision count, and violation time describe the safety of the motion. Controller frequency
shows how fast each method runs in practice. Completion time measures how long the
robot needs to follow the reference motion. Smoothness is computed from the joint jerk
and reflects how continuous the motion is. Lower jerk means smoother trajectories.

Minimum clearance. Figure 4.2a reports the minimum robot–obstacle clearance for
all controllers in both environments. Minimum clearance measures the smallest signed
distance between the robot and any obstacle during the motion. Positive values indicate
that the robot remains outside the obstacle geometry. The CLF–CBF controller keeps a
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(a) Minimum Clearance (m)
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(b) Collision Count
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(d) Control Frequency (Hz)

Figure 4.2: Safety and performance comparison of all four controllers across both tele-
operation scenarios. (Top-left)Minimum robot–obstacle clearance, where
higher values indicate safer operation and a larger buffer to the environment.
(Top-right) Total number of physical contacts detected during execution, with
lower values indicating better obstacle avoidance. (Bottom-left) Percentage
of time during which the CBF constraints were violated; a lower value reflects
stronger safety preservation and better adherence to the barrier conditions.
(Bottom-right) Control update frequency, reflecting the computational effi-
ciency of each controller. Higher values enable smoother tracking and more
responsive interaction.
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positive clearance in every trial, with values between roughly 0.02m and 0.04m in both
the narrow passage and the shelf scene. The variation across trials is small, indicating
that the controller reacts in a consistent and predictable way as the robot approaches
obstacles.
BarrierIK shows a very different result. In the narrow passage, the minimum clearance is
negative in all trials, with typical values between −0.04m and −0.07m and occasional
outliers close to −0.10m. In the shelf scene, the clearances are even lower, falling between
approximately −0.12m and −0.14m for every run. This means that the arm repeatedly
enters the obstacle geometry in both scenarios and does so quite deeply in the shelf
environment.
Baseline 2 and Baseline 3 maintain positive clearances throughout. Their values fall in the
range of 0.02m to 0.05m, and the spread across trials is small. The minimum-clearance
values of Baseline 2 and 3 remain comparable across the two environments.

Violation time. Figure 4.2c shows the percentage of the trajectory during which each
controller violates at least one CBF constraint. Violation time reports the percentage of
the trajectory during which any CBF constraint is violated, even if the robot does not enter
the obstacle. For the CLF–CBF controller, the values in both environments are essentially
zero. Apart from a single outlier in the narrow-passage scene, all trials lie exactly on the
lower axis, indicating that the controller is able to maintain feasible CBF constraints at
every time step.
BarrierIK shows nonzero violation times in both scenes. In the narrow passage, the values
typically lie between about 0.15% and 0.6%, with a median slightly above 0.5%. In the
shelf scene, the variation is larger: some runs show no violation, while others reach
values above 1%. This spread reflects situations in which the robot moves close to several
obstacles and the controller cannot maintain all constraints simultaneously.
Baseline 2 and Baseline 3 remain at or extremely close to zero across all trials. Their
OSCBF safety constraints still remain feasible and no CBF condition is violated along the
trajectory.

Collision count. Figure 4.2b reports the total number of collisions recorded in each
reference trajectory. Collision count records the number of time steps in which this
distance becomes negative, meaning that the robot has made physical contact with an
obstacle. The CLF–CBF controller produces zero collisions in both environments. All trials
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lie exactly at zero, which is consistent with the positive minimum clearances and zero
violation times reported earlier.
BarrierIK shows repeated collisions in both scenes. In the narrow passage, most runs fall
between four and five collisions, with an occasional outlier slightly lower. In the shelf
scene, the collision count is higher, typically between six and nine per trial. These values
match the negative minimum-clearance values observed for BarrierIK in Fig. 4.2a, where
the robot frequently moves inside the obstacle geometry.
Baseline 2 and Baseline 3 show zero collisions in all trials for both environments. The ref-
erence trajectory in this experiment does not push them into contact, and their minimum-
clearance values remain slightly positive throughout.

Controller frequency. Figure 4.2d shows the mean and standard deviation of the con-
troller update frequency for the four methods in both environments. Baseline 2 runs at
the lowest frequency, with average values around 18–20Hz in both scenes. The spread
across trials is small, and the two environments look very similar for this method.
The CLF–CBF controller runs slightly faster, reaching about 25–30Hz in both environments.
Its variability is also limited, and the two scenarios show nearly the same behavior. These
rates reflect the computational cost of solving a larger QP with multiple safety constraints.
BarrierIK achieves the highest average frequency, with means near 60Hz in both scenes.
However, its variance is noticeably larger: the whiskers extend from roughly 40Hz up to
almost 90Hz, indicating that its update rate varies considerably between runs.
Baseline 3 falls between these extremes. In the narrow passage it averages around 30Hz,
and in the shelf scene the mean increases to about 45–50Hz. The spread is moderate in
both environments.
Overall, the four methods differ clearly in update rate: Baseline 2 is the slowest, CLF–CBF
occupies a middle range with stable performance, BarrierIK is the fastest but also the most
variable, and Baseline 3 shows intermediate behavior that depends on the scene.

Completion Time Figure 4.3 reports the completion times for all controllers. In the
Narrow Passage scene, all controllers complete the motion within a tight interval of
roughly 63.2–63.6 s. BarrierIK and the two baselines are slightly faster and show very
small variation across trials. The CLF–CBF controller shows a somewhat higher mean and
a larger variation, so its runs are on average a bit longer than those of the other methods.
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(a) Narrow Passage
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(b) Shelf Scene

Figure 4.3: Task completion times for the four controllers in the reference-trajectory
evaluation. Error bars indicate variation across repeated trials. Across both
environments, the overall completion times remain relatively similar among
the four controllers.

The Shelf Scene shows a similar pattern. Completion times remain close across all methods
approximately 43.4–44.0 s, but CLF–CBF again has the highest average duration. Baseline 2
is the fastest in this environment, with BarrierIK and Baseline 3 falling in between. The
differences remain small compared to the absolute duration of the task.
Across the predefined-motion experiments, the CLF–CBF controller generally exhibits
slightly longer completion times than the baselines. This behavior is consistent with the
role of the CLF term, which encourages gradual reduction of the task error and avoids
overly aggressive corrections. As a result, the controller tends to produce more controlled
and well-regulated motions, even if this leads to marginally slower execution.
As discussed later in the smoothness analysis, this effect is most evident in the reference-
trajectory experiments, where the end-effector follows a noise-free motion. Under these
ideal conditions, the CLF term has a clear regularizing effect on the controller.

Smoothness Figure 4.4 shows the smoothness results. The CLF–CBF controller has the
lowest jerk in both environments. Its motion stays smooth even in the shelf scene, where
the robot must move in a tight space.
BarrierIK has much higher jerk in both scenes. The robot makes faster and more abrupt
changes in its motion, which explains the large values in the plot.
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Figure 4.4: Smoothness comparison across controllers in the Narrow Passage and Shelf
Scene environments. Lower values indicate smoother motion.

The two baseline controllers behave well in the narrow passage. Baseline 3 is the best one
in this easy scene and produces very smooth motion. In the shelf scene, however, both
baselines become much less smooth. When the robot moves close to the small opening,
they make late corrections, and this increases the jerk.
Overall, the results suggest that CLF–CBF keeps smooth motion in both environments,
while the other methods lose smoothness when the task becomes more difficult.

Statistical analysis. To complement the descriptive comparisons in Fig. 4.2, we con-
ducted non-parametric pairwise Wilcoxon rank–sum tests on the reference-trajectory data.
These tests are appropriate for the small number of repeated trials and do not rely on
Gaussian assumptions.
For minimum clearance, the tests indicate a strong trend that CLF–CBF, Baseline 2, and
Baseline 3 maintain consistently positive distances, whereas BarrierIK yields significantly
lower values (p < 0.01). For violation time and collision count, BarrierIK again differs
markedly from the other controllers (p < 0.01), while differences among the remaining
three methods are small and not statistically conclusive. Control frequency shows signifi-
cant differences across several controller pairs: Baseline 2 runs at a substantially lower
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update rate (p < 0.01), BarrierIK at the highest, and CLF–CBF and Baseline 3 fall in the
intermediate range.
Although the sample size prevents firm statistical claims, the tests support the overall
tendencies visible in the plots: BarrierIK systematically violates safety-related metrics,
Baseline 2 is primarily distinguished by its low update rate, and CLF–CBF maintains strong
and consistent safety performance across environments.

4.3.2 Objective Metrics from the User Study

We recruited four participants for the user study. All participants were male and between
25 and 28 years old. A trial was counted as a failure if the participant could not grasp the
target object within the allowed time; otherwise, the trial was marked as successful.
While the sample size is limited and the numerical results should be interpreted as
indicative rather than statistically conclusive, the collected data still provides clear trends
regarding how the controllers behave under realistic human-operated conditions.

Failure Rate Figure 4.5 reports the failure rates of all controllers in the three user-study
environments. In the simple two-obstacle scene, all controllers show low failure rates,
with values around 10–20%. In the four-obstacle narrow passage, the failure rate increases
for every method. CLF–CBF remains below 20%, while BarrierIK and Baseline 2 reach
around 30–35%. Baseline 3 also shows a clear increase in this environment.
In the shelf scene, CLF–CBF again achieves the lowest failure rate, remaining below 10%.
BarrierIK and Baseline 3 show moderate failure rates around 20–35%, while Baseline 2
exhibits the highest failure rate, close to 40%. Overall, the results indicate a trend that
CLF–CBF tends to perform more consistently across the three environments, while the
other controllers tend to exhibit increased failures as the task becomes more difficult.
These failure patterns are also influenced by the nature of human-operated grasping.
During the fine-alignment phase of the task, users often make small corrections, hesitate,
or overshoot slightly when positioning the gripper near the cube. Such small inaccuracies
can accumulate, especially in the shelf scene where the opening is tight. If the gripper
drifts away from the optimal approach direction, users often need to reposition and try
again, and a second attempt is usually more difficult. As observed during the study, these
moments of human-induced jitter or hesitation frequently lead to unsuccessful grasps.
Controllers that offer stronger stabilization toward the autonomous target, for example,
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Figure 4.5: Failure rate across all controllers and environments in the user study. Each bar
represents the proportion of failed trials (12 trials per controller per scene), and
the error bars indicate theWilson confidence interval for a binomial proportion.
CLF–CBF achieves consistently low failure rates across all scenes, while
BarrierIK shows noticeably higher failure rates in cluttered environments due
to its weaker safety guarantees. Baseline 2 exhibits the highest failure rate in
the shelf scene, reflecting the controller’s latency, which often forced users
to wait for the end-effector to catch up to the target and frequently led to
unsuccessful grasps. Baseline 3 performs moderately across scenes, with
variability but lower failure rates than BarrierIK and Baseline 2 in the most
constrained setting.

CLF–CBF are better able to absorb these small user mistakes, which helps explain their
lower failure rates.

Minimum clearance. Figure 4.6a shows the minimum robot–obstacle clearance mea-
sured during the user-study trials. In all three environments, CLF–CBF, Baseline 2, and
Baseline 3 keep a positive clearance in every trial, so users do not drive the robot into the
obstacles. Among these three methods, CLF–CBF tends to keep a slightly larger and more
consistent margin, especially in the shelf scene where the space around the target is tight.
Baseline 2 and Baseline 3 remain safe as well, but their clearance values lie closer to the
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Figure 4.6: Safety and performance results from the user study across all controllers.
Top-left: minimum robot–obstacle clearance (higher is better). Top-right:
number of collisions across user trials (lower is better). Bottom-left: tra-
jectory smoothness quantified using a jerk-based metric (lower indicates
smoother motion). Bottom-right: controller update frequency measured dur-
ing execution.
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zero line, in particular in the four-obstacle narrow passage and the shelf environment.
BarrierIK is the only controller that produces negative clearances. In both narrow-passage
scenes, several trials cross the zero threshold, and in the shelf scene the minimum clearance
can drop well below −0.1m. This pattern suggests that the BarrierIK formulation itself is
not able to guarantee a strict distance from the obstacles in cluttered layouts.
Compared with the reference experiments, the user-study results show slightly larger
spread, which is expected when humans generate the target motion. Nevertheless, all
three non–BarrierIK methods maintain a positive safety margin throughout, with CLF–CBF
providing the most comfortable clearance.

Collision count. Figure 4.6b shows the number of collisions recorded in the user study.
CLF–CBF, Baseline 2, and Baseline 3 all remain collision-free across every environment.
BarrierIK is the only controller that produces repeated collisions. When the workspace
becomes tight, particularly in the shelf scene, its safety constraints cannot prevent the
robot from entering the obstacle geometry, and several trials show multiple contacts. This
reflects a limitation of the method itself rather than user behavior.
Overall, the collision results show that all controllers except BarrierIK avoid collisions
in the user study, with CLF–CBF, Baseline 2 and Baseline 3 providing the strong safety
guarantees.

Smoothness Figure 4.6c reports the smoothness of the executed trajectories in the user
study. Across all three environments, CLF–CBF, Baseline 2, and Baseline 3 achieve very
similar jerk levels. Their distributions overlap closely, and the overall variation across
trials is small, suggesting that all three controllers are able to keep the motion reasonably
smooth under human teleoperation. BarrierIK, on the other hand, shows clearly higher
jerk values and a much wider spread, indicating that its outputs react more abruptly when
users make small corrections or adjust the target pose near constrained regions.
Compared with the reference trajectory evaluation in Fig. 4.4, the difference between the
controllers becomes smaller in the user study (Fig. 4.6c). In the automated setting, the
reference trajectory is smooth and noise-free, so the jerk is determined almost entirely
by the controller itself, making the smoothness gap between CLF–CBF and the baselines
more visible. During teleoperation, however, users introduce small oscillations, brief
hesitations, and fine adjustments near the grasp region. These input perturbations appear
in the executed motion for all controllers and reduce the contrast between their jerk
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values. Despite this reduced gap, BarrierIK remains the least smooth in both evaluations,
confirming that its poor smoothness is due to the method itself rather than the presence
of human input.

Control frequency. Figure 4.6d shows the controller update frequency measured in the
user study. The results closely match the automated experiments: BarrierIK runs near
90–100Hz, CLF–CBF operates around 45–50Hz, Baseline 3 around 50Hz, and Baseline 2
around 20Hz.
Importantly, the presence of human input does not noticeably affect the frequency. Al-
though users introduce small oscillations or irregular motion, these variations only change
the target pose and do not modify the structure or size of the underlying optimization
problems. As a result, the computational load remains almost the same as in the reference
trajectory evaluations.
Overall, the control frequency is determined primarily by the controller design itself rather
than by user behavior, which explains the close agreement between the automated and
user-study results.
Baseline 2 operates at a consistently low update rate, far below the rate of CLF–CBF and
Baseline 3. This slow feedback rate directly limits how quickly the robot can respond
to changes in the human target. Even when users move smoothly or make only small
adjustments, the arm updates too infrequently to follow these motions in real time, which
aligns with participants’ descriptions of Baseline 2 feeling noticeably delayed.
Figure 4.7 provides two complementary task-level metrics from the user study: completion
time and executed end-effector path length. Taken together, they offer clear evidence of
how controller latency affects human–robot teleoperation performance.
The completion-time results (Fig. 4.7a) show that Baseline 2 consistently requires sub-
stantially longer time to finish the task across all environments. In contrast, CLF–CBF,
BarrierIK, and Baseline 3 complete the same trials noticeably faster. This behavior directly
reflects the low control-update rate of Baseline 2 (Fig. 4.6d): because the robot updates
its motion at only around 20Hz, it approaches the human-specified target pose more
slowly, forcing users to hold their input still and wait for the robot to catch up.
Importantly, the path-length metric (Fig. 4.7b) confirms that this increased execution time
is not the result of users making excessive corrections or moving along unnecessarily long
or oscillatory trajectories. Baseline 2 produces path lengths that are comparable to the
other controllers, indicating that users generally follow similar spatial motions regardless
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(b) End-Effector Path Length (m)

Figure 4.7: Objective performance metrics from the user study. Left: task completion
time per controller and scene. Right: cumulative end-effector path length
computed from the executed motion. Together, these metrics illustrate how
control latency affects the task-level behavior, particularly for Baseline 2,
which shows long completion times despite path lengths comparable to the
other methods.

of the control method. The difference lies in how quickly the robot can respond to these
motions.
The combination of normal path length and significantly longer completion time is there-
fore characteristic of a controller with noticeable latency. Users are not traveling farther.
They are simply waiting longer. These results align closely with the subjective reports de-
scribing Baseline 2 as “not following the hand’’ and confirm that its reduced responsiveness
is the main factor behind its poorer task-level performance.

4.3.3 Subjective Metrics from the User Study

Figure 4.8a and Figure 4.8b summarize the subjective evaluation collected from the four
study participants. To ensure consistency across metrics, all subjective scores are presented
such that higher values indicate more desirable user experience. This corresponds to
a reversed interpretation of several NASA–TLX dimensions: higher ratings on Mental
Relaxation, Physical Relaxation, or Frustration Level indicate lower perceived workload.
Meanwhile, higher scores on Safety Level, Assistance Level, Control Level, and Performance
reflect a stronger sense of confidence, support, and controllability during teleoperation.
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(NASA-TLX).
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(b) User ranking of the four controllers.

Figure 4.8: Subjective evaluation results from the user study. The radar plot (left) sum-
marizes participant ratings across seven subjective dimensions, where all
axes are oriented such that higher scores indicate more desirable outcomes
(e.g., lower workload, higher perceived safety, and stronger sense of control).
The ranking plot (right) shows the final preference ordering provided by each
participant.
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Consequently, across all axes of the radar plot, larger values consistently represent more
desirable outcomes.
Overall, CLF–CBF and Baseline 3 obtain the most positive subjective evaluations. Across
dimensions such as perceived safety, assistance level, control level, and overall performance,
both controllers receive consistently high ratings. Participants frequently described these
two methods as stable, predictable, and reliable, especially when maneuvering near
obstacles or performing fine alignment tasks.
In contrast, BarrierIK, while highly responsive and providing strong direct control, receives
noticeably lower scores in several dimensions—most prominently in perceived safety and
frustration. Users noted that although the method reacts quickly, it tends to become
mentally demanding in cluttered scenes, requiring greater attention and effort to maintain
precise motion.
Baseline 2 receives the lowest overall subjective ratings. Participants consistently reported
a clear delay and reduced responsiveness, often describing the controller as “not following
the hand.” This latency made accurate positioning near the target more challenging and
increased both cognitive and physical workload.
These impressions are reflected in the final participant rankings (Fig. 4.8b). Most partici-
pants ranked CLF–CBF or Baseline 3 as their top choice, whereas BarrierIK and Baseline 2
appeared predominantly in the lowest positions. Although the sample size of four par-
ticipants does not allow for statistically conclusive statements, the collected data reveal
several consistent tendencies across controllers. Baseline 2 achieves the highest smoothness
among all methods, but its update rate of around 20Hz appears to introduce noticeable
latency. Participants frequently reported that the controller was slow to react, making
precise adjustments more difficult during fine manipulation.
In contrast, CLF–CBF provides strong assistance and safety, which many participants
perceived as helpful when approaching cluttered regions. However, its stabilizing behavior
also requires users to maintain attention, as the controller continuously guides the motion
toward safer configurations.
Baseline 3 was generally described as the easiest to control. Participants noted that its
responses felt intuitive and predictable, although this ease of use comes with slightly
reduced safety margins compared to CLF–CBF. Together, these observations indicate a
trend suggesting that each controller offers a different balance between responsiveness,
assistance, and safety, which directly shapes the users’ subjective experience during
teleoperation.
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5 Conclusion

5.1 Conclusion

This thesis presented a shared-autonomy control framework that combines a Control
Lyapunov Function with Control Barrier Functions for safe teleoperation of a Franka Emika
Panda robot. The objective was to support the operator during reach-to-grasp tasks while
preserving strict geometric safety in cluttered workspaces.
The evaluation consisted of two complementary parts. The predefined-motion experiments
provided repeatable conditions for assessing the intrinsic behavior of each controller. Under
these conditions, the CLF–CBF controller maintained positive clearance, avoided collisions,
and satisfied all safety constraints across both narrow-passage and shelf environments.
BarrierIK, while computationally efficient and responsive, consistently entered obstacle
geometry in cluttered scenes due to its configuration-level formulation. Baseline 2 and
Baseline 3 preserved safety but showed smaller clearance margins, with Baseline 2 running
at a noticeably lower frequency.
The user study introduced human variability into the evaluation. Participants performed
grasping tasks in three environments of increasing difficulty. In this setting, humans
naturally produced small oscillations or hesitations during fine alignment. The CLF–CBF
controller handled these variations reliably and maintained safe operation while guiding
the motion toward the helper pose. It achieved the lowest failure rate in the narrow and
shelf scenes and preserved consistent safety margins. Baseline 3 also performed well and
was frequently described as smooth and easy to use.
An important observation is that BarrierIK, despite its limited safety behavior, was consis-
tently rated as the most responsive and easiest to control. Participants reported that it
followed their motions closely and felt the most “direct.” However, this responsiveness
came at the cost of reduced safety: BarrierIK produced negative clearance and repeated
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collisions in both the objective and user-study evaluations. Baseline 2, although safe,
suffered from noticeable latency due to its low update frequency.
Taken together, these findings show that CLF–CBF offers a balanced combination of safety,
robustness, and shared-autonomy assistance. It preserves geometric safety in all tested
environments, helps stabilize the end-effector during grasping, and improves task success
in constrained layouts. The results further highlight that responsiveness alone does
not guarantee safe teleoperation, and that structured shared autonomy combined with
CBF-based safety can provide a more dependable experience in cluttered environments.

5.2 Future Work

Several directions remain for future investigation. First, although the proposed CLF–
CBF controller demonstrates strong performance in obstacle-rich teleoperation tasks, the
current formulation still relies on manually tuned penalties and relaxation parameters.
Learning these quantities from demonstrations or adapting them online based on user
intent, task context, or workload could further improve both efficiency and predictability.
In particular, improving the tuning of the CLF-related weights may help reduce the mental
and physical demand reported by some participants, enabling a more effortless interaction
with the shared-autonomy system.
Another important limitation arises during fine manipulation or precise alignment. Par-
ticipants noted that the controller provides insufficient assistance when very small or
delicate adjustments are required. A promising direction for future research is therefore
to incorporate higher-level strategies, such as skill learning, task primitives, or intent
prediction, that can be integrated directly into the CLF objective. Such mechanisms may
allow the controller to provide more anticipatory and context-aware guidance, ultimately
improving the user experience in subtle, high-precision operations.
A broader user study is also an important next step. Because the present evaluation
involved only four participants, the results reveal tendencies rather than statistically
conclusive effects. A larger and more diverse participant population would enable a
more systematic analysis of user preferences, workload, and perceived safety, and would
support a more nuanced understanding of how different control strategies influence the
teleoperation experience.
In addition, the relationship between controller smoothness and perceived control remains
an open question. Although Baseline 3 was consistently rated as easy to control, its safety

52



margin was lower than that of CLF–CBF; conversely, CLF–CBF achieved strong safety
and stability but required more deliberate motion from the user. A deeper investigation
into this smoothness–assistance–safety trade-off, particularly between Baseline 3 and
CLF–CBF, may help identify design principles for balancing responsiveness with robustness
in shared-autonomy control.
Finally, deploying the method on a physical robot will allow us to study latency, sensor
noise, and contact uncertainties that are not captured in simulation. Extending the
framework to more complex tasks, such as multi-step manipulation, dynamic obstacle
avoidance, or contact-rich behaviors, and exploring personalization based on user-specific
preferences or risk sensitivity also represent promising directions for future work.
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