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Abstract—1In this work, we present a new approach to
automate the process of construction using self-interlocking
building blocks specifically SL-Blocks. Utilizing this block
type, complex structures are automatically constructed with an
industrial robot arm. The challenges inherent to the task, the
need for high precision tracking, and occlusion robustness for
said tracking are needed to accomplish the joining of parts with
tolerances at the millimeter level. They are tackled by building
on recent methods for fiducial marker based tracking. They
are modified with the additional assumption of known relative
transformations between markers on the blocks. Our proof of
concept setup nearing completion is described alongside our
vision for improvements in future work.

I. INTRODUCTION

With the ongoing research in the field of robotics and
the advancements made in the last years, new opportunities
for useful applications arise. Robots are already widely
used in industrial settings to perform simple repetitive tasks
previously done by human workers [1]. Especially for fac-
tory assembly lines, robots have been shown to effectively
automate tasks without the presence of humans in a well-
defined environment. However, automation in the domain
of construction work is still largely unexplored. Despite
many innovative building projects which not only grow in
their complexity but also in size, the core of construction
work is still dominated by manual labor. This is largely
due to the many complex work steps in current construction
procedures, which makes it very difficult to automate those
tasks by a robot. As shown by Gharbia et al. [2], more
research is now being conducted in the field of construction
with more papers being released every year. Particularly
the area of additive manufacturing as well as automated
installation and assembly are popular topics. One way to do
so is to change the way structures are built. This has been
shown successfully by using giant 3D printers to extrude
structures out of special concrete mixtures [3]. Even though
this approach is still subject to research, it has shown to be
a promising alternative for constructing arbitrary structures
in the future.

Besides the automation context, it is important to look
at the sustainability and environmental impact of current
construction methods. Since many types of nowadays
constructions are based on the permanent bonding of
building parts with mortar or adhesive material, it is
not always possible to dismantle such structures without
destroying the individual parts. This results in a lot of
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wasted materials. Working with reusable components
would not only enable faster assembly and disassembly of
such structures but also bring financial and environmental
benefits. Previously used parts of structures can be reused
and therefore do not need to be produced from scratch. This
can be solved using building elements that are held together
by topological interlocking [4].

This work aims to develop an automated system for
the construction of predefined 3D structures out of SL-
Blocks [5], a self-interlocking block system. To the best of
our knowledge no similar works have been published thus
far.

As joining multiple blocks into a structure requires sub-
millimeter accuracy we pursue high-precision block tracking.
An inherent challenge to the task is that the manipulated
objects are subject to high degrees of occlusion especially
when tracked from only a single perspective. We address this
by placing fiducial markers on each face of the block, for
which we assume the transformation to be known. Taking
this as an additional assumption we modify recent multi-
marker and multi-view-based object tracking methods. This
enables us to infer the translation and orientation of occluded
block surfaces from the detected visible markers. The known
block model including marker placements is also expected
to increase the tracking precision.

Based on the generative system to build self-interlocking
structures introduced by [5] we develop a new approach
for automated structure construction. Shih’s work gives us
a decomposition of the desired structure. Existing software
generates a construction plan for the decomposition, meaning
an order of block-placements. Given block pickup poses
another piece of existing software will then generate robot
trajectories to pick and insert the blocks into the partial struc-
ture. Robot control will for now be done using the control
software provided by Franka that follows input trajectories.

This is where our work picks up. In the first stage of
this project our focus lies on the development of the marker
based tracking of the SL-Blocks. Additionally to this the full
integration of a construction pipeline using the existing parts
is tackled. This includes developing the experimental setup
and creating software bridges using the Robot Operation
System (ROS)[6].

Secondary to this we describe our plans to build on this
first stage to arrive at a more sophisticated solution. This
addresses potential limitations and issues that may arise with
the first version.



Lastly, to prepare for future work a digital twin of the
system is set up and maintained. It will enable us to freely
experiment without safety concerns, help with evaluation,
and possibly, later on, provide a platform for reinforcement
learning (RL) to learn controllers used for stacking blocks.

II. RELATED WORK
A. SL-Block

Finding and designing new self-interlocking structures is
an active field of research with possible applications in many
fields. Engineers and architects are looking for different types
of interlocking blocks that can be easily assembled and
disassembled without using fasteners or any kind of adhesive
materials like mortar or glue. Current research focuses on
making use of the topological interlocking property of these
building blocks with the goal of building complex structures.
Regarding the recent development in automated digital fabri-
cation technology, 3D printing technology is used more and
more to fabricate complex objects. However, when it comes
to printing large objects, the extrusion capabilities for single-
piece objects are limited by the size of the printers working
volume. To overcome this issue, recent work like Song et al.
[7] proposes to focus on printing 3D parts and making use
of their interlocking property instead of using an adhesive
material.

In 2016, Shih and Shen-Guan [5] introduced the SL-Block,
a specific type of polycube, more precisely an octocube built
up from an S-shaped and an L-shaped tetracube attached
to each other. Figure 1 shows the structure of the SL-
Block. They introduce a generative process (context-free
string grammar) to provide a formalized language to describe
possible structures that can be built using the interlocking
SL-Blocks. It has been shown that it is possible to create
various structures of different complexity just by combining
identical SL-Blocks in different orientations [8]. Using this
language, large and firm structures can be built in a top down
manner. Due to the interlocking property of the SL-Block,
it is possible to build hierarchical structures without using
any type of adhesive material such as mortise/tenon, glue, or
nails.

B. Object Tracking

Tracking and detection of objects is an active area of
research with many different approaches. Those approaches
can be mainly categorized by the type of data and the
resulting dimension of the data used to infer hypotheses
about the object. The more dimensions the more information
is available to form a sophisticated guess of the location
and possible orientation of the inspected object. There
are computer vision-based, as well as non-vision-based
approaches. A non-vision-based approach was used by
[9] to track the object pose just by evaluating the joint
measurements of a robotic hand holding the object of
interest. However, they realized that using just the joint
measurements leads to significant offsets in the object
pose estimation. Therefore they included a vision-based
detection system to fuse it with the previously gained joint

angles to form a good estimation of the object pose. This
demonstrates that for precise predictions of manipulated
object’s poses, more than robot joint information is needed.
A vision-based object tracking method is used by Pauwels
et al. [10]. They use an RGB-D camera to extract depth
information to update a 3D simulation of the scene. The
simulation is then used to determine the pose estimate.

A simple yet robust alternative is to use fiducial markers
on the objects to be captured. Because of their great detection
rates even in bad lightning conditions, inbuilt pose estimation
for the tags and error-resistant design fiducial markers such
as AprilTag are popular methods for object tracking [11],
[12], [13] or even Simultaneous Localization and Mapping
[14] in controlled environments. Of the currently available
flat rectangular tag variant designs, AprilTag seems to per-
form best [15] and is thus used for our project. Recently
marker bundle-based object trackers have shown remarkable
pose estimation accuracy. In Sarmadi et al. [16] a joint
approach for camera calibration, estimation of the relative
transformations of the markers, and reference perspective
trajectory estimation of the markers were presented. They
used a multi-camera setup with partially overlapping fields
of view (FOVs), objects with applied markers bundles, and
reprojection error minimization to get all of this. In [17]
a similar technique is pursued. Instead of using multiple
cameras and general multi-marker object tracking, they focus
on tracking a single dodecahedronal manipulator attachment.
Tags are placed on its surface ensuring that multiple are
visible at the same time from the camera’s FOV. They
calibrate the cameras, then detect and optimize the trans-
formations between the markers. During operation, both are
used while tracking the pose of the chosen reference marker
from a single camera. Both papers accomplish tracking
markers even though they might not be visible at the time,
by estimating other marker poses from all visible marker
poses using their pair-wise transformations. To refine a
singular estimation of all desired marker poses, both works
minimize a reprojection error - the mean squared error over
the differences of estimated marker transformations to the
detected marker transformations.

III. OUR APPROACH: SETUP, PLANS AND PROGRESS

In this section, we will describe the individual parts of
our project pipeline. First, we describe the setup for the SL-
Block. Followed by the real-world setup with three cameras
and the Franka Emika robot [18]. Next, we describe the
object pose estimation pipeline and how task and motion
planning will be done. Lastly, we describe how the Isaac-
Sim Simulator is used to provide a simulation platform to
first test our approach before applying it to the real robot.

A. SL-Block

As described in section II-A this work makes use of the
SL-Block introduced by Shih et al. [5]. The SL-Block can be
used due to its special topological interlocking property to
build complex and firm structures by stacking them together
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Image of an SL-Block (Image by DDU). Introduced by [5] it consists of an S-shaped and an L-shaped tetracube attached to each other.

Fig. 2.

Image of an SL-Block [5] with AprilTags.

without using any kind of adhesive material. To be able to
detect and track the block, we use fiducial markers in the
form of AprilTags [19]. A unique AprilTag is applied to
each face of the block as can be seen in Figure 2. To get an
exact mapping between tag and position relative to the block,
each placed tag is uniquely labeled by a number between 0
and 33. For each block, we use 34 different tags. To later
distinguish different SL-Blocks, each marker id is only used
once throughout the whole setup.

Currently, the SL-Block is still manufactured using
wooden cubes and the tags are glued to it manually. Applying
the tags manually to the SL-Block leads to not equally placed
tag positions which lead to inaccuracies. To eliminate this
inaccuracy, a 3D printed version of the SL-Block will be
used in the future which is currently in development.

B. Real World Setup

To detect the SL-Block we use three ultra-high resolution
(4K) webcams (Logitech Brio) placed around the scene. By
using ultra-high resolution images we are able to place the
cameras outside of the working environment of the robotic
arm and are still able to detect the AprilTags with sufficiently
high accuracy. We calibrated each camera individually using
a 6x6 checkerboard method available through the OpenCV
library [20]. The cameras have to be oriented in such a way,
that the blocks, as well as the workspace, are visible from as

Fig. 3. Experiment setup containing the dual arm robot and the three
cameras positioned around the table.

many angles as possible. One reason for this is the relatively
inaccurate distance estimation for the AprilTags [15]. Having
at least one orthogonal view is therefore advantageous to
get a better depth estimate for the respectively other cam-
eras. The other reason is to handle occlusions from single
perspectives. The derived camera configuration utilized in
the end has the cameras placed around the table to the left,
right, and front of the robot, facing it. They are mounted at
different heights and angled downwards towards the same
spot resulting in differing tilts. To process the incoming
data stream from the cameras we use a Nvidia Jetson Nano
[21]. The resulting image streams are then published via
ROS. The main pc handles the image streams performing tag
detection. The detections are used for object pose estimation
and tracking of the SL-Block. A control pc with an installed
real-time kernel is connected to the Franka Emika robot in
a dual arm setup to then manipulate the position of the SL-
Block.

C. Object Pose Estimation Pipeline

The pose estimation for the SL-Block starts with the tag
detection. The continuous detection node from the april-
tag_ros2 library scans each camera stream for suitable tags.
All detections are then published to the detection topic
of the corresponding camera. The object locator node is
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Fig. 4. This flowchart describes our object pose estimation pipeline. Three 4K cameras send images via usb to a Jetson Nano [21]. For each camera a
camera publisher node handles the incoming camera stream and forwards the image to a running AprilTag detection node. For communication between the
different nodes, ROS is used, where each node publishes or subscribes to a topic (topics are marked as arrows connecting the different nodes). Running
on the main PC, each AprilTag detection node then forwards the detected markers of the corresponding image. The Object Locator Node receives the
detections from all three cameras and has access to the model transformations of each block. With that, it updates the transformations of all detected block.

This estimation can then be used for robot control.

subscribing to this topic and on each received detection array
the estimations of all detected blocks are updated.

Due to our modeling, we know where on the block each
tag is located and which orientation it has relative to our
chosen base tag. We identify the tags by their ids encoded in
the marker. For each tag detection the known transformations
to the reference tag are used to obtain an estimation regarding
all other tag poses:

In the following we will treat the tags id =id mod 34 (id,
for other tags) where id is the id of a detected tag. We know
the transformations i‘éfT from the reference tag to the other
tags from our modeling and the transformations ;;"'T from
our detections to the detecting camera. First, we calculate the
transformation from the reference tag’s frame to the cameras
i

i __camim id
§j}" T=3""T ;T (1)

Afterward, we calculate all transformations from the other
tag frames to the cameras i, based on this estimated trans-
formation:

T = b 1t @

Currently these transformations are collected and averaged
tag-wise. For the translation, a mean is calculated while for
the rotation the averaging is done following the maximum
likelihood method for quaternion averaging as described in
[22]. As a next step, we plan to average all our camera
perspectives transformed into the table frame, which will
be used as the global frame. Given the transformations
to each camera i from tags with id o ;™7 and a frame
transformation from the camera’s to the table’s frame ’C‘;’;,,’_T,
we can now calculate the tag pose estimations in the table
frame:

T =l T T (3)

it T cam; id,

The averaging will follow the same approach as for single
cameras before resulting in sufficiently accurate pose
estimation for testing of the full construction pipeline.
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Fig. 5. Estimation of the orientation and position of each tag. To illustrate
the algorithm, parts of the block were masked out demonstrating the
estimation based on the visible tags.

Future Work for Object Pose Estimation: Even
with view merging we expect the accuracy of the current
pose estimation approach to be less accurate than the
recent methods utilizing optimization as their results are
impressive. Therefore we plan to apply reprojection error
minimization following [16] and [17]. Different from those
approaches, we will not use the Levenberg-Marquardt
optimization algorithm but rather Dogleg as it was shown
to produce almost equivalent results at a significant speedup
for this kind of error function [23]. In other words, we plan
to optimize over the estimated pose of the reference tag for
one point in time, so that the squared error between each
detected tag pose in the images and the poses calculated
via the known transformations from the reference tag to the
other tags are minimized, summed over all available camera
views transformed to the table frame.

Formally: Given the average estimate for the reference
tag frame in table coordinates ;‘;?T as the initial estimate
for minimization, we can calculate all other transformations
from the tag frames into the table frame. Given the detected

translations of all tags in the respective camera frames ““"it;;



we can calculate them in the table frame mblido,,-:
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The reprojection error over the tag translations in the table
frame summed over all camera views i:

Z ||tabtid0>,' __tab tia, | |% (6)
i=0

is then minimized to get the best estimate for the tr‘;?T
which is supplied to the optimizer as a vector containing
the translation and quaternion values.

Furthermore, we plan to compare this method with a
variant where we first reproject the 3D estimates of the
tag poses back into the images and optimize over the
summed error between points in all three images. This is
the traditional ”bundle adjustment” error used in photogram-
metry, the science of gathering reliable information about
physical objects and the environment through for example
imagestream analyzation, to join multiple observations of a
scene. From an intuitive point of view, it has the advantage
that bad depth estimates from one camera should show low
resistance to small changes as image coordinate wise it will
have little impact, less the farther away the detection is from
the camera due to the scaling of depth.

One advantage of optimizing over the reference tag pose
and calculating the remaining tag poses is that the resulting
transformations will be consistent with our model, which is
not the case in general when averaging over all estimates
for all tags. Lastly appending an extended Kalman filter as
a final stage of our object tracking pipeline as it was done
in [17] to smooth our outputs is intended.

D. Task and Motion Planning & Robot Control

To execute the construction plan and correctly stack the
SL-Blocks, we use pre-generated trajectories based on the
block pickup location and insertion pose. The trajectories
are provided by the grasshopper engine [24], which is a
graphical algorithm editor allowing users to specify high-
level design objectives. The trajectories from the grasshopper
are communicated through the ROS interface by publishing
the trajectories through a new topic. Subscribing to this topic,
we can use the joint positions to make the robot execute the
trajectory.

The robot will be controlled using a supplied controller
from Franka’s operating library libfranka. Later on, we will
utilize our block tracking beyond the pre-pickup block pose
estimation for better robot control. We will use the detected
block trajectory to correct the trajectory of the gripper, so that
the block gets exactly where it should, instead of focusing
on the gripper movement. The task and motion planning
approach presented by Braun et al. [25] combines search-
based planning over high-level discrete actions and low-level
trajectory optimization, utilizing geometric heuristics for the
search and applying the receding horizon paradigm to gain
performance. It should be a good fit for our problem as we

have to combine high-level decisions such as "When do we
grab which block?” with low-level planning for "How do we
move the block for insertion?”. This would enable the robot
system to no longer be reliant on a pre-generated assembly
plan and instead plan effectively given the actual situation on
the assembly surface. In combination with the block tracking,
it will also enable us to avoid collisions with the partially
assembled structure.

We further plan to extend this idea with a separate con-
troller just for inserting blocks into the partial structure. Here
we are looking to apply RL, based on dynamic motion primi-
tives (DMPs). For block insertion there are multiple insertion
techniques suited to different scenarios. They are quite dif-
ferent to each other. Reinforcement learning algorithms have
already been successfully applied to efficiently and robustly
optimize the parameters of DMPs for example the domain
of autonomous driving [26] or for everyday pick-and-place
tasks [27] and recent work shows (Pro-) DMPs are applicable
to block insertion tasks [28],[29]. Combined this leaves us
confident that an efficient and robust stacking algorithm can
be created by decomposing the different insertion techniques
into DMPs.

E. Simulation

Fig. 6. Scene from inside the simulation with the dual arm robot as well
as the SL-Block.

Parallel to the work on the real robot, we integrate a digital
twin of our real-world setup. This enables us to test new
approaches but also makes it possible to use it as a learning
platform for RL algorithms. Conducting experiments on a
real robot system does not only take time but also poses
danger to the people around as well as the robot itself. Wrong
configurations on a robot can lead to havoc and disaster
which we want to prevent as much as possible. Even though
the risk imposed through the robot arm that we are using is
quite low, security aspects should always be kept in mind.
By using a digital twin in a simulation we can reduce the risk
of bad configurations on the real robot by first testing them
in the simulated environment. In addition to this, we also
gain greater flexibility when it comes to testing new ideas as
we are not limited by the constraints of working with a real
robot. In our case, we have two important requirements for
the simulation to fulfill.



First, it has to be able to generate photo-realistic images
of the SL-Block and its structures. This is needed so we
can test and evaluate our detection pipeline with synthetic
images and expect it to perform similarly well in a real-world
environment. Therefore we implemented a digital twin of the
SL-Block with the same AprilTag configuration as in the real
setup.

Second, we need a physically accurate simulation of the
entire environment. This especially refers to the physical
properties of the SL-Block and its interaction with other
blocks and manipulation through the robot.

1) NVIDIA IsaacSim: We are using NVIDIA Isaac Sim
[30], a state-of-the-art robotics simulation platform. It al-
lows us to generate photo-realistic images by using the
latest advancements in real-time ray tracing and physically-
based rendering. Additionally, we can work with physically-
accurate simulation by leveraging the NVIDIA PhysX engine
[31]. Regarding the ability to use the simulation as a training
platform for reinforcement learning, NVIDIA IsaacSim pro-
vides a new way to speed up the training of such models by
2-3 orders of magnitude compared to traditional techniques.
This is done using the recently published Isaac Gym [32]
which removes the CPU bottleneck during training and
directly passes the physics buffer via the GPU to the training
network which also resides on the GPU. We use the provided
Python interface as well as the ROS connector to interact
with the simulation.

IV. CONCLUSION AND OUTLOOK

In this work, we present our plans and progress towards
developing a new approach to automating the construction
of predefined structures assembled from SL-Blocks utilizing
the Franka Emika robot. We tackle high precision tracking of
the SL-Block by modifying recent multi-marker multi-view
based object tracking algorithms. Instead of the transforma-
tions between the markers of our target object being unknown
and determined in a calibration step as in previous methods,
the blocks are modeled with transformations for the markers
predefined. We cover all of the block’s faces with fiducial
markers (AprilTags). This reduces the probability that all
markers are occluded from one of the viewing angles and
improves the robustness of our pose estimation. Most of
the setup concerning hardware, experimental arrangement,
and software integration via ROS both in simulation and
in the lab has been completed, preparing for the future
implementation of our planned solutions. Intermediate results
of the partially implemented object tracking encourage us to
extend our work to further improve the pose estimation and
combine it with motion planning.

Due to the incomplete implementation state of our object
tracking, we can’t yet compare it with related work.

Object tracking is only the first necessary step towards
our planned proof of concept version of the construction
pipeline. Once it’s fully operational we can proceed with
improving its performance through the planned measures
described throughout this work.
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