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Abstract— This paper explores active sensing strategies that
employ vision-based tactile sensors for robotic perception
and classification of fabric textures. We formalize the active
sampling problem in the context of tactile fabric recognition
and provide an implementation of information-theoretic ex-
ploration strategies based on minimizing predictive entropy
and variance of probabilistic models. Through ablation studies
and human experiments, we investigate which components are
crucial for quick and reliable texture recognition. Along with
the active sampling strategies, we evaluate neural network
architectures, representations of uncertainty, influence of data
augmentation, and dataset variability. By evaluating our method
on a previously published Active Clothing Perception Dataset
and on a real robotic system, we establish that the choice of the
active exploration strategy has only a minor influence on the
recognition accuracy, whereas data augmentation and dropout
rate play a significantly larger role. In a comparison study, while
humans achieve 66.9% recognition accuracy, our best approach
reaches 90.0% in under 5 touches, highlighting that vision-based
tactile sensors are highly effective for fabric texture recognition.

I. INTRODUCTION

Touch is a crucial sensing modality that helps humans
perceive object properties and perform dexterous manipulation
tasks. Without tactile feedback, even simple tasks such as
lighting a match become harder to perform [1], [2]. Therefore,
incorporating tactile sensing into robotics is an important step
towards making robots more versatile and dexterous [3]. In
this paper, we focus on the problem of tactile perception of
object properties, and in particular, on the recognition of fabric
textures. Various applications, such as laundry separation and
fabric recycling, waste sorting, and material handling, can
benefit from rapid texture classification, as discussed in [4].

Classification of fabrics has been tackled with different
types of sensors using both supervised and active methods.
Vibration/force-based tactile sensors of different types—such
as the iCub sensors [5]–[7], BioTac sensors [6], [7], and
custom-designed ones [8]–[10]—have been used for super-
vised texture classification, using spiking neural networks [6],
modified RNNs [7], and k-NN classifiers [10]. All these
methods rely on high-frequency temporal data, requiring
RNNs or spatio-temporal subsampling to keep the input
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Fig. 1: The texture recognition task requires identifying a given
fabric among four comparison samples: (a) robot arm exploring
sample fabrics; (b) dataset of 25 fabrics; (c) example tactile image;
(d) human participant using index fingers to compare fabric samples.

dimensionality low. In contrast, vision-based tactile sensors
provide high-resolution data but at a lower rate, thereby
requiring less history as input. Supervised classification of
fabrics was successfully showcased using GelSight heightmap
patterns [11] and more advanced spatio-temporal attention
features [12]. Furthermore, active sampling methods have
been developed for GelSight to ‘actively’ collect the data [4],
in the sense of repeating touches until a ‘good’ tactile image is
obtained, or for material roughness classification [13], where
predictions on image patches were weighted by the output
variance of a Bayesian CNN to improve the overall label
prediction accuracy.

In this paper, we are tackling the problem of tactile active
texture recognition (see Fig. 1). With no pre-training, a robot
is given a ‘reference’ texture and asked to identify it among
four comparison textures using as few touches as possible.
This problem setup models applications where the robot needs
to quickly identify an object provided only a few touches.
Unlike [4], we do not want to pre-train on a large dataset but
rather quickly adapt on-the-fly, and we do not aim to ‘classify’
but only ‘recognize’ fabrics. In contrast to [13], we do not use
uncertainty for label prediction but rather for action selection,
choosing which fabric to touch next. This setup also allows
us to compare robot vs. human tactile exploration strategies.

In the next sections, we formalize the tactile active
texture recognition problem, present a general Bayesian
decision-theoretic framework for action selection, describe
our implementation which leverages probabilistic NNs for
uncertainty quantification, and provide extensive empirical
studies and analysis of different components of the algorithm,
including the comparison to human exploration strategies and
ablations on two datasets and experiments on a real robot.

II. PROBLEM SETUP AND TASK FORMALIZATION

We investigate sample-efficient texture recognition using
vision-based tactile sensors such as GelSight Mini [14],
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Digit [15], or FingerVision [16]. In this paper, we focus
on the GelSight Mini sensor, as it provides high-resolution,
high-quality images, independent of the external lighting. The
sensor is held by a Franka Panda [17] robotic arm (see Fig. 1)
and pressed against pieces of fabrics on plastic platforms at
predefined locations with randomized amounts of pressure and
rotation around the vertical axis to provide more variability
in the data. The leftmost platform holds the reference texture,
while the remaining four platforms hold randomly chosen
comparison textures, one of which is equal to the reference.

The agent’s goal is to identify the reference among
the comparison textures using as few touches as possible.
Crucially, the agent has no prior knowledge of the textures,
and therefore has to learn about them within one trial, i.e.,
one fixed selection of five fabrics in a particular order. One
trial consists of multiple touches and ends after a predefined
number of touches in our robot experiments or once the
participant has made a decision in our human study. The
action of the agent is the high-level choice which platform
to approach next (the low-level robot control is handled by a
Cartesian position controller). We call each step of this action-
observation loop a round, and we start counting rounds after
each object has been touched once, i.e., if the process has
terminated after one round, it means the agent has touched
all four comparison fabrics and the reference fabric once and
then did just one additional touch. Thus, one trial consist of
several rounds (up to 20). We perform multiple trials with
different textures, and multiple runs for each trial to reduce
the statistical error.

To provide textures for our experiments, we created
a dataset of 25 denim and cotton fabrics, chosen to be
particularly hard to distinguish by touch, as confirmed by
our human study in Sec. IV-C. For each fabric, we collected
200 samples with randomly perturbed positions and rotations
around the vertical axis. A sample of this dataset can be seen
in Fig. 1c. Our complete dataset is available online.1

III. TACTILE ACTIVE TEXTURE RECOGNITION METHOD

Consider one round of the agent’s decision making. Having
touched each of the five platforms one or more times, the
agent needs to make a decision which platform to touch
next. The Bayesian approach to this problem is to build a
probabilistic model and to choose the action that provides
the most information to support the final decision (i.e., the
decision which fabric is identical to the reference) [18]. To
implement this approach, we specify the model, describe how
it is updated using the new data, and define the acquisition
function, i.e., the action selection strategy.

A. Probabilistic Model Specification

As the output of the GelSight Mini sensor is a 320 × 240
RGB image, one either needs to manually extract features or
employ a CNN. In [11], heightmap patterns were used, but
with the advent of deep learning, automated feature extraction

1Our Tactile Active Recognition of Textures (TART) Dataset can
be downloaded at https://drive.google.com/drive/folders/
1S_2PLKV-Ap2tifV1gvMfCYjoaNyQaF9z?usp=sharing

(a) Inception-S with added dropout

(b) Inception-v3 with added dropout

Fig. 2: The considered architectures of the probabilistic classifier:
Inception-v3 and small Inception-v3 (Inception-S) with dropout.

is prevalent. Therefore, in this paper, we employ a CNN with
dropout layers to implement a probabilistic classifier [19].
Dropout has been shown to provide a viable approach for
uncertainty quantification with neural networks [20]. Our
experiments with an ensemble of CNNs have shown similar
performance to dropout, albeit at a higher computational cost.

We consider three CNN variants: i) Inception-v3 [21] pre-
trained on the ImageNet [22] (Inception-PT); ii) randomly
initialized Inception-v3 (Inception-RI); iii) small unpretrained
version of Inception-v3 (Inception-S), which drops all the
layers after the first InceptionA block and before the last
InceptionC block (see Fig. 2). Considering these network
variants allows us to evaluate the effects of pretraining and
the network depth. We furthermore add dropout layers and
evaluate different dropout rates in our ablation studies.

B. Model Update

Once a new tactile image is obtained, the model needs to
be updated to incorporate the new evidence. As is common
in deep learning, we employ data augmentation [23], by
generating 10 randomly rotated versions of the same tactile
image. Using all the samples collected during the current
trial, we retrain the probabilistic NN classifier: the samples
of the comparison textures serve as inputs and the respective
platform positions serve as labels. The output of the classifier
is a probability distribution pθ(i∣o) over the platform labels
i ∈ {1,2,3,4}, given an image o and the model parameters θ.

Hence, the model learns to map texture samples to platform
labels. When queried with the reference texture (unseen during
training), the model outputs a ‘probability distribution’ over
the labels. To obtain a more robust estimate, we apply the
model to 10 randomly rotated copies of the reference image
and average the probabilities

i∗ = argmax
i

1

nref

nref

∑
k=1pθ(i∣o

ref
k )

where nref is the number of samples of the reference texture
and oref

k is the k-th reference sample. This response is correct if
the platform with the same fabric as the reference is predicted.

C. Active Sample Selection Strategy

The decision which platform to explore next is made based
on the model uncertainty. As described in Sec. III-A, we
add dropout layers to Inception-v3 (see Fig. 2) to model the

https://drive.google.com/drive/folders/1S_2PLKV-Ap2tifV1gvMfCYjoaNyQaF9z?usp=sharing
https://drive.google.com/drive/folders/1S_2PLKV-Ap2tifV1gvMfCYjoaNyQaF9z?usp=sharing
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Fig. 3: Training and validation accuracy of the Inception-v3 models
(see Sec. III-A) on the non-interactive 25-fabric classification task,
averaged over five runs. Each model is trained until the validation
accuracy converges. The final validation accuracies are 95.2% for
Inception-PT, 94.2% for Inception-RI, and 92.6% for Inception-S.

epistemic uncertainty [20]. By querying the dropout network
with the same input multiple times, we obtain different output
samples and can gauge the uncertainty by their distribution.

We compare four sample selection strategies: Random,
Variance, Entropy, and You Only Touch Once (YOTO).
i) Random strategy is a naive non-active baseline that selects
the next texture to touch according to a uniform distribution.
ii) Variance strategy selects the platform for which the
variance of the class probability predictions is the highest

inext = argmax
i

1

nref

nref

∑
k=1 Var

m∼p(m)[pθ(i∣o
ref
k ,m)]

where nref is the number of collected samples of the reference
object and p(m) is the distribution of the dropout masks.
iii) Entropy strategy selects the platform that contributes the
most to the class distribution entropy for the reference object

inext = argmax
i

1

nref

nref

∑
k=1 E

m∼p(m)[−p
k
i lnp

k
i ]

where nref and p(m) defined as before and pki ∶= pθ(i∣oref
k ,m).

iv) You Only Touch Once (YOTO) is a trivial baseline that
makes a decision immediately after the initial five touches, i.e.,
each object touched once. This baseline provides a reference
to quantify the ‘value’ of the actively gathered data.

IV. EXPERIMENTAL RESULTS

Our experiments aim at identifying what components of the
algorithmic architecture matter for active texture recognition
with vision-based tactile sensors. For that, we first compare
the three probabilistic classifier architectures introduced
in Sec. III-A in a classical, non-interactive supervised learning
setting on all 25 fabrics in our dataset. Second, we evaluate
the active sample selection strategies from Sec. III-C. Third,
we present a human study in which we investigate human
exploration strategies on the same task in order to identify
potential improvements to the robotic policies. Fourth, we
provide ablation studies of the effects of hyperparameters on
a bigger Active Clothing Perception Dataset [4].
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Fig. 4: Comparing the performance of the Inception-v3 models on
the active texture recognition task. Notably, the small Inception
network Inception-S performs as well as the larger Inception-PT.

A. Supervised Texture Classification

In this experiment, the three models introduced in Sec. III-
A are trained to distinguish all 25 fabrics of our dataset.
Since we are not interested in uncertainty quantification in
this experiment, we set the dropout probability to 0%. For this
experiment, we use 10 images per class for training and 20
images for validation. We see considerable differences within
the performance of the three models. Fig. 3 shows that pre-
training helps to learn to recognize the textures quickly and
that Inception-S needs more training time to reach the same
performance as the other two models. At the same time, the
performance on the validation data is close to Inception-RI,
indicating that Inception-S still generalizes well.

B. Active Texture Recognition

The objective of this experiment is to compare the three
network architectures (Sec. III-A) and the four active sampling
strategies (Sec. III-C). Each model is trained for 210 epochs,
10 epochs after creating a baseline and then 10 more epochs
after resampling in each of the 20 rounds. For all three
models, we collect the results of five subsets of fabrics using
the four different strategies and average the performance of
each model. In Fig. 4, it can be seen that the models perform
similarly, unlike in the non-active experiment in Sec. IV-
A. Especially the large advantage of Inception-PT seen in
Sec. IV-A cannot be observed in this experiment. We believe
the reason why pre-training is not advantageous in this case is
the retrospective addition of dropout layers, which the model
was not trained for. Considering that Inception-S can solve the
task on par with the other models while being substantially
less computationally expensive, we use this model for our
further comparisons.

In Fig. 5, the influence of the different strategies on the
performance of Inception-S is shown. When we run the exper-
iment for 20 rounds, sampling offers an advantage, as YOTO
has the lowest performance on the training data. On average,
the model performs best using Variance, closely followed by
Entropy and Random. However, the active sampling strategies
generally have a lower predictive uncertainty than YOTO.
While YOTO performs quite well on the training data after 20
rounds, its accuracy in predicting the label of the reference
object of each trial is only 80% on average.
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Fig. 5: Comparison of the exploration strategies on the tactile active texture recognition task. Average prediction accuracy, average variance,
and entropy of the predictions are shown. Inception-S is used in all experiments. The Variance strategy achieves the highest accuracy, closely
followed by Entropy and Random. Interestingly, the Variance strategy leads to a faster entropy decrease even than Entropy (rightmost plot).

Fig. 6: The average number of touches made by the human
participants in each trial. Error bars denote the standard error.
Humans do 5–9 touches (i.e., 1–5 rounds) in each trial before
giving the final response. Some harder trials with similar objects
show high variance.

Humans Variance Entropy Random YOTO
66.88%±16.93% 90.00%±15.24% 88.13%±14.24% 89.38%±14.35% 80.63%±22.42%

TABLE I: Comparison of the final accuracies achieved by the
different exploration strategies. Humans denotes the average human
performance. Notably, all robotic strategies are superior to humans,
showing that the vision-based tactile sensor alone provides an
advantage over the human touch in this task. The type of the
exploration strategy, however, seems to play a minor role, since
Variance, Entropy, and Random all achieve about 90% accuracy.

C. Human Study

In order to find out how well the proposed tactile active
recognition method performs compared to humans, we carry
out an experiment with ten human participants. Ideally, we
would like to see whether human exploration strategies can be
characterized using information-theoretic metrics, and whether
insights from humans can be transferred to the robots.

During a trial, the participants are blindfolded and can
only use the tips of either their index or middle fingers to
explore the fabrics (see Fig. 1d). All participants have passed
the two-point discrimination test with a point distance of
2mm, confirming that their tactile perception capabilities
are not impaired [24]. They indicate their response to the
experimenter by resting their finger on the chosen fabric and
by verbally confirming their selection. No feedback on the
participant’s performance is provided during the experiment.

We select 8 out of 25 fabrics which were mostly confused
by the neural network and we use each fabric as the reference
object four times, with the corresponding comparison object

(a) Variance strategy (b) Entropy strategy

(c) Random strategy (d) YOTO strategy

Fig. 7: Confusion matrices for the 8 fabrics included in the human
study. Some fabrics are consistently misclassified by all strategies,
e.g., 17 and 7, while others are always classified correctly, e.g., 21.

placed in each of the four possible locations once, resulting
in 32 trials in total. To analyze the number and time of
revisits per object, we record videos of each participant’s
hand movements. Each time a participant switches between
two objects is counted as a new revisit. The data of this
experiment and the code for analysis are available online.2

Figure 6 shows the average number of revisits before
giving a response in each trial, ranging from five to nine
revisits needed per trial. In Table I, we compare the prediction
accuracy of the human participants and the robot. To ensure
fairness, in each trial, we only allow the robot to use the
same number of touches that humans used (Fig. 6). The
low prediction accuracy of 66.88% achieved by the humans
indicates that the task is quite non-trivial, and it provides
a reference point for the 90% accuracy achieved using the
vision-based tactile sensor. In the next section, we take a
closer look at the exploration strategies employed by the
humans in comparison to the information-theoretic strategies.

D. Behavior Comparison Between Participants and the Robot

To gain insight into the difficulty of differentiating the
fabrics, we plot the confusion matrices in Fig. 7. Some fabrics

2Our study data https://drive.google.com/drive/folders/
1S_2PLKV-Ap2tifV1gvMfCYjoaNyQaF9z?usp=sharing

https://drive.google.com/drive/folders/1S_2PLKV-Ap2tifV1gvMfCYjoaNyQaF9z?usp=sharing
https://drive.google.com/drive/folders/1S_2PLKV-Ap2tifV1gvMfCYjoaNyQaF9z?usp=sharing


(a) inter-participant (b) participant-robot

Fig. 8: Comparing the exploration strategies among participants and
against the information-theoretic strategies. The numbers indicate
the Jensen-Shannon divergence between the distributions of time
spent over objects, averaged over trials. The inter-subject variability
is comparable to the subject-robot variability, therefore no uniform
judgement about what strategy all humans use can be made. Instead,
each participant seems to follow a personal exploration strategy.

have close to 1 recognition accuracy, whereas others are
misclassified more often. Notably, the confusion matrix of
YOTO has the lowest values on the diagonal, in accordance
with the results in Table I. For humans, an average confusion
matrix is not very informative since no single fabric was
inherently harder to recognize for all participants, i.e., the
inter-participant variance was relatively high.

To compare the exploration strategies, we formalize the
problem by normalizing the time spent by the human
participants on each object per trial, to get a distribution
of relative times per fabric. This gives us a distribution of
time spent over objects, and subsequently we can compute a
distance between these distributions to judge how close they
are. We employ the symmetric Jensen-Shannon divergence.
Thus, we can compare both human and robotic strategies to
each other at least in this restricted sense. YOTO is excluded
from this comparison as it performs no exploration.

The Jensen-Shannon distance takes values in the range
[0,1], with lower values indicating greater similarity between
strategies. The resulting distances of comparing the robotic
strategies to each other are 0.14 between Variance and
Entropy, 0.12 between Entropy and Random, and 0.16
between Variance and Random. Thus, according to the Jensen-
Shannon divergence, the two uncertainty-based strategies
Variance and Entropy are not the most similar, and Entropy
produces exploratory behavior that is more similar to Random
than to Variance on average. While the distances between
the robot strategies are in the range 0.12–0.16, the inter-
participant (Fig. 8a) and the participant-robot (Fig. 8b)
distances are around 0.2 and higher.

If we average the distances of each participant, we get
a mean Jensen-Shannon distance of 0.219 for the variance
strategy, 0.218 for the entropy strategy, and 0.231 for the
random sampling strategy, meaning that the uncertainty-based
strategies are on average slightly more similar to human
exploration under the Jensen-Shannon distance. On the other
hand, we again observe a high variance between trials. There
are some trials where the same two participants follow a very
similar exploration strategy and others where they choose
different approaches with a higher Jensen-Shannon distance.

Finally, we observe a similar pattern when it comes to the
Variance strategy of the robot and the human participants. In

Variance Entropy Random YOTO

DA, DR=0.25 68.13%±46.8% 78.44%±40.81% 81.87%±37.02% 46.88%±50.7%
No DA 50%±50.8% 59.22%±48.33% 62.66%±47.38% 49.22%±50.19%
DR=0.5 55.94%±50.15% 80.94%±37.01% 79.06%±39.54% 49.06%±50.12%
DR=0.15 70.94%±45.25% 80.31%±39.55% 79.69%±36.23% 47.19%±50.43%
DR=0.05 68.75%±47.09% 84.38%±36.89% 86.56%±33.47% 50%±49.25%

TABLE II: Ablations on the influence of Data Augmentation (DA)
and Dropout Rate (DR) on the final prediction accuracy of different
exploration strategies, evaluated on the Active Clothing Perception
Dataset [4]. Adding data augmentation boosts the performance by
20% for all strategies except YOTO. Decreasing the dropout rate
generally improves the results, but to a lesser degree.

63.75% of the trials, the participants touched that object most
often which they predicted to be the reference object. With
Variance, we get 56.25%, and with Entropy, only 32.5% of
the trials where the predicted object is touched most often.

E. Ablation Study on the Active Clothing Perception Dataset

In the ablation study, we investigate the role of other
hyperparameters and design choices on the performance of
the considered tactile active texture recognition algorithm. To
make sure that the results are not specific to our dataset, we
perform the ablations on the images from the Active Clothing
Perception Dataset [4]. To make the setup comparable to our
experiments, we randomly select 8 of the fabrics and create
32 trials, with 4 fabrics each.

Table II and Fig. 9 show the results of the ablation studies
on the Dropout Rate (DR) and Data Augmentation (DA). In
general, the dataset [4] contains more variable data compared
to ours, because the data was collected by autonomously
grasping real clothes at wrinkle locations. Furthermore, a
prior version of the GelSight sensor was used, that exhibits
a higher variance in the light distribution upon contact. For
these reasons, the variance in the performance of our method
is higher on this dataset (Table II) compared to ours (Table I).

In the first two rows in Table II, we compare the final
average test accuracies with and without DA, at a fixed
DR = 0.25. For all methods except YOTO, data augmentation
adds about 20% to the accuracy. This confirms our observation
that data augmentation is essential for the good performance
of the CNN-based model.

In the bottom three rows in Table II, we compare different
dropout rates. The general trend is that the smaller DR results
in a higher average accuracy, though the improvement is minor
in the range DR ≤ 0.25. Therefore, in our main experiments,
we used 0.25 as it performed sufficiently well in all tests.

In Fig. 9 we observe the same trends during training as
in Table II. Namely, removing data augmentation leads to a
significant drop in performance, and decreasing the dropout
rate provides an improvement to the accuracy of all strategies.

V. DISCUSSION & CONCLUSION

We have investigated the performance of a Bayesian
approach to active sampling for fabric texture recognition
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different exploration strategies, evaluated on the Active Clothing Perception Dataset [4]. Adding data augmentation significantly improves
the performance for all strategies except YOTO. Decreasing the dropout rate generally improves the results, but to a lesser degree.

with vision-based tactile sensors using variance and entropy
criteria. We performed ablation studies on different model
architectures and hyperparameters, and we identified which
choices have the largest impact on the recognition accuracy.

First, we found that an ImageNet-pretrained Inception-v3
network allows for a significantly faster training of a 25-
class classifier on our dataset of denim and cotton fabrics
(see Fig. 3), achieving 95.2% accuracy after 20 epochs of
training. However, on our main 4-class recognition task,
where the network needs to adapt very quickly with only
a handful of training samples, we found that even a much
smaller model Inception-S performs similarly, while being
more computationally efficient (see Fig. 4). Therefore, we
conclude that big pretrained networks are not necessary for
few-shot recognition tasks with vision-based tactile sensors.

Second, we investigated the importance of the exploration
strategy on the recognition accuracy, and we did not find
a significant difference between the strategies that sample
the objects with highest predictive variance or entropy
contribution. Furthermore, even a random sampling strategy
has shown similar performance, which suggests that the
texture recognition task is relatively straightforward for the
vision-based tactile sensors such as GelSight Mini, despite
the fact that humans only achieved 66.88% average accuracy
on this task. These results are in agreement with the work
on active classification of material roughness [13], where the
algorithm using vision-based tactile sensors was shown to
achieve significantly higher accuracy than human participants.

Third, we performed a human study with the goal of
quantifying the human performance on the texture recognition
tasks, and we performed analysis of exploratory behaviors
that humans employ in order to compare them to the behavior
of our exploration strategies. Apart from confirming that the
task is quite hard for humans, we found out that there is
a significant variability among the participants with regards
to the exploration strategy, as evidenced by our analysis in
Fig. 8. Moreover, the inter-participant variability was found
to be similar to the participant-robot variability, meaning that
there is no universal exploration strategy that all participants
have followed. Nevertheless, on average, human exploration
behavior was closer to the information-theoretic strategies,
Variance and Entropy, than to random exploration.

Fourth, we reported the results of ablation studies on the
effect of data augmentation and dropout rate on the model
performance. Most importantly, we found data augmentation
to significantly improve the performance of all exploration
strategies (see Table II) by almost 20% on average. The
dropout rate, on the other hand, had a relatively smaller
influence, well within the standard error range. Combined with
our observations about the influence of exploration strategies,
this result allows us to conclude that the quality of the data
and data augmentation, together with the network architecture,
play a more significant role in improving the performance
compared to the choice of the exploration strategy.

Limitations: Comparing human and robotic tactile per-
ception in our study is limited due to the different nature
of the sensors. The vision-based tactile sensor achieving a
higher performance on the texture recognition task could in
principle be attributed to using a different sensing modality
rather than to a better representation or sample selection
strategy. However, this concern was partially addressed in [13],
where human performance using touch was compared to
using GelSight images for material roughness classification.
Interestingly, they found that humans are much better at
classification using their sense of touch rather than vision.

Our results furthre suggest that the choice of which object
to touch next in the fabric recognition task may depend on the
nature of the internal representation, and not on the sampling
strategy. It is, however, not straightforward to compare internal
representations of humans and robots, especially given that
there seems to be no ‘average’ human representation, i.e.,
humans differ substantially in terms of which fabrics they
confuse and which exploration strategy they follow.

Outlook: While we evaluated ImageNet pre-trained net-
works on texture recognition, it would be of interest to develop
a “tactile ImageNet” dataset and a network pre-trained only
on textures. Such a network would potentially further improve
the active texture recognition performance. Tackling more
challenging tasks, such as contour/shape exploration and
object pose estimation would provide further insights into
active tactile sensing, as well as integrating multiple sensing
modalities, such as touch, vision, and proprioception. On the
human side, a study on the representations of object properties
that humans utilize would be especially relevant.
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