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Abstract— While many current object tracking approaches
focus on tracking humans or traffic situations, and not include
robotic models, in this work we specifically focus on the task of
object tracking in a robotic assembly environment. For this, we
outline the specific challenges and chances of object tracking for
the assembly purpose and then create a dataset in a PyBullet
simulation environment, where a robot arm picks, moves and
places a block in the scene. We then evaluate the tracking
performance of the AR tracking library VisionLib and conclude
that it is not suitable for tracking objects in robotic assembly.
Finally, we outline further research topics which are important
for creating a good object tracker in robotic assembly.

I. INTRODUCTION

Object tracking has a remarkable importance for many mod-
ern technologies. It plays a fundamental role in applications as
Augmented Reality (AR) and traffic tracking. In this context,
reliability in the tracking results is very important. This work
addresses the problem of object tracking specifically for
robotic assembly. Object tracking in general can be described
as the process of estimating a target object’s state over
multiple frames, given an initial state (e.g. object’s pose)
[18]. There is a lot of literature about tracking algorithms
and their challenges and problems. For example, Yilmaz et
al. [20] appoint complex situations for robust tracking and
classify different approaches to it.

The goal of the robotic assembly setup is to make a
robot arm independently move and stack parts for building
architectural objects. In this work, the architectural assembly
setup is simulated in a PyBullet [1] environment, consisting
of an UR10 robot arm [14] with an attached ROBOTIS RH-
P12-RN gripper [9]. An overview of the environment scene
can be seen in figure 2 and the environment is described in
detail in section III. For the assembly task, the arm moves
solid SL-Blocks around the scene.

Architectural assembly relies on good object trackers.
Because there are multiple cameras in the environment it
is possible to use lots of data for state estimation. Especially
estimating the poses of the SL-Blocks is essential for the robot
to move and stack them optimally. Additionally, including
kinematics and the measured poses of the robot arm’s joints
are very beneficial for state estimation. This highlights the
need to address object tracking in robotic assembly in more
detail.

It is very reasonable to consider the problem of object
tracking in robotic assembly from a probabilistic perspective.
The probabilistic view on robotics is mainly described by
Thrun et al. [13]. They describe real-world systems as complex
and only partially observable environments. In addition to
that they are also increasingly unstructured and unpredictable.

(a) Tracked state.

(b) Critical state.

(c) Lost state.

Fig. 1. VisionLib’s three tracking states: 1(a) tracked, 1(b) critical and 1(c)
lost.

Therefore, including uncertainties and probabilities is a very
promising approach because that offers the advantage that
multiple hypotheses can be handled and a tradeoff between
exploration and exploitation is feasible. In addition, sensors
are noisy and do not display the current state correctly. Despite
that, every gathered information, even if it is really noisy,
helps to model the environment and make estimations better
if probabilistic methods are used for modeling [3].

Probabilistic object trackers rely on good datasets. That
is why as a first step towards an object tracker for robotic
assembly we created a dataset in the assembly simulation
environment in section IV. The dataset can be used for learn-
ing from the data and evaluating the tracking performance.
This allows the object tracker to adjust to the environment
and improve its performance.

Using this dataset, we evaluated the tracking performance
of the AR tracking library VisionLib [15]. Some example
tracking frames with their respective tracking status in



VisionLib can be seen in figure 1. VisionLib takes an .obj file
and an image sequence as input, and estimates the objects pose
in subsequent frames, while expressing its own confidence in
the tracking results with the three states ’tracked’, ’critical’
and ’lost’. In section V we evaluated VisionLib’s performance
and applicability for robotic assembly on some example frame
sequences from the assembly environment to get an overview
of the main problems which occur when tracking objects for
robotic assembly.

II. RELATED WORK

Object Tracking: Common methods for object tracking are
the Kalman filter [5, 3, 13, 19, 20], extended Kalman filter [3,
13, 19], unscented Kalman filter [3, 13, 19] and the particle
filter [3, 13, 18, 19, 20]. Many object tracking approaches
take depth images as input [4, 7, 19]. Since we also record
depth images and especially focus on object tracking using a
range camera, approaches that use depth information are of
special interest. Depth images are also useful in the widely
spread topic of 3D model-based object tracking. They make
representations of 3D objects possible. To take advantage of
the information given by depth images it is often useful to
have shape information like 3D-meshes of the object. Worth
mentioning are the papers from Radkowski [7], Isaac et al.
[4] and Wuest et al. [10]. To track the object, methods like
robust Gaussian filters [4] or point cloud matching [7] are
proposed. These approaches are promising and should be
considered for use in robotic assembly.

The proposed robust Gaussian filter should be less suscep-
tible to problems that occur using a standard Gaussian filter,
such as fat-tailed measurement noise of depth sensors and
the exorbitant computational cost due to high-dimensional
measurements. The robustification method models each pixel
as an independent sensor which allows parallelization. To
handle the fat-tailed measurement noise they replaced the
actual measurement with a virtual measurement [4].

The point cloud matching method tries to minimize the
mean squared error between the given point cloud by the
depth image and the point cloud of the 3D-object mesh data.
Here it is important to say that not all points of the mesh
model are used to make the calculation online. The several
point selection methods have their own respective advantages.
For further information, we refer to the paper from Radkowski
[7].

To reduce problems of unmodeled objects some papers
introduce an additional observation model explicitly for
occlusions [4, 19]. Issac et al. [4] implemented this by a
uniform distribution.

Datasets: To get an idea of what we have to consider
when we create our dataset, we looked up other datasets like
the YCBInEOAT dataset by Bowen Wen et al. [17]. They
pointed out that existing datasets have either static objects on
a table, where the camera is moving around, or the objects are
manipulated by hand. This means they are not suited for robot
manipulation tasks because they do not consider additional
data like forward kinematics. Also, there is not much video
footage where the robot manipulates the objects in the scene.

Therefore, our dataset should include manipulation tasks by
a robot arm and also record forward kinematics which can
be used to improve the tracker.

Other datasets [8, 12] have the problem that they mostly
have humans as target objects [18], which is not what we
need to train an object tracker for robot assembly. In our case,
we need a dataset for a specific target object, the SL-Block.
That is one of the reasons which motivates us to create a
new dataset in the robotic assembly environment.

It is also important to provide ground-truth poses in every
frame which is not always the case in current datasets [18].
So, we provide ground-truth poses of the target objects and
the cameras since this information is essential to evaluate the
tracker properly.

VisionLib: VisionLib [15] is a multi-platform augmented
reality tracking library by Visometry. All the following infor-
mation about VisionLib is from their official documentation
[15], which we refer to for more details on the library. Its
Unity, C, or Objective-C API makes it possible to implement
AR applications at an industrial scale, but for this work we are
only interested in the computer vision tracking technologies
they use. It offers

• Model Tracking and State Detection,
• Marker and Feature Tracking,
• Multi-Camera and Multi-Model-Tracking,

as well as a combination of multiple tracking techniques.
Since we do not want to use markers and would like to
keep it rather simple at this point, we are focusing on Model
Tracking and State Detection. VisionLib’s Enhanced Model
Tracking should help to overcome typical problems of AR
like unstable light conditions and moving elements in the real
world, so there is no need for preparations. Model tracking
uses 3D and CAD data to detect, localize and track objects.
The data is used as a tracking reference for the physical
object to derive the edges of the 3D model, and the edges in
the video stream to match them. The edges form a line model
of the object. The better the 3D model matches the physical
object, the better is the tracking. When the object is tracked,
VisionLib calculates and delivers the core information to
align the coordinate systems of tracking and 3D graphics.
The usage of 3D models also explains the robustness against
typical problems of AR. While VisionLib does not provide
any further information on the algorithms behind the tracking
API, the founders published a paper [10] whose principles
might be used in VisionLib. In this paper, they propose a
method that is based on direct image alignment between
consecutive frames over a 3D target object. In comparison to
established direct methods that only rely on image intensity,
they also model intensity variations using the surface normal
of the object under the Lambertian assumption.

Tracking Evaluation: Wu et al. [18] present attributes for
a test sequence for a better evaluation of tracking algorithms.
These attributes give an overview of what difficulties of
tracking (like occlusion, fast motion, illumination variation,
etc.) should be addressed. Therefore, we want to cover as
many of these difficulties as possible to evaluate the tracker’s
robustness.



Fig. 2. Overview of the simulation environment with coordinate system.
Each square of the blue and white grid measures 1m × 1m. red: x-axis
green: y-axis blue: z-axis

TABLE I
CAMERA PROPERTIES

Properties Values

Target Position [0, 0, 0.5]
Camera up-vector [0, 0, 1.0]
Height 1080
Width 1920
Field of View 100
Far value (range) 10
Near value (range) 0.02

III. SIMULATION ENVIRONMENT FOR ARCHITECTURAL
ASSEMBLY

While recording data on the real robotic assembly setup
is expensive and requires a lot of manual labor, using a
simulation environment allows for easy adjustments and
simple usage. Therefore in this section, we describe the
PyBullet [1] simulation environment for robotic assembly we
created. For further information on PyBullet, we refer to the
official documentation [1].

A. Robotic Assembly Setup

The environment replicates a real robotic assembly setup.
The most important part is the UR10 robot arm [14] which
consists of six rotational joints. The attachment on top of it
is the ROBOTIS RH-P12-RN gripper [9] which consists of
four joints. The robot arm is placed on a block so that its
base is up 35.5 cm over the plane which makes the robot’s
movements easier and more natural. Both are attached using
the PyBullet planning library by Caelan Garrett [2]. The
library allows for easy control and movement of the robot
arm. The environment consists of two cuboid tables whose
measures are 1m × 0.5m × 0.4m for length, width, and
height. The tables are modeled as simple GEOM boxes. The
first table will be referred to as pickup table and is located
at a distance of 85 cm along the y-axis in front of the robot

TABLE II
ROS MESSAGE TYPES FOR ALL TOPICS

Topic ROS Message Description

depthimage Image Recorded depth image matrix
rgbimage Image Recorded RGB image matrix
block Pose Block pose in world coordinates
cam Float64MultiArray View & Projection matrix
jointname Joint Pose of each joint of the robot

arm’s base, which corresponds to the direction of the y-axis
of PyBullet (cf. figure 2). At the beginning of the simulation,
an SL-Block is placed on top of the pickup table. The second
table, which we call the placement table, is located at a
distance of 85 cm along the x-axis from the arm’s base and,
at the beginning of the simulation, has no block on it.

B. Modular Camera

In addition to the described environment, we implemented
a modular camera class in PyBullet. The advantages of using
the modular camera are as follows:

• The camera can be placed anywhere in the environment
which is very reasonable because in the real assembly
setup the camera can also be put at any location. This
allows for an easy alignment of the camera if the
previously used position is not suitable for a certain
tracking scene.

• The modular camera makes it possible to place multiple
independent cameras simultaneously in the environment
and is essential for multiple camera tracking. We also
used this advantage for our dataset where we recorded
from four different locations at the same time.

The camera records RGB-D images. Table I shows the
properties we used for the modular camera. It is also possible
to adjust these parameters, if needed.

C. ROS Integration

The environment is integrated with ROS [11] for easy data
storage and processing. At each frame, the position of the
block, the joint position of all joints of the robot, and the
RGB-D images from all cameras are published. Each data
type is published with its own topic. A topic for the RGB
image and a topic for the depth image is used for each camera.
Table II shows which ROS message types are used. Using
existing ROS message types is appropriate here to make
the data access comprehensible. The separation of data in
different topics enables modular analysis of data and targeted
access to relevant information. When using the ROSBAG
tool [11], the time of data publication is also recorded which
is a further advantage of the ROS integration. This makes
the playback of the scene convenient and it is possible to get
information about each frame correctly. The intended use of
the individually recorded data is described in section IV.

D. Randomization

In the environment, it is possible to randomize the colors
of the SL-Block, tables, and background. This randomization



(a) View from cam0 (b) View from cam1 (c) View from cam2 (d) View from cam3

Fig. 3. The different camera views which are used for the dataset.

enables the creation of an extensive dataset, and to train and
evaluate object trackers under different circumstances.

IV. DATASET CREATION

Object tracking is a very complex topic and faces several
specific problems in the robotic assembly setup. A reasonable
approach for handling these issues is making the algorithms
learn from data. In this section, we outline the main difficulties
of object tracking in the assembly setup and describe how
we created a dataset for robotic assembly which is a first and
fundamental step towards learning object tracking algorithms.
The dataset can be accessed via [6].

A. Difficulties And Chances Of Object Tracking In Robotic
Assembly

As stated in section II, object tracking has a lot of
difficulties that good tracking algorithms must address and
deal with. For the robotic assembly setup as mainly described
in section III, the most important difficulties are as follows:

• Complex object motion.
• Handling noise.
• Handling occlusions.
• Most cameras are static. This is a problem because the

cameras might lose track of the objects when they are
too far away. The problem of static cameras is related
to the problem of occlusions.

Considering these problems, a very reasonable approach is
to make object tracking algorithms learn from data to have
more robustness. Creating a dataset has multiple advantages:

• Adapt to environment and specific parts. As described
in section III, mainly SL-Blocks are moved in the
environment. For real-world assembly applications, it
is also probable that there are only some specific parts
that are moved. Therefore, our dataset allows us to
specifically deal with SL-Blocks and adapt to their
structure and dynamic properties.

• Include kinematics for better training and evaluation.
Recording the kinematics (joint positions) makes it
possible to use this data for the process model. This
is an important advantage of robotic environments
in comparison to e.g. human tracking, where reliable
kinematics models are hard to obtain and rarely even
exist.

• Include uncertainties. The many difficulties of object
tracking are inevitable and good object algorithms

TABLE III
POSITION OF EACH CAMERA IN THE ENVIRONMENT

Camera Name Position

cam0 [ 1.30, 0.70, 1.00]
cam1 [ 1.50,-0.15, 0.80]
cam2 [ 0.80, 1.30, 1.00]
cam3 [-0.25, 1.50, 0.80]

especially have to address the problems of occlusions
and noise. The most reasonable way to do this is
using probabilistic methods as proposed in [13, 19, 3].
These methods usually require good measurements and
evaluation data, which the dataset provides.

Because of these advantages, learning from data is a
fundamental idea for this work. The basis of any good
learning strategy for object tracking is a good and appropriate
dataset. For this, we created a dataset using the simulation
environment from section III. The dataset mainly focuses on
the difficulties of complex object motion and static cameras.

B. Simulation Setup And Dataset Recording

The dataset consists of one trajectory which is recorded by
four cameras (cf. figure 3), under different randomizations
(see section III-D) and is based on the simulation environment
described in section III. For our evaluation purposes using
one trajectory with different randomizations is sufficient.
Despite that, the simulation environment allows to record
other trajectories and extend the dataset, if that becomes
necessary in the further process of developing an object
tracker. In the following, we describe the concrete scenery
which is recorded.

1) Camera Alignment: The scenery consists of four mod-
ular cameras (cf. figure 3) as described in subsection III-B
which should be used to track the movements. The alignments
of the cameras with their respective positions can be seen
in table III. Here, the camera names correspond to the ROS
topic names of each camera where the projection matrix and
view matrix are published. This is shown in table II.

Using multiple cameras is necessary because some static
cameras will always be too far away from the tracking object
or the tracking object will be occluded when watching the
scenery from a specific view. Therefore, it is necessary to
include multiple camera tracking for object tracking in the



TABLE IV
INTERMEDIATE POSITIONS OF THE END EFFECTOR IN

XYZ-COORDINATES

Step End Effector Position

1 [0.00, 1.00, 1.00]
2 [-0.10, 0.96, 0.64]
3 [0.00, 1.06, 0.80]
4 [0.48, 0.95, 0.80]
5 [0.85, 0.63, 0.80]
6 [1.05, 0.18, 0.80]
7 [0.85, 0.40, 0.67]
8 [0.80, 0.00, 1.00]

robotic assembly setup. The dataset allows to either track
the object for each camera independently or to combine the
results to get the best position estimate.

2) Movement Trajectory Of The Robot Arm: The interme-
diate positions of the robot arm’s end effector can be seen
in table IV. Here the XYZ-Coordinates correspond to the
coordinate system of the PyBullet environment, which is
shown in figure 2.

• Step 1: The robot starts at the specified position.
• Step 2: The robot moves to the specified position and

grasps the part by setting a constraint between its gripper
and the block.

• Step 3-6: The robot performs a quarter-circular move-
ment around the z-axis until it is above the placement
table.

• Step 7: The robot drops the block.
• Step 8: The robot stops at the specified position.
3) Simulation Properties: PyBullet simulates the environ-

ment using simulation steps, where each step simulates 1/240
seconds. We recorded the dataset with 30 frames per seconds,
which concludes that we recorded camera images every eighth
PyBullet simulation step.

V. BRIEF EVALUATION OF VISIONLIB

To get a first idea of how current tracking libraries work
with our dataset and how they handle object tracking in
general, we used the object tracking library VisionLib [15]
to evaluate its performance with our data. In addition to the
recorded dataset for robotic assembly, we used simplified
versions of the setup, mainly leaving out the robot arm
and focusing on simple tracking of SL-Blocks. For a basic
description of VisionLib and its functionality look into section
II, for further details we refer to the official VisionLib
documentation [15].

A. Simplified Environment For VisionLib Evaluation

To focus on specific difficulties which object tracking
algorithms face and need to address, we created simplified
versions of the environment. We aimed to record data from
environments (cf. figure 4) with

• One moving block, two static blocks, and a static camera,
• A static block on a table with a camera moving around

the block,

• A robot grasping the block from a table and putting it
down on another table and a static camera,

• The same trajectory and setup but with an invisible robot.
In the first setup the SL-Block should fly around. We

disabled gravity for that and applied force on the block. The
applied force is proportional to the block’s distance to a given
target position. If the distance falls under a threshold, we do
not apply force anymore. So, we chose four target positions
that are reached sequentially. Following the trajectory, the
block collides with one of the static blocks which causes
rotation. This is of special interest regarding the evaluation.

In the second setup we removed one table and the robot,
so there is only one block on a table. The camera orbits the
block with a radius of 1.5 m.

The third setup is our dataset environment from section IV
without simplifications. To make the robot invisible for our
last scene, we changed the alpha value of the RGBA color
in the URDF file of the robot and gripper from 1.0 to 0.0.

B. Image Sequences

Instead of using a webcam or a mobile device as an input
video stream, VisionLib allows using an image sequence in
form of a folder of JPG or PNG files. So we recorded a JPG
sequence of our simplified environments we introduced in
subsection V-A.

C. Tracking Configuration File

The input has to be set in the tracking configuration files
(.vl files) which are JSON files with a particular structure. The
configuration files enable to control basic tracking behavior.
Mandatory initial parameters of the configuration file are
modelURI, metric, and initPose. The modelURI is the URI to
the 3D file which is used as a tracking reference (in our case
SL Block.obj). The metric sets the corresponding unit size of
the model in metric scales. This parameter has an immense
influence on tracking quality. The initPose describes the pose
of the object from which the tracking should start.

To create this file we used VisLab [16] which is Visometry’s
Tracking Configurator for VisionLib. We imported the object
model and the image sequence into VisLab and aligned the
model with the SL-Block in the first frame of the images
(cam around block scene at the 64th frame).

There are optional tracking parameters that allow modifica-
tions and refine the line model and the image processing
during tracking. There is the Laplace- or Contour Edge
Threshold which influences the outer contour edges of the
object, and the Normal- or Crease Edge Threshold which
influences the crease or curvature edges of the model. We kept
these values at their default value because the SL-Block is very
simple and the line model fits well. Detection- and Tracking
Thresholds like the minInlierRatioInit, which influences the
detection sensitivity, and the minInlierRatioTracking, which
influences the tracking sensitivity, describe the minimum ratio
between parts of edges that are found and not found to detect
and track the object. Therefore they have values between
0.0 and 1.0. There are advanced tracking parameters for a
contrast threshold, detection radius, tracking radius, and a
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(a) Flying SL-Block.
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(b) Camera around SL-Block.
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(c) Trajectory with robot arm.
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(d) Trajectory with invisible robot arm.

Fig. 4. The four plots show the tracking quality of VisionLib’s tracker at each frame for each evaluated tracking sequence respectively. The purple line
describes the minimum inlier ratio which serves as a threshold to determine when the object is considered to be tracked or not, while the blue line shows
the tracking quality. The bar under the plot displays the tracking state at each frame. On the right of each plot is a picture of the corresponding environment.
4(a) shows the scene with the flying SL-Block, 4(b) shows the scene where the camera circles around the SL-Block, 4(c) shows the scene where the robot
arm grasps the SL-Block from the table and lays it down on the other table, and 4(d) shows the same scene as 4(c) but with an invisible robot arm.

keyframe distance (keyframes let the line model update and
are used as recovery points beyond the initial pose when
tracking is lost). We kept these at their default values, too.

D. Unity And Evaluation

To evaluate VisionLib we used the vlUnitySDK API
together with Unity 2018.4. In Unity, we first had to import the
VisionLib library. We then took the example for simple model
tracking and adapted it accordingly. For that, we replaced the
existing object with the SL-Block and imported the tracking
configuration file we created with VisLab.

To get a metric for evaluation, we wrote a C#-Script which
writes the image frame number, the timestamp, the tracking
state, and the quality of the tracking in a text file. For that,
we used the VLTrackingState.TrackingObject class which
stores the necessary information. The tracking state has three
values: tracked, critical, and lost. A critical state means that
the tracking is unstable and the object might be lost soon. The
quality takes values from 0.0 (worst value) to 1.0 (best value)
and represents VisionLib’s confidence in its tracking results.
The quality is connected to the minInlierRatio parameters
and needs to be above these values to classify an object in a
specific frame as ’tracked’.

The tracking state is also indicated by its color (green =̂
tracked, yellow =̂ critical, red =̂ lost). Figure 1 shows how
each state is displayed in Unity using the scene with the
robot.

Figure 4 shows the tracking results using VisionLib. The
tracking quality appears to be relatively high when the tracker
starts to track an object, but then decreases with the number of
frame. The tracker can also handle movements, but rotations
result in more critical states (cf. figure 4(a)) or even losing
the object (cf. figure 4(b)). When the flying SL-Block collides
with the other block at frame 284 in figure 4(a), the tracking
quality reaches a minimum and the state becomes critical,
but it re-detects the block fast. In the following frames, the
target object is rotating which results in a lower tracking
quality (cf. figure 4(a)). In comparison to the trajectory with
the invisible robot, the tracking with the robot is switching in
the critical state more often and the plot (cf. figure 4(c)) does
not look as stable as the invisible robot plot (cf. figure 4(d)).
In addition, the state becomes critical when the robot grasps
the object in frame 89 which can be seen in figure 1(b). You
might conclude that occlusion is a problem. Despite that, the
trajectory with the invisible robot shows a very similar plot
as the trajectory with the robot where we have occlusion.
Therefore, we conclude that occlusion does not seem to be the
main problem here as we thought at first, because the tracker
even loses track of the object before the occlusions appear.
We assume that the fast movements cause the bad tracking
here, too. Another difficulty occurs when the SL-Block does
not reveal a lot of its 3D structure and orientation as in the
frames in figure 5 and in the first frame of the camera-around-
block sequence which can be seen in figure 6(a). We also



(a) Critical pose in flying block video. (b) Critical pose in camera around block video. (c) Critical pose in invisible robot video.

Fig. 5. Positions where VisionLib’s tracking state becomes critical

(a) First frame. (b) Initial pose frame.

Fig. 6. 6(a) shows the first frame from the camera-around-block sequence.
6(b) is the frame we used to set the initial pose.

had to change the initial pose from the camera-around-block
setup from the pose at the first frame (cf. figure 6(a)) to
a pose which reveals more of the block’s 3D structure (cf.
figure 6(b)). That is the reason why the tracking quality is
low at the beginning of the plot in figure 4(b). Another point
that can be observed in figure 4(b) is that once the tracker
loses the object it does not start to track again unless the
initial pose of the 3D model matches the object in the video
again. This can be seen in the video with the camera moving
around the block, and also in figures 4(c) and 4(d).

Looking at the results, especially at the scene with the robot,
VisionLib does not seem to be suitable for robot assembly.
That is because there are a lot of movements that lead to
losing the object. When the object randomly gets into its
initial pose again, the tracker is able to align the model and
the object is tracked again. Since that is unlikely, the tracker
stays in the lost state.

VI. SUMMARY OF WORK AND OUTLOOK

In this work, we dealt with the problem of object tracking
for robotic assembly. Object tracking plays a fundamental role
in the assembly setup because we want to use and incorporate
the visual data from the cameras as well as poses and
kinematics from the robot arm for optimal movements (e.g.
around obstacles), optimal part grasping and part stacking.
While there is a lot of prior work on the topics of object
tracking in general and uncertainties in robotics, problem-
specific object tracking algorithms for robotic purposes and
related datasets are rare. Therefore we created a PyBullet [1]
simulation environment for the robotic assembly setup where
we can simulate the robotic movement and behavior with

precise ground-truth parameters. We used this environment
for creating a dataset to have object tracking algorithms
learn from data and adjust to the specific environment. The
dataset includes one trajectory where an SL-Block is picked
up and moved to another table. We used four cameras at
different positions and included randomizations of the colors
of the background and the parts in the environment. As a
first approach to track an SL-Block in our environment we
used the AR tracking library VisionLib [15]. To get an idea
how good VisionLib works for our purpose we evaluated it
with simplified environments including the SL-Block. The
results show that it is not suited as an object tracker for robot
assembly because it loses track too often and re-detection
is only possible if the object strikes its initial pose again.
We also had to manually choose the initial pose for every
tracking situation. The main problems the tracker seems to
have are fast movements and views of the SL-Block which
do not show its structure well. VisionLib cannot handle the
depth information we record either. So, our next step is to
look at other approaches to track the SL-Blocks.

Starting from our results, there are several interesting future
research topics for this work. The first idea would be to
create a dataset on the real robotic setup. This would make it
possible to have more realistic learning data and to consider
the problem of Sim2Real transfer. The topic of Sim2Real
is important because our dataset only works with ground-
truth parameters which have near-zero noise and uncertainties,
while on the real setup you cannot assume that to be true.
That is why it is very reasonable to include probabilistic
filtering methods, as mentioned in sections I and II, and we
will put a focus on such methods.

An important aspect of the setup which is not considered
that much yet is the stacking of SL-Blocks. For the architec-
tural assembly it is necessary that when parts get stacked over
each other, they have to be treated as one new independent
part. You can expect that if this stacking is not incorporated
into the tracking algorithm, there will be issues with reliable
tracking because of the heavy occlusions which occur in
these situations. Therefore, it is a good idea to include part
stacking when we record the dataset on the real setup, to
make the algorithms also learn this aspect of assembly.

Generally, occlusions are not covered in big detail yet,



while they are a big problem in object tracking and specifically
in the assembly gym. We have not considered that yet
because as shown in section IV and V, even without big
occlusions there are many tracking problems, which mainly
occur because of complex movements and static cameras.
Therefore, currently only one part is moved and the gripper
does not actually grasp but rather set a constraint on the block.
To have reliable tracking it is necessary to also consider
occlusions in greater detail.

Another considerable aspect is multiple camera tracking.
As shown in section III, one static camera may not be enough
to track the whole environment. Therefore it is reasonable to
include multiple cameras and combine their results. For this,
probabilistic methods like particle filters can help a lot.

As main goal for the future we want to contribute a good
and reliable object tracker for the robotic assembly project.
Especially the results from section V show that problem-
specific algorithms are desirable to have stable tracking
results. Our dataset provides a good basis for learning object
algorithms on the assembly setup. Starting from that, we will
evaluate several general tracking methods as described in
section II and use that to develop an object tracker for the
setup.
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