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Abstract

Policy improvement regularization with entropy-like f -divergence penalties provides a uni-
fying perspective on actor-critic algorithms, rendering policy improvement and policy eval-
uation steps as primal and dual subproblems of the same optimization problem. For small
policy improvement steps, we show that all f -divergences with twice differentiable generator
function f yield a mean squared advantage minimization objective for the policy evaluation
step and an advantage-weighted maximum log-likelihood objective for the policy improve-
ment step. The mean squared advantage objective fits in-between the well-known mean
squared Bellman error and the mean squared temporal difference error objectives, requiring
only the expectation of the temporal difference error with respect to the next state and not
the policy, in contrast to the Bellman error, which requires both, and the temporal differ-
ence error, which requires none. The advantage-weighted maximum log-likelihood policy
improvement rule emerges as a linear approximation to a more general weighting scheme
where weights are a monotone function of the advantage. Thus, the entropic policy regular-
ization framework provides a rigorous justification for the common practice of least squares
value function fitting accompanied by advantage-weighted maximum log-likelihood policy
parameters estimation, at the same time pointing at the direction in which this classical
actor-critic approach can be extended.
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1. Introduction

Recent progress in reinforcement learning on challenging continuous control tasks showed
that combining benefits of policy-based and value-based methods in actor-critic architec-
tures yields highly competitive algorithms that achieve state of the art results on a variety
of benchmark control problems (Mnih et al., 2016; Wu et al., 2017; Schulman et al., 2017).

These algorithms follow the generalized policy iteration scheme (Sutton and Barto,
1998), consisting of a policy evaluation and a policy improvement steps that have a specific
form. Namely, parameters of the value function are found by minimizing the average squared
error over a batch of samples from a current policy

w = minimize
w̃

Êt

[
‖V w̃(st)− V̂t‖2

]
. (1)
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The sample average over data points (st, at, s
′
t, rt) is denoted by Êt and the target V̂t is given

in the simplest case by the Monte Carlo estimate of the value function V̂t =
∑∞

k=0 γ
kRt+k.

Parameters of the policy, on the other hand, are updated by maximizing the advantage-
weighted log-likelihood

θ = maximize
θ̃

Êt

[
log πθ̃Â

w
t

]
(2)

A popular way of computing the advantage estimate Âwt is by performing exponential av-
eraging over Bellman residuals Âwt =

∑∞
k=0(γλ)kδwt+k with a decay factor λ ∈ [0, 1]. Here,

the Bellman residual δwt , also known as the temporal difference (TD) error, is defined as
δwt = Rt + γV w(st+1)− V w(st). Such technique can be interpreted as an application of the
TD(λ) algorithm to advantage function estimation (Schulman et al., 2016).

It is important to point out that the advantage estimate Âwt in (2) is assumed to be
independent of the policy parameters θ̃. Ideally, one would recompute Âwt after every
gradient descent step in θ̃; however, this is rather sample-inefficient. More aggressive policy
parameter updates are possible if one postulates a trust region within which the advantage
estimate Âwt is deemed to not vary much when θ̃ is varied. Such approach is taken by
the trust-region policy optimization (TRPO) algorithm (Schulman et al., 2015) and its
derivatives. Another strategy is to add an entropy bonus to (2) and perform just a few
gradient descent update steps (Mnih et al., 2016). The curvature information coming from
the entropy bonus helps to dampen the change in θ̃, however the resulting algorithm may
diverge (Neu et al., 2017).

Expressions (1) and (2) constitute a pair of optimization problems: the policy evaluation
step (1) and the policy improvement step (2). Later we will see that this pair is just one
representative from a family of such pairs that arise for different choices of an f -divergence
penalty within our entropic proximal policy optimization framework. What is very special
about this particular choice is that it is, in a certain sense, a linear-quadratic approximation
arising in the limit of small policy update steps for any other choice of the twice differentiable
generator function f .

2. Entropic proximal policy optimization

The relative entropy policy search (REPS) framework (Peters et al., 2010) views the pair of
policy improvement and policy evaluation steps as a primal-dual pair of a single optimization
problem. Such interpretation results from imposing a Kullback-Leibler (KL) constraint on
policy improvement. We show that this formulation can be straightforwardly generalized
to any f -divergence (Csiszár, 1963) with twice differentiable generator function f . For
simplicity of exposition, we employ an f -divergence penalty instead of a hard constraint.
Although the mathematical treatment of the constrained case is analogous, in practice,
the constrained formulation might be advantageous because it simplifies hyper-parameter
tuning (Schulman et al., 2017).

2.1 Variational derivation

Following the intuition of REPS, we introduce an f -divergence penalized optimization prob-
lem that the learning agent has to solve at every policy iteration step in the average-reward
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reinforcement learning setting (Sutton and Barto, 1998)

maximize
π

Jη(π) =

∫
S×A

ρπ(s, a)R(s, a)dsda− η
∫
S×A

ρπ0(s, a)f

(
ρπ(s, a)

ρπ0(s, a)

)
dsda

subject to

∫
A
ρπ(s′, a′)da′ =

∫
S×A

ρπ(s, a)p(s′|s, a)dsda, ∀s′ ∈ S,∫
S×A

ρπ(s, a)dsda = 1,

ρπ(s, a) ≥ 0, ∀(s, a) ∈ S ×A.

(3)

Here, ρπ(s, a) is the state-action distribution ρπ(s, a) = µπ(s)π(a|s) induced by policy π(a|s),
and ρπ0(s, a) is the state-action distribution induced by the current policy π0(a|s). Let us
denote the dual variables corresponding to the constraints by {V (s), λ, κ(s, a)}, respectively.
Then, the policy update can be expressed through the derivative of the convex conjugate
function f∗(y) as

ρπ(s, a) = ρπ0(s, a)f ′∗

(
R(s, a) +

∫
S V (s′)p(s′|s, a)ds′ − V (s)− λ+ κ(s, a)

η

)
. (4)

This solution can be viewed as an application of the general entropic proximal mappings
optimization framework (Teboulle, 1992; Neu et al., 2017) to Markov decision processes.
The resulting dual optimization problem has a straightforward form

minimize
V,λ,κ

g(V, λ, κ) = η

∫
S×A

ρπ0(s, a)f∗

(
AV (s, a)− λ+ κ(s, a)

η

)
dsda+ λ

subject to κ(s, a) ≥ 0, ∀(s, a) ∈ S ×A,
arg f∗ ∈ rangex≥ 0 f

′(x), ∀(s, a) ∈ S ×A.

(5)

Here, the advantage function AV (s, a) = R(s, a)+
∫
S V (s′)p(s′|s, a)ds′−V (s) was introduced

for notational convenience. Its dependence on the value function is symbolized by the
superscript V .

Policy evaluation/policy improvement pair (5)-(4) in principle provides a way to perform
policy iteration to find an optimal policy for a given Markov decision process. However,
in a reinforcement learning scenario, neither the system dynamics p(s′|s, a) nor the reward
function R(s, a) are known. Moreover, we are mainly interested in continuous state-action
spaces, which makes the problem even harder (Bellman, 1957). To address all these issues,
we have to resort to function approximation and sample-based estimation.

2.2 Value function and policy approximation, model-free learning

Assume that the value function V w(s) is parameterized by a vector w, and the policy πθ(a|s)
is parameterized by a vector θ. Supposing that a batch of samples was collected under the
current policy, the integral in the dual objective (5) can be replaced by a sample average

ĝ(w, λ, κ) = ηÊt

[
f∗

(
Âw(st, at)− λ+ κ(st, at)

η

)]
+ λ. (6)
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Constrained maximization of the objective function (6) constitutes the policy evaluation
step, which results in an optimal value for the dual parameters w. The corresponding policy
improvement step (4) again cannot be computed in closed form because we do not have
the model {p(s′|s, a), R(s, a)}; therefore, one commonly employs the weighted maximum
likelihood estimation approach to fit policy parameters (Deisenroth et al., 2013), which in
our f -divergence penalized setting gives

L̂(θ) = Êt

[
log πθ(at|st)f ′∗

(
Âw(st, at)− λ+ κ(st, at)

η

)]
. (7)

The pair of optimization objectives (6)-(7) is strikingly similar to the commonly used
pair (1)-(2), and they are actually equivalent when f is a quadratic function f(x) = 1

2(x−1)2,
corresponding to the Pearson χ2-divergence (Cichocki and Amari, 2010). Furthermore, it
can be shown by Taylor approximation that in the limit η � 1, corresponding to small pol-
icy update steps, the pair (6)-(7) tends towards (1)-(2) for any choice of twice differentiable
divergence generating function f .

Observer that no extra trust region constraint needs to be added to the optimization
problem (7) to ensure closeness of the new policy to the old one. In contrast, most state-of-
the-art algorithms heuristically add the trust region constraint exactly at this stage. The
reason why no additional constraint is required in our formulation is that the closeness to the
previous policy is ensured by the f -divergence term in the primal optimization objective (3).
The closed-form solution (4) gives the exact expression for the new state-action distribution
expressed as a function of the dual variables. The dual optimization problem (5) in its turn
provides the optimal values of the dual variables that guarantee that ρπ remains sufficiently
close to ρπ0 according to (4).

3. Mean squared advantage objective

Instantiating Equations (6)-(7) with the conjugate of the Pearson χ2-divergence generator
function f∗(y) = 1

2(y + 1)2 − 1
2 , which corresponds to the high-temperature η � 1 limit, or

to small policy update steps, one obtains the following critic-actor pair

ĝ(w) ∝ Êt
[(
Âw(st, at)

)2]
(8)

L̂2(θ) ∝ Êt
[
log πθ(at|st)Âw(st, at)

]
. (9)

These objectives are written for the original discounted infinite horizon problem formula-
tion (1)-(2), which differs from the average reward setting (3) only in the absence of the
average return baseline λ and the presence of the discount factor γ in the definition of the
advantage Aw(s, a) = R(s, a) + γ

∫
S V

w(s′)p(s′|s, a)ds′ − V w(s) (Sutton and Barto, 1998).

3.1 Relation to common linear-quadratic actor-critics

The policy improvement objective (9) emerging in the limit of small policy update steps is
exactly the same as the customary objective (2) used in the actor-critic algorithms men-
tioned in this paper, such as TRPO and related. However, note that TRPO adds a trust-
region constraint to (9) because it fits the advantage parameters w in an independent,
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unrelated to policy optimization way. In contrast, since we fit the advantage parameters w
by optimizing the dual problem (5), no additional trust region constraint is required.

The policy evaluation objective (8), on the other hand, given by the mean squared
advantage (MSA) minimization, is not exactly the same as the mean squared error mini-
mization (1). The discrepancy stems from the fact that (1) introduces a fixed target V̂t,
although in theory it should also depend on the value function parameters w (Sutton and
Barto, 1998). Thus, if one either uses the same target V̂t in both (8) and (1) or if the target
is assumed to vary with w, then the two objectives are equivalent. For algorithm stability,
it is advisable to use a fixed target and employ TD(λ)-like bootstrapping (Schulman et al.,
2016).

3.2 Relation between different error objectives

It is instructive to systematically write down the objective functions for the mean squared
temporal difference error (MSTDE), the mean squared advantage (MSA), and the mean
squared Bellman error (MSBE) to compare them against each other. Let

δw(s, a, s′) = R(s, a) + γV w(s′)− V w(s) (10)

denote the TD error parameterized by w through the value function. The advantage is
defined as the expectation of the TD error with respect to the next state

Aw(s, a) = R(s, a) + γEs′∼p(s′|s,a)[V
w(s′)]− V w(s). (11)

The Bellman error goes one level deeper and requires the expectation of the advantage with
respect to the action

εw(s) = Ea∼π(a|s)
[
R(s, a) + γEs′∼p(s′|s,a)[V

w(s′)]
]
− V w(s). (12)

From each of these errors, one can construct a mean squared (MS) objective:

MSTDE(w) = Es∼µ(s),a∼π(a|s),s′∼p(s′|s,a)
[
(δw(s, a, s′))2

]
, (13)

MSA(w) = Es∼µ(s),a∼π(a|s)

[(
Es′∼p(s′|s,a)[δ

w(s, a, s′)]
)2]

, (14)

MSBE(w) = Es∼µ(s)

[(
Ea∼π(a|s),s′∼p(s′|s,a)[δ

w(s, a, s′)]
)2]

. (15)

Thus, the MSA objective that results from our derivation fits precisely in-between MSTDE
and MSBE. Stochastic gradient descent (SGD) on these objectives leads to various flavors
of the residual gradient algorithm (Baird, 1995; Dann et al., 2014). Curiously, all three
objectives result in the naive residual gradient algorithm (Sutton and Barto, 1998) when
expectations are ‘naively’ replaced by one-sample estimates.

Interestingly, since the dual objective (5) tends towards the MSA objective in the limit
of high temperatures η → ∞ independent of the divergence function f , dual minimiza-
tion (5) can be viewed as a continuous generalization of the MSA minimization (8) to finite
temperatures η > 0; therefore, SGD on the dual objective (5) can be seen as a continuous
generalization of the residual gradient algorithm to finite temperatures.
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4. Conclusion

Regularized policy improvement framework yields actor-critic update pairs as pairs of
primal-dual optimization problems. Whereas the Kullback-Leibler divergence is normally
employed for regularization, we showed that one can actually use any f -divergence penalty.
However, for small policy update steps, which is the usual and desired regime in reinforce-
ment learning, all f -divergences with twice differentiable generator function f are equivalent
and act as the Pearson χ2-divergence, which, in turn, is equivalent to the natural policy
gradient (Kakade, 2001). Thus, a promising direction to explore in terms of finding novel
actor-critic pairs that even for small update steps behave differently is to use continuous but
possibly not everywhere differentiable functions f , such as the absolute value f(x) = 1

2 |x−1|,
corresponding to the total variation distance. Another quite straightforward extension is to
incorporate Bregman divergences, which also generalize the KL but in a different direction,
and which can be treated similarly to f -divergences (Teboulle, 1992), having in addition
rather attractive analytical properties.

It is important to point out that in our entropic policy optimization framework, the trust
region constraint between the current and the new policy appears in the original complete
optimization problem (3). This has the advantage that value function estimation becomes
linked to the way in which the policy parameters are update. In contrast, other trust region
policy optimization algorithms fit the V-function without any relation to the policy update
step, being forced to subsequently introduce a trust region constraint heruristically at the
policy update step in order to avoid large policy changes.

The objective for policy evaluation resulting from the Pearson χ2-divergence penalty,
called the mean squared advantage (MSA) minimization, was shown to be closely related
to the well-known MSTDE and MSBE objectives. In deterministic environments, MSA is
equivalent to MSTDE, so all intuitions about MSTDE carry over to MSA when there is no
uncertainty in system dynamics. However, in stochastic environments all three objectives
are different. Clarifying how exactly MSA is different from MSTDE and MSBE and charac-
terizing the range of approximations available for minimizing the MSA from sampled data
is a subject of ongoing investigation.
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