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Abstract
Functional mirror descent offers a unifying per-
spective on optimization of statistical models and
provides numerous advantages for the design and
analysis of learning algorithms. It brings the con-
cepts from optimization—such as surrogate mod-
els, constraints, projections, conjugate duality,
momentum—into the realm of optimization over
probability distributions. So far, only a fraction
of these insights have been utilized in reinforce-
ment learning (RL), with most progress achieved
in the bandit setting and in discrete MDPs, but
not in the full RL setup with continuous states,
observations, goals, tasks, etc. We argue for a
much tighter integration of the ideas from (online)
convex optimization into the design of RL algo-
rithms for continuous MDPs by (i) showing how
a number of existing approaches can be framed
as approximate mirror descent on the space of
probability measures and (ii) indicating yet unex-
plored directions uncovered by this perspective.
We hope that our exposition will stimulate a wider
use of advanced optimization tools in reinforce-
ment learning and at the same time encourage the
development of novel optimization approaches
motivated by the RL problem.

1. Introduction
Probability functional descent (PFD) (Chu et al., 2019) has
been recently proposed as a unifying meta-algorithm for op-
timization of probabilistic models. Remarkably, PFD is able
to treat in a uniform manner such disparate algorithms as
VAEs (Kingma & Welling, 2013), GANs (Goodfellow et al.,
2014), and actor-critic methods (Konda & Tsitsiklis, 2000).
This level of generality is enabled by framing the problems
in the language of functional optimization over probability
distributions. Each iteration of the PFD algorithm then con-
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sists of two steps, which are called differentiation step and
descent step. In the differentiation step, a linear functional
is obtained that locally approximates the true objective; in
the descent step, the distribution of interest is updated to
decrease the value of this approximate functional. Chu et al.
(2019) furthermore describe a general technique for lineariz-
ing probability functionals based on convex duality, which
underlies adversarial training methods such as Wasserstein
GAN (Arjovsky et al., 2017) and dual actor-critic (Chen &
Wang, 2016; Dai et al., 2018).

Although the PFD scheme can be readily applied to the
expected return objective of reinforcement learning (RL),
it leaves the exact implementation of the descent step un-
specified. The descent step on the RL objective corresponds
to policy improvement, and it is a well-established fact that
some form of a conservative update is required to prevent
large changes to the policy (Kakade & Langford, 2002;
Peters et al., 2010; Schulman et al., 2015). In order to incor-
porate such conservative updates, we propose to specialize
the descent step in PFD to a mirror descent (MD) step (Beck
& Teboulle, 2003). Since the optimization variable is a
probability distribution, the machinery of convex optimiza-
tion in Banach spaces (Sridharan & Tewari, 2010) needs to
be called upon. We call the resulting algorithm functional
mirror descent (FMD).

The connection to mirror descent provides a link to the rich
online convex optimization literature (Shalev-Shwartz et al.,
2012; Bubeck et al., 2015; Orabona, 2019), where MD plays
a prominent role, being a universal algorithm in the sense
of achieving a (nearly) optimal regret guarantee (Srebro
et al., 2011). Moreover, algorithms based on mirror descent
were shown to enable Bayesian inference (BI) with prov-
able guarantees (Dai et al., 2016). Since there is a deep
connection between reinforcement learning and Bayesian
inference (Rawlik et al., 2013; Levine, 2018), one may be
able to transfer the insights and analysis tools from BI to
RL using mirror descent as a bridge.

The rest of the paper is structured as follows. In Section 2,
we provide the background on the reinforcement learning
problem, paying special attention to the maximum entropy
RL setting. In Section 3, we introduce probability functional
descent in detail and describe how it can be applied to RL.
In Section 4, we cover the basics of mirror descent and
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present the proposed functional mirror descent algorithm.
In Sections 5 and 6, we detail the FMD perspective on policy
search and RL, respectively. Finally, in Sections 7– 9, we
provide an overview of the frontiers, discuss related work,
and conclude with an outlook towards future extensions.

2. Background on Reinforcement Learning
Reinforcement learning (Sutton & Barto, 2018) can be
viewed as a problem of optimizing a controller for an un-
known dynamical system through interaction with the sys-
tem. To extract information from the interactions, a sta-
tistical model of the relationships between the observed
variables needs to be postulated (Barber, 2012). In RL, the
observed variables are the states s ∈ S, actions a ∈ A,
and rewards r ∈ R. The spaces S,A,R can have vari-
ous nature; most commonly, S and A are either finite sets
or finite-dimensional vector spaces, and R is a (bounded)
subspace of R. The set of variables can be extended with
observations, goals, contexts, and other parameters that may
be assumed observed; moreover, hidden variables can be
introduced to represent state and action abstractions, as well
as task abstractions in case of multi-task RL (Levine, 2018).

Denote the dynamics by p(s′|s, a) and the reward function
by r(s, a). Any control law can be represented by a condi-
tional distribution π(a|s), called policy (Bertsekas, 2019).
The performance of a given policy π(a|s) is measured by
the expected reward. Various RL settings exist: finite- or
infinite-horizon, discounted or undiscounted rewards, er-
godic or non-ergodic dynamical systems. For concreteness,
we will consider finite-horizon undiscounted problems to
follow the related works (Rawlik et al., 2013; Levine, 2018).
This setting covers many cases of practical interest, includ-
ing trajectory optimization, finite-horizon discounted prob-
lems (via time-dependent rewards), and infinite-horizon dis-
counted problems (via extending the horizon and decreasing
the discount factor γ ∈ [0, 1]).

2.1. Finite-Horizon Setting

In the finite-horizon setting, state includes time, s = [st, t]
with st ∈ S ′ and t ∈ {0, 1, . . . , T}. Thus, formally, the
state space is S = S ′ × {0, 1, . . . , T}. For notational con-
venience, the time variable t is often separated and treated
independently from st. We assume stationary dynamics,
p(st′ , t

′|st, t, a) = p(st′ |st, a)δt+1(t
′), with δt+1(t

′) denot-
ing the Dirac measure concentrated at t+ 1. Marginalizing
out t′, we obtain st+1 ∼ p(st+1|st, at). The reward is also
time-dependent in general, rt = r(st, t, at). Discounting
can be encoded as r(st, t, at) = γtr(st, at) with a time-
invariant r(st, at). We denote rt(st, at) := r(st, t, at).

Any policy in the finite-horizon setting can be represented
by a time-dependent distribution π(a|st, t). In practice, the

choice of the policy representation depends on the applica-
tion. For example, if we omit the dependence on st, we ob-
tain a trajectory optimization formulation with the controller
π(a|t). Since time is discrete, π(a|t) can be represented
by a finite set of parameters, e.g., π(a|t) = δat

(a) with
at ∈ A, t ∈ {0, 1, . . . , T − 1}. Alternatively, a hierarchi-
cal controller π(a|t) = Eπ(θ)[π(a|t, θ)] may be considered,
with a prior π(θ) over the global variable θ ∈ Rnθ . If we
then set π(a|t, θ) = δf(θ,t)(a) with some known determin-
istic function f : θ, t 7→ a, we recover the episodic policy
search setting. Of course, we can also directly optimize
with respect to the state-conditional policy π(a|s, θ) param-
eterized by θ; this setting is known as policy optimization or
step-based policy search. We denote πt(a|st) := π(a|st, t).

A policy π : st, t, a 7→ πt(a|st) induces a distribution pπ(τ)
over state-action trajectories τ = (s0:T , a0:T−1) in the form

pπ(τ) = p(s0)

T−1∏
t=0

p(st+1|st, at)
T−1∏
t=0

πt(at|st) (1)

where p(s0) is a fixed initial state distribution. The cumula-
tive reward collected along a trajectory is given by

r(τ) =

T−1∑
t=0

rt(st, at). (2)

We omit the terminal reward rT (sT ) to avoid clutter, but it
can be straightforwardly added.

2.2. Maximum Entropy Reinforcement Learning

Traditionally, the objective in RL has been the expected re-
ward Epπ(τ)[r(τ)] (Sutton & Barto, 2018). However, this ob-
jective is ill-posed—similarly to the empirical risk minimiza-
tion (ERM) objective (Guedj, 2019). Since the optimization
is performed on a finite set of samples, the policy will col-
lapse to a deterministic mapping πt(a|st) = δgt(st)(a) with
some function g : st, t 7→ a. This problem has been rec-
ognized early on (Williams & Peng, 1991). To make the
optimization problem well-posed and obtain a stable and
well-defined solution, we need to restrict the class of distri-
butions over which the optimization is performed.

A principled and computationally convenient way to restrict
the class of distributions is to add a regularization term to
the objective. A natural choice is provided by the Kullback-
Leibler (KL) divergence D, thoroughly studied within PAC-
Bayesian theory (Guedj, 2019). In our setting, this yields

D(pπ(τ)∥pπ0(τ)) = Epπ(τ)

[
log

pπ(τ)

pπ0(τ)

]
(3)

with pπ0(τ) denoting the trajectory distribution under a prior
policy π0. Depending on the setting, the prior policy may
be available (e.g., previous plan in MPC (Wagener et al.,
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2019) or learned prior in meta-RL (Amit & Meir, 2018))
or not (e.g., classical tabula rasa RL). Either way, the KL
divergence factorizes over the time steps

D(pπ∥pπ0) =

T−1∑
t=0

Epπ(st)

[
D(πt(a|st)∥π0

t (a|st))
]

(4)

with pπ(st) denoting the marginal distribution over st at
time step t under policy π.

If no prior policy is given, then the KL divergence in (4)
reduces to the negative entropy,

D(pπ∥pλ) =
T−1∑
t=0

Epπ(st) [−H(πt(·|st))] . (5)

Here, H(πt(·|st)) = Eπt(a|st)[− log πt(a|st)], and λ refers
to the Lebesgue measure over A ⊆ Rna . Adding (5) to the
reward, we arrive at the entropy-regularized RL objective

J(π) =

T−1∑
t=0

E
pπ(st)

[
E

πt(at|st)
[rt(st, at)] +H(πt(·|st))

]
,

(6)
also known as the maximum entropy RL objective (Max-
Ent RL) (Levine, 2018). Complementary to our derivation,
which is motivated by the PAC-Bayesian learning theory,
the same objective can be derived via structured variational
inference (VI) on an extended graphical model with ‘opti-
mality variables’ Ot ∼ p(Ot = 1|st, at) = exp(rt(st, at)),
in which case (6) plays the role of the evidence lower bound
(ELBO) (Levine, 2018). The advantage of directly starting
with the optimization problem (6) is its flexibility. One can
seamlessly integrate other divergence functions, or turn the
KL penalty into a constraint, or tune the weighting between
the terms adaptively during optimization, etc. Although sim-
ilar modifications can be introduced in the VI framework,
they cannot be justified from the inference perspective.

3. Probability Functional Descent
Probability functional descent (PFD) (Chu et al., 2019) is a
generic algorithm for gradient-based optimization of proba-
bility functionals, i.e., real-valued functions defined on the
space of probability distributions. The entropy-regularized
objective (6) is an example of such a functional, with a slight
peculiarity that the policy is a conditional distribution.

3.1. Differentiation and Descent Steps

A key insight behind PFD is the observation that commonly
encountered probability functionals admit local linariza-
tion. In a finite-dimensional setting, a function f(x) dif-
ferentiable at x0 can be approximated by a linear function
f̄(x) = f(x0) + ⟨∇f(x0), x− x0⟩ around x0. We can
rewrite it as f̄(x) = ⟨∇f(x0), x⟩ + const. An analog of

such linearization for a probability functional F (p) in the
vicinity of a distribution p0(x) is given by the linear func-
tional F̄ (p) = Ep(x)[Ψp0(x)] + const. Here, Ψp0(x) de-
notes the influence function, which plays the role of the gra-
dient in the probability-functional setting.1 Having obtained
the linear approximation F̄ (p), we subsequently perform a
descent step with respect to p on this approximation.

To summarize, the PFD algorithm consists of two steps
repeating in a cycle. First, in the differentiation step, the
influence function Ψp0

(x) is computed given the current
distribution p0. Second, in the descent step, the next distri-
bution p is found that decreases Ep(x)[Ψp0(x)].

3.2. Missing Links to Reinforcement Learning

A number of algorithms have been framed as instances
of PFD, including optimization of generative adversar-
ial networks (GAN) (Goodfellow et al., 2014), black-box
variational inference (Ranganath et al., 2014), dual actor-
critic (Dai et al., 2018), and others. Although several ap-
proaches to reinforcement learning have also been consid-
ered, the treatment of RL from the PFD perspective has
been incomplete.

• MaxEnt RL objective (6) has not been addressed. Once
framed as PFD, MaxEnt RL may directly benefit from
the specific techniques developed for other PFD-based
algorithms, e.g., influence function approximation.

• Conservative descent steps have not been incorporated
into PFD. In RL, conservative updates are known to be
crucial (Kakade & Langford, 2002); once embedded
into PFD, they can be used in other applications.

• The differentiation step of PFD has only been identi-
fied with model-free RL. However, there are important
model-based methods, such as guided policy search
(GPS) (Levine & Koltun, 2013), not covered by PFD.

• Sampling has not been treated explicitly. By incorpo-
rating empirical distributions into PFD, connections
between sampling and optimization over measures can
be utilized (Dai et al., 2016; Wibisono, 2018).

In the remainder of the paper, we address these points, es-
tablishing a tighter connection between PFD and RL. In
the next section, we recap the basics of mirror descent and
introduce the functional mirror descent (FMD) algorithm.
Subsequently, we demonstrate the usefulness of such exten-
sion in policy search and RL problems. Finally, we close
with a discussion of the future directions uncovered by this
FMD perspective.

1More formally, we assume F (p) to be Gateaux differentiable
at p0, with the Gateaux differential admitting the integral represen-
tation dFp0(p− p0) = Ep[Ψp0 ]− Ep0 [Ψp0 ] (Huber, 2004).
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4. Mirror Descent
Mirror descent (MD) is an extension of gradient descent to
non-Euclidean spaces (Beck & Teboulle, 2003).

4.1. Mirror Descent in Finite-Dimensional Spaces

If X is a Euclidean space, then gradient descent on a differ-
entiable convex function f : X → R prescribes the update
x− η∇f(x) with some step size η > 0. Properly speaking,
the gradient ∇f(x) is an element of the dual space X∗, i.e.,
the space of continuous linear functionals on X . We can
subtract the gradient ∇f(x) ∈ X∗ from the current point
x ∈ X only because the dual space X∗ is isometric to X
in the Euclidean setting. In more general settings, such
operation is not possible (Bubeck et al., 2015).

Mirror descent lifts the limitation of gradient descent and
enables first-order optimization in Banach spaces. MD maps
a point x ∈ U ⊆ X into the dual space X∗, performs a
gradient update in X∗, then maps the resulting point back to
the primal space X , and finally, performs a projection onto
the subspace of interest U . Both the primal/dual mapping
and the projection are based on the concept of a mirror map,
which is closely associated with the notions of Bregman
divergence and conjugate duality (Bubeck et al., 2015).

The Euclidean space X equipped with the inner product
⟨, ⟩ : X ×X → R is a Hilbert space, i.e., a Banach space
with the norm derived from the inner product. In this case,
the mirror descent step can be written as

xi+1 = argmin
x∈U

⟨∇f(xi), x⟩+
1

ηi
Bϕ(x;xi) (7)

where Bϕ : X × intX → R is the Bregman divergence
generated by a strictly convex, continuously differentiable
on the interior of X function ϕ : X → R (Orabona, 2019).
If ϕ(x) = 1

2∥x∥
2
2, then Bϕ(x;xi) = 1

2∥x − xi∥22 and we
recover the standard (projected) gradient descent from (7).
Function ϕ is called a mirror map if it is proper, its gradi-
ent ∇ϕ(x) takes all possible values, and ∇ϕ(x) diverges
on the boundary of X (Bubeck et al., 2015). We will be
chiefly interested in a special case of (7), known as entropic
mirror descent (Beck & Teboulle, 2003), where U is the
simplex and Bϕ is the KL divergence; and more precisely,
in the extension of this case to the probability functional
setting. Indeed, neither the gradient, nor the inner product
are defined for the functionals of the form F (p) where p is
a probability distribution.

4.2. Functional Mirror Descent

We now introduce the form of mirror descent applicable to
probability functional optimization. Let P(X ) be the space
of Borel probability measures on a topological space X . To
avoid technicalities, we assume that X is a compact Polish

space, following Chu et al. (2019). The space of probability
distributions P(X ) is a convex subset of the vector space
of finite signed Borel measures M(X ), equipped with the
topology of weak convergence. The dual of M(X ) is the
space C(X ) of continuous functions X → R with the uni-
form norm topology. With these definitions, one step of
entropic mirror descent on a probability functional F (p)
can be written as

pi+1 = argmin
p∈P(X )

Ep(x)[Ψpi
(x)] +

1

ηi
D(p∥pi) (8)

where pi ∈ P(X ) is the current distribution, Ψpi(x) is the
influence function, that roughly plays the role of ∇F (pi),
D(p∥pi) is the KL divergence, and ηi > 0 is the step size.

A remarkable property of the mirror descent update (8) is
that it can be rewritten as a two-step procedure (Orabona,
2019), where the first step is an unconstrained optimization
problem and the second step is a projection,

p̃i+1 = argmin
p∈M(X )

Ep(x)[Ψpi(x)] +
1

ηi
D(p∥pi), (9)

pi+1 = argmin
p∈P(X )

D(p∥p̃i+1). (10)

This form (9)–(10) will be convenient for describing projec-
tions between different policy parameterizations in RL.

The choice of the step size sequence ηi is an important
design decision. Using prior information about the proper-
ties of the objective function and the search domain, one
may be able to derive optimal schedules, often in the form
ηi ∝ 1/

√
i. Alternatively, one may use an adaptive scheme,

scaling the learning rate in inverse proportion to the square
root of the sum of squared dual norms of the gradients,
as done in AdaGrad (Duchi et al., 2011) and related al-
gorithms (Orabona, 2019). In the probability functional
setting, a popular approach has been to treat the divergence
as a constraint with a fixed bound ε and then obtain η−1

i

as the optimal value of the corresponding Lagrange multi-
plier (Peters et al., 2010; Haarnoja et al., 2018).

In summary, the mirror descent update step (8) or, equiv-
alently, steps (9)–(10) extend the PFD algorithm with an
explicit rule for updating the search distribution p(x) in the
descent step. In the following, we apply this procedure to
policy search and MaxEnt RL and derive a number of rein-
forcement learning algorithms that can be understood as em-
ploying different approximations of the influence function
and different parameterizations of the search distribution.

5. Policy Search From the FMD Perspective
Before moving on to full RL, we first consider a simpler
black box policy search setting (Deisenroth et al., 2013).
Assume the low-level controller is given as π(a|s, θ) with
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parameters θ ∈ Θ. For each θ, we can run the system and
observe a trajectory τ ∼ pπ(τ |θ) and the reward r(τ). The
distribution over trajectories pπ(τ |θ) induces a distribution
pπ(r|θ) over the rewards. Denoting the mean of the reward
distribution by r̄(θ), the analog of the MaxEnt objective (6)
in the black box setting can be written as

max
π∈P(Θ)

J(π) = Eπ(θ)[r̄(θ)] +H(π). (11)

Both in (6) and (11), the scaling factor between the two
terms is hidden in the reward, as in (Levine, 2018).

Let F (π) = −J(π) = −Eπ(θ)[r̄(θ) − log π(θ)] and note
that F (π) is convex in π. Therefore, we can apply FMD (8).
By inspection, we recognize Ψπ(θ) = −r̄(θ) + log π(θ)
as the influence function. If πi(θ) is the current search
distribution, then

πi+1(θ) = argmin
π∈P(Θ)

Eπ(θ)[Ψπi
(θ)] +

1

ηi
D(π(θ)∥πi(θ)).

(12)
In order to instantiate (12), we need to represent πi(θ), π(θ),
and Ψπi(θ). Practical algorithms differ in the choice of the
representations and in the implementation of the argmin
operator. In the following, we detail several design options.

5.1. Sampling Distribution and Policy Representations

At iteration i, a set of N query points θ1:N is sampled
from the current search distribution πi(θ). Each point is
rated by the reward rn ∼ pπ(r|θn). Thus, the dataset at
iteration i is given by Di = {(θn, rn) | n = 1, 2, . . . , N}.
A convenient representation of Di that manifestly obeys
permutation invariance is the empirical distribution

p̂πi
(r, θ) =

1

N

N∑
n=1

δrn(r)δθn(θ). (13)

From p̂πi
(r, θ), one may, e.g., estimate Ψπi

(θ). However,
apart from the information in Di, one may additionally
leverage the knowledge of πi(θ) in parametric form.

Depending on the representation of the policy, different
operations may be computationally easy or hard. Most
commonly, the policy is parameterized by a Gaussian dis-
tribution, which is convenient to work with because it en-
ables straightforward sampling, cheap evaluation of the log-
likelihood, and closed-form expressions for the entropy and
the KL (Deisenroth et al., 2013). Nevertheless, unimodal
policies may be limiting; in these cases, more general pol-
icy representations can be applied, including mixture mod-
els (Sehnke et al., 2010), energy-based models (Haarnoja
et al., 2017), implicit models and normalizing flows (Tang &
Agrawal, 2018). However, such representations are usually
less tractable: sampling in energy-based models is expen-
sive, entropy in normalizing flow models lacks an analytic
form, log-likelihood in implicit models is not available.

5.2. Influence Function: Representation, Estimation

Along with the policy, representation of the influence func-
tion Ψπ(θ) plays a crucial role. Assuming that log π(θ) can
be evaluated, estimation of Ψπ(θ) reduces to estimation
of the conditional expectation r̄(θ) = Epπ(r|θ)[r] from the
data p̂πi

(r, θ). The simplest approach is to take rn as the
estimate of r̄(θn). Formally, this corresponds to introducing
a function ˆ̄r(θ) defined through the empirical distribution

Ep̂πi
(r,θ)[r] =

1

N

N∑
n=1

rnδθn(θ) =: ˆ̄r(θ)π̂i(θ) (14)

where π̂i(θ) =
1
N

∑N
n=1 δθn(θ) represents the current pol-

icy. Intuitively, ˆ̄r(θ) can be thought of as a function defined
only at locations θn where it takes values rn.

Although straightforward to implement, the empirical rep-
resentation (14) may be suboptimal. If prior knowledge on
the properties of r̄(θ) is available, e.g., if r̄(θ) is known to
be continuous, then one can fit a more suitable model. The
problem of estimating a function θ 7→ r̄(θ) from data is a
core machine learning task and a variety of algorithms exist.
A popular approach is to fit a quadratic surrogate model,
which works well when the policy is Gaussian, because
then the argmin operator can be implemented in closed
form (Abdolmaleki et al., 2015). However, with growing di-
mensionality, fitting a quadratic model becomes expensive.

5.3. Distribution Propagation Through Optimization

The optimization step (12) can be seen as defining certain
dynamics in the distribution space: it takes πi(θ) as input,
passes it through a transformation defined by the influence
function, and outputs πi+1(θ). Therefore, to obtain πi+1(θ),
we essentially need to simulate these propagation dynamics.

Some options: (i) sample particles from πi(θ), pass them
through the dynamics (12), fit a parametric πi+1(θ) at the
output (Peters et al., 2010); (ii) approximate terms in (12) in
a way that enables closed-form propagation (Abdolmaleki
et al., 2015); (iii) directly optimize (12) with respect to
a parameterized policy (Schulman et al., 2015); (iv) use
purely particle-based representation for both the input and
the output distributions (Liu et al., 2017).

There are certainly more ways to simulate the dynamics (12),
and the methods mentioned here should merely serve as
illustration. In the next subsection, we will take a closer look
at scheme (i) to highlight the idea of projections between
policy representations based on the decomposition (9)–(10).

5.4. Projections Between Policy Representations

The search distribution πi(θ) is typically given in parametric
form, e.g., as a Gaussian. However, interaction with the
system is always sample-based. Therefore, no matter what
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propagation method is used, projection of πi(θ) down to
the empirical distribution π̂i(θ) is unavoidable. Note that
π̂i(θ) is in fact parameterized by two sets of parameters:
weights of the particles and their locations. Therefore, we
can change π̂i(θ) by either reweighting the particles or by
moving them. Here, we analyze the reweighting scheme.

5.4.1. PROPAGATION OF PARTICLES

The KL divergence in (12) is only well-defined if π(θ) is
absolutely continuous with respect to πi(θ). If we substitute
the empirical distribution π̂i(θ) for πi(θ), then π(θ) will
concentrate on its support and take the parametric form

π̂(θ|w) = 1

N

N∑
n=1

wnδθn(θ) (15)

with w ∈ W(N) = {w1:N | wn > 0,
∑N

n=1 wn = N}
the adjustable weights of the particles. Upon substitution
of π̂i(θ) and π̂(θ|w) into (12), the problem reduces to a
finite-dimensional optimization problem

min
w∈W(N)

1

N

N∑
n=1

wn

(
Ψ̂πi

(θn) +
1

ηi
logwn

)
(16)

where Ψ̂πi
(θn) = −rn + log πi(θn) denotes the empirical

estimate of the influence function. The weights w can be
found in closed form

wn =
N

Z
e−ηiΨ̂πi

(θn), Z =

N∑
n=1

e−ηiΨ̂πi
(θn), (17)

which renders (15) with weights (17) as the optimal particle-
based representation π̂i+1(θ) of πi+1(θ).

5.4.2. PROJECTION ONTO PARAMETRIC FORM

The next step is to project π̂i+1(θ) onto a parametric distribu-
tion πi+1(θ). Denoting by ŵ(θ) a function that returns wn

when evaluated at θn, analogously to ˆ̄r(θ) in (14), we obtain
π̂i+1(θ) = ŵ(θ)π̂i(θ). According to the two-step reformu-
lation of mirror descent (9)–(10), we now need to minimize
D(πi+1(θ)∥π̂i+1(θ)) in order to project the particle-based
representation π̂i+1(θ) onto the parameterized representa-
tion πi+1(θ), e.g., a Gaussian. In general, such projection
is problematic, because π̂i+1(θ) is concentrated on a finite
support. However, assuming that πi(θ) is known in para-
metric form, we can leverage this knowledge and perform
the projection as minπi+1(θ) D(πi+1(θ)∥ŵ(θ)πi(θ)), which
results in the minimization objective

min
πi+1(θ)

Eπ̂i(θ)

[
πi+1(θ)

πi(θ)
(− log ŵ(θ))

]
+D(πi+1∥πi).

(18)
This objective can be optimized, e.g., via gradient descent
on the parameters of πi+1(θ). In agreement with the general

equivalence between the one-step (8) and two-step (9)–(10)
representations of mirror descent, Objective (18), at which
we arrived by first propagating the particles (15)–(17) and
then fitting a distribution, is equivalent to the objective (12),
had we directly parameterized π(θ) and searched in the
space of parameterized distributions.

The key observation in this subsection is that one can utilize
the mirror descent decomposition (9)–(10) to transition be-
tween policy representations. Originally, P(X ) must be a
convex subset of the vector space M(X ). However, once
we start working with parameterized distributions, such as
Gaussians, an irreducible approximation error gets intro-
duced, and exact projection is no longer possible. Never-
theless, in practice, it may still be advantageous to utilize
the decomposition (9)–(10) if computations in some repre-
sentation can be performed more efficiently, e.g., in closed
form. A notable application of the projections is the family
of guided policy search (GPS) algorithms (Montgomery &
Levine, 2016), where the policy is first obtained in the form
of a locally-linear control law and subsequently projected
onto a neural network representation. We will consider this
and other examples in the next section.

6. MaxEnt RL From the FMD Perspective
Now we turn our attention to optimizing the MaxEnt RL ob-
jective (6) with functional mirror descent (8). Conceptually,
the procedure is the same as in the black box setting: we first
need to represent the objective by a linear functional, i.e.,
find the influence function, and then perform a mirror de-
scent step on the policy, potentially followed by a projection.
The influence function will be related to the value function,
and therefore the differentiation step of FMD will roughly
correspond to policy evaluation. The descent step will play
the role of policy improvement; while the projection step
will act as an imitation learning subroutine. In the following,
we explain these connections in detail and highlight various
approximations that have been considered in the literature.

6.1. Influence Function

We denote F (π) = −J(π) and repeat the objective here for
convenience in a slightly different form

F (π) = −
T−1∑
t=0

E
pπ(st)πt(at|st)

[rt(st, at)− log πt(at|st)].

(19)
Objective (19) is similar to the black box objective (11), but
with the important difference that the distribution πt(at|st)
in (19) not only affects the current time step but also all
future time steps t < t′ ≤ T through the marginals pπ(st′).
Due to the recursive structure of the dynamics, the influence
of the distribution πt(at|st) at time t on the future rewards
can be summarized in the MaxEnt Q-function Qπ

t (st, at),
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defined in such a way that the influence function Ψπt
(st, at)

with respect to πt(at|st) is given by

Ψπt
(st, at) = −pπ(st) (Q

π
t (st, at)− log πt(at|st)) .

(20)
Note that Qπ

t (st, at) not only includes the expected sum of
future rewards but also the sum of future entropies; that is
why we call it MaxEnt Q-function.

6.2. Mirror Descent Step

Once the influence function (20) corresponding to the distri-
bution over actions πi

t(at|st) at current iteration i is given,
the next distribution πi+1

t (at|st) can be found by solving

min
πt(at|st)

E
pi
π(st)

[
E

πt(at|st)

[
−Qi

t(st, at) + log πi
t(at|st)

]
+

1

ηit
D(πt(·|st)∥πi

t(·|st))
]

(21)

where Qi := Qπi

, piπ := pπi , and ηit > 0. This objective is
almost the same as (12) apart from one additional expecta-
tion over states. Therefore, the same considerations apply
regarding how to update πi

t to πi+1
t , i.e., in closed form,

using particles, by optimizing parameters of πt directly, etc.
A similar objective to (21) was considered by Akrour et al.
(2016), albeit with trust region constraints on the entropy
and the KL divergence rather than penalties as here.

6.3. Approximations

The key practical considerations regarding the implemen-
tation of (21) echo those in the black box setting: (i) pol-
icy representation, (ii) influence function estimation, (iii)
optimization procedure. These points are interrelated, as
a certain influence function representation may require a
matching policy representation, which in turn may deter-
mine the optimization procedure. Therefore, all three points
need to be tackled jointly. Below we highlight a few ap-
proaches, but in general the design space is quite large.

Estimation of the influence function (20) requires the state
marginals pπ(st), the MaxEnt Q-function Qπ

t (st, at), and
the log term log πt(at|st). The log term is usually available,
except for non-invertible implicit models, in which case it
needs to be additionally estimated. The state marginal can
either be represented by an explicit distribution, such as a
Gaussian (Deisenroth & Rasmussen, 2011; Levine & Koltun,
2013), or through samples (Levine, 2018). The MaxEnt
Q-function Qπ

t (st, at) may be estimated via Monte Carlo
rollouts (Akrour et al., 2016) or represented as a parametric
function (Levine & Koltun, 2013) and fitted by minimizing
a squared value prediction error (Levine, 2018) or a path
consistency objective (Nachum et al., 2017).

The policy is commonly represented as a Gaussian. In Max-
Ent RL, there is a particular interplay between the policy

and the MaxEnt Q-function that can be utilized: namely, at
optimum, π⋆

t (at|st) ∝ exp(Q⋆
t (st, at)), and therefore the

policy may be implicitly represented as an energy-based
model—an approach known as soft Q-learning (Haarnoja
et al., 2017). However, sampling and normalization become
expensive and require approximations. Soft actor-critic
(SAC) (Haarnoja et al., 2018) avoids such problems by pro-
jecting the energy-based policy onto a Gaussian.

6.4. Policy Projections

There is often a trade-off between exactly solving an approx-
imate problem and approximately solving an exact problem.
By utilizing mirror descent, one can combine the advantages
of both approaches. One method that enables such synthesis
is mirror descent guided policy search (MDGPS) (Mont-
gomery & Levine, 2016).

The idea of MDGPS is to fit a linear-quadratic model to
the observed trajectories under the current policy, then find
the optimal linear controller for the linearized system in the
vicinity of the current controller, and finally, project the lin-
ear controller onto a global non-linear representation, e.g.,
a neural network policy. This scheme precisely follows the
two-step procedure (9)–(10) of mirror descent. First, the ex-
act influence function for the approximate linearized model
is computed. Then the minimization step (9) is performed
exactly but with respect to a linearized version of the global
controller. Finally, the newly found linear controller is pro-
jected onto the global nonlinear policy that can afterwards
approximately control the exact nonlinear system.

The projection step (10) essentially encompasses an imi-
tation learning problem. Therefore, imitation learning is
naturally covered by the FMD framework as a projection
between different policy representations. This interpretation
can be utilized for learning policies in unconventional forms,
e.g., represented by programs (Verma et al., 2019).

7. Online Learning and Frontiers
The presented mirror descent perspective provides a bridge
between optimization and reinforcement learning. Based
on this connection, further ideas from optimization can be
brought into RL. Mirror descent can be employed in model
predictive control (MPC) (Wagener et al., 2019), to utilize
the similarity between trajectory optimization problems at
subsequent iterations in the form of dynamic mirror de-
scent (DMD) (Hall & Willett, 2013). Predictive models in
general can be incorporated into policy optimization pro-
cedures (Cheng et al., 2019) based on optimistic mirror
descent (OMD) (Rakhlin & Sridharan, 2013). Trajectory
optimization can be embedded into the policy learning loop
via mirror descent guided policy search (MDGPS) (Mont-
gomery & Levine, 2016). Natural evolution strategies can be
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analyzed using the tools developed for mirror descent (Ye &
Zhang, 2019). Momentum and acceleration can be brought
into policy search (Miyashita et al., 2018). By exploiting the
link to optimization over probability distributions, particle-
based approaches can be introduced into RL (Liu et al.,
2017). Conjugate duality can be utilized to derive provably
convergent algorithms (Dai et al., 2018) and perform offline
policy evaluation and improvement (Nachum & Dai, 2020).

8. Related Work
Mirror descent (Nemirovski & Yudin, 1983; Beck &
Teboulle, 2003) is a general optimization algorithm and
it can be applied in various settings. Depending on whether
exact or stochastic gradients are available, one discerns
between deterministic and stochastic mirror descent (Ne-
mirovski et al., 2009). If the loss function at each iteration is
allowed to change, then the algorithm is called online mirror
descent (Shalev-Shwartz et al., 2012).

Stochastic mirror descent applied directly to the policy pa-
rameters is called mirror policy optimization (MPO) (Yang
& Zhang, 2019). Mirror descent on the parameters of the
search distribution in the black box setting is known as mir-
ror natural evolution strategy (MiNES) (Ye & Zhang, 2019).
Mirror descent has also been extensively studied in applica-
tions to TD-learning (Mahadevan et al., 2014). In this paper,
we apply mirror descent on the space of probability distribu-
tions. This results in the optimization problem (8) that can
be subsequently solved by various methods, depending on
the parameterizations of the distributions and functions.

A number of papers have studied entropy-regularized MDPs.
Neu et al. (2017) presented a unifying view of entropy- and
KL-regularized ergodic MDPs with the average reward cri-
terion. Geist et al. (2019) introduced regularized modified
policy iteration (reg-MPI) and mirror descent modified pol-
icy iteration (MD-MPI) in tabular MDPs with the infinite-
horizon discounted reward criterion. Vieillard et al. (2019a)
presented connections to classical optimization algorithms,
including links between Frank-Wolfe and policy iteration,
and Politex (Abbasi-Yadkori et al., 2019) and dual averag-
ing (Nemirovski et al., 2009). Belousov & Peters (2019) for-
mulated a framework based on f -divergence regularization
in the average reward setting and Lee et al. (2019) developed
a unified view based on Tsallis entropy regularization for
the infinite-horizon discounted reward setting.

In contrast to these prior works, we consider finite-horizon
problems and aim for a theory applicable to continuous
state-action spaces. By extending the framework of prob-
ability functional descent (Chu et al., 2019) with mirror
descent in Banach spaces (Sridharan & Tewari, 2010), we
are able to cover practical algorithms, such as soft actor-
critic (Haarnoja et al., 2018) and soft Q-learning (Haarnoja

et al., 2017) along with many others, as parametric schemes
approximating the exact mirror descent steps (20)–(21).

The perspective taken in this paper is closely related to the
control-as-inference view (Rawlik et al., 2013). We refer the
reader to (Levine, 2018) for a recent survey with exhaustive
links to prior work. Although we derive the MaxEnt RL
objective (6) from a regularization rather than inference
perspective, this may be considered a minor detail from
the practical point of view. More importantly, we apply
mirror descent (21) to this objective—something which is
not possible within the control-as-inference framework but
which is very natural once (6) is viewed as an optimization
objective on the space of probability distributions.

9. Discussion and Conclusion
Tremendous progress has been made in online convex op-
timization in the last decade (McMahan, 2017). Mirror
descent has been at the heart of these developments thanks
to its universality (Srebro et al., 2011). Although attempts
have been made to establish connections between reinforce-
ment learning and online optimization and bring the power
of mirror descent into the realm of MDPs, prior approaches
either applied mirror descent directly to parameterized poli-
cies or considered tabular settings. In this paper, we describe
a meta-algorithm called functional mirror descent (FMD)
that is applicable to problems with continuous state-action
spaces. The FMD algorithm combines insights from proba-
bility functional descent (PFD) (Chu et al., 2019) and mirror
descent in Banach spaces (Sridharan & Tewari, 2010).

We view the RL objective (6) as a probability functional and
apply the FMD algorithm (8) to it. By clearly separating
the algorithmic steps of (i) linearizing the functional (i.e.,
finding the influence function), (ii) performing the mirror
descent step (9) in a convenient form (e.g., linear or non-
parametric), and (iii) projecting the found policy onto a
global representation (10), we are able to treat a variety
of RL algorithms in a uniform manner and classify them
on the basis of how they parameterize each step and what
optimization procedure they employ.

The mirror descent perspective unlocks several avenues for
developing improved RL methods. In one direction, better
approximations of the MD step (8) can be sought. More
versatile representations, such as energy-based models (Dai
et al., 2019), normalizing flows (Tang & Agrawal, 2018), or
interacting particle systems (Liu et al., 2019) may provide a
powerful boost by leveraging the link between sampling and
optimization in the space of measures (Wibisono, 2018). On
the other hand, more tools from optimization can be brought
into RL, such as Fenchel-Rockafellar duality (Nachum &
Dai, 2020), momentum Vieillard et al. (2019b) and acceler-
ation Miyashita et al. (2018).
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