
A Digital Framework for Interlocking SL-Blocks Assembly with Robots

Binqun Liu⇤1 Yuxi Liu⇤1 Mehrzad Esmaeili Charkhab⇤1

Abstract— Interlocking structures assembled by SL-Blocks
offer a reversible system that allows the elements to be con-
stantly disassembled and reassembled into various new building
configurations. The building structure is kinematically immo-
bilized by the constraints of the geometrical boundaries and
friction coefficients without any adhesives. The novel concept
of using SL-Blocks in architecture advances the transition
to circular reuse. However, the assembly of such contact-
rich Blocks also introduces new challenges to the construction
process. Considering robot technologies that allow for assembly
automation can respond to a lack of skilled labour and increase
the efficiency of building structures with SL-Blocks. In this
research, we focus on developing a digital framework for closing
the loop between the design and robotic assembly of SL-Block’s
structures. On the one hand, we will showcase our recursive
algorithm that can automate assembly sequence generation.
On the other hand, we illustrate a pre-programmed setup
developed for robotic assembly execution in simulation and
physical environments.

I. INTRODUCTION

In recent years, the integration of robotics into the con-
struction life-cycle has gained in popularity due to a societal
paradigm shift in sustainability, safety and carbon efficiency.
Robotic automation increases productivity and efficiency,
responding to a lack of skilled labour in the construction
sector. The potential of industrial robots, with regards to
their flexibility and adaptability, was first explored with the
development of the irregular brick walls, where robotic arm
is programmed to orient and place bricks into differentiated
physical prototypes[1]. The concept was further extended
through the implementation of a mobile robotic brick con-
struction process in 2014, which enabled the robots to be
employed directly on site[2]. In order to extend the appli-
cation of brick-stacking to cantilevering structures, Stefana
et al. introduced a novel fabrication process, in which two
robots collaborated to place and support the elements to build
a stable brick vault[3]. Robotic arm with multiple degrees of
freedom allowing a wider range of fabrication speed, but
require more sophisticated controls and path planning. The
goal of Moving more materials more quickly is often caught
in a conflict with the complexity of the construction tasks.

Robotic discrete assembly, instead, can simultaneously
address both. In the process of discrete assembly, the
individual building element is seen as digital material[4]
with relative positions, providing kinematic constraints for
physical connection and constructing large structures through

*All authors contributed equally
1Digital Design Unit, Department of Architecture, Technical Uni-

versity of Darmstadt, Germany. Correspondence to: BingQun Liu
bingqun.liu@stud.tu-darmstadt.de

its geometric property of male-female joints. This male-
female connection is often seen in the morphological design
of interlocking pieces for assembling timber structures. The
relation can be further analogized with a binary 0-1. In that
sense, digital materials establish a computational logic for
the robotic assembly of discrete elements in the physical
world[5]. Indeed, the above-mentioned studies are mainly
attempting to prove an argument, that is, Discrete and “Dig-
ital” is supposed to be a solution to negotiating the conflict
between increasing complexity and speed during the robotic
construction process.

In this research context, we aim to bridge the gap be-
tween discrete design and robotic assembly of SL-Blocks,
expanding the scope of the digital material to multi-level
discretization beyond its one-level with binary thinking in
connecting interlocking elements.

In this report, we introduce our first step-up for robotic
automation of assembling monolithic building components
with SL-Blocks. Advanced assembly procedures are here
established by (1) the analysis of the manual assembly
of SL-Blocks, (2) the development of recursive algorithms
for reordering string sequences into assembly/disassembly
sequences, (3) the definition of robotic setup for simulation
and execution, and (4)Experiments and Evaluation of the
robotic setup.

II. RELATED WORK

A. SL-Block
Module is widely used in the field of building construction

and civil engineering. The advantages of modular construc-
tion are a shortened construction time, more cost-effective
production of building elements, and potential facilitation
of dismantling of materials. Architects and engineers are
exploring self-interlocking structures with efficient modules.
SL-Block[6], first proposed by Shih, is a single type of
element, which can be aggregated to form hierarchical self-
interlocking structures without using mortar or adhesive.

Formed by S- and L-shaped Tetracubes, SL-Block is a spe-
cially designed Polycube. Two SL-Blocks can be grouped as
a conjugate pair. The rules of combining repetitive units are
defined by six types of geometric transformation(represented
as h, a, d, s, t, y), rather than relying on male-female
joints (Fig.1). Due to that, the binary-programming logic is
insufficient to handle the complexity. Based on the consecu-
tive geometric transformations, SL-Blocks can be aggregated
into a wide variety of new 3D Geometries called SL-
Strands, the generation of which is a sequential process
represented as string sequences(Fig.2). These SL-Strands can
be further assembled into larger tectonic and reconfigurable



systems(Fig.3), responding to the challenges of industrial
automation. Linking SL-Blocks with robotic assembly hints
at a potential opportunity of developing a new paradigm for
the construction industry, where multi-level discrete elements
are defined from and for automation.

Fig. 1. SL Block, its conjugate pair, and six SL-Engagements representing
the connection rules of SL-Blocks. (Image by Yuxi Liu)

Fig. 2. The connection of conjugate pairs of SL-Block, whose process can
be encoded as a string sequence. (Image by Yuxi Liu)

Fig. 3. A hierarchical classification of SL-Block. Within Low-Level
Assembly, SL-Blocks’ connection is based on six transformation rules.
While in High-Level Assembly, the combination of SL-Strands is a kind
of binary logic. (Image by Yuxi Liu)

B. Challenges of Manually Assenbling SL-Blocks

In the case of assembling “h” SL-Engagement(Fig.4),
blocks are arranged in a linear direction. The bottom blocks
are constantly rotated 180 degrees along the x-axis and
assembled one by one. However, when implementing the
assembly of the top blocks, two blocks need to be considered
as a group and inserted together into the bottom structures.

Compared with “h” SL-Engagement, assembling “a” SL-
Engagement is not block by block(Fig.5), and the assembly
direction is a constant rotation of 90 degrees. A pair of
two blocks should be first combined together and connected
with other pairs. In this case, as eight SL-Blocks will be

Fig. 4. Assembly sequences of the engagement “hhhh” and “aaaa”

Fig. 5. Assembly sequences of the engagement “hhhdddhddd”

connected into a closed structure, the maximum number of
SL-Engagements is limited to four.

By assembling the SL Blocks with the engagement “hhhd-
ddhddd”(Fig.5), due to the overhanging structure, it requires
support during the assembly process. Otherwise, the structure
will lose its stable equilibrium.

Fig. 6. Assembly sequences of the engagement “hsshhaht”

In this more complicated combination with the engage-
ment “hsshhaht”(Fig.6). Due to errors caused by the pro-
duction of blocks as well as the friction between different
blocks caused by material and unoptimized dimensions, it is
sometimes hard to insert blocks into the group.

All the cases above face the problem of irregular assembly
sequences. When it comes to complex assembly situations,
the sequence of assembly needs to be known in advance,
which is time-consuming. In some cases, two blocks need
to be combined in advance to complete the group assembly
sequence. Therefore, assembly sequence is the first issue that
should be focused on in the current study.

C. Robotic Assembly in Dry-jointed Construction
Besides the combinatorial design of building elements,

discrete automation also requires robotic systems that can
automate task and motion planning(TAMP), determining the
sequence of assembly actions and the execution trajectories.
The ideal speculations of the simulation of assembling ideal
geometries and material properties require optimizations
based on the feedback from the actual, physical situation.



Regarding the combination of two aspects, Tessmann and
Rossi(2019) developed an approach to continuously check
the aggregation of modules during the design process for
construction issues like collision or instability[7]. Zhang et
al. presented an algorithm automating the generation of large
structures from 3D-jigsaw-like interlocking blocks. More-
over, they developed a dual-robot system that can enable par-
allel assembly on the same structure made of 48 blocks[8].
Roberto et al. proposed a framework for the design and
assembly automation of layered timber structures, establish-
ing the bi-directional communication channel between the
simulation and the actual process.[9] Bastian et al. proposed
an approach to generate a set of modules. The zick zack
modules, which are designed with self-calibrating properties,
to be suitable for robotic assembly, are digitally fabricated
into cantilevered structures[10]. It shows the perspective, that
building structures can be disassembled and the building
elements can be reused.

III. DIGITAL DESIGN FRAMEWORK FOR ROBOT-BASED
ASSEMBLY

A. Assembly/Disassembly sequences of SL-Blocks
Different combinations of SL-Block’s engagements can

generate an infinite number of aggregation variations. Due
to the complexity of the structure, it is necessary to have
assembly instructions consisting of sequences and directions.
SL-Block’s engagements can’t provide the assembly infor-
mation because, in many cases, following the SL-Block’s
engagements order leads to a dead end (i.e., blocks without
any degree of freedom, Fig. 7). The situation is even more
complex in the cantilever structures (Fig. 5) that need to
have a support structure during the assembly. This chapter
will explain our approach to solving this problem.

Fig. 7. Voxel based representation of SL-Blocks

A recursive algorithm is used to search through aggrega-
tion and find the possible removable blocks in each iteration
until no blocks are remaining. In each iteration, removable
blocks are added to a disassembly sequence list. This pro-
cess allows for disassembling the remaining blocks in the
subsequent iteration by opening the space and changing the
degrees of freedom. Reversing the disassembly sequence list
provides the assembly sequences.

To apply this algorithm, we need to answer one crucial
question. How can we find the degrees of freedom of each
block? For each block, there are several blockees in each di-
rection. There are two approaches to finding blockees—first,

the geometrical method, e.g., finding the intersection between
geometries using 3D modeling libraries. Second, converting
block’s geometries into calculable data, e.g., numbers. Since
the first approach increases the calculation time, we follow
the second approach.

Each SL-Block consists of eight cubes that can be trans-
lated into voxels and the center points of each voxel (Fig.
8). These voxel-based geometries interact with each other
in a voxelized environment. Therefore, we can save all
data regarding aggregation geometries and the assembly
environment with X, Y, and Z coordinate lists.

Fig. 8. Voxel-based representation of SL-Blocks (SL-Block = [ [1, -1, 2],
[1, -1, 1], [1,0,1], [1,0,0], [0,0,0], [0,1,0], [0,2,0], [0,2,1] ])

1) Object-Oriented Programming: To calculate the bloc-
kees around each block, a list of six possible directions for
assembling SL-Block is needed:

• DirectionsNames = [z, -z, x, -x, y, -y].
• Directions = [(0, 0, 1), (0, 0, -1), (1, 0, 0), (-1, 0, 0),

(0, 1, 0), (0, -1, 0)].
A for loop is iterating in each direction and moving the SL-

Blocks voxel points to check if there are any other obstacles
(voxel points of other blocks or assembly environment).
Adding the obstacles into a list creates Blockees lists as
below (Fig. 9 and Fig. 13):

• BlockeesList = [
[index number of Blockees in Z direction or assembly

environment],
[index number of Blockees in -Z direction or assembly

environment],
[index number of Blockees in X direction or assembly

environment],
[index number of Blockees in -X direction or assembly

environment],
[index number of Blockees in Y direction or assembly

environment],
[index number of Blockees in -Y direction or assembly

environment]
]

We offer to calculate and save all the necessary data
initially for later use to decrease the calculation time. So,
the mentioned process can be done in another way. Voxel



Fig. 9. Representation of Blockees in each direction

points of each SL-Block are moved in different directions
to create directional checking point lists (Fig. 10). Then we
iterate each point of each list to check for any obstacles in
that direction and save the final list.

Fig. 10. Directional checking point lists

We changed the SL-Blocks geometry to SL-Blocks python
objects consisting of the following data (Fig. 11): Index,
Geometry, Central Line, Color, Voxel points, Directional
checking points, Directional checking points, Blockees list
and Geometrical Center Point.

2) Recursive algorithm for finding assembly/disassembly

sequences: Inspired by Song’s recursive algorithm to design
3D interlocking puzzles [11] and Blocking Graphs by Wang
[12], we developed an algorithm to recursively determine the
assembly sequences and directions of an existing interlocking
SL-Block structure. After generating a list of SL-Blocks
objects, we can start determining disassembly sequences and
directions by running the recursive algorithm. There is a
main for loop in each recursive level to iterate on each SL-
Blocks object, and another for loop in each object iterates
on directional checking point lists. Finally, the algorithm
compares the checking point’s X, Y, and Z coordinates to find
a match in other blocks or assembly environments. When
the coordinates of blocks’ voxel center points match with

Fig. 11. Representation of SL-Block object’s variables

the checking points, it means the block is an obstacle in
the corresponding direction for the block which we want to
move. Otherwise, the block is free in the direction. We can
disassemble the block in the checking direction if there is
no match (Fig. 12, left image).

In that case, the free block’s object and moving direction
are added to the disassembly list and removed from the main
aggregation list. In the end, the list of SL-Blocks objects
needs an update to remove the index number of the free
block from all of the blockees lists, i.e., through this process,
the aggregation space opens for the upcoming recursion.

• SL-Block. Index = 0
• SL-Block . Bloockes List = [

Z direction = [] (Free),
-Z direction = [3, 2, 1],
X direction = [8, 7, 2, 1],
-X direction = [2],
Y direction = [1, 4, 2, 5],
-Y direction = [1]

]

Fig. 12. Determining the disassembly directions

If there is no single block with a free direction to move (as-
semble/ disassemble), it is necessary to move several blocks
together. Based on SL-Blocks’ geometry and engagement
rules, two pairs of blocks with a specific configuration can
move together (Fig. 12, right image). We can find pairs of
blocks that can move together by comparing the index of
block and indexes of blockees in different directions. For
example, in Fig. 12, the middle image represents a pair of
blocks that can move together in the Z direction.

There are two conditions to detect movable pairs of blocks:
if both blocks have on blockee in the same direction. And if
the index number of one block is equal to the index number
of the blockee of the other block, vice versa (Fig. 13). A pair



of movable blocks are moved to the disassembly list. And
the list of SL-Blocks objects is updated as explained before.

Fig. 13. Removable pairs of Blocks

The algorithm is recursively repeating until there are no
blocks in the aggregation list. By reversing the disassembly
list, the assembly list is provided (Fig. 14).

Fig. 14. Assembly Sequences of the engagement “hasthhhhttttsssss”

B. Grasshopper Setup using Plugin-Robots
The Robots plugin in the Grasshopper is used to pro-

gram and visualize the UR10 robotic arm. Plane is used
in grasshopper to generate motion trajectory for robotic
arm. A plane consists of coordinates of position and di-
rection(Fig.15, left image), which guides the robotic arm
to an exact position and orient the gripper to a specific
direction. By inputting a series of planes in grasshopper,
the corresponding trajectory is automatically generated by
plugin-Robots(Fig.15, right image).

Fig. 15. Explanation of Plane and Trajectory

First, by defining the Starting point, the gripper is set to
a proper position, which is ready for starting the assembly

process. The second plane is set to the Gripper point, where
the gripper is guided to the gripping position of SL-Block.
After the gripper is closed to grip the block, it will be
guided to the third plane named as Start of transporting
point. Subsequently, the block is transported to the End of
transporting point. A conditional statement is implemented
after that, if the direction of assembly is in the Z direction
or not. When it is in the Z direction(Fig.16), the Start of the
placing point and the End of the placing point are the same
point, the block can be released simply there. If the direction
of assembly is not in the Z direction(Fig.17), the block will
be taken to the Start of the placing point and then to the
End of the placing point and be released at Release point.
It means the block in this situation will be placed into the
aggregation from the side but not in the Z direction. And
the gripper will be guided to Start of the reset position and
ready for the next iteration.

Fig. 16. Direction of assembly is in Z direction

Fig. 17. Direction of assembly is not in Z direction

After defining the trajectory, we need to program the
gripper to open and close in the proper position and set
the movement speed of the robotic arm in each movement.
Following is the final program of the robotic arm:

• Starting point - Gripper Open - Speed 100
• Gripping point - Gripper Open



• Gripping point - Gripper Close - Speed 50
• Start of transporting point - Speed 200
• End of transporting point - Speed 30

• If the direction of assembly is in the Z direction:
- Start of the placing point

• If the direction of assembly is not in the Z direction:
- Release point - Speed 50
- End of the placing point - Speed 100

• else:
- Release point - Speed 100
- End Position - Speed 200
There are four positions and combinations of blocks in the

feeding section(Fig.18), and based on the assembly position
and direction, the robotic arm will pick the proper block.

Fig. 18. Four examples of assembly sequences for different feeding
positions and block directions

IV. EXPERIMENTS AND EVALUATION

According to the assembly sequence generated by the
recursive algorithm, we prepared the planes in grasshopper
in advance. By applying the plane to Plugin-Robots, the
trajectories are generated to execute the robotic assembly
in the actual environment. At the start of assembly, we
pre-placed the blocks manually on the table in a proper
position(Fig.19). Afterwards, we programmed in grasshopper
to execute assembly step by step.

During the assembly process, collision between blocks as
well as gripper and blocks is a big issue. On the one hand,
friction between blocks will cause displacement of blocks,
which can lead to a collapse of the assembly sequence.
And the robotic system will be interrupted due to the
collision. In order to avoid these unexpected situations, it is
crucial to fix blocks to ensure the stability of the assembly
system. Therefore, we developed single cubes, which can
be inserted and fixed with the operating table, to fix the
position of SL-Blocks(Fig.19 and Fig.20 right image). On
the other hand, the size of the SL-Block is another important

Fig. 19. Robot assembly process with shape-optimized SL-Blocks under
the assistance of human and support cubes

parameter affecting the assembly. Blocks with absolutely
precise dimensions (30 mm*30 mm*30 mm/cube) are subject
to collisions due to friction. Consequently, we optimized the
shape of SL-Block(Fig.20), such as chamfering the edges and
adjusting the size to add tolerance between neighbor blocks,
to reduce the friction, which ensures that SL-Block can be
assembled smoothly without collision.

Fig. 20. Shape Optimization of SL-Block

V. CONCLUSION AND OUTLOOK

In this work, we developed the recursive algorithm to au-
tomate the generation of assembly sequences of SL-Blocks.
Robotic simulation and physical assembly are programmed
with the help of Grasshopper Plugin-Robots. However,
robotic assembly in the actual environment will introduce
much more issues than the simulation process. (e.g. the
tolerance problem, the interruption of the robotic system
arising by collision, the check of stability when assembling
cantilevering structures)

In the next step, we should continue to consider the
optimization of the geometrical form of SL-Blocks, as well
as materiality to avoid collisions during assembly. However,
collisions or accidents during assembly are inevitable in the
real world. Our current experiment with pre-programmed
robots is not autonomous in solving problems, requiring a
combination between robot assembly sequences and machine
learning, and object tracking in future research.

As such, we plan to integrate the grasshopper with ROS,
while the grasshopper is pre-programmed and not able to get
an approach to machine learning. We will use COMPAS,
which is an interface for communicating grasshopper and
ROS. Additionally, several parts require further development



in the assembly/ disassembly sequence determining algo-
rithm. First, generating supports with a robotic trajectory
for automatically rearranging them based on the progress
in assembling main Blocks. Second, consider the position
of the robotic picking point on SL-Blocks and choose the
assembly/disassembly direction to avoid collisions between
the gripper and the existing structure.

REFERENCES

[1] Bonwetsch T, Kobel D, Gramazio F, Kohler M (2006) The informed
wall: applying additive digital fabrication techniques on architecture.
In: ACADIA 2006 international conference, pp 489–495.

[2] Dörfer K, Sandy T, Giftthaler M, Gramazio F, Kohler M, Buchli J
(2016) Mobile robotic brickwork: automation of a discrete robotic
fabrication process using an autonomous mobile robot. Robotic fabri-
cation in architecture, at and design 2016. Springer, Berlin.

[3] Parascho, S., Han, I.X., Walker, S. et al. Robotic vault: a cooperative
robotic assembly method for brick vault construction. Constr Robot
4, 117–126 (2020).

[4] Felbrich B, Prado M, Saffarian S, et al. Multi-machine fabrication: an
integrative design process utilising an autonomous UAV and industrial
robots for the fabrication of long-span composite structures[J]. 2017.

[5] Retsin G. Discrete assembly and digital materials in architecture[J].
2016.

[6] Shih S G. The art and mathematics of self-interlocking SL
blocks[C]//Proceedings of Bridges 2018: Mathematics, Art, Music,
Architecture, Education, Culture. 2018: 107-114.

[7] Tessmann O, Rossi A. Geometry as interface: parametric and com-
binatorial topological interlocking assemblies[J]. Journal of Applied
Mechanics, 2019, 86(11).

[8] Zhang Y, Koga Y, Balkcom D. Interlocking Block Assembly With
Robots[J]. IEEE Transactions on Automation Science and Engineer-
ing, 2021, 18(3): 902-916.

[9] Naboni R, Kunic A, Kramberger A, et al. Design, simulation and
robotic assembly of reversible timber structures[J]. Construction
Robotics, 2021, 5(1): 13-22.

[10] Bastian W, Sequential Modular Assembly: Robotic Assembly
of Cantilevering Structures through Differentiated Load Modules,
CAADRIA, 2020

[11] Song P, Fu C W, Cohen-Or D. Recursive interlocking puzzles[J]. ACM
Transactions on Graphics (TOG), 2012, 31(6): 1-10.

[12] Wang Z, Song P, Pauly M. DESIA: A general framework for designing
interlocking assemblies[J]. ACM Transactions on Graphics (TOG),
2018, 37(6): 1-14.


