Underactuated Trajectory-Tracking Control for Long-Exposure Photography Christian Eilers Jonas Eschmann Robin Menzenbach

TECHNISCHE

UNIVERSITÄT DARMSTADT

Motivation

Underactuated systems cannot follow arbitrary trajectories.

- How to find feasible trajectories?
- Can these trajectories be tracked?

Only sparse research available

Problem Statement

► Control the Quanser Qube → Rotary Inverted Pendulum

- Do light-painting with the tip of the pendulum using long exposure photography
- e.g. Draw letters like 'l', 'A' and 'S'

Approach

1) Planning

- Offline trajectory planning
- Direct collocation & RBF-based objective

2) Trajectory Tracking

- Track the planned trajectory
- LQR feedback control

3) Long Exposure Photography

System Identification

- Approach: Gradient descent on the dynamic model
- Tensorflow graph of the dynamics
- Parameters initialized with the values given by the manufacturer

Real vs. Predicted alpha_dd

Task Space Analysis

Surface of a sphere with cut off bottom and top

Point Projection between Camera Space and Task Space

Trajectory Planning

Goal

Generate smooth trajectorthrough the via points

Approach

- Direct Collocation
- RBF based objective function
- Additional constraints

Objective Function

$$J = \sum_{k=0}^{N-1} \left(\sum_{j=0}^{M-1} e^{-(t_j-k)^2} d\left(\mathbf{x}_k, \mathbf{x}_j^{\text{target}}\right) + \beta u_k^2 \right) + \alpha \left(t_{N-1} - t_0\right)$$

- N : Number of time steps
- M : Number of target points
- $d(\cdot)$: Distance metric ightarrow we use squared task space difference
 - α : Trade-off factor for the time differences
 - β : Trade-off factor for punishing high control values

 u_k, \mathbf{x}_k, t_j : Optimization variables

RBF Based Objective

Trading Off Time Differences

Trajectory Planning Pipeline

Practical Tricks and Challenges

Practical Tricks

- Constrain the order of via points: t_j < t_{j+1}
- Constrain the duration between activations of subsequent points
- ► Constraint control signals → improves controllability

Challenges

- Complex objective function
- Hyperparameters: trade-off factor, target points order, trajectory duration, ...

Finding good solution for complex letters requires a lot of hand-tuning

Results

Results

- Time-based activated traces
- External render tool

Open Loop Control

- Open Loop not possible
- Idea: Use the optimal feedback control of LQR in context of trajectory tracking

Linear Quadratic Regulator

- ► Linearize system dynamics around desired trajectory $\{(u_k^d, \mathbf{x}_k^d)\}_{k=0,...,N}$
- Use finite-horizon Linear Quadratic Regulator (LQR)

Objective

$$J = (\mathbf{x}_N - \mathbf{x}_N^d)^T \mathbf{Q} (\mathbf{x}_N - \mathbf{x}_N^d) + \sum_{t=0}^{N-1} (\mathbf{x}_t - \mathbf{x}_t^d)^T \mathbf{Q} (\mathbf{x}_t - \mathbf{x}_t^d) + (\mathbf{u}_t - \mathbf{u}_t^d)^T \mathbf{R} (\mathbf{u}_t - \mathbf{u}_t^d)$$

Feedback Control Law

$$\mathbf{u}_t = \mathbf{u}_t^d - \mathbf{K}_t(\mathbf{x}_t - \mathbf{x}_t^d)$$

Trajectory Tracking

- Same desired trajectory
- LQR feedback control

Challenges

- No guarantee that trajectory is trackable
- Weight matrices Q and R need to be hand tuned

Long Exposure Photography

$$\mathbb{P} = [0, 255]^3, \quad \mathbb{F} = \mathbb{P}^{H \times W}$$
$$\mathbf{V} = \begin{bmatrix} \mathbf{F}_1 & \cdots & \mathbf{F}_T \end{bmatrix}, \quad \mathbf{F}_t \in \mathbb{F}$$
$$\mathbf{L}_{ij} = \max_t (\mathbf{F}_t)_{ij} \quad , \forall i \in [0, H], j \in [0, B]$$

Approximates long exposure photo from video

Conclusion & Outlook

Conclusion

- Planning trajectories can become arbitrary complex for underactuated systems
- Model errors can make trajectory tracking very difficult
- Good tuning of hyperparameters is essential

Outlook

Automation and optimization of LQR weight parameters

Questions?

March 21, 2019 | Underactuated Trajectory-tracking Control for Long-exposure Photography | C. Eilers, J. Eschmann, R. Menzenbach | 21