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Abstract— With the increasing pace of automation, mod-
ern robotic systems need to act in stochastic, non-stationary,
partially observable environments. A range of algorithms for
finding parameterized policies that optimize for long-term
average performance have been proposed in the past. However,
the majority of the proposed approaches does not explicitly
take into account the variability of the performance metric,
which may lead to finding policies that although performing
well on average, can perform spectacularly bad in a particular
run or over a period of time. To address this shortcoming, we
study an approach to policy optimization that explicitly takes
into account higher order statistics of the reward function. In
this paper, we extend policy gradient methods to include the
entropic risk measure in the objective function and evaluate
their performance in simulation experiments and on a real-
robot task of learning a hitting motion in robot badminton.

I. INTRODUCTION

Applying reinforcement learning (RL) to robotics is noto-
riously hard due to the curse of dimensionality [1]. Robots
operate in continuous state-action spaces and visiting every
state quickly becomes infeasible. Therefore, function approx-
imation has become essential to limit the number of param-
eters that need to be learned. Policy search methods, that
employ pre-structured parameterized policies to deal with
continuous action spaces, have been successfully applied
in robotics [2]. These methods include policy gradient [3],
[4], natural policy gradient [5], expectation maximization
(EM) policy search [6], [7], and information theoretic ap-
proaches [8].

A common feature of the aforementioned policy search
methods is that they all aim to maximize the expected reward.
Therefore, they do not take into account the variability and
uncertainty of the performance measure. However, robotic
systems need to act in stochastic, non-stationary, partially
observable environments. To account for these challenges,
the objective function should include an additional variance
related criteria. This paper contributes to the field of rein-
forcement learning for robotics by extending the range of
applicability of policy search methods to problems with risk-
sensitive optimization criteria, where risk is given by the
entropic risk measure [9].

II. RELATED WORK

Howard and Matheson [10] along with Jacobson [11] were
the first to consider risk-sensitivity in optimal control both
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in discrete and continuous settings. Jacobson attempted to
solve the linear exponential quadratic Gaussian problem that
is analogous to the linear quadratic Gaussian but with an
exponentially transformed quadratic cost. Later, connections
between risk-sensitive optimal control and H∞ theory [12] as
well as differential games [13] were found.

In the recent years, there have been some advances in
risk-sensitive policy search using policy gradients. In [14],
a policy gradient algorithm was developed that accounted
for the variance in the objective either through a penalty
or as a constraint. The Conditional value at risk criterion
was combined with policy gradients in [15] and [16]. In this
paper, we study properties of policy gradient methods with
the entropic risk measure in the objective. Employing this
particular type of risk measure reveals tight links to popular
policy search algorithms, such as reward weighted regression
(RWR) [7] and relative entropy policy search (REPS) [8].

III. BACKGROUND AND NOTATION

In this section, we provide the necessary background
information on risk measures and policy search methods.

A. Risk-Sensitive Objectives and Measures

The goal of an RL agent is to learn a mapping from states
to actions that maximizes a performance measure [17]. In
the episodic RL setting [2], the episode return R (also called
reward) is a random variable, and the standard objective is
to maximize the expected return. Our approach considers the
case where the performance measure is risk-sensitive. That is,
instead of optimizing for the long-term system performance
we account for higher order moments of R by performing a
risk-sensitive transformation of the return.

Risk-sensitivity can be described in terms of utility [18].
Namely, the utility function defines a transformation of the
reward U(R). The performance measure is then given by the
expected utility E[U(R)]. Clearly, depending on the choice
of function U(R), different behaviors will arise. A special
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Fig. 1: Robot badminton evaluation task.



choice of the utility function, which attracted a lot of interest
in various fields [18], is given by the exponential function

U(R) = exp(−γR) (1)

with a risk-sensitivity factor γ ∈ R. Depending on the sign
of γ , the expected utility based on (1) needs to be either
minimized or maximized [19], as explained in the following.

For a positive γ > 0, the expectation E[U(R)] is a convex
decreasing function of R, therefore it needs to be minimized
in order to maximize the reward. In this case, a certain
expected reward with lower variance is favored, and the
utility function is called risk-averse. On the other hand,
when γ < 0, the expected utility needs to be maximized,
which leads to favoring high-variance rewards. In this case
the utility is called risk-seeking.

To avoid confusion, both cases γ > 0 and γ < 0 are
often treated at once through the certainty-equivalent expec-
tation [18] which always has to be maximized,

Jrisk(R) =U−1E[U(R)] =−1
γ

logE[exp(−γR)]. (2)

When γ > 0, this quantity is called the entropic risk mea-
sure [9]. We slightly abuse terminology and refer to it as the
entropic risk measure in the risk-seeking case γ < 0 too.

B. Policy Search

Consider the finite-horizon episodic RL setting [17]. At
each time step t, an agent takes action at depending on the
current state st by sampling it from a policy πθ = π(a|s,θ)
parameterized by θ . Subsequently, the agent transitions into
the next state st+1 with probability P(st+1|st ,at). Real-
valued reward r(st ,at) is collected at each time-step. The
goal is to find a policy that maximizes the expected return

Jθ =
∫

pθ (τ)R(τ)dτ (3)

where τ = [s0,a0,s1,a1, ...] is a trajectory, pθ (τ) is a dis-
tribution over trajectories induced by policy πθ , and the
cumulative reward is defined as R(τ) = ∑T

t=0 r(st ,at).
Following common practice of policy search methods [2],

we do not learn parameters θ directly, but rather learn an
upper-level policy πω (θ) that selects the parameters of the
lower-level policy πθ . Typically, the upper-level policy is
modeled as a Gaussian distribution θ ∼ N (µθ ,Σθ ). By
defining the distribution over θ , we can explore directly in
the parameter space. The resulting optimization problem for
learning the upper-level policy is given by

maximize
ω

J(ω) =
∫

πω (θ)
∫

pθ (τ)R(τ)dτ dθ (4)

=
∫

πω (θ)R(θ)dθ = Eθ∼πω
[R(θ)].

Mind the common abuse of notation: R(θ) is not the same
function as R(τ), although they are related. It is important
to note that in the episodic scenario, the low-level policy
return R(θ) is not limited to be the cumulative reward
function but can be any function computed over rollouts [2].

IV. RISK-SENSITIVE POLICY SEARCH

Expected return (4) is the prime optimization objective for
the majority of policy search methods [4], [5], [7], [8], [20].
To introduce risk-sensitivity into policy search, we propose
to optimize the entropic risk-measure (2) instead. Rewriting
it for the parameters ω of the upper-level policy yields

Jγ(ω) =−1
γ

logEθ∼πω
[exp(−γR(θ))]. (5)

In the following, policy search methods that maximize the
objective (5) are described and studied. First, a risk-sensitive
PG algorithm is derived in Sec. IV-A. After that, a connection
to the REPS algorithm [8] is established in Sec. IV-C.

A. Risk-Sensitive Policy Gradient

As the name suggests [2], policy gradient methods aim
to maximize the objective J(ω) by gradient ascent on the
policy parameters

ωk+1 = ωk +α∇J(ωk).

The likelihood ratio trick is commonly invoked to derive an
estimate of the gradient. For the risk-sensitive objective (5),
the likelihood ratio gradient yields

∇Jγ = Eθ∼πω

[
∇ logπω (θ)

{
−1

γ
e−γ(R(θ)−ψγ (πω ))

}]
(6)

where ψγ(πω ) = −γ−1 logEπω
[exp(−γR)] is the log-

partition function [21]. Expression (6) for the risk-sensitive
gradient plays a fundamental role in our further discussion
and we will often refer to it in the following.

The first point to make about (6) is the relation between the
risk-sensitive policy gradient and the standard, risk-neutral
one. Observe from (5) that the risk-sensitive objective Jγ(ω)
becomes risk-neutral for γ→ 0. That is, by Taylor expansion,
one can show that Jγ → J = E[R]. Surprisingly, however, the
gradient of the risk-sensitive objective does not correspond
to the vanilla PG ∇J = E[∇ logπ ·R] but instead to the PG
with an average reward baseline

∇Jγ −−→
γ→0

E[∇ logπ · (R−E[R])]. (7)

The log-partition function ψγ(πω ) plays the role of the risk-
sensitive baseline, since ψγ → E[R] for γ → 0. Therefore,
risk-sensitive PG (6) automatically has lower variance com-
pared to vanilla PG due to the presence of the baseline.

Regarding computational aspects, expectations in (6) can
be estimated by averages Eθ∼πω

[ f (θ)] = N−1 ∑N
i=1 f (θi).

Furthermore, we can view (6) as a risk-neutral PG for
an exponentially transformed reward function given by the
expression in curly braces in (6). Therefore, along with the
multiplicative baseline ψγ(ω), the usual additive baseline can
also be subtracted to further reduce variance. Moreover, stan-
dard algorithms, such as natural policy gradient (NPG) [5]
and proximal policy optimization (PPO) [22], can be directly
applied to optimize the risk-sensitive objective (5) thanks to
the form (6) of the risk-sensitive policy gradient.
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Fig. 2: Comparison of policy gradient directions on a simple linear system with risk-neutral, risk-averse, and risk-seeking
objectives. Policy mean and variance are parameterized as µθ = ω1 and σθ = exp(ω2). Interestingly, risk-seeking policy
gradient (PG) may even point away from the optimum if it values uncertainty more than the expected return (see red circle).

B. Parameter Exploration with Risk-Sensitivity

Exploration noise and reward variability may come in
conflict within the risk-sensitive optimization framework.
In episodic policy search [2], exploration is achieved by
sampling parameters θ of a lower-level policy πθ from a
stochastic upper-level policy πω = N (µθ ,σ

2
θ
). Variance of

the upper-level policy determines the granularity at which
parameter space is queried. At the same time, it directly
affects variability of the observed rewards. Therefore, reward
variability gets entangled with exploration noise.

We proceed to examine the following one-dimensional toy
problem

maximize
µθ ,σ

2
θ

− 1
γ

logEθ∼N (µθ ,σ
2
θ )

[
eγ|θ |] . (8)

Policy gradients of the objective (8), evaluated on a grid of
parameter values µθ and σθ , are displayed in Fig. 2. A risk-
neutral (γ = 0), risk-averse (γ > 0), and risk-seeking (γ < 0)
scenarios are shown. Covariant parameterization [23] of the
Gaussian density was used, i.e., µθ = ω1 and σθ = exp(ω2);
therefore, the displayed gradient directions coincide with the
natural gradient directions for this problem. A crucial obser-
vation from Fig. 2 is that a risk-seeking policy update may
increase exploration variance, whereas a risk-averse update
always decreases it. In practical terms, risk-aversion may lead
to premature convergence due to insufficient exploration.
Optimism, on the other hand, may result in a better coverage
of the search space by fostering exploration.

C. Connection to Relative Entropy Policy Search

In Sec. IV-A, we established a remarkable fact that risk-
sensitive PG (6) yields a baseline-corrected gradient estima-
tor (7) in the risk-neutral limit γ → 0. It turns out, another
important property of the gradient estimator (6) can be
revealed by recognizing it as the gradient of the maximum
likelihood (ML) policy update in REPS [8]. This renders our
risk-sensitive policy update optimal in a certain information-
theoretic sense, made precise below.

REPS belongs to the category of information-theoretic
policy search approaches [2]. This class of methods follows
the idea of limiting the loss of information in-between policy
updates. The Kullback-Leibler (KL) divergence is commonly
used as the measure of information loss. REPS can be framed
as an EM-like algorithm, with the parameter update step

given by the weighted ML fit [8]. At each iteration, the
following optimization problem gets solved

maximize
π

∫
π(θ)R(θ)dθ

subject to KL(π(θ)‖q(θ))≤ ε,∫
π(θ)dθ = 1.

(9)

Conveniently, a closed-form solution can be found

π(θ) = q(θ)exp
(

R(θ)−ψ−1/η(q)
η

)
(10)

as a function of the Lagrange multiplier η > 0, which corre-
sponds to the KL-bound in (9). Note the appearance of the
log-partition function again, ψ−1/η(q) =η logEq[exp(R/η)].
The optimal value of η is found by dual optimization

η
? = argmin

η>0

{
ηε +ψ−1/η(q)

}
. (11)

Since only black box access to function R(θ) is assumed,
Eq. (10) does not yield the new policy π as an explicit
function of θ but rather only provides samples from it.

A parametric policy πω (θ) is fitted to the samples ob-
tained from (10) by moment projection [2]

minimize
ω

KL(π(θ)‖πω (θ)) (12)

∝ maximize
ω

Eθ∼q

[
logπω (θ)exp

(
R(θ)−ψ−1/η(q)

η

)]
.

The gradient of (12) serves as the link to the risk-sensitive
policy gradient (6). Indeed, compare

∇ω KL = Eθ∼q

[
∇ logπω (θ)

{
eη−1(R(θ)−ψ−1/η (q))

}]
(13)

to the risk-sensitive gradient (6). The correspondence is
established by identifying γ = −1/η and noting that the
argument in the curly braces in (13) is proportional to the
one in (6) up to a scaling factor η .

The key difference between (6) and (13) is the sampling
distribution. Whereas the risk-sensitive policy gradient (6)
requires samples from πω , an auxiliary distribution q is
used in REPS. In theory, it means that REPS can perform
several gradient update steps according to (13) with the
same samples from q, while the risk-sensitive gradient (6)
requires gathering new data after each parameter update.
However, in practice, optimizing the ML objective (12) till



convergence is problematic due to the finite sample size
and the associated overfitting problems [2]. That is why
alternatives to the policy update objective (12) are often used,
such as performing the information projection instead of the
moment projection [24], or constraining the policy fitting
step with another KL divergence [25], which can be viewed
as a form of maximum a posteriori estimation [26].

Thus, the policy update of REPS (12) can be identified
with the risk-sensitive update (6) under the assumption that
the information loss bound ε is small, such that q≈ πω and
one step in the direction of the gradient (13) solves (12).
Importantly, though, the temperature parameter η = −1/γ

gets optimized in REPS and thus changes with iterations,
whereas when applying (6), it has to be scheduled manually.

Another interesting distinction between risk-sensitive opti-
mization and REPS stems from the fact that the temperature
parameter η must be positive in REPS. This means γ < 0,
or risk-seeking optimization. Thus, REPS is risk-seeking by
construction, unlike the risk-sensitive PG (6) which can also
be risk-averse.

V. EXPERIMENTS

To analyze the properties of the risk-sensitive policy gra-
dient algorithm of Sec. IV-A, we first consider a prototypical
risk-sensitive portfolio optimization problem to establish the
validity of our approach, then we proceed to apply the risk-
sensitive policy gradient method to a toy dynamical system
that models a part of our robot badminton setup, and finally,
we report the results obtained by applying the algorithm to
a real-robot task of learning to return a shuttlecock in the
game of badminton with the Barrett WAM robot.

A. Risk-Sensitive Portfolio Management

A basic problem of portfolio optimization can be described
as follows [27]. An individual wants to invest a unit of
capital in N assets with the goal of making profit. The
distribution of capital over assets x is called portfolio; by
definition, portfolio is normalized, ∑N

i=1 xi = 1. The returns
of various assets r are random variables and are assumed
to be Gaussian distributed r ∼N (µr,Σr). Then, return of
a portfolio x is a random variable R ∼ N (µT

r x,xTΣrx).
Depending on the definition of ‘making profit’, different
objective functions can be constructed. We explore the notion
of optimality with respect to the exponential risk measure (2),
which allows for controlling the mean-variance trade-off (and
higher moments) by varying the risk-sensitivity factor γ .

To apply the risk-sensitive policy gradient approach from
Sec. IV-A, a suitable policy must be defined. We let the
lower-level policy output a portfolio x, parameterized by the
softmax x = exp(θ − log(1T exp(θ))). Parameters θ ∈RN of
the lower-level policy are sampled from a Gaussian upper-
level policy πω (θ) = N (θ |µθ ,Σθ ) with ω = {µθ ,Σθ }.

In simulation, the number of assets is set to N = 30. Pa-
rameters of the asset return distribution are sampled evenly in
the interval µr ∈ [4,0.5], σ r ∈ [2,0.01], with Σr = diag(σ2

r).
This distribution of parameters can be interpreted as follows.
Returns with a high expected value are accompanied with
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Fig. 3: Return distributions of optimal portfolios found with
risk-sensitive policy gradient (6) for γ ∈ {0.1,1,5,10}. The
higher the risk-aversion factor γ > 0, the lower the variance
of the returns; however, the mean is also lower in this case.

higher risks, whereas lower risk returns yield lower mean
reward. When comparing two policies π1 and π2 correspond-
ing to risk factors γ1 > γ2, policy π1 will prefer lower risk
assets and yield lower return on average than π2.

Return distributions for various values of the risk-aversion
factor γ are shown in Fir. 3. Simulation was run over 10
random seeds with 1000 samples per trial. Results confirm
the theory. A more pessimistic objective (higher γ) leads to
a narrow reward distribution with lower mean, implying a
smaller but more consistent reward. Smaller values of γ , and
therefore more risk-neutral objectives, on the other hand, lead
to an asset distribution that almost entirely aims to maximize
the expected reward not taking the variance into account.

B. Toy Badminton System

We consider a simplified scenario of a robot learning to
return a shuttlecock in the game of badminton. We assume
a two dimensional world and a ball following a parabolic
flight trajectory. The goal is to determine the hitting velocity
of the racket which results in the ball arriving at a desired
target location. The hypothesis is that for different values
of the risk-aversion factor γ , the agent will learn different
strategies: either aggressive hits but with high variability,
or safe returns however with smaller expected reward. The
problem is specified as follows

minimize
ω

1
γ

logE [exp(γ|xdes− x1)|)] (14)

subject to x1 = x0 + vx,0

vy,0

g
+

√
v2

y,0

g2 +
2y0

g

 .

The initial position of the ball (x0,y0) is assumed known.
Due to a perfectly elastic collision, the initial velocity of
the ball equals the velocity of the racket. Therefore, we
treat the initial ball velocity as the control variable. Keeping
in mind that this model should resemble the real-robot
setup considered later, we add a bit of noise to the initial
ball velocity, such that (vx,0 vy,0) = v0 ∼N (u,Σv0) with u
being our control variable. Constant g is the gravitational
constant, and the equality constraint in (14) is derived from
the equations of motion. Optimization variable ω = {µu,Σu}
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Fig. 4: Simulation results on the toy badminton system with
a risk-sensitive objective optimized for varying risk factor
values γ ∈±{0.01,0.1,1,5,10,100,1000}. System noises are
fixed σvx,0 = σvx,0 = 0.6 and the initial position is x0 = y0 = 0.

contains the parameters of the higher-level policy. As usually,
we employ a Gaussian policy u∼ πω (u) = N (u|µu,Σu).

Evaluation results on this simulated problem are shown
in Fig. 4. Optimization was run over a range of values of
γ with 1000 samples per trial, averaged over 10 random
seeds. Error e is defined as e = xdes− x1, the cost is C = |e|
and v is the initial speed. Several trends can be observed in
Fig. 4. First, variance in the landing location x1 is inversely
proportional to risk-aversion: when risk-aversion increases,
variance in the landing location decreases. However, such a
clear trend cannot be observed in the variance of the cost
function. Second, from the plot of the final position error e,
we can read that both risk-seeking and risk-averse policies
corresponding to extreme values of γ fail at returning the ball
to the desired target. This effect is due to the dual nature of
the objective function which trades mean performance agains
variability. Extreme risk-averse policies tend to undershoot
the target, while extreme risk-seeking ones tend to overshoot
it. The same conclusion can be made based on the plot of
velocities v. Risk-averse, pessimistic policies favor smaller
initial velocities. In contrast, risk-seeking policies chose
larger initial velocities. Third, variance bars are larger for
large negative values of γ . This effect is due to objective (14)
becoming very sharp, close to a delta function, which nega-
tively affects optimization.

C. Robot Badminton

Finally, we proceed to apply the risk-sensitive policy
gradient on a real robotic system consisting of a Barrett
WAM supplied with an optical tracking setup and equipped
with a badminton racket (see Fig. 1). The goal is to learn
movement primitives of different levels of riskiness: on the
scale between an aggressive smash and a defensive backhand.

To represent movements, we encode them using proba-
bilistic movement primitives (ProMPs) [28]. Since a ProMP
is given by a distribution over trajectories, generalization is

(a) rest (b) hit (c) swing (d) retract

Fig. 5: Phases of the hitting movement of the Barrett WAM.

accomplished through probabilistic conditioning, and trajec-
tories can be shaped as desired by including via-points. We
utilize these properties of ProMPs to learn hitting movements
encoded by a small set of meta-parameters [20].

The meta parameters in our case encode a via-point
defined by joint positions and velocities of the robot arm at a
desired hitting time, θ = [qT

t,hit q̇T
t,hit]

T. Using the extended
Kalman filter (EKF), we process shuttlecock observations
and predict its future state s = [xT

b ẋT
b ]

T at the interception
plane. Control policy πω (θ |s) = N (θ |MTφ(s),Σθ ) maps
state s to meta-parameters θ , where random Fourier fea-
tures φ(s) are tuned as described in [29]. Reward func-
tion R = −∑i∈x,y,z |xi,ball− xi,racket| − rtarget is based on two
terms: it encourages contact between the racket and the
shuttlecock and it provides a bonus rtarget if the shuttlecock
reaches the desired target afterwards.

This problem falls into the realm of contextual policy
search [2]. Therefore, we state the optimization objective as
follows

maximize
ω

− 1
γ

log
∫

µ(s)
∫

πω (θ |s)e−γR(θ ,s) dθ ds, (15)

where µ(s) is the distribution over contexts s, and R(θ ,s) is
the reward given for the combination of s and θ .

Returning a shuttlecock in badminton to a desired location
requires a high degree of precision. In our experiments,
we had to relax the requirements due to constraints of the
hardware. We only optimized for returning the shuttlecock
at all and forced the projectile to follow the same trajectory
for every iteration and always hit the same point at the
interception plane.
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Fig. 6: The upper left plot shows the convergence curves
for different values of γ ≥ 0. The other three plots compare
performance of the final learned policies in terms of expected
return E[R], variance Var[R], and hitting velocity vhit.



Evaluation results are shown in Fig. 6. Policies are op-
timized in simulation using 35 roll-outs per iteration over
150 iterations and experiments are repeated over 5 random
seeds. Only risk-sensitive policies are shown, but it is noted
that risk-seeking also yielded converging results. Although
the convergence plots for positive values of γ look noisier
(upper left plot), the final performance achieved by the
policies trained with non-zero risk aversion (e.g., γ = 1 or
γ = 2) is higher in terms of the expected reward (upper right
plot). It is hard to make a conclusive judgement about the
variance (lower left plot) due to high variability in the results.
Surprisingly, the hitting velocity vhit is actually higher for
more risk-averse policies. This observation stands in contrast
to what we had in the toy badminton model, where less
aggressive policies favored smaller velocities.

Unfortunately, with our current setup, we were not able
to achieve the goal of training skills of varying degree
of riskiness. Nevertheless, we wanted to test the limits of
achievable performance in the badminton task following a
risk-neutral objective. The interception of the shuttlecock and
hitting plane was enlarged to cover an area of approximately
1m2. We carried out an extended learning trial in simulation
with 100 roll-outs per iteration over 800 iterations. The best
risk-neutral controller could return 95% of the served balls.
The learned policy could be transferred to the real robot and
was able to successfully return a shuttle cock. An example
hitting movement is shown in Fig. 5.

VI. CONCLUSION

The entropic risk measure was considered as the opti-
mization objective for policy gradient methods. By analyzing
the exact form of its gradient, we found that it is related
to the standard policy gradient but inherently incorporates
a baseline. Furthermore, risk-sensitive policy update was
shown to correspond to a certain limiting case of the policy
update in REPS. Exploring this connection to information-
theoretic methods appears to be a fruitful direction for
future work. Entanglement between exploration variance
and inherent system variability was found to be a strong
limiting factor. Approaches for separating these two sources
of uncertainty need to be searched for.

To reveal strengths and weaknesses of risk-sensitive op-
timization in a real robotic context, we applied our policy
gradient method to the problem of learning risk-sensitive
movement primitives in a badminton task. In a simplified
model, we observed that policies optimized for different
values of risk aversion demonstrate qualitatively different
behaviors. Namely, risk-averse policies hit the shuttlecock
with smaller velocity and tended to undershoot, whereas
risk-seeking policies favored higher velocities and typically
overshot the target. Finally, we carried out experiments on
the real robot, which showed that moderate values of risk
aversion can help finding better solutions for the original,
risk-neutral problem. However, our attempt at learning risk-
sensitive movement primitives on the real robot had limited
success due to limitations of the hardware platform and the
entanglement of sources of variability.
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