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Abstract: The problem of synthesis of an optimal feedback controller for a given Markov decision1

process (MDP) can in principle be solved by value iteration or policy iteration. However, if system2

dynamics and the reward function are unknown, the only way for a learning agent to discover an3

optimal controller is through interaction with the MDP. During data gathering, it is crucial to account4

for the lack of information, because otherwise ignorance will push the agent towards dangerous areas5

of the state space. To prevent such behavior and smoothen learning dynamics, prior works proposed6

to bound the information loss measured by the Kullback-Leibler (KL) divergence at every policy7

improvement step. In this paper, we consider a broader family of f -divergences that preserve the8

beneficial property of the KL divergence of providing the policy improvement step in closed form9

accompanied by a compatible dual objective for policy evaluation. Such entropic proximal policy10

optimization view gives a unified perspective on compatible actor-critic architectures. In particular,11

common least squares value function fitting coupled with advantage-weighted maximum likelihood12

policy estimation is shown to correspond to the Pearson χ2-divergence penalty. Other connections13

can be established by considering different choices of the penalty generator function f .14

Keywords: reinforcement learning; actor-critic methods; entropic proximal mappings; policy search15

1. Introduction16

Top-performing reinforcement learning (RL) algorithms based on generalized policy iteration [1–4]17

are mindful of the covariate shift [5] problem so characteristic to RL—where data distribution changes18

after every policy update—and they actively try to alleviate it by limiting the loss of information19

between successive policies as measured by the KL divergence or approximations thereof [6]. Such20

approaches broadly fall into the category of proximal (or trust region) optimization algorithms [7].21

It has been recently recognized, most prominently in the area of implicit generative modeling [8],22

that the choice of the distance measure on the space of probability distributions can have dramatic23

effects on the algorithm performance [9]. This insight, of course, is not entirely new, but it is surprising24

that just by choosing an appropriate metric one can significantly improve perceptual quality of25

generated data, as was exemplified in [10] among others, where f -divergence was employed as a26

measure of image dissimilarity.27

In this paper, we carry over the idea of using generalized entropic proximal mappings [11] to28

reinforcement learning. We show that relative entropy policy search [2], understood as an instance29

of the mirror descent algorithm [12,13] (as pointed out by [6]), can be naturally extended to use any30

divergence measure from the family of f -divergences. The resulting algorithm provides deep insights31

into the compatibility of policy and value function update rules in actor-critic architectures, which we32

exemplify on several instantiations of the f -divergence from the sub-family of α-divergences [14].33
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2. Background34

2.1. Policy gradient methods35

Policy search algorithms [15] commonly use the gradient estimator [16]36

ĝ = Êt
[
∇θ log πθ Âw

t
]

(1)

where πθ(a|s) is a stochastic policy and Âw
t (st, at) is an estimator of the advantage function at37

timestep t. (Standard RL notation [17] is used throughout the paper.) The expectation Êt[. . . ] indicates38

the empirical average over a finite batch of samples, in an algorithm that alternates between sampling39

and optimization. The advantage estimator Âw
t is usually fit by a form of least squares regression on40

the value function41

w = arg min
w̃

Êt

[
‖Vw̃(st)− V̂t‖2

]
(2)

followed by summing Bellman residuals Âw
t = ∑∞

k=0 γkδw
t+k. Here, Monte Carlo estimate of the42

value function V̂t = ∑∞
k=0 γkRt+k is used as the target in (2) and the Bellman residual, also known as43

the temporal difference (TD) error, is defined as δw
t = Rt + γVw(st+1)−Vw(st) [18,19]. Treating Âw

t44

as fixed for the purpose of policy update, we can view (1) as the gradient of an advantage-weighted45

log-likelihood; therefore, the optimal policy parameters θ solve the following optimization problem46

θ = arg max
θ̃

Êt
[
log πθ̃ Âw

t
]

. (3)

Thus, all actor-critic algorithms that use the gradient estimator (1) to update policy parameters47

can be viewed as generalized policy iteration algorithms, alternating between the policy evaluation (2)48

and the policy improvement (3) steps. In the following, we will see that the actor-critic pair (3)-(2) that49

combines least-squares value function fitting with linear in the advantage reweighting of the policy50

is just one representative from a family of such pairs arising for different choices of an f -divergence51

penalty within our entropic proximal policy optimization framework.52

2.2. Entropic penalties53

As per definition [11], entropic penalties include f -divergences and Bregman divergences. In this54

paper, we will focus on f -divergences, leaving generalization to Bregman divergences to future work.55

The f -divergence [20] between two distributions P and Q with densities p and q is defined as56

D f (p‖q) = Eq

[
f
(

p
q

)]
where f is a convex function on (0, ∞) with f (1) = 0 and P is assumed to be absolutely continuous57

with respect to Q. For example, the KL divergence corresponds to f1(x) = x log x− (x− 1), with the58

formula also applicable to unnormalized distributions [21]. Surprisingly, a variety of other commonly59

used smooth divergences lie on a curve of α-divergences [14,22] that is defined by a special choice of60

the generator function [23]61

fα(x) =
(xα − 1)− α(x− 1)

α(α− 1)
, α ∈ R. (4)

The α-divergence Dα = D fα
will be used as the primary example of the f -divergence throughout62

the paper. Noteworthy is the symmetry of the α-divergence with respect to α = 0.5, which relates63

reverse divergences as D0.5+β(p‖q) = D0.5−β(q‖p).64
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3. Entropic proximal policy optimization65

Consider the average-reward RL setting [24], where dynamics of an ergodic MDP are given by66

transition density p(s′|s, a) which an intelligent agent can modulate by sampling parameters a from a67

stochastic policy π(a|s) at every time step of the dynamical system evolution. The resulting modulated68

Markov chain pπ(s′|s) =
∫

A p(s′|s, a)π(a|s)da converges to a stationary state distribution µπ(s) as69

time goes to infinity. This stationary state distribution, in its turn, induces a state-action distribution70

ρπ(s, a) = µπ(s)π(a|s), which corresponds to visitation frequencies of state-action pairs [25]. The goal71

of the agent is to steer the system dynamics to desirable states. Such objective is commonly encoded72

by the expectation of a random variable R : S× A→ R called reward in this context. Thus, the agent73

seeks a policy that maximizes the expected reward J(π) = Eρπ(s,a)[R(s, a)].74

In reinforcement learning, neither the reward function R nor the system dynamics p(s′|s, a) are75

assumed to be known. Therefore, in order to maximize (or even evaluate) the objective J(π), the agent76

has to sample a batch of experiences in the form of tuples (s, a, r, s′) from the dynamics and use an77

empirical estimate Ĵ = Êt[R(st, at)] as a surrogate for the original objective. Since the gradient of the78

expected reward with respect to policy parameters can be written as [26]79

∇θ J(πθ) = Eρπθ
(s,a)[∇θ log πθ(a|s)R(s, a)]

with a nice sample-based counterpart80

∇θ Ĵ = Êt[∇θ log πθ(at|st)R(st, at)],

one may be tempted to optimize a sample-based objective81

Êt[log πθ(at|st)R(st, at)]

on a fixed batch of data {(s, a, r, s′)t}N
t=1 till convergence. However, such an approach ignores82

the fact that sampling distribution ρπθ
(s, a) itself depends on policy parameters θ; therefore, such83

greedy optimization aims at a wrong objective [2]. To have the correct objective, the dataset must be84

sampled anew after every parameter update—doing otherwise will lead to catastrophic overfitting.85

This problem is known in statistics under the name covariate shift [5].86

3.1. Fighting covariate shift87

A principled way to accommodate the fact that sampling distribution is changing at every policy88

update step is to construct an auxiliary objective function that one can safely optimize till convergence89

being assured that negative effects of relying on a fixed dataset are bounded. Relative entropy policy90

search (REPS) algorithm [2] proposes a candidate for such an objective (in the original paper, a91

constraint instead of a penalty was used)92

Jη(π) = Eρπ [R]− ηD1(ρπ‖ρπ0) (5)

where π0 is the current policy from which we collected data samples, policy π is an improved93

policy we would like to find, and η > 0 is a ‘temperature’ parameter that determines how much the94

next policy is allowed to deviate from the current one. As a measure of distance between probability95

distributions, the KL divergence D1, also known as relative entropy, is used in REPS, hence the name.96

Interestingly, objective function (5) can be optimized in closed form for policy π (i.e., treating97

the policy itself as a variable instead of its parameters, in contrast to standard policy gradients). To98

that end, several constraints on ρπ need to be added to ensure that it is the stationary state-action99

distribution of the given MDP [2]. In a similar vein, we can solve Problem (5) for any f -divergence100

with twice differentiable generator function f .101
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3.2. Policy optimization with entropic penalties102

Following the intuition of REPS, we introduce an f -divergence penalized optimization problem103

that the learning agent has to solve at every policy iteration step104

maximize
π

Jη(π) = Eρπ [R]− ηD f (ρπ‖ρπ0)

subject to
∫

A
ρπ(s′, a′)da′ =

∫
S×A

ρπ(s, a)p(s′|s, a)dsda, ∀s′ ∈ S,∫
S×A

ρπ(s, a)dsda = 1,

ρπ(s, a) ≥ 0, ∀(s, a) ∈ S× A.

(6)

The agent seeks a policy that maximizes the expected reward and does not deviate from the105

current policy too much. The first constraint in (6) ensures that the policy is compatible with system106

dynamics, and the latter two constraints ensure that π is a proper probability distribution. Note that π107

enters Problem (6) indirectly through ρπ . Since the objective has the form of free energy [27] in ρπ but108

with an f -divergence instead of the usual KL, the solution can be expressed through the derivative of109

the convex conjugate function f ′∗, as shown for general nonlinear problems in [11],110

ρπ(s, a) = ρπ0(s, a) f ′∗

(
R(s, a) +

∫
S V(s′)p(s′|s, a)ds′ −V(s)− λ + κ(s, a)

η

)
(7)

where {V(s), λ, κ(s, a)} are the Lagrange dual variables corresponding to the three constraints111

in (6), respectively. Although we get a closed-form solution for ρπ , we still need to solve the dual112

optimization problem to get the optimal dual variables113

minimize
V,λ,κ

g(V, λ, κ) = ηEρπ0

[
f∗

(
AV(s, a)− λ + κ(s, a)

η

)]
+ λ

subject to κ(s, a) ≥ 0, ∀(s, a) ∈ S× A,

arg f∗ ∈ rangex≥ 0 f ′(x), ∀(s, a) ∈ S× A.

(8)

Remarkably, the advantage function AV(s, a) = R(s, a) +
∫

S V(s′)p(s′|s, a)ds′ − V(s) emerges114

automatically in the dual objective, as in the penalty-free linear programming formulation of policy115

improvement [25], which corresponds to the limit η → 0. Also note that the dual objective in (8) is116

given by the expectation with respect to ρπ0 , therefore can be easily estimated from rollouts. The last117

constraint in (8), despite looking unwieldy, is quite easy to evaluate for common α-divergences; the118

convex conjugate f ∗α of the generator function (4) is given by119

f ∗α (y) =
1
α
(1 + (α− 1)y)

α
α−1 − 1

α
, for y(1− α) < 1. (9)

Thus, the constraint on arg f∗ in (4) is just a linear inequality y(1− α) < 1 for any α-divergence.120

3.3. Value function approximation121

For small grid-world problems, one can solve Problem (8) exactly for V(s). However, for larger122

problems or if the state space is continuous, one has to resort to function approximation. Assume123

we plug an expressive function approximator Vw(s) in (8), then vector w becomes a new vector of124

parameters in the dual objective. Later it will be shown that minimizing the dual when η → ∞, which125

corresponds to small policy update steps, is closely related to minimizing mean squared Bellman error.126

3.4. Sample-based algorithm for dual optimization127

To solve Problem (8) in practice, we gather a batch of samples from policy π0 and replace the128

expectation in the objective with a sample average. Note that in principle one also needs to estimate129
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the expectation of future rewards
∫

S V(s′)p(s′|s, a)ds′, but since the probability of visiting the same130

state-action pair in continuous space is zero, one commonly estimates this integral from a single sample131

as V(s′), which is equivalent to assuming deterministic system dynamics [15]. Inequality constraints132

in (8) are linear and they have to be imposed for every (s, a) pair in the dataset.133

3.5. Parametric policy fitting134

Assume Problem (8) is solved on a current batch of data sampled from π0, so the optimal dual135

variables {V(s), λ, κ(s, a)} are given. Equation (7) allows one to evaluate the new density ρπ(s, a)136

on any pair (s, a) from the dataset. However, it does not yield the new policy π directly because137

representation (7) is variational. A common approach [15] is to assume that the policy is represented by138

a parameterized conditional density πθ(a|s) and fit this density to the data using maximum likelihood.139

To fit a parametric density πθ(a|s) to the true solution π(a|s) corresponding to (7), we minimize140

the KL divergence D1(ρπ‖ρπθ
). Since only samples from ρπ are known (obtained by weighting samples141

from ρπ0 according to (7)), minimization of the KL is equivalent to maximization of the weighted142

maximum likelihood Ê[ f ′∗(. . . ) log ρπθ
]. Unfortunately, distribution ρπθ

(s, a) = µπθ
(s)πθ(a|s) is in143

general not known because µπθ
(s) does not only depend on the policy but also on the system dynamics.144

Neglecting the effect of policy parameters on the stationary state distribution [15], we arrive at the145

optimization problem for fitting policy parameters146

θ = arg max
θ̃

Êt

[
log πθ̃(at|st) f ′∗

(
Âw(st, at)− λ + κ(st, at)

η

)]
. (10)

Compare our policy improvement step (10) to the commonly used advantage-weighted maximum147

likelihood (ML) objective (3). They look surprisingly similar (especially if f ′∗(y) = y is a linear function),148

which is not a coincidence at all and will be systematically explained later.149

3.6. Temperature scheduling150

The ‘temperature’ parameter η trades off reward vs divergence, as can be seen in the primal151

problem (6), in the objective function. In practice, tuning η may be hard, and simple decay schedules152

may fail because η is sensitive to reward scaling and policy parameterization. A more intuitive way to153

impose the f -divergence proximity condition may be to add it as a constraint D f (ρπ‖ρπ0) ≤ ε with154

a fixed ε, and then treat η ≥ 0 as an optimization variable. Such formulation is easy to incorporate155

into the dual (8) by adding a term ηε to the objective and a constraint η ≥ 0 to the list of constraints.156

Constraint-based formulation was successfully used before with a KL divergence constraint [2] and157

with its quadratic approximation [1,3]. For simplicity, we treat η as a fixed parameter since it also158

works well in practice if the reward function is well-conditioned.159

3.7. Practical algorithm for continuous state-action spaces160

Our proposed approach for entropic proximal policy optimization is summarized in Algorithm 1.161

Following the generalized policy iteration scheme, we (i) collect data under a given policy, (ii) evaluate162

the policy by solving (8), and (iii) improve the policy by solving (10). In the following section, several163

instantiations of Algorithm 1 with different choices of function f will be presented and studied.164

Algorithm 1: Primal-dual entropic proximal policy optimization with function approximation

Input: Initial actor-critic parameters (θ0, w0), divergence function f , temperature η > 0
while not converged do

sample one-step transitions {(s, a, r, s′)t}N
t=1 under current policy πθ0 ;

policy evaluation: optimize dual (8) with V(s) = Vw(s) to obtain critic parameters w;
policy improvement: perform weighted ML update (10) to obtain actor parameters θ;

end
Output: Optimal policy πθ(a|s) and the corresponding value function Vw(s)

165
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4. High- and low-temperature limits; α-divergences; analytic solutions and asymptotics166

How does the f -divergence penalty influence policy optimization? How should one choose the167

generator function f ? What role does the step size play in optimization? This section will try to168

answer these and related questions. First, two special choices of the penalty function f are presented,169

which reveal that the common practice of using mean squared Bellman error minimization coupled170

with advantage reweighted policy update is equivalent to imposing a Pearson χ2-divergence penalty.171

Second, high- and low-temperature limits are studied, which pinpoint the exceptional property of the172

Pearson χ2-divergence of being the high-temperature limit of all smooth f -divergences on one hand,173

and establish a link to the linear programming formulation of policy search as the low-temperature174

limit of our entropic penalty-based framework on the other hand.175

4.1. KL divergence (α = 1) and Pearson χ2-divergence (α = 2)176

As can be deduced from (10), great simplifications occur when f ′∗(y) is a linear (α = 2, see (9))177

or an exponential (α = 1) function. The fundamental reason for this lies in the fact that linear and178

exponential functions are homomorphisms with respect to addition. This allows, in particular, to find179

a closed-form solution for the dual variable λ and thus eliminate it from optimization. Moreover, in180

these two special cases, one can also eliminate the dual variables κ(s, a) responsible for non-negativity181

of probabilities: for the KL divergence (α = 1) case, κ(s, a) = 0 uniformly for all η ≥ 0, and for the182

Pearson χ2-divergence (α = 2), the same holds for sufficiently big η. Table 1 gives the corresponding183

empirical actor-critic optimization objective pairs.184

Table 1. Empirical policy evaluation and policy improvement objectives for α ∈ {1, 2}.

KL divergence (α = 1) Pearson χ2-divergence (α = 2)

ĝ1(w) = η log
(

Êt

[
exp

(
Âw(st ,at)

η

)])
ĝ2(w) = 1

2η Êt

[(
Âw(st, at)− Êt

[
Âw])2

]
L̂1(θ) = Êt

[
log πθ(at|st) exp

(
Âw(st ,at)−ĝ1(w)

η

)]
L̂2(θ) =

1
η Êt

[
log πθ(at|st)

(
Âw(st, at)− Êt

[
Âw]+ η

)]
A generic primal-dual actor-critic algorithm with an α-divergence penalty performs two steps185

(step 1: policy evaluation) minimize
w

ĝα(w)

(step 2: policy improvement) maximize
θ

L̂α(θ)

inside a policy iteration loop. It is worth comparing the explicit formulas in Table 1 to the186

customarily used objectives (2) and (3). To make the comparison fair, notice that (2) and (3) correspond187

to discounted infinite horizon formulation with discount factor γ ∈ (0, 1), whereas formulas in Table 1188

are derived for the average reward setting. In general, the difference between these two settings can be189

ascribed to an additional baseline that has to be subtracted in the average reward setting [24]. More190

precisely, in all our derivations, the baseline corresponds to the dual variable λ, as in classical linear191

programming formulation of policy iteration [25].192

4.1.1. Mean squared error minimization with advantage reweighting is equivalent to Pearson penalty193

The baseline for α = 2 is given by the average advantage λ2 = Êt
[
Âw(st, at)

]
, which also equals194

the average return in our setting [24,25]. Therefore, to translate the formulas from Table 1 to the195

discounted infinite horizon form (2) and (3), we need to remove the baseline and add discounting to196

the advantage; that is, set Aw(s, a) = R(s, a) + γ
∫

S Vw(s′)p(s′|s, a)ds′−Vw(s). Then the dual objective197

ĝ2(w) ∝ Êt

[(
Âw(st, at)

)2
]

(11)
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is proportional to the average squared advantage. Naive optimization of (11) leads to the family of198

residual gradient algorithms [28,29]. However, if the same Monte-Carlo estimate of the value function199

is used as in (2), then (11) and (2) are exactly equivalent. The same holds for the Pearson actor200

L̂2(θ) ∝ Êt
[
log πθ(at|st)Âw(st, at)

]
(12)

and the standard policy improvement (3) provided that η = Êt
[
Âw(st, at)

]
; that is, (12) is201

equivalent to (3) if the weight of the divergence penalty is equal to the expected return.202

4.2. High- and low-temperature limits203

In the previous subsection, we established a direct correspondence between least squares204

value function fitting coupled with advantage-weighted maximum likelihood policy parameters205

estimation (2)-(3) and the dual-primal pair of optimization problems (11)-(12) arising from our206

Algorithm 1 for the special choice of the Pearson χ2-divergence penalty. In this subsection, we will show207

that this is not a coincidence but a manifestation of the fundamental fact that the Pearson χ2-divergence208

is the quadratic approximation of any smooth f -divergence about unity.209

4.2.1. High temperatures: all smooth f -divergences tend towards Pearson χ2-divergence210

There are two ways to show that the asymptotic of the primal-dual solution (10)-(8) at high211

temperature is independent of the choice of the divergence function. The first way is to notice that212

big η leads to small policy update steps, therefore the divergence penalty in the primal problem (6) can213

be right away replaced by its quadratic approximation, which turns out to be the Pearson χ2-divergence.214

After that, one may proceed to solve the problem with such a quadratic penalty, which is exactly215

equivalent to the natural policy gradient derivation [1].216

The second way is to expand the solution (8)-(10) about η → ∞. Taking this route, let us develop f∗217

from (8) into its Taylor series. For big η, we can drop dual variables κ(s, a) if ρπ0(s, a) > 0. Then218

f∗

(
Aw(s, a)− λ

η

)
= f∗(0) +

Aw(s, a)− λ

η
f ′∗(0) +

1
2

(
Aw(s, a)− λ

η

)2

f ′′∗ (0) + o
(

1
η2

)
. (13)

By definition of the f -divergence, the generator function f satisfies the condition f (1) = 0.219

Without loss of generality [30], one can impose an additional constraint f ′(1) = 0 for convenience.220

Such constraint ensures that the graph of the function f (x) lies entirely in the upper half-plane,221

touching the x-axis at a single point x = 1. From the definition of the convex conjugate f ′∗ = ( f ′)−1, we222

can deduce that f ′∗(0) = 1 and f∗(0) = 0; by rescaling, it is moreover possible to set f ′′(1) = f ′′∗ (0) = 1.223

These properties can be checked directly for the α-divergence generator (4) and its convex conjugate (9).224

With this in mind, it is easy to see that substitution of (13) into (8) leads to ĝ2(w) from Table 1 up to the225

first order in 1/η.226

At the same time, to obtain the asymptotic policy update objective, one can expand (10) in the227

high-temperature limit η → ∞ and observe that it equals L̂2(θ) from Table 1 also up to the first order228

in 1/η. Thereby it is established that the choice of the divergence function plays a minor role for big229

temperatures (small policy update steps). Since this is the mode in which the majority of iterative230

algorithms operate, our entropic proximal policy optimization point of view provides a rigorous231

justification for the common practice of using mean squared Bellman error for value function fitting232

and advantage-weighted maximum likelihood for updating policy parameters.233

4.2.2. Low temperatures: linear programming formulation in the limit234

Setting η to a small number is equivalent to allowing large policy update steps because η is235

the weight of the divergence penalty in the objective function (6). Such regime is rather undesirable236

in reinforcement learning because of the covariate shift problem mentioned in the introduction.237
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Problem (6) for η → 0 turns into a well-studied linear programming formulation [6,25] that can be238

readily applied if the model {p(s′|s, a), R(s, a)} is known.239

It is not straightforward to derive the asymptotics of policy evaluation (8) and policy240

improvement (10) for a general smooth f -divergence in the low-temperature limit η → 0 because dual241

variables κ(s, a) do not disappear this time, in contrast to the high-temperature limit (13). However, for242

the KL divergence penalty case (see Table 1), one can show that the policy evaluation objective g1(w)243

tends towards supremum of the advantage g1(w)→ sups,a Aw(s, a); the optimal policy is deterministic244

π(a|s)→ δ(a− arg supb Aw(s, b)), therefore L(θ)→ log πθ(ā|s̄) with (s̄, ā) = arg sups′ ,a′ Aw(s′, a′).245

5. Related work246

Entropic proximal mappings were introduced in [11] as a general framework for constructing247

approximation and smoothing schemes for optimization problem. Problem formulation (6) presented248

here can be considered an application of this general theory to policy optimization in Markov decision249

processes. Following the recent work [6], that establishes links between popular in reinforcement250

learning KL-divergence-regularized policy iteration algorithms [2,3] and the well-known in the251

optimization community mirror descent algorithm [12,13], one can view our Algorithm 1 as an252

instance of the mirror descent algorithm with an f -divergence penalty.253

6. Discussion and conclusion254

We presented a framework for deriving actor-critic algorithms as pairs of primal-dual optimization255

problems resulting from regularization of the standard expected return objective with so-called entropic256

penalties in the form of f -divergence. Several examples with α-divergence penalties have been worked257

out in detail. In the limit of small policy update steps, all f -divergences with twice differentiable258

generator function f are approximated by the Pearson χ2-divergence, which was shown to yield the259

most commonly used in reinforcement learning pair of actor-critic updates. Thus, our framework260

provides a sound justification for the common practice of minimizing mean squared Bellman error in261

the policy evaluation step and fitting policy parameters by advantage-weighted maximum likelihood262

in the policy improvement step.263

In future work, it is interesting to consider f -divergence penalties with non-differentiable264

generator functions such as the absolute value f (x) = 0.5|x − 1|, which corresponds to the total265

variation distance, or the absolute value with a dead-zone, which may provide a principled explanation266

for the empirical success of the proximal policy optimization algorithm [4], not accounted for by our267

smooth f -divergence framework. Another promising direction to explore is incorporation of Bregman268

divergences into our formulation; Bregman divergences introduce additional structure that can be269

exploited for improving sample efficiency of learning algorithms.270
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