

Reinforcement Learning for Architectural

Combinatorial Optimization

Leon Wietschorke
Digital Design Unit

Technische Universität Darmstadt
Darmstadt, Germany

leon.wietschorke@stud.tu-darmsatdt.de

Yuxi Liu
Digital Design Unit

Technische Universität Darmstadt
Darmstadt, Germany
de_liuyuxi@163.com

Jianpeng Chen
Digital Design Unit

Technische Universität Darmstadt
Darmstadt, Germany

jianpengchen92@gmail.com

Abstract—Creating an interface for architects to use

reinforcement learning algorithms in their usual design

software empowers architects and designers to come up with

new solutions for old problems. In a capitalist society dealing

with a climate crisis it is an interest to find optimized solutions

to the problems of floor planning, material distribution and

recycling elements. In this report we present an interface that

creates a link between the design environment of Grasshopper

and the RL algorithms of stable baselines 3.

Keywords—Grasshopper3D, reinforcement learning,

interface, architectural combinatorial problems

I. INTRODUCTION

The floor area of the world needs to be nearly doubled

until 2060 and as building and construction today use 36% of

the global final energy and produce 39% of the energy-related

carbon dioxide, the construction process needs to change

drastically. [1] It not only needs a lot of energy but also

produces a lot of waste as falsework is often only used once.
We think that robots in combination with AI and an efficient

material distribution have the potential to revolutionize the

building industry. This IP-Project is a first step into solving

architectural combinatorial problems with the help of

reinforcement learning (RL).

There are many combinatorial problems in the field of

architecture. From optimizing floor plans [2, 3] to combining

modular building elements to rearranging recycled building

parts, represents a small part of combinatorial problems.

These problems are not new to architecture but exist since the

beginning of AI research in the 1960s [2]. With new and more

powerful algorithms there comes a hope to solve
the “wicked” design problems of architecture [4]. As

architectural problems are always design problems there is no

completely optimal solution to a problem, because there is

nothing like a perfect design it always depends on subjective

perception. This is a huge difference to engineering problems

where the constraining factors form an optimal solution.

The method of reinforcement learning can be one option

to solve complex design problems as it reacts to the

environment. This report presents a general interface between

the architectural design software of Rhino and Grasshopper

and the scripting environment to run RL algorithms. In three
case studies we show different approaches on how this

interface can be used to solve combinatorial problems. As this

is an early research on implementing RL algorithm in an

design environment for architects it lays a stepstone for future

research.

II. GENERAL INTERFACE

As architects use different environments to design buildings

and structures, than computer scientists use for RL, it is

necessary to create an interface between these

environments.

Rhino is a 3D modeling software that allows users to create

complex geometries. With Rhino, however, only a direct

modeling is possible. Only with the built-in plug-in

Grasshopper a parametric modeling is possible. Grasshopper

is a visual programming language that uses connectable

components to create 3D geometry. It is thereby a very

powerful tool for architects and designers, because it allows

to parametrically change the geometry without the need of
totally rebuilding the object. In 2007, where Grasshopper

was published for the first time, this was quite a novum in

CAD applications and still today the parametrization of

buildings is rarely done . Various projects show the potential

of parametrized buildings. It not only provides a huge

freedom of design but can also directly generate machine

code for robots and CNC machines to manufacture the

buildings.[5, 6] This opens up the question why not more

projects a thought form design to production. Grasshopper

provides an open platform that allows third party developers

to create their own plugins for it. This enables us to
implement RL algorithms in Grasshopper.
One essential plugin for the implementation of RL

algorithms is the Hoopsnake plugin [7]. Hoopsnake allows

the user to create self-referencing loops in Grasshopper, this

is crucial because Grasshopper is from its initial point a

linear program in that components can’t refer to themself.

Hoopsnake avoids this problem by creating a local copy of

the input values and, when triggered, outputs this stored

value. With this method the Hoopsnake component can

avoid the recursive loop avoidance check of Grasshopper.

To call the RL scripts running outside of Grasshopper we

used python scripting components to run a socket

communication with the algorithms. The RL algorithms are

part of stable baselines 3, that can run several different RL

algorithms.

Grasshopper acts as the environment that receives

actions and a reset flag and outputs a reward, a done flag,
the observations and an info. These four information get

sent to the RL algorithm that uses this information to send a

new action. This general approach enables the interface to

be used in various different applications. Grasshopper acts

thereby only as the environment that interprets the sent

Fig.1: Flow diagram showing the principal communication of the interface

actions to calculate a reward. The algorithm does not
know what is happening inside the environment. Fig. 1 shows

an abstract flow diagram that showcases the communication

between Grasshopper an the RL algorithm. Fig. 2 shows the

translation to Grasshopper On the left side is the HoopSnake

component that triggers the agent by every iteration. The

agent then sends an action to the Grasshopper environment.

In this case the environment is a black box that interprets the

action and gives the agent several information back. These

information from the environment are used to send a new

action. An installation guide for the interface can be found on

github [8].

Fig.2: Grasshopper Canvas with main interface

III. CASE STUDIES

To test the general interface and its use to solve
architectural combinatorial problems we took a closer look on
three problems. The first problem, the simple stacking of
modules to reach a goal point, was used to set up the interface
in order to then adapt it to the more complex problem of
rebuilding structures out of a sequence of SL-Blocks and the
reassembly of predefined parts to rebuild certain shapes.

A. Modular Stacking

The modules we used for the first test are based on

existing modules that are used at the Digital Design Unit at

the faculty of architecture at TU Darmstadt to build several

aggregations with robots. [9] They are also the building

elements of the IP-Project of Timm Schneider and Jan

Schneider on the topic of “Architectural Assembly With
Tactile Skills: Simulation and Optimization” that is part of

the research project on Tactile Robotic Assembly. These

modules have spikes on each side that enable them to

interlock with each other but on the other hand enable a free

movement in one direction.

In a first approach we used the plugin Wasp for

Grasshopper to aggregate modules [10]. Wasp uses

predefined connection points to aggregate modules. It can

either aggregate modules in a stochastic way by using a

defined set of aggregation rules or with a field that provides

a proximity to place modules at a certain position [11]. As

both of these options don’t provide a discrete way to

aggregate modules we used the add-part component of wasp

in combination with HoopSnake to build a discrete

aggregation

in which we can define the position of every module in every

step. With this method we were able to let the algorithm build

aggregations. As an action we used three numbers that define

the id of the parent part (PID), the connection point of the

parent part (CID) and the connection point of the new part

(NEXT). Within the Grasshopper environment we gave a

reward if the center point of the new placed module comes

closer to a given goal point and gave a negative reward if a

collision was detected or the wrong PID was selected. The

observation was thereby the recording of actions taken and

was reset every time an episode was finished.

Wasp has a built in function that detects collisions
between parts and automatically flips parts if certain

connection points are selected. This is useful, because a

separate collision control is not needed, but it resulted in slow

computing times for every step.

Therefore we replaced the Wasp components by simple

transformations components that used the information of the

connection points, provided by the action, to place the new

module at the right position. As the collision control of Wasp

was missing we needed to do a separate collision control, and

as Grasshopper is a geometry based program we needed to

check for the physical collision of meshes, that is a slow
process, but overall it was faster than the aggregation through

Wasp.

To keep the action space for the CID and NEXT small and

therefore the total amount of possible connections low we

only used 14 connection points per module. There are 8

connection points on the upper side of the module and 6 on

the lower side as seen in Fig. 4. In total there are 196 possible

connections, from this 196 connections only 96 are feasible

connections as only the lower 6 connection points of the

parent part can connect to the upper 8 connection points of

the new part as well as only the upper 8 connection points of

Fig. 3: Visualization of the aggregation in rhino and the corresponding

observation matrix

the parent part can connect to the lower 6 connection

points of the new part without causing a collision. This leads

to a success rate of about 49%. If we now take into account

that also the right index of the parent part needs to be picked,

the success rate for every step drops significantly. Under the

assumption that the action space for the PID is 4 the success

rate for placing the second module without a collision drops
to about 12%. For the next modules the success rate is even

lower, because already placed modules decrease the amount

of feasible connections to take for the next module.

Fig. 4: Module with connection points and world axis

This problem was also observable in the learning process,

as the algorithm took a lot of infeasible actions and therefore

did not find enough feasible actions giving him a positive

reward. The discrete action space, which made it difficult for

the algorithm to place modules in a targeted manner to

gradually approach a higher reward, increased the problem of

a weak learning curve.

Therefore we decided to use a continuous action space to

generate more feasible actions. The action from the algorithm

is now a xy-coordinate that gets mapped to a predefined grid.

The mapping is necessary to guarantee that the spike of the

modules sit on top of each other or interlock in each other.

The continuous movement along the y axis is still provided

and not limited. This new action space allows the algorithm
to place modules everywhere in the observable space. If a

module is already placed at a position where the next module

should be placed, the new module gets stacked on top of the

previous placed module. In comparison to the discrete

approach this enables a success rate for placing a module of

100%. This means that every action is possible and only the

reward decides how good the action was. To test the

functionality of this approach we implemented a simple

reward function that would give a linear increasing reward,

the closer the volumetric center point of the placed module

comes to a certain goal point and only give a negative reward
if the module is placed partially outside the observable space.

The observation also shifted from a simple recording of the

actions to an matrix-based observation that would measure

the distance to the placed modules from three sides. This

guarantees a precise and unique observation of the placed

modules at every step. Fig. 3 shows this observation

representation in comparison to the build structure in rhino.

First test with this new approach showed better results

than with the discrete approach. As the time run short on

testing this approach we can not give a well-founded

conclusion to this approach, but this first test showed that the

reward calculation is not optimal as the learning curve was

weak.

Fig. 5: A SL-Block, a conjugate pair and six types of engagements.

B. SL-Blocks

An SL-block is an octocube consisting of an S-shaped and

an L-shaped tetracube that are connected to each other side

by side. Two SL-blocks can be arranged into a conjugate pair,

with each block rotated 180 degree to its counterpart. An SL

Strand can be assembled by recursive engagements on one or
both ends of a conjugate pair with additional pairs. Six types

of engagements h, s, t, d, a, y are defined as geometric

transformations that transform the host pair to the pair which

is added on as seen in Fig. 5.

The aim in this case study is to rebuild given shapes with a

sequence of SL-Blocks. As there are many ways to connect

just two SL-Blocks the combinations for a sequence of blocks

get so high that trying out every possible sequence, to find the

best, would take too long. Therefore the algorithm should

learn a policy on how to combine SL-Blocks to quickly

rebuild a certain shape. To measure whether a shape is rebuild

accurately, the goal form gets voxelized as seen in Fig. 6. The

Fig. 6: Voxelized form that should be rebuild by a sequence of six

engagements

agent sends an action to the environment, in this case one

number, that represents one of the conjugate pairs. The

environment then tries to engage this new conjugate pair to

the already existing structure. The engagements are added

sequentially forming a string of conjugate pairs. The result of

the learning process should be a sequence of SL-Blocks

encoded in a string of conjugate pairs, that rebuilds the goal

form in the best way.

Fig. 8 shows the use of the general interface to run the RL

algorithm PPO in Grasshopper. Starting with one initial

Block the learning process gets started. Therefore the action

of the agent is translated into a conjugate pair. The conjugate

Fig. 7: Different states during training

Fig. 8: Process of PPO reinforcement learning algorithm by using

Grasshopper components and the socket connection

pair gets added to the aggregation and gets checked for
collision with previous placed modules and if it is outside of

the goal form. If one of these checks is true the agent receives

a negative reward of -1. Otherwise he can add the conjugate

pair to the sequence of placed modules and gets a positive

reward of 0.5. The observation of the environment is encoded

as a list of numbers (Fig. 7), describing the sequence of used

conjugate pairs. The iteration of numerus episodes should

lead to an optimal sequence to fill the given form.

We used several different RL algorithm from PPO to A2C

and DQN that resulted in similar results using the same

hyperparameters. The DQN algorithm was able to create

longer engagements sequences but was therefore
significantly slower. This leads us to the conclusion that the

reward calculation is not optimal at the moment and that other

parameters effect the results badly. This assumption gets

support by the observation that there is not a huge difference

between 1000 and 5000 total_timesteps. Although during the

training process better results have been observed.

C. Recycling used parts

The third case study takes a deeper look into reassembling

recycled building parts. Recycling and reusing building

elements to build new buildings is an easy way to save carbon

emissions. As the recycled and the new buildings can have

different properties and dimensions it is important to re-

distribute the building elements in the most efficient way.

In this example linear elements are used to rebuild

different given shapes in the best way possible. As these

linear elements are not made to handle bending moments

compression only structures need to be created. The “Graphic

Static” tool is capable of creating compression- and funicular-

Fig. 9: Compression only structures and stock set of elements

only structures. These structures can be seen in Fig. 9. As

the set of recycled elements is not the same as the set of

elements used by the Graphic Static tool the recycled

elements need to be re-distributed according to the goal

structure.

Goal of the optimization is to select the optimal subset of
stock elements to rebuild the goal structure as good as
possible. Thereby some critical elements need to be as exact
as possible. This leads to a prioritizing of elements in the
structure. As there is a fixed amount of elements that can only
connect at their ends, the action space is discrete. In
combination with a high quantity of elements this leads to a
high amount of combinations. Standard algorithm are not
optimized for solving discrete problems. In order to get a
solution to this problem we transfer the problem into an
assignment problem. Therefore the elements are defined as
agents and the line segments in the structure are the tasks.
This enables us to use other techniques to solve this problem.

To evaluate the fitness of the assigned structure, the result
of the assignment is quantified through the sum of the
distances between each point before and after assignment.
Therefore, with minimizing the addition, the optimal solution
is inferred (Fig. 10). The Hungarian algorithm can be used as
an combinatorial optimization algorithm that can solve this
assignment problem.

During the IP-Project we realized that this case study can
be solved much easier with other algorithms than with RL
algorithms. In the future we would like to try solving this
problem also with our general interface.

Fig. 10: Fitness evaluation of connection points

IV. DISCUSSION

We were able to create a general interfaces that connects
the design interface of Grasshopper with the RL algorithms of
stable-baselines3. This is a huge step for bringing the power
of RL into the world of architecture. As the agent only sends
actions and needs to receive an reward this is a very general
approach that allows for a high adaptability to other problems,
then the three case studies presented in this report. In the
process of setting up the interface a view different research
problems came up that at the moment don’t seem to be
investigated. In the future work it might be an option to take a
deeper look into those problems, as they are wildly common
in the field of architecture.

A. Action Spaces

One major point is the changing action space. In standard
algorithms the action space keeps throughout the hole learning
process the same. In architectural combinatorial problems the
action space often shifts from step to step as seen in the
example of stacking modules. In the discrete approach the
action space for the first module was 14 for CID and NEXT.
The second module however hat a decreased action space as
some connection points were blocked by the module that got
placed before. In option to solve this problem would be to get
an info about the action space for every iteration, as this is an
information that can easily be extracted out of the environment
embedded in Grasshopper. The problem hereby is that the
algorithm can’t handle this information. An implementation
of an changing action space would increase the speed of the
algorithm as there are less actions to take.

The discrete actions space has also some other
disadvantages to the continuous action space. It makes it hard
for the algorithm to approach the ideal value. As every action
has a discrete reward value that has no direct correlation to
other actions.

B. Simulation

With Tim Schneider and Jan Schneider form the IP-Project

on “Architectural Assembly With Tactile Skills: Simulation

and Optimization” we created an interface to run simulations

in pybullet. This gives architects a fast and simple way to

simulate discrete aggregations. As the information needed for

the simulation are just simple transformations, it provides an

easy accessibility for architects. In future projects the

simulation could be integrated into the reward calculation for

RL tasks. This would be a milestone on transferring the

optimization process to real world applications as the
simulation could predict the stability of the build systems.

C. Reward Optimisatzion

The next step to improve the results of the algorithms is to

improve the reward calculations. At the moment the

calculations are often just linear and interfere each other. This

leads to non-useful rewards the can easily confuse the
algorithms, as they don’t give a clear indication on useful

actions. With a proper reward adjustment we expect

significantly better results.

D. Limitations

The current interface is not a plug and play version, that
can be easily adapted to every use case. At the moment the

action space needs to be set to the required format. As well as

the observation needs to be adjusted to be understand by the

algorithm. These adjustments need to be done on the python

side of the interface. Architects therefore need to have good

knowledge in scripting to adapt and run the algorithms for

themselves.

We se a huge benefit in the implementation of RL

algorithms into Grasshopper as it expends the designing

possibilities to a new level. At the moment the start for non

experienced designers is quiet hard, but we aim to overcome

these adjusting challenges to provide an interface that can be

easily adopted to every combinatorial problem.

REFERENCES

[1] UN Environment and International Energy Agency, “Towards a

zeroemission, efficient, and resilient buildings and construction sector.

global status report 2017,” https://www.worldgbc.org/, 2017.

[2] Gero, J.S.: Architectural Optimization - A Review. Engineering

Optimization, 189-199 (1975)

[3] Ruiz-Montiel, M., Boned, J., Gvilanes, J., Jiménez, E., Mandow, L., Pérez-
de-la-Cruz, J.: Design with shape grammars and reinforcement learning.

Advanced Engineering Informatics 27, 230-245 (2013)

[4] Rittel, H.W.J., Webber, M.M.: Dilemmas in a general theory of planning.

Policy Sci. 4(2), 155–169 (1973)

[5] Hartmann, V., Oguz, O., Driess, D., Toussaint, M., Menges, A. “Robust Task

and Motion Planning for Long-Horizon Architectural Construction

Planning”, unpublished (2020)

[6] Schwinn, T.: 2016, Landesgartenschau Exhibition Hall, in Menges, A.,

Schwinn, T., Krieg, O. (eds.), Advancing Wood Architecture – A

Computational Approach, Routledge, Oxford, pp. 111-124

[7] Available under: https://www.food4rhino.com/app/hoopsnake

[8] Interface available under: https://github.com/b4be1/gh_gym

[9] Wibranek, B., Wietschorke, L., Glaetzer, T., Tessmann, O. “Sequential

Modular Assembly: Robotic Assembly of Cantilevering Structures through

Differentiated Load Modules” CAADRIA 2020 vol. 2, pp.375-384 (2020)

[10] Wasp available under: https://www.food4rhino.com/app/wasp

[11] Rossi, A., Tessmann, O. “From Voxel to Parts: Hierarchical Discrete

Modeling for Design and Assembly” In: Cocchiarella L. (eds) ICCG 2018,

pp. 1001-1012 (2018)

