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Abstract—Creating an interface for architects to use 

reinforcement learning algorithms in their usual design 

software empowers architects and designers to come up with 

new solutions for old problems. In a capitalist society dealing 

with a climate crisis it is an interest to find optimized solutions 

to the problems of floor planning, material distribution and 

recycling elements. In this report we present an interface that 

creates a link between the design environment of Grasshopper 

and the RL algorithms of stable baselines 3.  
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I. INTRODUCTION 

The floor area of the world needs to be nearly doubled 

until 2060 and as building and construction today use 36% of 

the global final energy and produce 39% of the energy-related 

carbon dioxide, the construction process needs to change 

drastically. [1] It not only needs a lot of energy but also 

produces a lot of waste as falsework is often only used once. 
We think that robots in combination with AI and an efficient 

material distribution have the potential to revolutionize the 

building industry. This IP-Project is a first step into solving 

architectural combinatorial problems with the help of 

reinforcement learning (RL). 

There are many combinatorial problems in the field of 

architecture. From optimizing floor plans [2, 3] to combining 

modular building elements to  rearranging recycled building 

parts, represents a small part of combinatorial problems. 

These problems are not new to architecture but exist since the 

beginning of AI research in the 1960s [2]. With new and more 

powerful algorithms there comes a hope to solve 
the  “wicked” design problems of architecture [4]. As 

architectural problems are always design problems there is no 

completely optimal solution to a problem, because there is 

nothing like a perfect design it always depends on subjective 

perception. This is a huge difference to engineering problems 

where the constraining factors form an optimal solution. 

The method of reinforcement learning can be one option 

to solve complex design problems as it reacts to the 

environment. This report presents a general interface between 

the architectural design software of Rhino and Grasshopper 

and the scripting environment to run RL algorithms. In three 
case studies we show different approaches on how this 

interface can be used to solve combinatorial problems. As this 

is an early research on implementing RL algorithm in an 

design environment for architects it lays a stepstone for future 

research.  

II. GENERAL INTERFACE 

As architects use different environments to design buildings 

and structures, than computer scientists use for RL, it is 

necessary to create an interface between these 

environments.  
 
Rhino is a 3D modeling software that allows users to create 

complex geometries. With Rhino, however, only a direct 

modeling is possible. Only with the built-in plug-in 

Grasshopper a parametric modeling is possible. Grasshopper 

is a visual programming language that uses connectable 

components to create 3D geometry. It is thereby a very 

powerful tool for architects and designers, because it allows 

to parametrically change the geometry without the need of 
totally rebuilding the object. In 2007, where Grasshopper 

was published for the first time, this was quite a novum in 

CAD applications and still today the parametrization of 

buildings is rarely done . Various projects show the potential 

of parametrized buildings. It not only provides a huge 

freedom of design but can also directly generate machine 

code for robots and CNC machines to manufacture the 

buildings.[5, 6] This opens up the question why not more 

projects a thought form design to production. Grasshopper 

provides an open platform that allows third party developers 

to create their own plugins for it. This enables us to 
implement RL algorithms in Grasshopper. 
One essential plugin for the implementation of RL 

algorithms is the Hoopsnake plugin [7]. Hoopsnake allows 

the user to create self-referencing loops in Grasshopper, this 

is crucial because Grasshopper is from its initial point a 

linear program in that components can’t refer to themself. 

Hoopsnake avoids this problem by creating a local copy of 

the input values and, when triggered, outputs this stored 

value. With this method the Hoopsnake component can 

avoid the recursive loop avoidance check of Grasshopper. 
 
To call the RL scripts running outside of Grasshopper we 

used python scripting components to run a socket 

communication with the algorithms. The RL algorithms are 

part of stable baselines 3, that can run several different RL 

algorithms. 

Grasshopper acts as the environment that receives 

actions and a reset flag and outputs a reward, a done flag, 
the observations and an info. These four information get 

sent to the RL algorithm that uses this information to send a 

new action. This general approach enables the interface to 

be used in various different applications. Grasshopper acts 

thereby only as the environment that interprets the sent  



Fig.1: Flow diagram showing the principal communication of the interface  
 

actions to calculate a reward. The algorithm does not   
know what is happening inside the environment. Fig. 1 shows 

an abstract flow diagram that showcases the communication 

between Grasshopper an the RL algorithm. Fig. 2 shows the 

translation to Grasshopper On the left side is the HoopSnake 

component that triggers the agent by every iteration. The  

agent then sends an action to the Grasshopper environment. 

In this case the environment is a black box that interprets the 

action and gives the agent several information back. These 

information from the environment are used to send a new 

action. An installation guide for the interface can be found on 

github [8]. 

Fig.2: Grasshopper Canvas with main interface 

III. CASE STUDIES 

To test the general interface and its use to solve 
architectural combinatorial problems we took a closer look on 
three problems. The first problem, the simple stacking of 
modules to reach a goal point, was used to set up the interface 
in order to then adapt it to the more complex problem of 
rebuilding structures out of a sequence of SL-Blocks and the 
reassembly of predefined parts to rebuild certain shapes. 

A. Modular Stacking 

The modules we used for the first test are based on 

existing modules that are used at the Digital Design Unit at 

the faculty of architecture at TU Darmstadt to build several 

aggregations with robots. [9] They are also the building 

elements of the IP-Project of Timm Schneider and Jan 

Schneider on the topic of “Architectural Assembly With 
Tactile Skills: Simulation and Optimization” that is part of 

the research project on Tactile Robotic Assembly. These 

modules have spikes on each side that enable them to 

interlock with each other but on the other hand enable a free 

movement in one direction. 

In a first approach we used the plugin Wasp for 

Grasshopper to aggregate modules [10]. Wasp uses 

predefined connection points to aggregate modules. It can  

 

either aggregate modules in a stochastic way by using a 

defined set of aggregation rules or with a field that provides 

a proximity to place modules at a certain position [11]. As 

both of these options don’t provide a discrete way to 

aggregate modules we used the add-part component of wasp 

in combination with HoopSnake to build a discrete 

aggregation  

in which we can define the position of every module in every 

step. With this method we were able to let the algorithm build 

aggregations. As an action we used three numbers that define 

the id of the parent part (PID), the connection point of the 

parent part (CID) and the connection point of the new part 

(NEXT). Within the Grasshopper environment we gave a 

reward if the center point of the new placed module comes 

closer to a given goal point and gave a negative reward if a 

collision was detected or the wrong PID was selected. The 

observation was thereby the recording of actions taken and 

was reset every time an episode was finished. 

Wasp has a built in function that detects collisions 
between parts and automatically flips parts if certain 

connection points are selected. This is useful, because a 

separate collision control is not needed, but it resulted in slow 

computing times for every step.  

Therefore we replaced the Wasp components by simple 

transformations components that used the information of the 

connection points, provided by the action, to place the new 

module at the right position. As the collision control of Wasp 

was missing we needed to do a separate collision control, and 

as Grasshopper is a geometry based program we needed to 

check for the physical collision of meshes, that is a slow 
process, but overall it was faster than the aggregation through 

Wasp.  

To keep the action space for the CID and NEXT small and 

therefore the total amount of possible connections low we 

only used 14 connection points per module. There are 8 

connection points on the upper side of the module and 6 on 

the lower side as seen in Fig. 4. In total there are 196 possible 

connections, from this 196 connections only 96 are feasible 

connections as only the lower 6 connection points of the 

parent part can connect to the upper 8 connection points of 

the new part as well as only the upper 8 connection points of  

 

 

 



Fig. 3: Visualization of the aggregation in rhino and the corresponding 

observation matrix 

the parent part can connect to the lower 6 connection 

points of the new part without causing a collision. This leads 

to a success rate of about 49%. If we now take into account 

that also the right index of the parent part needs to be picked, 

the success rate for every step drops significantly. Under the 

assumption that the action space for the PID is 4 the success 

rate for placing the second module without a collision drops 
to about 12%. For the next modules the success rate is even 

lower, because already placed modules decrease the amount 

of feasible connections to take for the next module.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Module with connection points and world axis 

This problem was also observable in the learning process, 

as the algorithm took a lot of infeasible actions and therefore 

did not find enough feasible actions giving him a positive 

reward. The discrete action space, which made it difficult for  

 

the algorithm to place modules in a targeted manner to 

gradually approach a higher reward, increased the problem of 

a weak learning curve. 

Therefore we decided to use a continuous action space to 

generate more feasible actions. The action from the algorithm 

is now a xy-coordinate that gets mapped to a predefined grid. 

The mapping is necessary to guarantee that the spike of the 

modules sit on top of each other or interlock in each other. 

The continuous movement along the y axis is still provided 

and not limited. This new action space allows the algorithm 
to place modules everywhere in the observable space. If a 

module is already placed at a position where the next module 

should be placed, the new module gets stacked on top of the 

previous placed module. In comparison to the discrete 

approach this enables a success rate for placing a module of 

100%. This means that every action is possible and only the 

reward decides how good the action was. To test the 

functionality of this approach we implemented a simple 

reward function that would give a linear increasing reward, 

the closer the volumetric center point of the placed module 

comes to a certain goal point and only give a negative reward 
if the module is placed partially outside the observable space. 

The observation also shifted from a simple recording of the 

actions to an matrix-based observation that would measure 

the distance to the placed modules from three sides. This 

guarantees a precise and unique observation of the placed 

modules at every step. Fig. 3 shows this observation 

representation in comparison to the build structure in rhino. 

First test with this new approach showed better results 

than with the discrete approach. As the time run short on 

testing this approach we can not give a well-founded 

conclusion to this approach, but this first test showed that the 

reward calculation is not optimal as the learning curve was 

weak. 

 

 

 

 



Fig. 5: A SL-Block, a conjugate pair and six types of engagements. 

B. SL-Blocks 

An SL-block is an octocube consisting of an S-shaped and 

an L-shaped tetracube that are connected to each other side 

by side. Two SL-blocks can be arranged into a conjugate pair, 

with each block rotated 180 degree to its counterpart. An SL 

Strand can be assembled by recursive engagements on one or 
both ends of a conjugate pair with additional pairs. Six types 

of engagements h, s, t, d, a, y are defined as geometric 

transformations that transform the host pair to the pair which 

is added on as seen in Fig. 5. 

The aim in this case study is to rebuild given shapes with a 

sequence of SL-Blocks. As there are many ways to connect 

just two SL-Blocks the combinations for a sequence of blocks 

get so high that trying out every possible sequence, to find the 

best, would take too long. Therefore the algorithm should 

learn a policy on how to combine SL-Blocks to quickly 

rebuild a certain shape. To measure whether a shape is rebuild 

accurately, the goal form gets voxelized as seen in Fig. 6. The 

Fig. 6: Voxelized form that should be rebuild by a sequence of six 

engagements 

 

agent sends an action to the environment, in this case one  

number, that represents one of the conjugate pairs. The 

environment then tries to engage this new conjugate pair to 

the already existing structure. The engagements are added 

sequentially forming a string of conjugate pairs. The result of 

the learning process should be a sequence of SL-Blocks 

encoded in a string of conjugate pairs, that rebuilds the goal 

form in the best way. 

Fig. 8 shows the use of the general interface to run the RL 

algorithm PPO in Grasshopper. Starting with one initial 

Block the learning process gets started. Therefore the action 

of the agent is translated into a conjugate pair. The conjugate 

Fig. 7: Different states during training 

 
 

 



Fig. 8: Process of PPO reinforcement learning algorithm by using 

Grasshopper components and the socket connection 

pair gets added to the aggregation and gets checked for 
collision with previous placed modules and if it is outside of 

the goal form. If one of these checks is true the agent receives 

a negative reward of -1. Otherwise he can add the conjugate 

pair to the sequence of placed modules and gets a positive 

reward of 0.5. The observation of the environment is encoded 

as a list of numbers (Fig. 7), describing the sequence of used 

conjugate pairs. The iteration of numerus episodes should 

lead to an optimal sequence to fill the given form. 

We used several different RL algorithm from PPO to A2C 

and DQN that resulted in similar results using the same 

hyperparameters. The DQN algorithm was able to create 

longer engagements sequences but was therefore 
significantly slower. This leads us to the conclusion that the 

reward calculation is not optimal at the moment and that other 

parameters effect the results badly. This assumption gets 

support by the observation that there is not a huge difference 

between 1000 and 5000 total_timesteps.  Although during the 

training process better results have been observed.  

C. Recycling used parts 

The third case study takes a deeper look into reassembling 

recycled building parts. Recycling and reusing building 

elements to build new buildings is an easy way to save carbon 

emissions. As the recycled and the new buildings can have 

different properties and dimensions it is important to re- 

distribute the building elements in the most efficient way.  

In this example linear elements are used to rebuild 

different given shapes in the best way possible. As these 

linear elements are not made to handle bending moments 

compression only structures need to be created. The “Graphic 

Static” tool is capable of creating compression- and funicular- 

 

Fig. 9: Compression only structures and stock set of elements 

only structures. These structures can be seen in Fig. 9. As 

the set of recycled elements is not the same as the set of 

elements used by the Graphic Static tool the recycled 

elements need to be re-distributed according to the goal 

structure.  

Goal of the optimization is to select the optimal subset of 
stock elements to rebuild the goal structure as good as 
possible. Thereby some critical elements need to be as exact 
as possible. This leads to a prioritizing of elements in the 
structure. As there is a fixed amount of elements that can only 
connect at their ends, the action space is discrete. In 
combination with a high quantity of elements this leads to a 
high amount of combinations. Standard algorithm are not 
optimized for solving discrete problems. In order to get a 
solution to this problem we transfer the problem into an  
assignment problem. Therefore the elements are defined as 
agents and the line segments in the structure are the tasks. 
This enables us to use other techniques to solve this problem. 

 

 



To evaluate the fitness of the assigned structure, the result 
of the assignment is quantified through the sum of the 
distances between each point before and after assignment. 
Therefore, with minimizing the addition, the optimal solution 
is inferred (Fig. 10). The Hungarian algorithm can be used as 
an combinatorial optimization algorithm that can solve this 
assignment problem.  

During the IP-Project we realized that this case study can 
be solved much easier with other algorithms than with RL 
algorithms. In the future we would like to try solving this 
problem also with our general interface. 

Fig. 10: Fitness evaluation of connection points 

IV. DISCUSSION 

We were able to create a general interfaces that connects 
the design interface of Grasshopper with the RL algorithms of 
stable-baselines3. This is a huge step for bringing the power 
of RL into the world of architecture. As the agent only sends 
actions and needs to receive an reward this is a very general 
approach that allows for a high adaptability to other problems, 
then the three case studies presented in this report. In the 
process of setting up the interface a view different research 
problems came up that at the moment don’t seem to be 
investigated. In the future work it might be an option to take a 
deeper look into those problems, as they are wildly common 
in the field of architecture. 

A. Action Spaces 

One major point is the changing action space. In standard 
algorithms the action space keeps throughout the hole learning 
process the same. In architectural combinatorial problems the 
action space often shifts from step to step as seen in the 
example of stacking modules. In the discrete approach the 
action space for the first module was 14 for CID and NEXT. 
The second module however hat a decreased action space as 
some connection points were blocked by the module that got 
placed before. In option to solve this problem would be to get 
an info about the action space for every iteration, as this is an 
information that can easily be extracted out of the environment 
embedded in Grasshopper. The problem hereby is that the 
algorithm can’t handle this information. An implementation 
of an changing action space would increase the speed of the 
algorithm as there are less actions to take. 

The discrete actions space has also some other 
disadvantages to the continuous action space. It makes it hard 
for the algorithm to approach the ideal value. As every action 
has a discrete reward value that has no direct correlation to 
other actions.  

B. Simulation 

With Tim Schneider and Jan Schneider form the IP-Project 

on “Architectural Assembly With Tactile Skills: Simulation 

and Optimization” we created an interface to run simulations 

in pybullet. This gives architects a fast and simple way to 

simulate discrete aggregations. As the information needed for 

the simulation are just simple transformations, it provides an 

easy accessibility for architects. In future projects the 

simulation could be integrated into the reward calculation for 

RL tasks. This would be a milestone on transferring the 

optimization process  to real world applications as the 
simulation could predict the stability of the build systems. 

C. Reward Optimisatzion 

The next step to improve the results of the algorithms is to 

improve the reward calculations. At the moment the 

calculations are often just linear and interfere each other. This 

leads to non-useful rewards the can easily confuse the 
algorithms, as they don’t give a  clear indication on useful 

actions. With a proper reward adjustment we expect 

significantly better results. 

D. Limitations 

The current interface is not a plug and play version, that 
can be easily adapted to every use case. At the moment the 

action space needs to be set to the required format. As well as 

the observation needs to be adjusted to be understand by the 

algorithm. These adjustments need to be done on the python 

side of the interface. Architects therefore need to have good 

knowledge in scripting to adapt and run the algorithms for 

themselves.  

We se a huge benefit in the implementation of RL 

algorithms into Grasshopper as it expends the designing 

possibilities to a new level. At the moment the start for non 

experienced designers is quiet hard, but we aim to overcome 

these adjusting challenges to provide an interface that can be 

easily adopted to every combinatorial problem. 
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