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Abstract
Reinforcement learning has proven capable of extending the applicability of machine learning to domains in which
knowledge cannot be acquired from labeled examples but only via trial-and-error. Being able to solve problems with such
characteristics is a crucial requirement for autonomous agents that can accomplish tasks without human intervention.
However, most reinforcement learning algorithms are designed to solve exactly one task, not offering means to systemati-
cally reuse previous knowledge acquired in other problems. Motivated by insights from homotopic continuation methods,
in this work we investigate approaches based on optimization- and concurrent systems theory to gain an understanding
of conceptual and technical challenges of knowledge transfer in reinforcement learning domains. Building upon these
findings, we present an algorithm based on contextual relative entropy policy search that allows an agent to generate
a structured sequence of learning tasks that guide its learning towards a target distribution of tasks by giving it control
over an otherwise hidden context distribution. The presented algorithm is evaluated on a number of robotic tasks, in
which a desired system state needs to be reached, demonstrating that the proposed learning scheme helps to increase
and stabilize learning performance.

Zusammenfassung
Reinforcement Learning hat sich als Schlüsseltechnik erwiesen, die Anwendbarkeit des maschinellen Lernens auf Berei-
che zu erweitern, in denen Wissen nicht anhand von Beispielen, sondern nur durch eigenständige Exploration erworben
werden kann. Die Fähigkeit solche Probleme lösen zu können, ist eine entscheidende Eigenschaft autonomer Agenten,
die Aufgaben ohne menschliches Zutun erfüllen. Die meisten Reinforcement Learning Algorithmen sind jedoch für das
Lösen genau einer Aufgabe konzipiert und bieten deshalb keine Möglichkeit zur systematischen Wiederverwendung be-
reits erlernten Wissens. In dieser Arbeit untersuchen wir - motiviert durch Erkenntnisse aus homotopischen Continuation
Methoden - Ansätze der Optimierungs- und nebenläufigen Systemtheorie, um ein Verständnis für die konzeptionellen
und technischen Herausforderungen des Wissenstransfers im Reinforcement Learning zu erlangen. Aufbauend auf diesen
Erkenntnissen präsentieren wir einen Algorithmus basierend auf Contextual Relative Entropy Policy Search, der einem
Agenten die Generierung einer strukturierten Sequenz von Lernaufgaben, die sein Lernen auf eine Zielverteilung von
Aufgaben lenkt, ermöglicht, indem er ihm die Kontrolle über eine ansonsten stationäre Kontextverteilung gibt. Der vor-
gestellte Algorithmus wird anhand verschiedener Robotikaufgaben evaluiert, in denen ein vorgegebener Systemzustand
erreicht werden muss. Die Ergebnisse zeigen, dass das vorgeschlagene Lernschema hilft, die Lernleistung zu erhöhen und
zu stabilisieren.
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1 Introduction
Autonomous robots and machines promise to remove the need for human labor in disaster areas, hazardous workplaces
and other environments that, although holding many dangers for life and well-being, still require human presence. While
the successful realization of such machines can drastically reduce the number of incidents and deaths accounted to these
environments, equipping machines with the necessary learning capabilities unfortunately turns out to be a very complex
problem.
Reinforcement Learning (RL) has allowed to create agents that are capable of learning a variety of games to a superhuman
level [1, 2, 3] and achieving complicated robotic control tasks through trial-and-error [4, 5, 6]. Those successes make
RL be regarded as a key technology for equipping robots with the required autonomy to help or replace humans in
aforementioned areas.
With increasing computational capabilities and the availability of powerful function approximators, RL methods are being
applied to more and more complicated problems. However, there exist crucial mismatches between the way we humans
learn compared to RL methods, one of them being that most methods are designed to learn one specific task, not allowing
to effectively reuse knowledge from related learning tasks in novel scenarios. While so called transfer learning for RL [7]
aims at providing RL agents with those missing capabilities, this remains an open problem as many transfer learning ap-
proaches employ specific assumptions that limit their general applicability. Nonetheless, a generally applicable approach
that allows RL agents to subsequently choose learning tasks and transfer acquired knowledge between them would be a
crucial step towards artificial intelligence that truly deserves its name. Results from cognitive science [8] underline this
finding, where head cameras and eye-trackers were used to capture images of the infant’s learning environment during
their first two years of life, revealing that this environment gradually changes with the increasing capabilities of the infant
learner, creating an implicit learning curriculum that provides the infant tasks of increasing complexity.
In this work, we will create such a scheme of transfer learning, in which the learning tasks of an agent progress from
easier to more complicated ones, by gaining insights into so called homotopic predictor-corrector methods - a form of
numerical continuation methods - that allow to find roots of parameterized systems of linear equations by finding roots
for specific parameters and then follow these roots as the parameters change. This approach is especially appealing, if
direct root finding approaches fail for specific single parameters.
Motivated by this idea of finding a chain of solutions to problems of increasing complexity, we then investigate how to
apply this idea to the domain of RL, where we do not need to solve a root finding- but a constraint optimization problem.
More specifically, we will investigate sensitivity analysis and bisimulation metrics. Sensitivity analysis [9] is a well-known
concept from multi-parametric programming [10] that allows to compute how the solution of an optimization problem
changes with respect to its parameters. Bisimulation metrics [11, 12] are approaches to quantify the similarity of states
in Markov Decision Processes (MDPs) by extending the concept of bisimulation known for concurrent processes [13].
While providing promising insights into the complexity of the problem that we aim to solve in this thesis, both of the
aforementioned methods suffer from technical and practical limitations that do not allow to use them in a straightforward
manner for our purpose. Because of this, we ultimately take an episodic view of the RL problem by extending the so
called Contextual Relative Entropy Policy Search (C-REPS) algorithm [14, 15, 16] - an episodic policy search algorithm
which allows to generalize a policy over a set of reinforcement learning problems that are related by a context variable.
We extend this algorithm to allow the RL agent to control the, otherwise fixed, context distribution and introduce a
penalty term that allows to increasingly force the context distribution of the learning agent to match the desired one.
While this is conceptually straightforward, we will see that some ingenuity is necessary to allow for a numerically stable
solution of the resulting optimization problem.
We then evaluate our algorithm on three different robotic goal reaching tasks. The experiments show that our algorithm
indeed uses the explicit control over the context distribution to initially focus on easier contexts and then progresses
towards the desired context distribution as we increase the penalty multiplier. This allows our method to solve tasks in
which the default C-REPS algorithm cannot demonstrate satisfying performance.
Finally, we discuss related work and conclude the thesis by investigating possibilities for future work.
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2 A Motivating Example: Numerical Continuation
Methods

To motivate our efforts in understanding sequential learning and knowledge transfer in reinforcement learning domains
as well as the algorithm that will be presented in this thesis, we want to look at so called homotopic predictor-corrector
methods, a specific class of numerical continuation algorithms [17], which are used to solve non-linear equation systems

Fi(x) = 0, i = 1, . . . ,m, x ∈ Rn.

A common tool for such a task is the so called newton method [18], which is able to find roots of F (x) by computing a
sequence of points xi obeying

xi+1 = xi − F ′(xi)†F (xi)

= xi −
(
F ′(xi)

TF ′(xi)
)−1

F ′(xi)
TF (xi). (2.1)

In above equation, F ′(xi) ∈ Rm×n is the Jacobian of F (xi) ∈ Rm and A† ∈ RL×K the Moore-Penrose Inverse of an
arbitrary matrix A ∈ RK×L [19][20]. Note that the use of the Moore-Penrose Inverse is already a generalization of the
original newton method, which allows for its application to over- or underdetermined systems of non-linear equations,
i.e. if m 6= n.
While the sequence xi - if convergent - quadratically approaches a root of F (x), this convergence is not guaranteed for
all initial values x0. The three scalar functions f , g and h shown in figure 2.1 help to illustrate this problem. While the
newton method would robustly find one of the roots of the left-most function f(x), this task becomes more and more
brittle for the middle and right functions g(x) and h(x), as for more and more initial values the gradient F ′(x0) in
equation 2.1 becomes 0 and hence the computation of x1 fails.
However, figure 2.1 also hints at a possible solution to this problem. The three functions f(x), g(x) and h(x) are actually
strongly related as they all arise from the function

H(x, λ) =

{
1

10−4c (x− c)4 − 2
10−2c (x− c)2 + 1

64 , if |x− c| ≤ 10−c

−63
64 , else

, c = 4− 5λ, λ ∈ [0, 1],

with H(x, 1) = f(x), H(x, 0.75) = g(x) and H(x, 0) = h(x). We call the function H a homotopy between f and h,
whose parameter λ describes a continuous deformation of f into h. This also means that the roots of f are continuously
deformed into roots of h as we decrease λ from 1 to 0.
It is exactly this homotopic nature of H that we can exploit to find roots of H(x, 0). That is, we compute a root of
H(x, 1) using a newton-type method and then iterate between decreasing λ and re-computing the root of H(x, λ) using
the previously found root as an initial guess, until we arrive at λ = 0. This scheme already corresponds to a naive version
of a predictor-corrector method, where in the predictor step we choose the next value of λ and the corrector step then
re-computes the root of H(x, λ) for this new value of λ. This concept is visualized in figure 2.2 for the homotopy H.
However, the figure also indicates that it is possible to improve upon this naive approach by approximating how the
position x of the root will change as we decrease λ. In order to approximate this change, it is necessary to start thinking
of the roots of H(x, λ) in a different way.
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Figure 2.1.: Three functions f , g and h mapping from R to R. The red dotted line shows f(x) = g(x) = h(x) = 0 to
pronounce the roots of the functions.
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2.1 Tracing Root Curves

The roots of H(x, λ), depicted by red lines in figure 2.2, actually form curves in Rn+1 which are defined by the condition

H(u) = 0, u = [x λ] ∈ Rn+1, H(u) ∈ Rm. (2.2)

With above definition, a more elaborate way of thinking about predictor-corrector methods is that they trace those root
curves starting from an initial point u0 ∈ Rn+1 until they reach a point where λ = 0.
This new interpretation allows us to improve the predictor step by taking the orientation of the curve into account, which
is given by its tangent at a given point u. As shown in [17], if we parameterize the curve by the arclength (i.e. the
traveled distance along the curve) we can define the tangent vector t ∈ Rn+1 using the three constraints

H ′ (u) t = 0, (2.3)

‖t‖ = 1, (2.4)

det

H ′ (u)

tT

 > 0. (2.5)

Condition 2.3 arises by differentiating the curve condition 2.2. Condition 2.4 ensures that the tangent vector is of
constant size and finally, condition 2.5 ensures that the curve is traced in a consistent direction, i.e. that the algorithm
does not arbitrarily move back and forth along the curve. Note that this last constraint implicitly requires m = n, i.e.
that the number of constraints matches the dimension of x as the determinant is only defined for square matrices and
H ′(u) ∈ Rm×(n+1). For the case m 6= n, other conditions ensuring a consistent direction would need to be introduced.
We, however, will restrict ourselves to above definition. With the notion of the tangent vector, we can now express the
tracing problem as an initial value problem of the form

u̇ = t (H (u))

u(0) = u0,

with H(u0) = 0 and t (H (u)) being the tangent vector of the curve at u. By re-defining our problem of finding roots of
a function as an initial value problem, it is possible to choose from a variety of solution methods for this kind of problem.
However, for predictor-corrector methods, it is common to use the comparatively simple explicit euler method

ui = ui−1 + ht (H(ui−1))
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Figure 2.2.: The plots visualize the homotopy H(x, λ) for different subspaces of R2. The values of H are encoded using
different colors and the dashed red line highlights the zero-crossings ofH . The area of R2 whereH(x, λ) < 0
is shaded while the areas with H(x, λ) > 0 appear in brighter colors. The left plot furthermore illustrates
two different schemes of iteratively computing roots of H(x, λ) for decreasing values of λ, which differ in
their way of predicting the x-position of the root ofH for the next λ. The ’Naive’ scheme assumes no change
in position while the ’Predictor’ scheme uses information about the tangent at H(x, λ) to approximate the
change in position.
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Input: Step size h,
Allowed prediction error εp,
Desired precision of newton-method εn (typically εn � εp)
Initial root guess x0

u = [x0 1]
loop

Corrector Step: . Newton method according to 2.1
while ‖H (u) ‖ > εn do

u = u−H ′ (u)†H (u)
end while . [x λ] does not violate 2.2 by more than εn

Predictor Step:
Q,R = QR

(
H ′ (u)

)
. QR-Decomposition of H ′ (u)

t = sign (det (Q) det (R)) qn+1 . t fulfills conditions 2.3, 2.4 and 2.5
α = 1
upred = u + αht
while ‖H (upred) ‖ > εp do

α = 0.9α
upred = u + αht

end while . [xpred λpred] does not violate 2.2 by more than εp

Termination Handling:
if λpred < 0 then

β = λ
λ−λpred . It holds that 0 = βλpred + (1− β)λ

return βxpred + (1− β)x . Interpolate between x and xpred using β
else

u = upred
end if

end loop

Algorithm 1: A Basic Homotopic Predictor Corrector Method

with a given step size h ∈ R, as the prediction for ui is corrected by a run of the newton method at every iteration before
computing ui+1 - which accounts for errors in the prediction of ui. This correction can be reviewed in figure 2.2, where
the orange line first deviates from the curve by following the tangent at a given point and is then corrected back to the
curve by the correction step. We can also see that this scheme leads to a much smaller deviation from the curve compared
to the naive approach.
A practical question that arises at this point is how to compute the tangent vector t (H (u)). As detailed in [17], this is
possible by a QR-Factorization of H ′ (u)T

H ′ (u)T = Q

R

0T

 =
(
q1 q2 . . . qn+1

)R

0T

 , q1, . . . ,qn+1 ∈ Rn+1, Q ∈ R(n+1)×(n+1), R ∈ Rn×n.

The property of Q that QTQ = I already guarantees ‖qi‖ = 1 for all i ∈ [1, . . . , n+ 1]. Furthermore it holds that

H ′ (u) qn+1 =
(
RT 0

)
QTqn+1 =

(
RT 0

)0

1

 = 0.

The above equation reveals that the vector qn+1 is the tangent vector t we are looking for. The only thing left to ensure
is that the orientation of qn+1 is consistent, i.e. that it fulfills condition 2.5. Since it holds that

det

H ′ (u)

qTn+1

 = det
((
H ′ (u)T qn+1

))
= det

Q

R 0

0T 1

 = det(Q) det(R),

we can easily enforce this by choosing t = ±qn+1 depending whether det(Q) det(R) is positive or negative. Having
all the means to compute t(H(u)), algorithm 1 outlines an implementation of a homotopic predictor-corrector method.
Note that this is still only a very basic implementation of a such a method, as we have skipped important aspects such as
maxima of H(x, λ) that result in singular jacobians H ′(x, λ). Nonetheless this should give a sufficient understanding of
the principal concept of homotopic predictor-corrector methods.
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Figure 2.3.: The plots visualize the three-dimensional roots of the predator-prey model 2.6 using different projections. The
roots are plotted over x0 and λ in the left- and over x0 and x1 in the right plot. The third dimension (x1 in
the left plot and λ in the right one) is visualized using a color scale.

2.2 Dynamical System Analysis with Continuation Methods

The previous chapters demonstrated that homotopic predictor corrector methods allow to compute roots of a function
f : Rn 7→ Rm, for which standard newton-type approaches fail. This becomes possible by interpolating between the
desired function f and another function g : Rn 7→ Rm, for which roots can be more easily found, using a homotopy.
However, introducing an appropriate homotopy is not an easy task and although there are general purpose homotopies
such as

H(x, λ) = f(x)− λf(x0),

where x0 is an initial guess for the root of f , those homotopies do not guarantee that λ can be monotonously decreased
from 1 to 0 and indeed cannot guarantee that there is a curve that intersects λ = 0 after a finite arclength at all.
Dynamical System Analysis, however, is a domain in which homotopies often naturally arise from e.g. open parameters
of a dynamical system. Imagine a simple Predator-Prey Modelẋ0

ẋ1

 =

3x0(1− x0)− x0x1 − λ (1− exp(−5x0))

−x1 + 3x0x1

 , (2.6)

where x0 and x1 are the population sizes of two animal species and the open parameter λ determines external effects
that further reduce the population size x0 of the first animal species, such as hunting. A question often asked for such
systems is how the population equilibria, i.e. the roots of the system 2.6, change with regards to λ. While there are no
numerical problems that prevent a newton-type algorithm from calculating those roots for individual values of λ, it is
still undesirable to do that for many different values of λ individually. One reason for that being that the number of roots
can actually change with the value of λ.
Numerical continuation methods naturally help to deal with such problems, as they, starting from an initial value of λ,
trace the behavior of one specific root of the dynamical system as λ changes. Figure 2.3 illustrates the result of such a
tracing procedure, where we started with the three roots (x0, x1) = (0, 0), (1, 0) and (1

3 , 2) of the dynamical system
for λ = 1. We can see that the curve starting in (x0, x1) = (1, 0) has a very interesting behavior as it crosses the
two other curves at λ ≈ 0.18 and λ ≈ 0.4 and then with increasing λ takes values that are not physically sound, i.e.
propose population sizes smaller than zero. Hence the investigated model has three or four physically sound equilibria,
depending on the value of λ. Such a behavior would have been tedious to explore without the help of numerical
continuation methods.

2.3 Continuation in Reinforcement Learning

The previous chapters showed that homotopic predictor-corrector methods can be of great benefit in root finding tasks
and dynamical system analysis by either allowing to actually compute roots for a given function or making it easy to
compute them for a variety of related functions.
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Figure 2.4.: The three plots show trajectories generated by PD-Controllers with different parameterizations θ (blue lines)
for different widths wδ = 20 (left), wδ = 3 (middle) and wδ = 0.1 (right) of the gate at position wx = −4.
The starting position is depicted by a black cross and the goal position by a red one.

In episodic reinforcement learning, we do not need to solve root finding problems but often express learning tasks as the
maximization of an objective function f : Rn 7→ R - a closely related problem, as e.g. newton-type algorithms can be
used to optimize a function by finding roots of its Jacobian f ′ : Rn 7→ Rn.
However, the objective function f often contains many local maxima, which we want to avoid as they can encode
behavior that is not able to solve the task at hand. Furthermore, many reinforcement learning algorithms do not assume
knowledge about the functional form of f and hence can only gather information about it by observing its values at
specific x ∈ Rn. To pose an example of the indicated problem, we will look at a very simple perturbed linear systemẋ

ẏ

 =

 5

−1

+ u + δ, u, δ ∈ R2, δ ∼ N
(
0, 10−3I

)
,

which models the x- and y-position of a point-mass in two dimensional space that can be controlled using the controls u
and is subject to perturbations δ. Starting from position (x, y) = (0, 5), the goal is to reach the origin (0, 0). The controls
u are generated by two PD-Controllers of the form

PDi(x, y) = Ki

x̃i − x
ỹi − y

+ ki, Ki ∈ R2×2, ki ∈ R2, x̃i, ỹi ∈ R

for i = 1, 2. The first controller PD1 is active until the point mass reaches the height y = 2.5, starting from which the
second controller PD2 becomes active. The agent now needs to find the parameters θ = {(Ki,ki, x̃i)|i = 1, 2} that
maximize the performance criterion

f(θ) = 10

(
exp

(
−
√
x2
f + y2

f

)
− 10−5

100∑
i=1

uTi ui

)
,

where xf and yf are the positions after 100 state transitions generated by the controller using θ and ui the generated
actions. Note that we fixed ỹ1 = 2.5 and ỹ2 = 0.0 as this ensures that the aforementioned switching logic between the
two controllers is sensible. While such a function is easily optimized by reinforcement learning algorithms, we now want
to make this very easy task more interesting by requiring the point-mass to traverse a wall at height y = 2.5 through a
gate at position wx with a width of wδ. If the point-mass crashes into the wall, the experiment terminates and xf and yf
are set to the current position. Figure 2.4 illustrates the resulting tasks for different widths of the gate.
The position and width of the gate can be seen as additional parameters c = [wx wδ] ∈ R2 to the function f

f(θ, c) : Rn × R2 7→ R.

At this point, f constitutes a so called contextual reinforcement learning problem, where the context c modifies the
reward function, representing different but related reinforcement learning problems. In the given example, it is intuitive
that optimizing f is more complicated in some contexts than in others. In order to reach the origin for c = [−4 0.1],
the points mass needs to pass through x ∈ [−3.9,−4.1] at y = 2.5, before progressing towards the origin, while for
c = [−4 20], this interval expands to [−24, 16]. Figure 2.5 shows examples of the resulting objective function f for
different contexts.
We see that the presence of the wall creates discontinuities in the reward function that become more and more problem-
atic for narrow gates. This already renders finding the global optimum of f problematic, even when its functional form is
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Figure 2.5.: Rewards functions for the three contexts [−4 20] (left), [−4 3] (middle) and [−4 0.1] (right). The plots are
generated by changing the desired x-position x̃1 of the first PD Controller while keeping the remaining pa-
rameters fixed. Those remaining parameters are chosen such that the resulting controllers are capable of
steering the point-mass through the gate and then towards the origin, if x̃1 is chosen appropriately. Indeed,
the parameters were used to generate the trajectories in figure 2.4.

known. As already mentioned, the optimization procedures in reinforcement learning problems are even more delicate
in the sense that there is no initial knowledge about the functional form of f . Hence values of f can only be observed
at specific instances of θ. One class of reinforcement learning algorithms alternates between modifying a probability
distribution p(θ) and observing values of f for samples from p(θ) to finally assign most of the probability mass to θ∗

- the maximizer of f . However, in order to assign more probability mass to θ∗, there first needs to be evidence for its
optimality in form of a sample from f . Keeping in mind that θ ∈ R14, the occurrence of such a sample for a narrow
gate of the described collision-avoidance problem becomes a highly unlikely event when sampling from e.g. a uniform
distribution.

At this point, the similarity of f(θ, c) to the homotopy H(x, λ), with which we motivated continuation methods,
already suggests a way to resolve the illustrated issue. Similar to homotopic predictor-corrector methods, one can
interpolate between an easy context instantiation f(θ, ci) and the target one f(θ, cf ), reusing the knowledge about
the optimal θ of the easier tasks. This idea seems even more natural as the necessary interpolation between the target
function that we seek to optimize and the initial surrogate function that is easy to optimize arises naturally as a conse-
quence of the context c of contextual reinforcement learning problems. In the following chapter, we investigate existing
methods from optimization, optimal control and concurrent systems theory that can be of benefit in designing such a
predictor-corrector scheme for contextual reinforcement learning problems, however face limitations that prevent their
straightforward applicability. Nonetheless, these insights motivate the algorithm that we propose in chapter 4. Chapters
5 and 6 discuss conducted experiments as well as related work and finally conclude the thesis.
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3 Predictor-Corrector Schemes in Reinforcement
Learning: First Approaches

To implement predictor-corrector schemes in contextual reinforcement learning problems, it is necessary to adjust algo-
rithm 1 at certain points. First of all, it is necessary to solve a constrained optimization- instead of a root finding problem
in the corrector step, as reinforcement learning problems are commonly expressed as constrained optimization problems.
While this conceptually does not pose a significant problem, adjusting the predictor step accordingly is somewhat more
delicate, as the predictor step needs to approximate the solution for a new context using tangent information at the
optimal solution for the last context. Hence we need to find possibilities to compute such a tangent vector. Furthermore,
it will become necessary to quantify the similarity of two given contexts in order to find contexts that adequately interpo-
late between an initial- and a target one, where adequately means that the solution to the contextual problems changes
somewhat gradually.
In this chapter, we focus on different concepts from optimization and concurrent systems theory that, although at a first
glance seem well suited for computing tangent vectors of solutions and measuring closeness between contexts in the
predictor step, by closer investigation suffer from both conceptual and practical limitations which have to our knowledge
not been addressed at the moment of writing. While we will not attempt to resolve those shortcomings, they motivate
the perspective that we take in chapter 4 to define an algorithm that still shares the basic scheme of predictor-corrector
methods while avoiding the aforementioned limitations.

3.1 Sensitivity Analysis

Sensitivity Analysis [9] is a core concept of multi-parametric programming [10], a discipline that aims at computing
optimal solutions for parameteric optimization problems

θ∗(c) = arg min
θ

f(θ, c) (3.1)

s.t. g(θ, c) ≤ 0

h(θ, c) = 0

with optimization variables θ ∈ Rnθ , parameters c ∈ Rnc , inequality constraints g : Rnθ 7→ Rng and equality con-
straints h : Rnθ 7→ Rnh . We will shortly see, why such a constrained optimization problem rather than an unconstrained
one is necessary to express reinforcement learning problems. We will now deviate from the exact predictor-corrector
scheme by assuming that we already know the change dc that will be applied to the current parameters c, as opposed to
computing it alongside the change in the optimization variables θ∗. We will look at ways to compute “good” changes dc
in later sections of this chapter. The problem that now remains is to approximate the solution to problem 3.1 with pa-
rameter c+ dc. The expression θ∗(c) already indicates that the solutions to the parameterized optimization problem 3.1
can be interpreted as a function of the parameters c. Hence, if we are able to compute the gradient ∇cθ

∗(c) ∈ Rnθ×nc ,
we could easily approximate the new solution using a taylor approximation

θ∗(c + dc) ≈ θ∗(c) +∇cθ
∗(c)dc.

−5 0 5

0

0.2

0.4

0.6

θ

f
(θ

,1
)

−5 0 5

0

0.5

1

θ

f
(θ

,0
.7
)

−5 0 5

0

0.5

1

θ

f
(θ

,0
.5
)

Figure 3.1.: Plots of the function f(θ, c) over values of θ ∈ [−5, 5] for c = 1, c = 0.7 and c = 0.5.
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Figure 3.2.: Visualization of the function f(θ, c) whose minimum should be found for c = 0.5. The red line highlights
the curve of points at which the function takes its minimum. The orange and black lines illustrate the way
in which the naive approach not taking into account the gradient ∇cθ

∗(c) and the approach that uses this
information trace the curve.

Sensitivity analysis allows to compute the gradient ∇cθ
∗(c) at a solution θ∗(c). The definition of this gradient uses the

Lagrangian function

L(θ,λ,µ, c) = f(θ, c) + λT g(θ, c) + µTh(θ, c), λ ∈ Rng ,µ ∈ Rnh ,
where λ and µ are the Lagrangian multipliers that incorporate the constraints g and h. Having the notion of L, it
is possible to more precisely define a solution to the optimization problem 3.1 as the tuple (θ,λ,µ) that fulfills both
the so called Linear Independence Constraint Qualification (LICQ) and strict second-order optimality conditions. Both
constraints can be reviewed in appendix A.1 and are left out at this point for brevity. If we hence have θ0 , λ0 and µ0

that fulfill the LICQ and the second order optimality conditions for c0, the following holds
∇cθ

∗(c0)

∇cλ
∗(c0)

∇cµ
∗(c0)

 =


∇2

θθL(θ0,λ0,µ0, c0) ∇θg(θ0, c0) ∇θh(θ0, c0)

∆∇θg(θ0, c0)T Γ 0

∇θh(θ0, c0)T 0 0


−1

∇2
θcL(θ0,λ0,µ0, c0)

∆∇cg(θ0, c0)

∇ch(θ0, c0)

 , (3.2)

with Γ = diag(g1(θ0, c0), . . . , gng (θ0, c0)) and ∆ = diag(λ01 , . . . , λ0ng ). Note that we assume that all the necessary
gradients of f , g and h exist and are continuous. For the proof of above result, we refer to [9]. Given a new parameter
c1 = c0 + dc, we can approximate the solution tuple using

θ∗(c1) ≈ θ∗(c0) +∇cθ
∗(c0)dc,

λ∗(c1) ≈ λ∗(c0) +∇cλ
∗(c0)dc,

µ∗(c1) ≈ µ∗(c0) +∇cµ
∗(c0)dc.

Just as in the previous chapter, this is a linear approximation of the solution which is only valid in an arbitrarily small
region around c0. The error in this predicted solution is again compensated by the corrector step, where the optimization
problem with parameter c1 is solved using the prediction of θ∗(c1), λ∗(c1), µ∗(c1) as a starting point. To illustrate the
resulting algorithm, we will take a look at a function that is very similar to the one that motivated predictor corrector
methods in the previous section

f(θ, c) =

{
− 1

10−4w

(
θ − w3

)4
+ 2

10−2w

(
θ − w3

)2
, if |θ − w3| ≤ 10−w

1, else
, w = 4− 5c, c ∈ [0.5, 1].

Figure 3.1 shows the function for various values of c. Loosely speaking, f is a negated version of the homotopyH, whose
minimum moves according to a polynomial of third order instead of along a line. However, they both share the property
that for increasingly small values of c, the gradients of f or H with respect to θ become zero at most points. This
prevents standard optimization procedures to be successfully applied, if the initial guess is not already close to the root
or optimum. Figure 3.2 demonstrates that the predictor-corrector approach based on sensitivity analysis is nonetheless
able to find solutions for small values of c by tracing solutions to f starting from c = 1 until reaching c = 0.5. The plots
were generated by decreasing the values of c by 0.01 in every iteration. Just as in the previous chapter, it improves upon
a naive implementation that only uses the solution to the previous problem as a starting point for the optimization of
the next. This naive implementation was not able to find the optimum for c = 0.5, as the gradient ∇θf(θ∗(0.62), 0.61)
became zero and hence the optimization of f(θ, 0.61) failed.
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3.1.1 Markov Decision Processes as Constrained Optimization Problems

At this point, we have found a way to implement a simple predictor-corrector scheme for constrained optimization
problems. We will try to address the lack of a good way to choose the step dc in the next sextion and will now focus on
how to use the aforementioned algorithm on reinforcement learning problems. To accomplish this, we need to express
them as constrained optimization problems, which is the topic of this section. Typically, Reinforcement learning problems
[21] are defined as optimization problems in Markov Decision Processes (MDPs) [22]. MDPs are 4-tuples

(S,A, p, r)

with states s ∈ S, actions a ∈ A, transition probabilities p : S × A× S 7→ [0,∞) and reward function r : S × A 7→ R.
The transition probabilities p(s′|s,a) describe how likely it is to reach state s′ from s by applying action a. As we see,
the next state s′ only depends on s and a. This so called Markov property of stochastic processes gives MDPs their name.
The state-space S, action-space A and transition probabilities p together define the environment, in which an agent
represented by a policy π : S 7→ A needs to optimize its expected reward

JN (π) = Ep,µ0,π

[
N∑
i=0

γir(si, ai)|ai ∼ π(a|si), si+1 ∼ p(s′|si, ai), s0 ∼ µ0(s)

]
(3.3)

with initial state distribution µ0 : S 7→ [0,∞) and discount factor γ ∈ [0, 1]. As we see, the initial state distribution µ0(s)
describes the probability of the initial state s0 at the beginning of the decision process. The discount factor γ encodes the
trade-off between immediate- and long-term reward. Note that it is both common to think about problems with a finite
horizon N and with an infinite horizon N = ∞. For infinite time horizons, it is required that γ < 1 as otherwise above
sum can grow without bounds.

Up until now, the introduced MDP formulation encoded one task that needed to be solved by an agent. The intro-
duction of a context c ∈ C allows to encode multiple related tasks. A common assumption that we will adapt in this
thesis is to restrict the influence of the context to the reward function and the transition probabilities, assuming that all
MDPs share the same state- and action-space [23, 24]. With these restrictions, we obtain the contextual reward function
r : S ×A×C 7→ R and contextual transition probabilities p : S ×A× S ×C 7→ [0,∞), which we will abbreviate with
rc(s, a) and pc(s′|a, s). With these definitions, we can now define a contextual MDP as the 4-tuple

MDPc(S,A, pc, rc).

The policy now also extends to π : S × A × C 7→ R and will also be abbreviated by πc. The optimization objective
changes to

JN (πc) = Epc,µc
0,πc

[
N∑
i=0

γirc(si, ai)|ai ∼ πc(a|si), si+1 ∼ pc(s′|si, ai), s0 ∼ µc
0(s)

]
. (3.4)

Note that we also allowed the initial state distribution µ0 : S × C 7→ [0,∞) to be changed by the context c, while
keeping the discount factor γ fixed. With some adjustments, it is possible to express the optimization problem 3.4 as a
parametric optimization problem 3.1 to which sensitivity analysis can be applied. For that we first of all assume that we
face a continuous state-, action- and context space, i.e. S ⊆ Rns , A ⊆ Rna and C ⊆ Rnc . Next, we require that we
do not face probabilistic transition dynamics pc, but require them to be deterministic, i.e. have d : S × A × C 7→ S
(abbreviated as dc(s, a)). We will discuss the implications and especially problems that arise from this assumption in the
conclusion on sensitivity analysis and will just accept this restriction for now. As a consequence of assuming deterministic
system dynamics, we also require a deterministic initial state s0 instead of a probability distribution over it. Furthermore,
we will not optimize the policy πc, but choose to directly optimize the actions

a0:N =
[
a0 a1 . . . aN

]
∈ RNna .

This does not constitute a severe limitation, as it is well known that if a probabilistic policy maximizing objective 3.4
exists, there also exists a deterministic policy with the same level of performance [25]. Instead of optimizing this deter-
ministic policy (or typically some parameters of it), we choose to directly optimize the actions that would be generated
by it. And if we assume that we are working with a perfect model of dc, there is no need to adjust the computed
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Figure 3.3.: The plot shows an LQR System with the state s = [x ẋ] ∈ R2 being the position and velocity of a point mass
to which forces a ∈ R can be applied. The uncontrolled system is unstable, i.e. increasingly diverges from the
origin if not stabilized by the applied forces as indicated by the black lines that visualize the uncontrolled dy-
namics. The solid blue line shows the trajectory generated from the optimal actions to optimization problem
3.5 with rc as defined in 3.6 and goal state c0 = [0 0]. The dashed blue lines show the trajectories that were
generated with actions computed with a linear interpolation using the gradient information∇ca∗0:N (c0) for
different goal positions illustrated by red crosses.

“feed-forward” actions during execution. The previous assumptions now allow to express objective 3.4 as the following
optimization problem

a∗0:N (c) = arg min
a0:N ,s1:N

−
N∑
i=0

γirc(si,ai) (3.5)

s.t.


s1 − dc(s0,a0)

s2 − dc(s1,a1)

...

sN − dc(sN−1,aN−1)

 =


0

0

...

0

 ,

where the dynamics of the MDP are expressed using equality constraints. However, we see that with above formulation,
we can only solve finite-time horizon problems, i.e. with N ∈ N. Because of this, the following section will introduce
ways to resolve this conceptual problem and turn the “feed-forward” actions into a “closed-loop” policy.

3.1.2 Sensitivity Analysis for LQR Problems

Linear Quadratic Regulator (LQR) problems are well known in the domain of optimal control. Indeed optimal control
and reinforcement learning are inherently connected, as described in [26], making LQR problems an interesting first
benchmark for the “performance” of sensitivity analysis. For that, we will define the transition dynamics dc to be linear
with

si+1 = dc(si,ai) = (I + A) si + Bai,

where si, si+1,∈ Rns , ai ∈ Rna , A ∈ Rns×ns and B ∈ Rns×na . The context c = sg will represent the goal state sg,
that the system should be driven to. This desired behavior is encoded by the reward function

rc(si,ai) = −(si − sg)
TQ(si − sg)− aTi Rai. (3.6)

We see that the reward function further penalizes large actions ai, typically leading to a smoother trajectory of the
system state s. Having a definition of rc and dc, it is now possible to compute the optimal actions a∗0:N (c) by solving
optimization problem 3.5. Being able to compute solutions for individual contexts c, the question arises how much
we can gain from the gradient ∇ca∗0:N (c). As a closer look at the definition 3.2 reveals that those gradients are very
powerful for LQR problems. Indeed, the approximation

a∗0:N (c1) ≈ a∗0:N (c0) +∇ca∗0:N (c0)dc
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is actually exact for any c0 and c1, as the gradients of f and h that appear in equation 3.2 are constant, making obtained
gradient ∇ca∗0:N (c) constant across all contexts c. This beneficial property is exploited in figure 3.3, where the solution
obtained for context c = [0 0] is generalized to other contexts without needing to solve another optimization problem.
Indeed, this property also allows for a straight-forward implementation of a Model Predictive Control (MPC) scheme
[27] for LQR problems, where a solution to the optimization problem 3.5 is constantly refined to compensate for errors
in the dynamics model dc. To pose an example, imagine that the dynamics were actually perturbed by some noise

si+1 = dc(si,ai) = (I + A) si + Bai + δ, δ ∼ N (0,Σ).

Obviously, dc is now a probability distribution over the next system state. This creates problems as we require determin-
istic dynamics functions. If we simply ignore the perturbation during planning and only assume the initial state s0 to
be exactly given, all actions a∗1:N become non-optimal, since the actual state s1 that resulted from applying action a∗0 in
state s0 may differ from the one the actions a∗1:N were planned with. If we however extend the context vector to not
only contain the goal state sg but also the initial state s0, i.e. c = [s0 sg], we obtain a straight-forward way of correcting
the actions a∗1:N after executing action a∗0 and observing the true state s1 by computing

a∗0:N ([s1 sg]) = a∗0:N ([s0 sg]) +∇ca∗0:N ([s0 sg])[(s1 − s0) 0].

The outlined scheme turns the feed-forward actions into a closed-loop control, as the actions are corrected after every
step. This also allows to approximately solve infinite time-horizon problems through a repeated solution of finite horizon
problems. Figure 3.4 shows the result of such an MPC scheme for a perturbed linear system. We can see that the
random perturbations that occur during the system transitions can be compensated through the repeated correction of the
planned actions. Without such corrections, the trajectory increasingly deviates from the desired position. Investigating
the change in the optimal solution with regards to a change in the initial state has an interesting interpretation, which
we will investigate in the following section.

3.1.3 Sensitivity Analysis and Value Functions

The scheme of encoding the initial state s0 of optimization problem 3.5 as a part of the context c and adjusting the
optimal actions a∗0:N (c) according to a change in this initial state creates a noteworthy connection to classical concepts
known in MDP theory. To highlight this connection, it is necessary to look back at the non-contextual reinforcement
learning objective 3.3, for which we assume a finite horizon N for now. We have already mentioned that if there is
a probabilistic policy maximizing this objective, there also exists a deterministic one with the same performance. This
deterministic optimal policy π∗N can be defined by

π∗N (s) = arg max
a

(
r(s,a) + γEp

[
V ∗N−1(s̃)|s̃ ∼ p(s′|s,a)

])
.

While the notation π∗N highlights that for every timestep i, there is a distinct policy π∗i , we will still only talk about the
optimal policy π∗i , since we could e.g. extend the policy to take the current step i as an argument. The function V ∗N (s) is
typically referred to as the optimal value function and defined as

V ∗N (s) = max
a

(
r(s,a) + γEp

[
V ∗N−1(s̃)|s̃ ∼ p(s′|s,a)

])
.

with

V ∗0 = max
a

r(s,a).

Looking at above definitions, we can identify two important properties of V ∗N . First of all, the value function is defined in
a recursive fashion. Furthermore, the definitions of π∗N and V ∗N only differ in employing the arg max instead of the max
operator. Hence, the value function V ∗N (s) encodes the expected accumulated reward (i.e. the value) that is obtained
when acting according to the optimal policy π∗i starting from state s for N steps. Now assuming deterministic system
dynamics d, the definition of the value function reduces to

V ∗N (s) = max
a

(r(s,a) + γV ∗N−1 (d(s,a)))

= max
a0:N

N∑
i=0

γir(si, ai)

= min
a0:N

−
N∑
i=0

γir(si, ai), s0 = s, si+1 = d(si, ai).
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Figure 3.4.: Visualization of a perturbed LQR System with forces a ∈ R that can be applied to a points mass represented by
s = [x ẋ] ∈ R2. The solid blue line shows the trajectory generated by applying the optimal actions a∗0:N (c0)
according to optimization problem 3.5 with initial state s0 = [−4 3], goal state sg = [−1 0] and reward rc
according to equation 3.6 - without taking the random perturbations of the LQR system into account. The
dashed orange line shows the trajectory resulting from correcting the actions according to the current system
state using the gradient information∇ca∗0:N (c).

This definition resembles objective 3.5 in which the arg min operator is replaced by the min operator, showing that
objective 3.5 indeed computes the actions that would have been generated by the optimal policy π∗i at time-steps i =
0, . . . , N . And more importantly, we now know that we indirectly compute the optimal value function V ∗N (s) when
computing the actions a∗0:N . Hence, sensitivity analysis also allows us to approximate value functions V ∗N (̃s) for nearby
states s̃ from a state s in which we know V ∗N (s).
While this connection to value functions and the promising performance on LQR systems may lead to the assumption that
sensitivity analysis is indeed a well-suited tool for the implementation of predictor-corrector schemes in reinforcement
learning domains, the following section will show why this first impression does not last.

3.1.4 Limitations of Sensitivity Analysis

We first concentrate on a rather technical problem arising from the conditions that need to be fulfilled in order to com-
pute the gradient ∇cθ

∗(c). More specifically, it is the LICQ that can become violated at a solution θ∗(c), if there exist
additional constraints to the optimization problem 3.5. Such constraints may indeed be necessary to e.g. bound the
actions that are applied to a system or to prevent a system from reaching catastrophic states using inequality constraints.
However, a large number of additional active constraints at a solution θ∗ may lead to a violation of the LICQ. More pre-
cisely, this happens if the number of active constraints becomes larger than the number of optimization variables of 3.5.
This problem becomes even more pronounced, if we do not optimize the individual actions a0:N but instead optimize the
parameters θ ∈ Rnθ of a deterministic policy πc. If the parameterization is somewhat low-dimensional, the LICQ may
be violated even for a small number of additional active constraints. However, this problem may already be alleviated
by employing a different constraint qualification than the LICQ. Besides this problem, so called active set changes, i.e. a
change in the set of inequality constraints that are active at two solution points, require additional treatment as detailed
in [28, 29, 30]. Another technical problem becomes obvious when looking back at the different reward functions of the
gate environment in figure 2.5. While the functions share the same characteristics as the one in figure 3.1, they are only
piece-wise continuous, due to the possibility of hitting the wall during the experiment. Such discontinuities can prohibit
the computation of the gradient, as we required all derivates of the objective and the constraints to be continuously
differentiable. So to be applicable to a wide range of reward functions and transition dynamics, it would be necessary to
deal with such discontinuities.

Furthermore, there is another, more implicit continuity assumption that we want to mention at this point. The predictor-
corrector method introduced in chapter 2 was defined using homotopies between two functions. These homotopies are,
per definition, continuous., i.e. a small change in the parameter λ can only slightly change the value of the homotopy
at a given point x. With that, also the roots of the homotopy can only gradually change with regards to λ. However,
for general MDPs we do not have any guarantee that a slight change in context c will lead to a small change in the
optimal policy. To pose an example, we can think of a simple pendulum to which a certain maximum amount of force
can be applied. Hanging downwards, the pendulum should be brought to an upright position. If the context c encodes
the gravitational force that the pendulum is exposed to, it becomes clear that for a certain amount of gravitational force,
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the maximum amount of force that can be applied to the pendulum does not suffice to directly swing up the pendulum.
Hence, the optimal policy abruptly changes from a direct swing up to a policy that needs to first gather kinetic energy
by swinging the pendulum back and forth before reaching the upright position. This kind of discontinuity does not arise
from any discontinuities in the reward function or the dynamics of the MDP, but arises from the bounded action-space
that is available to the agent.

We want to conclude with another important problem. The reinforcement learning optimization problem 3.3 is de-
fined as an expected reward over the policy execution for N steps. The need for computing such an expected reward
arises because of the non-deterministic transition probabilities p, as we already know that an optimal policy does not
need to be probabilistic. However, even if the transitions of a system are completely deterministic, chapter 2 already
outlined that reinforcement learning algorithms do not only need to compute an optimal policy but also need to learn
about the behavior of the system for which the optimal policy should be found. Hence, even for a deterministic system,
the initial uncertainty about its dynamics would again require to model the dynamics as probability distributions. Con-
sequently, dealing with probabilistic transition dynamics is a core requirement for a successful reinforcement learning
algorithm, regardless of the true dynamics. Unfortunately, sensitivity analysis does not offer any means to deal with such
uncertainty as the optimization problem 3.1 requires the objective and the constraints to be deterministic functions. We
can however alleviate this problem, if we define an alternative state space Sprob of probability distributions over the
actual system state

(p̃ : S 7→ [0,∞)) ∈ Sprob,

with which we can now express the transitions between two states p̃i+1 and p̃i as

p̃i+1(s′) =

∫
S

p(s′|s,a)p̃i(s)ds = f̃(p̃i,a),

where p are the (learned) transition probabilities of the system. We see that with such a definition, we obtain a deter-
ministic transition function d, that maps from one probability distribution p̃i to another. We now need to introduce an
alternative reward function r̃, that computes the expected reward

r̃(p̃,a) = Ep̃ [r(s,a)|s ∼ p̃(s)] .

Having a deterministic reward function and deterministic transition probabilities, it looks like we can now readily define
the parametric optimization problem 3.1 with Sprob, f̃ and r̃. However, the very definition of the parametric optimiza-
tion problem requires Sprob ⊆ Rns , which is obviously violated as Sprob is a function space. One way to escape these
problems is to restrict oneself to a distribution with real parameters and define Sprob to be the space of those real-valued
parameters. This was done in [31] using Gaussian distributions. However, as e.g. shown in [32] this treatment of un-
certainty comes at very high computational costs that prevents the resulting algorithm to be applied to high-dimensional
state-action spaces.

All in all, it seems that although very promising at first glance, a predictor-corrector scheme based on sensitivity analysis
poses several technical and conceptual problems that prevent it from being applied to a wide range of reinforcement
learning problems in a straightforward way.

3.2 MDP Measures

Sensitivity analysis allowed us to compute how a change in the context c is reflected by a change in the optimal solution
θ∗(c). However, it does not help to select to which context c′ the current solution should be transferred to. An obvious
first idea is to just use a linear interpolation between an initial context c0 and the final one cf

ci = c0 +
i

N
(cf − c0), i = 0, . . . , N.

However, such an interpolation may not be adequate, since a small change in context c according to a geometric norm
may lead to a severe change in the structure of the MDP or its solution, as we have already outlined in the previous
section.
To pose another example of this problem, we look at a 4× 4 grid-world with four different height levels. The grid-world
has ns = 16 states and na = 5 actions. Given a state s ∈ S = {1, . . . , 16}, the x- and y-position of the agent in the
grid-world can be computed by p(s) = [x y] = [bs/4c (s mod 4)]. In each state, the agent can decide whether it wants
to move up, left, down or right - or stay at the current position. There is no non-determinism in the state-transitions.
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Figure 3.5.: Three 4 × 4 grid-worlds in which an agent needs to reach different goal positions [2 1], [2 2] and [2 3] (red
dots) starting from position [0 3] (blue dot). Different height levels are visualized by different colors and the
agent can only move to positions that are at most one height level above or below the current one. The
shortest path to the three positions is represented by blue arrows.

Hence, if an agent decides to move up, it will end up in the position above the current one in the next step. However,
not all actions are valid in a state, since an agent cannot go left if it is at the left border of the grid-world. Furthermore,
it cannot move to a position s′ whose height h(s′) (we will also use the notation h(p(s′))) is more than 1 level above
or below the current one. The agent starts in the left-bottom corner, i.e. at p(s0) = [0 3], and then needs to reach a
goal position that is encoded by the context, i.e. c = [gx gy]. The reward function for this task is defined in terms of the
L1-norm as well as the absolute difference in height levels between current and desired position

r(s, c) =
36− 10|h(s)− h(c)|−‖p(s)− c‖1

36
.

Assuming we would like to gradually transfer a policy from context c0 = [1 2] to cf = [3 2], the linear interpolation
scheme from above would yield an intermediate step c1 = [2 2]. Figure 3.5 visualizes how problematic this interpolation
can be for a specific instance of such a grid-world. As we can see, the policy changes drastically between c0 and c1 as
well as c1 and cf while the policies of c0 and cf do not change as drastically. Obviously, we need a more elaborate
way of interpolating between contexts of MDPs that ensures that the policy only gradually changes with a change in
context. More precisely, we need a distance measure dMDP(MDPc0 ,MDPc1) between MDPs that allows us to quantify
how different the two MDPs parameterized by c0 and c1 are in terms of the optimal policy. In the following section we
will first review concepts from the study of concurrent processes and building upon that investigate ways to express such
distance measures.

3.2.1 Bisimulation Metrics

Bisimulation [13] is a concept that describes whether two states of a process or system are equivalent in their behavior and
has been extended to finite MDPs in [33]. The term “finite” refers to the finite number of states and actions in the MDP.
Hence we can represent the state- and action space by a finite subset of the natural numbers: S = {i|i = 1, . . . , ns} and
A = {i|i = 1, . . . , na}, as was the case for the previously described grid-world. Bisimulation is defined as an equivalence
relation B on the state-space S of two MDPs MDP1 = (S,A, p1, r1) and MDP2 = (S,A, p2, r2). Note that we require
that the MDPs share the same state-action-space for the following exposition, although the definition in [33] allows the
state-spaces to differ. A bisimulation relation fulfills the following property

s1 ∼B s2 ⇔ ∀a ∈ A : (r1(s1, a) = r2(s2, a) ∧ ∀C ∈ S/B : p1(C|s1, a) = p2(C|s2, a)) ,

where S/B is the partition of the state-space induced by the relation B and p(C|s, a) =
∑
s̃∈C p(s̃|s, a) is the probability

of transitioning from the current state s to a partition C using action a. To put above formula in words, two states are
bisimulation equivalent, if their immediate rewards for all actions and the probability of transitioning into the partitions
according to the bisimulation relation are the same. Consequently, such a bisimulation relation aggregates the state-space
into clusters that behave identical - not only in the immediate but also in a long-term sense. This property makes such
relations interesting to reduce the number of sates for planning in an MDP. However, we pursue a quite different goal
of quantifying the difference between two MDPs. For this purpose, the binary information whether states in two MDPs
are bisimulation equivalent or not is obviously not sufficient. [11] addresses this shortcoming by introducing a metric
dB : S × S 7→ [0,∞) which fulfills

dB(s1, s2) = 0⇔ s1 ∼B s2
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Figure 3.6.: The right plot visualizes the distance between any two states in a 4×4 grid-world according to the bisimulation
metric dB. Examples of this grid-world are shown on the left, where two states (blue dots) as well as the
optimal policy (blue arrows) starting from these states towards the goal position (red dot) are shown. The
grid-world has only one height level, so it is possible to go to any neighboring position without restrictions.
The dotted lines show the corresponding distance of the two initial states according to dB.

and hence allows to quantify the similarity of states in MDP1 and MDP2, where a value of zero means that they are bisim-
ulation equivalent and larger values encode more distinct long-term behaviour of those states. However, the derivations
and proofs in [11] are only given for the case that MDP1 = MDP2. We will nonetheless introduce the general case, since
we expect the proofs to straightforwardly generalize. Please note, however, that this is not guaranteed. The metric dB is
expressed as the fixed point of the following operator on a metric d : S × S 7→ [0,∞)

FB(d)(s1, s2) = max
a∈A

(cR|r1(s1, a)− r2(s2, a)|+cTTk(d)(p1(·|s1, a), p2(·|s2, a))) , (3.7)

with cR = γ and cT = 1 − γ. Tk(d)(·) is the kantorovich or wasserstein distance [34] between the probability
distributions p1(·|s1, a) and p2(·|s2, a) and can be defined as the following linear program

Tk(d)(p1(·|s1, a), p2(·|s2, a)) = min
l:S×S 7→[0,∞)

∑
s1,s2∈S

l(s1, s2)d(s1, s2) (3.8)

s.t. p1(s̃|s1, a) =
∑
s2∈S

l(s̃, s2) ∀s̃ ∈ S

p2(s̃|s2, a) =
∑
s1∈S

l(s1, s̃) ∀s̃ ∈ S.

Being also referred to as the “Earth Movers Distance”, above optimization problem has a very intuitive interpretation.
Viewing the two probability distributions p1(·|s1, a) and p2(·|s2, a) as heaps of dirt, Tk(d) expresses the minimum
amount of work that is necessary to transform one heap into another, where the work necessary to move one unit of dirt
from s̃1 to s̃2 is expressed by d. As already pointed out, we can use the operator 3.7 to, starting from an initial metric d0,
converge towards a bisimulation metric via

di+1(s1, s2) = F (di)(s1, s2).

Figure 3.6 visualizes the metric dB between states in a different version of the 4 × 4 grid-world, where h(s) = 0 for
all states s. Looking at the visualizations, we can however already see that the bisimulation metric dB is very strict, as
it assigns a non-zero distance to many states, whose optimal policies are actually mirrored versions of each other, such
as e.g. dB ([0 2], [1 3]). This results from the requirement that all actions “behave” identical in the two compared states
in order to label them bisimilar. If we however think in terms of the solutions to MDPs, we could also only require that
for every (or even only the optimal action) in one state, there exists at least one action in the other state that behaves
similarly.

3.2.2 Lax Bisimulation-Metrics

Building up on the work by [11], [12] introduced a metric that reflects the so called lax bisimulation equivalence relation

s1 ∼LB s2 ⇔ ∀a1 ∈ A ∃a2 ∈ A : (r1(s1, a1) = r2(s2, a2) ∧ ∀C ∈ S/LB : p1(C|s1, a1) = p2(C|s2, a2)) .
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Figure 3.7.: Three 4×4 grid-worlds with different states (blue dots) as well as their optimal policies (blue arrows) towards
the goal position (red dot) starting from these states are shown on the left. The right plot visualizes the
distance between any two states in the 4×4 grid-world according to the bisimulation metric dLB. The dotted
lines mark the distance between the two states in the left plots according to dLB.

This is a less strict version of bisimulation that only requires that for every action a1 in state s1 there exists at least one
action a2 in s2 that has the same immediate reward and the same transition probabilities w.r.t to the state partitioning of
LB. This relaxation will later allow the metric to reflect symmetric structures in a MDP. Note that again, the definitions
and proofs in [12] were only given for the case MDP1 = MDP2 but we introduce the formulas in the more general
context, assuming that the proofs generalize as well. A metric encoding this relaxed definition of bisimulation can, just
as in [11], be obtained by computing the fixed point of an operator. For that we will first of all define the following
intermediate metric

δ(d) ([s1 a1], [s2 a2]) = cR|r1(s1, a1)− r2(s2, a2)|+cTTk(d) (p1(·|s1, a1), p2(·|s2, a2)) .

Note that this metric is defined on the state-action space S × A. The reason for that becomes obvious when looking at
the actual operator

FLB(d)(s1, s2) = H(δ(d))(Xs1 , Xs2)

= max

(
sup

x1∈Xs1
inf

x2∈Xs2
δ(d)(x1, x2), sup

x2∈Xs2
inf

x1∈Xs1
δ(d)(x1, x2)

)
, (3.9)

where Xs = {s} ×A and H(δ(d)) is the so called Hausdorff metric between non-empty compact subsets of S ×A. The
application of the Hausdorff metric to Xs1 and Xs2 reflects the property that given a state s1 and action a1, there only
needs to be one action a2 in state s2 with equal reward and transition probabilities. Just as in [11], the update according
to 3.9 can be iterated until convergence to obtain a metric dLB that fulfills

dLB(s, s′) = 0⇔ s ∼LB s′

starting from any metric d0. Figure 3.7 illustrates the metric for the grid-world examined in figure 3.6. We can see that
it correctly “detects” the symmetric relation between the states [0 2] and [1 3] and hence yields d ([0 2], [1 3]) = 0. In
general, the lax bisimulation metric is able to detect the symmetries of all states with regards to the main diagonal of the
grid-world in figure 3.7.

3.2.3 Relation to Value Functions

A very revealing property of (lax) bisimulation metrics is that they bound the change in the optimal value function. Until
now, however, we have only seen a definition of the optimal value function V ∗N (s) for a finite-time horizon N . Since the
aforementioned bound on the value function is defined for N →∞, we need to introduce the infinite-time horizon value
function

V ∗(s) = max
a

(
r(s,a) + γEp

[
V ∗(s̃)|s̃ ∼ p(s′|s,a)

])
.
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As we can see, the difference to V ∗N is that the infinite-time horizon value function is not dependent on the current
horizon i. And indeed, we can compute V ∗ by computing V ∗N for larger and larger time horizons, i.e. iterate

Vi+1(s) = max
a

(
r(s,a) + γEp

[
Vi(s̃)|s̃ ∼ p(s′|s,a)

])
= FV (Vi)(s)

until Vi+1 = Vi. To put it differently, the optimal value function V ∗ is a fixed point of the operator FV . Just as before,
the optimal policy for the infinite-time horizon objective is defined analogously as V ∗, only replacing the max with the
arg max operator

π∗(s) = arg max
a

(
r(s,a) + γEp

[
V ∗(s̃)|s̃ ∼ p(s′|s,a)

])
.

Looking at the definitions of the operators for the (lax) bisimulation metric given in 3.7 and 3.9, it is actually not that
surprising anymore that the following results could be proved in [11] and [12]

cR|V ∗(s1)− V ∗(s2)| ≤ dLB(s1, s2) ≤ dB(s1, s2). (3.10)

Hence both metrics actually give an upper bound on the change in value between two states, where the bound by the lax
bisimulation dLB is tighter than the one by dB. We can indeed see this by looking back at figures 3.7 and 3.6, where the
lax bisimulation metric correctly yields a distance of 0 between two distinct states s1 and s2 with a symmetric optimal
policy, while the regular bisimulation metric assigns a non-zero distance to them. Note that those results were again only
proved in the case that MDP1 = MDP2. Nonetheless, we hypothesize that it should be possible to generalize this result
to MDP1 6= MDP2.

3.2.4 Bisimulation measures between MDPs

Although [11] and [12] only measured distances of states within one MDP, already the definition of bisimulation given
in [33] was defined on two distinct MDP instances. Furthermore, lax bisimulation was shown to be equivalent to so
called MDP homomorphisms [35] - a specific class of transformations between two MDPs - in [12] and has already been
used to transfer policies between two MDPs with different state-spaces in [36]. We guess that the reason for measuring
the similarity of states in two distinct MDP instances has not been investigated by [11] and [12] is twofold. First of all,
[11] and [12] considered bisimulation metrics as a tool to compress the state-space of an MDP by aggregating those
states that are assigned near zero distance. Secondly, the metric interpretation of dB and dLB does not hold in the case
MDP1 6= MDP2 due to the possibly different state spaces S1 and S2 in the MDPs. Because of this, the triangle equality

d(s1, s2) ≤ d(s1, s̃) + d(s̃, s2)

is not well-defined anymore as we cannot assume that s̃ ∈ S1 and s̃ ∈ S2. And even if this would hold, e.g. if S1 = S2,
the interpretation of this inequality is somewhat crooked, as s̃ is once interpreted as a state in MDP1 and once in MDP2.
However, in terms of our goal of measuring closeness between two MDP instances, the computed “distance measure” (we
will avoid the term metric from now on) between states may still be useful. We want to at least empirically underline
this by defining the closeness between two MDPs in terms of the expected difference of their initial states w.r.t to the lax
bisimulation metric

dMDP (MDP1,MDP2) = Eµ1
0,µ

2
0

[
dLB(s1

0, s
2
0)|s1

0 ∼ µ1
0(s), s2

0 ∼ µ2
0(s)

]
.

Having such a distance measure allows to define many different ways of finding context sequences {ci|i = 0, . . . ,M ∧
cM = cf} that interpolate between the contextual MDPs MDPc0 and MDPcf . One of those possibilities is to find the
shortest path between c0 and cf while interpreting dMDP

(
MDPci ,MDPci+1

)
as the cost of moving from ci to ci+1.

Such a shortest path can easily be computed with standard algorithms such as [37]. The “shortest” path interpolating
the contexts c0 = [1 2] and cf = [3 2] from the initial example in figure 3.5 is shown in 3.8. Note that we enforced
‖ci+1 − ci‖1 ≤ 1 by pruning the graph of the corresponding shortest path problem accordingly. We see that the optimal
interpolation between c0 and cf according to dMDP is indeed different from the linear interpolation. Not surprisingly, this
sequence takes a “detour” to avoid the hill in between the initial and the final context. Furthermore, the visualization of
dMDP at least suggests that it is indeed a metric. However, whether this really holds or not is left to be determined.
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Figure 3.8.: The right plot shows the shortest path (red arrows) between two contexts c0 = [1 2] and cf = [3 2] (red
dots) in a 4 × 4 grid-world according to the distance dMDP when the allowed change between two contexts
‖ci+1 − ci‖1 on the path is limited to 1. The blue dot is the initial position of the agent - which is the same
in all grid-worlds. The left plot visualizes the distance dMDP, which was pruned to enforce the aforementioned
restriction in context change. The smaller pictures on the very left shows different contexts (red dots), whose
distance according to dMDP is marked by dotted lines.

3.2.5 Issues of Bisimulation Metrics

While the previously mentioned lack of mathematical interpretation as well as proofs for the properties of dB, dLB and
dMDP in the case of distinct MDP instances is probably easily resolved by a more thorough study of those constructs, we
would now like to highlight more fundamental issues.

First of all, it would be necessary to extend the definition of bisimulation and the corresponding metrics to cases in which
uncertainty about the reward function is present to be generally applicable in reinforcement learning problems.

Secondly, computing the updates of di according to 3.7 and 3.9 are computationally very demading, as we need to solve
|S|2|A| linear programs for 3.7 and |S|2|A|2 for 3.9. As stated in [11], the complexity of the linear program 3.8 is in
O
(
|S|2 log(|S|)

)
, yielding a total complexity of O

(
|S|4|A| log(|S|)

)
and O

(
|S|4|A|2 log(|S|)

)
per update-step 3.7 and

3.9 respectively. This quickly becomes infeasible for any non-trivial number of states and actions. Looking at equation
3.10, we see that both dLB and dB are upper bounds to the difference in value function. With the complexity of operator
FV in O(|S|2|A|), it seems more reasonable to just compute the value functions for the individual MDP instances and
then express the similarity of their initial states in terms of the difference in the value functions.

Allthough there is work on extending the notion of bisimulation and the corressponding metrics to MDPs with continuous
state- and action-spaces [38], only theoretical results could be achieved and we do not know of an algorithm that even
approximately computes such a metric at the time of writing. This problem seems natural, since the computation of
exact value functions in continuous state-action MDPs is known to be infeasible. However, successful approaches for
approximating value functions in continuous MDPs may be able to approximate bisimulation metrics for continuous
MDPs as well.

3.2.6 MDP measures based on optimal policies

The previously described MDP distance measure based on bisimulation metrics has an, in our opinion, undesirable
property, which we want to investigate now. Imagine two MDP instances MDPc1 = (S,A, p, rc1 , µ0) and MDPc2 =
(S,A, p, rc2 , µ0), which only differ in their reward functions rc1 and rc2 . As shown in appendix A.2, it holds that

rc2(s, a) = αrc1(s, a) + β ⇒ V ∗c2(s) = αV ∗c1(s) +
β

1− γ

for any given discount factor γ < 1. From the very definition of the operators FLB and FB we can see that in the case
of convergence of these operators, it holds that dLB(s1, s2) ≥ cRβ and dB(s1, s2) ≥ cRβ for any state s1 in MDPc1 and
any state s2 in MDPc2 . Note that this holds in any case, regardless whether the previously mentioned bound on the value
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function also holds for MDP1 6= MDP2. This is somewhat counter-intuitive as both MDPs require the same policy to be
solved optimally, which can be easily shown by looking back at the definition of the optimal policy of an MDP

π∗c2(s) = arg max
a

(
rc2(s, a) + γEp

[
V ∗c2(s̃)|s̃ ∼ p(s′|s,a)

])
= arg max

a

(
αrc1(s, a) + β + γ

(
αEp

[
V ∗c1(s̃)|s̃ ∼ p(s′|s,a)

]
+

β

1− γ

))
= arg max

a
α
(
rc1(s, a) + γEp

[
V ∗c1(s̃)|s̃ ∼ p(s′|s,a)

])
+ β +

γβ

1− γ
= arg max

a

(
rc1(s, a) + γEp

[
V ∗c1(s̃)|s̃ ∼ p(s′|s,a)

])
= π∗c1(s).

With that knowledge, it seems more sensible to express the difference between MDPc1 and MDPc2 in terms of the
expected difference of the actions generated by their optimal policies π∗c2 and π∗c1 along the state trajectory generated
by one of the optimal policies

d̃MDP(MDP1,MDP2) = Eµc2
0 ,p

[
N∑
i=0

‖π∗c2(si)− π∗c1(si)‖a

∣∣∣∣∣s0 ∼ µc2
0 (s), si ∼ p(s′|si−1, π

∗
c2(si−1))

]
.

As you can see, above definition requires some form a norm ‖ · ‖a defined on the action space. We do not use a specific
norm here, as especially for discrete MDPs one is typically required to specify a norm based on domain knowledge.
Furthermore, for some MDPs one needs to explicitly express the mapping − : A × A 7→ A. Regardless of the specific
norm and mapping, this approach of measuring MDP similarity has the benefit that the arg max operator of the optimal
policies removes any constant scaling and offset of the reward functions that would otherwise lead to a nonzero distance
according to dMDP. Above distance metric can also be interpreted as computing the optimal policy π∗alt in MDPalt =
(S,A, palt, rc2) with

palt : S ×A× S 7→ R, palt(s
′|s,a) = p

(
s′|s,a + π∗c1(s)

)
and then computing

d̃MDP(MDP1,MDP2) = Eµc2
0 ,palt

[
N∑
i=0

‖π∗alt(si)‖a

∣∣∣∣∣s0 ∼ µc2
0 (s), si ∼ palt(s

′|si−1, π
∗
alt(si−1))

]
.

Above definition now requires the existence of a function + : A × A 7→ A expressing the result of a combination of
two actions instead of the mapping − : A × A 7→ A. In the previous grid-world example, one could define a mapping
encoding that e.g. movements in opposite directions cancel out.

3.2.7 A final thought on MDP measures

As we have seen, it is not an easy task to actually quantify the similarity between MDP instances and there exist a lot of
pitfalls in designing such similarity measures as well as computational burdens.
An interesting insight that can be obtained when looking at the presented measures, is that they are all defined as
some form of optimization problem themselves. Especially the previously described similarity measure based on optimal
policies intrinsically requires to compute the optimal policies for both MDPs before comparing them. For the case of
bisimulation metrics, we at least compute an upper bound to the difference in optimal value functions - which in turn
encode the optimal policy. This may seem flawed at first glance. On second thought however, it seems natural that it is
necessary to have a rough idea about the optimal solution of two tasks in order to judge whether these tasks are similar
or not - and especially at which points they differ. This problem becomes very intuitive, if we picture two different MDPs
as abstractions of two different board games. Without any knowledge of the rules of both games, making statements
about their similarity is basically not possible. However, the more profound the knowledge of both games becomes, the
more detailed a player would be able to explain the similarities and differences of both games. This also illustrates that
uncertainty about the specific characteristics of a MDP hinders the ability to precisely compare it to other MDPs.
At this point we want to stop thinking about explicit ways of measuring similarities and transferring policies between
MDPs and abstract from all those details by taking a probabilistic and episodic view of the reinforcement learning prob-
lem. As we will see, this abstraction will allow for a more straightforward definition of a learning algorithm that shares
similarities with the motivating predictor-corrector methods while avoiding technicalities.
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4 Self-Paced Contextual Reinforcement Learning
In the previous chapter we saw that applying the promising predictor-corrector scheme from chapter 2 to reinforcement
learning problems creates several technical as well as conceptual challenges. While all those challenges only stress the
complexity of creating distance measures and transferring solutions between Markov Decision Processes (MDPs) and
with that show that there is more theoretical work to be done in those areas, we now want to take a viewpoint of
reinforcement learning as the optimization of a black-box function r(θ, c) - just as introduced in chapter 2. This black-
box view naturally avoids the challenges that we faced in the previous chapter and allows us to create a reinforcement
learning algorithm that gradually transforms the solution of an initial - easy - task to the solution of a desired one. For
that we will first introduce the Contextual Relative Entropy Policy Search (C-REPS) algorithm on which we then built our
approach that allows for the outlined learning scheme.

4.1 Episodic Contextual Relative Entropy Policy Search

As already introduced, we take the view of (contextual) reinforcement learning as the optimization of a (contextual)
black box reward function

r : Θ× C 7→ R

with “parameters” θ ∈ Θ ⊆ Rnθ and contexts c ∈ C ⊆ Rnc . We speak of a "black box" function, since the agent initially
has no knowledge about r and can only query the function at specific points (θ, c) to find the optimal parameters θ∗ for
a given context c.
The term "episodic" refers to the property that the function r(θ, c) typically expresses the reward obtained by executing
an actual low-level policy πθ, whose behavior is defined by the parameters θ, in a MDP. This abstraction will be one of
the key elements that allow us to avoid the problems that we faced in the previous chapter.
The probability of encountering a specific context can be expressed using a probability distribution µ : C 7→ [0,∞]. This
context distribution is typically assumed to be hidden, meaning that an agent cannot influence this distribution. With
that, the episodic contextual reinforcement learning objective is defined as

J(π) =

∫
C,Θ

r(θ, c)π(θ|c)µ(c)dθdc, (4.1)

where the agent is represented by the non-deterministic policy π : C×Θ 7→ [0,∞) that expresses with which probability
it will choose a specific parameter θ for the low-level policy in a given context. So called policy search algorithms
[39, 40, 41] optimize objectives similar to 4.1 by subsequently changing an initial distribution π0 to create a sequence
of distributions πi, i = 1, . . . which assign more and more probability to the optimal parameters in those contexts that
can be encountered according to the context distribution. While there are many possible ways how to subsequently
change this initial distribution, we will focus on so called C-REPS [14, 15, 16] which bounds the change between two
successive distributions πi+1 and πi using the KL-Divergence - a distance measure between two probability distributions.
The update of the policy πi in episodic C-REPS is defined as the solution of the optimization problem

max
p:Θ×C 7→R

∫
C,Θ

r(θ, c)p(θ, c)dθdc (4.2)

s.t. DKL(p‖q) ≤ ε (4.3)∫
C,Θ

p(θ, c)dθdc = 1 (4.4)∫
Θ

p(θ, c)dθ = µ(c) ∀c ∈ C (4.5)

with q(θ, c) = πi(θ|c)µ(c). The optimization is done over the joint distribution p(θ, c) instead of the policy π(θ|c)
as this makes dealing with the optimization problem easier, which we will see later when we derive the solution for a
related optimization problem. However, now that we are optimizing over the joint distribution, we need to ensure that the
improvement of the objective 4.1 does not result from actually altering the context distribution that is implicitly encoded
in the joint distribution p. Constraint 4.5 prevents exactly this behavior. Constraint 4.4 enforces that the probability mass
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Figure 4.1.: C-REPS example on a simple quadratic function. The contours of the reward function r(θ, c) = (θ − 3c)2

are shown by the black dotted lines. The numbers represent the values that r takes on the contour lines.
The red dotted line visualizes the maxima of the function. The shaded areas represent the joint distribution
p(θ, c) = π(θ|c)µ(c) at specific C-REPS iterations. The context distribution µ is a Gaussian N (0, 1) while
the policy π is a Gaussian with linear mean N (Ac + b|Σ). A, b and Σ are learned using weighted linear
regression from the set of weighted samples. In each iteration, 100 samples are drawn from r.

of p indeed sums to one and constraint 4.3 is the aforementioned bound in KL-Divergence. The KL-Divergence between
two probability distributions p1 : Rn 7→ [0,∞] and p2 : Rn 7→ [0,∞] is defined as

DKL(p1‖p2) =

∫
Rn
p1(x) log

(
p1(x)

p2(x)

)
dx

and in above optimization problem enforces that the change between two consecutive policies πi and πi+1 is limited.
Interestingly, the very definition of the KL-Divergence enforces that p1(x) ≥ 0 for all x ∈ Rn even if we do not assume
that p1 is a valid probability distribution, as the log function is only defined for values greater than zero. In the C-REPS
optimization problem, this, together with constraint 4.4, enforces that p is indeed a probability distribution. Just as done
for the constrained optimization problem in section 3.1, we will work with the Lagrangian function

L(p, η, λ, V ) =

∫
C,Θ

r(θ, c)p(θ, c)dθdc

+ η (ε−DKL(p‖q))

+ λ

(
1−

∫
C,Θ

p(θ, c)dθdc

)
+

∫
C

V (c)

(
µ(c)−

∫
Θ

p(θ, c)dθ

)
dc,

where the so-called Lagrangian multipliers η, λ ∈ R with η ≥ 0 and V : C 7→ R incorporate the three constraints
of the C-REPS optimization problem. Interestingly, the multiplier V is a function instead of a scalar, since there is one
constraint for every c ∈ C and C is a continuous space - which makes constraint 4.5 actually represent an infinite number
of constraints. The optimal joint distribution p∗ of above optimization problem and with that πi+1 can now be expressed
in terms of the optimal multipliers η∗ and V ∗ (we will shortly see how those optimal multipliers can be found)

p∗(θ, c) ∝ q(θ, c) exp

(
r(θ, c)− V ∗(c)

η∗

)
(4.6)

⇔ πi+1(θ|c)µ(c) ∝ πi(θ|c)µ(c) exp

(
δ(θ, c)

η∗

)
⇔ πi+1(θ|c) ∝ πi(θ|c) exp

(
δ(θ, c)

η∗

)
,

with δ(θ, c) = r(θ, c) − V ∗(c). We see that πi+1 is an exponential re-weighting of πi. The “aggressiveness” of this
re-weighting is controlled by the multiplier η, where large values of η will lead to a smaller deviation of πi+1 from
πi while the deviation will become more pronounced for smaller values. The new probability mass of parameter θ in
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context c depends on the difference between the reward r(θ, c) and the optimal Lagrangian multiplier V ∗(c). In [42],
it was shown that V ∗(c) corresponds to some form of expected reward in context c with the current policy πi(θ|c),
which is why we will refer to it as the value function sometimes as it encodes the “value” of the context c. The difference
between r(θ, c) and V (c) hence expresses how much better parameter θ is than the “average” parameter in context c.
The optimal parameters η∗ and V ∗ can be found by minimizing the so-called dual function

G(η, V ) = ηε+ Eµ [V (c)] + η log

(
Eq

[
exp

(
r(θ, c)− V (c)

η

)])
.

This dual function arises from plugging the definition of the joint distribution p with regards to the multipliers back into
the Lagrangian. We skip the exact derivation here, since we will face a strongly related optimization problem in later
sections for which we will derive the aforementioned results. Above dual function, however, poses several difficulties.
First of all, optimizing with respect to the function V is infeasible. Because of this, we need to approximate it with some
parametric model, such as e.g. a weighted sum of features

V (c) = ωTφ(c),

withω ∈ Rnω and φ : C 7→ Rnω . The feature function φ needs to be chosen by the user and onlyω is left to be optimized.
Besides that, the function r is unknown and we can only gather information by sampling from it. Because of this, the
expectation in the dual is approximated by samples from the joint distribution q. With the mentioned adaptations, the
dual becomes

G(η,ω) = ηε+ ωTEµ [φ(c)] + η log

(
1

N

N∑
i=1

[
exp

(
r(θi, ci)− ωTφ(ci)

η

)])
.

Note that while we typically cannot compute the expectation over the context features analytically, we can easily compute
an average feature vector φ̄ by computing an average over feature samples φ(ci) from the context distribution µ(c).
Aforementioned approximations also imply that the new policy πi+1 cannot be expressed analytically but only in terms
of the N samples that were used to approximate the expectation over q in the dual

Dπ =

{(
wπj , θj , cj

)
|wπj = exp

(
δ(θj , cj)

η∗

)
, j = 1, . . . , N

}
.

This set of weighted samples can then be used to infer the new policy πi+1 using e.g. weighted linear regression. Figure
4.1 visualizes the functionality of C-REPS on a simple parabolic function r(θ, c) with a Gaussian context distribution
µ(c) and a linear Gaussian policy π(θ|c) = N (θ|Ac + b,Σ), which was updated from the re-weighted samples using
weighted linear regression. As expected, the - initially very broad - distribution becomes more and more concentrated on
the optimas of the function.

4.2 Self-Paced Contextual Reinforcement Learning

As we have seen, episodic C-REPS allows to find a policy π(θ|c) that maximizes a function r(θ, c) for various contexts
c, whose likelihood is encoded by a hidden context distribution µ(c). Indeed, the policy already generalizes from the
set of weighted samples, with which it is learned, to contexts that were not contained in the set of samples. This
behavior is already very desirable when thinking about our goal of generalizing from easy tasks to harder - desired -
ones. However, the context distribution that encodes the possibility of encountering a specific task is assumed to be
hidden and hence cannot be changed by the agent, which prevents it to gradually sample more and more “complex”
contexts. We now resolve this issue by allowing to modify the sampling distribution during learning. This will allow
to not only generate sequences of policies πi, i = 1, . . . but to also generate context distributions µ̃i, i = 1, . . .. The
idea is that the initial context distributions assign high probability mass to contexts that are easy to solve while the later
distributions increasingly coincide with the desired context distribution µ. We can express this idea as the following
optimization problem

max
p:Θ×C 7→R,µ̃:C 7→R

(∫
C,Θ

r(θ, c)p(θ, c)dθdc− αDKL(µ̃‖µ)

)
(4.7)

s.t. DKL(p‖q) ≤ ε (4.8)∫
C,Θ

p(θ, c)dθdc = 1 (4.9)∫
Θ

p(θ, c)dθ = µ̃(c) ∀c ∈ C (4.10)

27



Input: Relative entropy bound ε,
α-schedule τ (i),
initial policy π0(θ|c),
initial sampling distribution µ0(c),
number of iterations K.

for i = 1 to K do
Collect Data:

Sample contexts cj ∼ µi−1(c), j = 1, . . . , N
Sample and execute actions θj ∼ πi−1(θ|cj)
Observe reward Rj = r (θj , cj)

Update Policy and Context Distributions:
Optimize dual function:
αi = τ (i)[
η∗µ̃, η

∗
p, V

∗]← arg maxG(ηµ̃, ηp, V ) . Equation 4.15
Calculate sample weights:[

wπj , w
µ̃
j

]
←
[
exp

(
δ(θj ,cj)

η∗p

)
, exp

(
β(cj)

αi+η
∗
µ

)]
Infer new policy and context distributions:
πi ← Dπ =

{
(wπj , θj , cj)|j = 1, · · · , N

}
. E.g. with weighted linear regression

µ̃i ← Dµ̃ =
{

(wµ̃j , cj)|j = 1, · · · , N
}

. E.g. with weighted maximum likelihood

end for
Algorithm 2: Self Paced Reinforcement Learning

with q(θ, c) = πi(θ|c)µ̃i(c). The multiplier α ≥ 0 encodes how much we penalize a deviation of the new context
distribution µ̃ from the desired one. In initial iterations, α should hence be set to zero or close to zero. Before continuing
with the derivation of the optimal joint- and context distribution according to optimization problem 4.7 as well as the
dual, we first need to ensure that the constraints of above optimization problem actually enforce that the optimal µ̃ is a
probability distribution. First of all, the KL-Divergence between µ̃ and µ in the objective ensures that µ̃(c) ≥ 0 for all
c ∈ C. Furthermore, constraints 4.9 and 4.10 ensure that the probability mass of µ̃∗ indeed sums to one as∫

C,Θ

p∗(θ, c)dθdc = 1

⇔
∫
C

(∫
Θ

p∗(θ, c)dθ

)
dc = 1

⇔
∫
C

µ̃∗(c)dc = 1.

With those two properties, we can be sure that µ∗ is guaranteed to be a valid probability distribution. Interestingly, we
see that constraints 4.8 and 4.9 together bound the KL-Divergence between µ̃∗ and µ̃i, since

DKL(p∗‖q) ≤ ε

⇔
∫

Θ,C

p∗(θ, c) log

(
p∗(θ, c)

q(θ, c)

)
dθdc ≤ ε

⇔
∫

Θ,C

p∗(θ, c) log

(
µ̃∗(c)

µ̃i(c)

)
dθdc +

∫
Θ,C

p∗(θ, c) log

(
π∗(θ|c)

πi(θ|c)

)
dθdc ≤ ε

⇔
∫
C

(∫
Θ

p∗(θ, c)dθ

)
log

(
µ̃∗(c)

µ̃i(c)

)
dc ≤ ε−

∫
Θ,C

p∗(θ, c) log

(
π∗(θ|c)

πi(θ|c)

)
dθdc

⇔
∫
C

µ̃∗(c) log

(
µ̃∗(c)

µ̃i(c)

)
dc ≤ ε−

∫
Θ,C

π∗(θ|c)µ̃∗(c) log

(
π∗(θ|c)

πi(θ|c)

)
dθdc

⇔
∫
C

µ̃∗(c) log

(
µ̃∗(c)

µ̃i(c)

)
dc ≤ ε−

∫
C

µ̃∗(c)

(∫
Θ

π∗(θ|c) log

(
π∗(θ|c)

πi(θ|c)

)
dθ

)
dc

⇔DKL(µ̃∗‖µ̃i) ≤ ε− Eµ̃∗ [DKL(π∗(·|c)‖πi(·|c))] .

Appendix A.3 shows how to derive expressions of the joint- and context distribution p and µ̃ in terms of the optimal
Lagrangian multipliers η, λ and V as well as the dual function G, whose minimization allows to find the optimal multi-
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pliers. While we still obtain the same formula for the optimal joint distribution as in 4.6, investigating the expression for
the optimal context distribution

µ̃∗(c) ∝ µ(c) exp

(
V ∗(c)

α

)
reveals several problems. First of all, we would rather like to express µ̃∗ in terms of the current context distribution µ̃i,
as we will only have access to policy samples in contexts drawn from this distribution and hence the estimation of V will
only provide meaningful values for those contexts. While we can conceptually alleviate this problem by reformulating
above expression

µ̃∗(c) ∝ µ(c) exp

(
V ∗(c)

α

)
= µ(c)

µ̃i(c)

µ̃i(c)
exp

(
V ∗(c)

α

)
= µ̃i(c) exp

(
α (log(µ(c))− log(µ̃i(c))) + V ∗(c)

α

)
,

this reformulation, however, cannot alleviate the numerical problems of this specific exponential re-weighting that we
want to discuss now. As we have already mentioned, we would like to set α = 0 in initial iterations to allow the agent
to freely choose the context distribution for learning. However, with α = 0, the expression in the exponent is not well
defined. And even for values close to zero, this term would drastically amplify the value of the numerator, leading to very
large negative or positive values in the exponent, which than lead to numerical over- or underflows of the exp term.

4.3 Stable Self-Paced Contextual Reinforcement Learning

We have seen that we need to numerically stabilize the optimization problem from the previous section in order to actually
make use of it. Interestingly, we can easily achieve this by adding “redundant” constraints to optimization problem 4.7.
We say “redundant”, because the optimal joint- and context distribution according to 4.7 are already guaranteed to fulfill
those constraints by fulfilling constraints 4.8, 4.9 and 4.10. This is because the “redundant” constraints enforce exactly
the properties

∫
C
µ̃∗(c)dc = 1 and DKL(µ̃∗‖µ̃i) ≤ ε that we have shown in the previous section. This yields the

following optimization problem

max
p:Θ×C 7→R,µ̃:C 7→R

(∫
C,Θ

r(θ, c)p(θ, c)dθdc− αDKL(µ̃‖µ)

)
(4.11)

s.t. DKL(p‖q) ≤ ε
DKL(µ̃‖µ̃i) ≤ ε (4.12)∫
C,Θ

p(θ, c)dθdc = 1∫
C

µ̃(c)dc = 1 (4.13)∫
Θ

p(θ, c)dθ = µ̃(c) ∀c ∈ C.

As shown in appendix A.4, this again does not change the expression for p (we only renamed the multiplier η to ηp) but
allows to define the optimal policy µ̃∗ in a numerically much more stable way

µ̃∗ (c) ∝ µ̃i (c) exp

(
α (log (µ (c))− log (µ̃i (c))) + V ∗ (c)

α+ η∗µ̃

)
= µ̃i (c) exp

(
β(c)

α+ η∗µ̃

)
(4.14)

where ηµ̃ is the multiplier that corresponds to constraint 4.12. We see that exactly this multiplier allows to set α to
zero, as it prevents the denominator in the exponent from becoming zero. Readers that are familiar with constrained
optimization problems may question this anticipated effect, as an important property of Lagrangian multipliers that arise
from inequality constraints is that these multipliers are zero if the corresponding constraint is not active. In the case
of ηµ̃, this implies that this multiplier is zero, if the KL-Divergence DKL(µ̃∗‖µ̃i) is smaller than ε. This will, however,
be a very likely event given that any deviation of πi+1 from πi implies that the KL-Divergence DKL(µ̃∗‖µ̃i) is strictly
smaller than ε. In this likely case, the multiplier ηµ̃ would not stabilize above expression, as it becomes zero during the
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optimization. To argue why this problem does not arise in practice, we need to take a look at the dual function, with
which we find the optimal multipliers η∗p , η∗µ̃ and V ∗ through minimization and whose derivation can be reviewed in
appendix A.4

G(ηp, ηµ̃, V ) = ηpε+ ηp log

(
Eq

[
exp

(
r(θ, c)− V (c)

ηp

)])
+ ηµ̃ε+ (α+ ηµ̃) log

(
Eµ̃i

[
exp

(
α (log (µ (c))− log (µ̃i (c))) + V (c)

α+ ηµ̃

)])
.

This dual function again allows for a straightforward approximation of the expectations over q and µ̃i using samples from
q. Note that context samples from q are also samples from µ̃i, since q(θ, c) = πi(θ|c)µ̃i(c). With the already introduced
approximation of V using a weighted sum of features we obtain

G(ηp, ηµ̃,ω) = ηpε+ ηp log

(
1

N

N∑
j=1

exp

(
r(θj , cj)− ωφ (cj)

ηp

))

+ ηµ̃ε+ (α+ ηµ̃) log

(
1

N

N∑
j=1

exp

(
α (log (µ (cj))− log (µ̃i (cj))) + ωφ (cj)

α+ ηµ̃

))
. (4.15)

We think that exactly these approximations of the expectations over q and µ̃i and the value function prevent ηµ̃ from
becoming zero in practice, as the discussed implications ofDKL(p∗‖q∗) onDKL(µ̃∗‖µ̃i) only hold in the case of an exact
representation of all expectations and the value function. Just as before, we can now approximate µ̃i+1 from the set of
weighted samples from µ̃i

Dµ̃ =

{(
wµ̃j , cj

)
|wµ̃j = exp

(
β(cj)

α+ η∗µ̃

)
, j = 1, . . . , N

}
using e.g. a weighted maximum likelihood approach. Algorithm 2 outlines the resulting algorithm which can be used to
compute a sequence of policies πi and context distributions µ̃i. The algorithm requires the specification of a so called
“alpha-schedule”, i.e. a function τ(i) encoding the value of α that should be used in optimization problem 4.11 in
iteration i.
Please note that this algorithm introduces an approximation error by using the weighted set of samples Dπ that we
introduced in the previous section to infer the new policy. Although the expression for p∗ in terms of the optimal
multipliers has not changed compared to C-REPS, we would nonetheless need to adjust the weights in the set Dπ, as we
have

p∗(θ, c) ∝ q(θ, c) exp

(
δ(θ, c)

η∗p

)
⇔π∗(θ|c)µ̃∗(c) ∝ πi(θ|c)µ̃i(c) exp

(
δ(θ, c)

η∗p

)
⇔π∗(θ|c) ∝ πi(θ|c)

µ̃i(c)

µ̃∗(c)
exp

(
δ(θ, c)

η∗p

)
⇔π∗(θ|c) ∝ πi(θ|c) exp

(
δ(θ, c)

η∗p
− β(c)

α+ η∗µ̃

)
.

However, using this exponential re-weighting in practice led to numerical problems in our experiments. Those problems
occurred because the β(cj)/(α + η∗µ̃) terms could be several orders of magnitude larger than the δ(θj , cj)/η∗p terms.
Because of this, all samples then got assigned a near equal weight, leading to a poor policy improvement even in initial
iterations (where there clearly exist poor samples θj). We guess that this problem arises due to the limited number of
samples with which the expectations in both duals are approximated. Especially, there is typically only one sample θj for
a given context cj .
We want to conclude this section by investigating whether the outlined scheme will actually focus on easy tasks for α = 0
as we anticipated. To argue that the algorithm indeed does, we investigate the expression for µ̃∗ with α = 0

µ̃∗ (c) ∝ µ̃i (c) exp

(
V ∗ (c)

ηµ̃

)
.

We see that the new distribution will assign higher probability mass to those contexts with a higher value of V ∗(c).
As already mentioned, it was shown that V ∗(c) corresponds to a softmax operator of the average reward in context
c. Hence, µ̃∗ will assign higher probability mass to contexts with higher average reward. Assuming that the maximum
obtainable reward does not differ between contexts, a higher average reward hence means that the agent performs better
in these contexts. Consequently, µ̃∗ indeed focuses on those tasks in which it can more easily obtain a high reward, if it
is not forced to match the target distribution µ by α 6= 0.
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4.4 Numerically Stable Log-Sum-Exp Computation

An important aspect of both the C-REPS and Self-Paced Contextual Reinforcement Learning (SPRL) algorithm is the
proper handling of the log-sum-exp terms in the dual. We will abstract from the actual formulas and exemplify the idea
on the following log-sum-exp term

log

(
N∑
i=1

exp(f(xi))

)
.

The main problem here is that although the log and the exp term conceptually cancel out each other, the individual
exp(f(xi)) terms in the sum may still become very large and hence lead to numerical overflows. However, we can
reformulate above expression to obtain a much more stable expression

log

(
N∑
i=1

exp(f(xi))

)

= log

(
N∑
i=1

exp(f(xi)− fmax + fmax)

)

= log

(
exp(fmax)

N∑
i=1

exp(f(xi)− fmax)

)

= log

(
N∑
i=1

exp(f(xi)− fmax)

)
+ fmax,

where fmax = maxi∈[1,N ] f(xi). This ensures that the exp(f(xi) − fmax) terms attain a maximum value of 1. If we
hence face a large range of values f(xi), the exp term of the smaller values f(xi) will be very close to zero or even
underflow. This is actually not that problematic, which we can see by looking at the update equations 4.6 and 4.3 of the
joint- and context distribution, which can be expressed in an abstract way as the following equation

p(xi) ∝ q(xi) exp(f(xi)).

We obviously also need to subtract fmax in the exp terms of these equations to avoid overflows, which yields

p(xi) ∝q(xi) exp(f(xi))

=q(xi) exp(f(xi)− fmax + fmax)

=q(xi) exp(f(xi)− fmax) exp(fmax)

∝q(xi) exp(f(xi)− fmax).

We see that if one of the exp(f(xi) − fmax) terms in above equations becomes zero, this only means that the cor-
responding context c or parameter θ should not be assigned considerable probability mass by the new context- or
joint-distribution anyways. Hence, with the approach of subtracting fmax from the f(xi) terms, we only loose informa-
tion due to the limited floating point precision for samples which are not “important” anyways.
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5 Experiments
In this section, we want to evaluate whether the introduced Self-Paced Contextual Reinforcement Learning (SPRL) al-
gorithm can hold its promise of learning to accomplish complicated tasks by training on a sequence of intermediate
tasks that guide its learning - just as predictor-corrector methods were able to compute roots of a “complicated” function
by finding roots for a sequence of “easier” functions. We choose three different environments for this evaluation. In
the experiments, we compare our algorithm to Contextual Relative Entropy Policy Search (C-REPS), which serves as a
representative for “default” policy search algorithms which do not have control over a context distribution. We think
that this comparison is the most natural one as SPRL results from a straightforward extension of C-REPS but otherwise
shares many similarities which truely allow to investigate the benefit of having control over the otherwise hidden context
distribution. The first environment is the task of steering a point-mass through a gate of varying size and position in
order to reach a goal position that already served as a motivation in chapter 2. The second task is the three-dimensional
reaching task implemented in the OpenAI Gym simulation environment [43], where the end-effector of a robotic arm
needs to be controlled to reach various goal positions. The final environment is a modified version of this reaching task,
which includes additional obstacles.
In all experiments, we use Radial Basis Function (RBF) features to approximate the value function V (c). We represent
the policies πi(θ|c) by a Gaussian whose mean is a linear weighting of the context features , i. e.

πi(θ|c) = N (θ|Aπiφπ(c),Σπi) .

The features φπ are chosen to be linear in the first two environments and are chosen to be RBF features in the third
one. The weighting Aπi and covariance matrix Σπi are learned from Dπ using weighted linear regression for C-REPS
and SPRL. In order to solely evaluate the benefits of the generated learning curriculum, C-REPS and SPRL use the same
number of RBF features to approximate V (c) and πi(θ|c) for a given environment. We choose to represent the context
distributions µ̃i(c) by Gaussian distributions, which are approximated via maximum-likelihood estimation on Dµ̃ after
every iteration for SPRL.
One iteration of SPRL and C-REPS consists of M = 100 policy executions, which are generated by sampling a task from
µ̃i(c) or µ(c), for SPRL and C-REPS respectively, and then sampling from πi(θ|c) to evaluate the reward function using
those samples.
In all experiments, we have some form of a control policy πθ : S 7→ A or action representation fθ : [0, N ] 7→ A that
are parameterized by θ and generate the actions during the experiments, whose outcomes are encoded by the reward
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Figure 5.1.: The small pictures show gates of different positions and widths, that need to be traversed in order to reach
the goal (red cross) from the starting position (black dot). Crosses of matching color mark the position of
those tasks in the task space of the gate environment. Finally, the orange and blue areas show three times
standard deviation of the task distributions for the “precision” and “global” setting.
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Figure 5.2.: The left plots show the success rate and reward achieved by SPRL and C-REPS on the “precision” (top row)
and “global” setting (bottom row) of the gate environment. Thick lines represent the 50%-quantiles and
shaded areas show the intervals from 10%- to 90%-quantile. The quantiles were computed using 50 algorithm
executions. The right plot shows the evolution of the sampling distribution µ̃ (c) of one run (colored areas)
together with the target distribution µ (c) (dotted line). Later iterations are represented by brighter colors
and iteration numbers are shown in the legend on the right.

function r(θ, c). The interval [0, N ] corresponds to individual time steps for which actions are generated. The reward
function for all of the three tasks is an exponential of the final distance to the desired state with additional action penalties

r(θ, c) = κ exp (−‖xf (θ)− xg (c) ‖2)− ν
N∑
i=0

ai (θ)T ai (θ) .

In above formula, xf (θ) is the position of the point-mass or end-effector at the end of the policy execution or after
applying all feed-forward actions, xg (c) the desired final position for the task and ai (θ) the action applied at time-
step i. The two multipliers κ and ν are chosen individually for each task and will be described for each environment
individually.
Besides the obtained rewards, we also evaluate the success rate of both algorithms. Following the metric of the OpenAI
Gym reacher environment, an experiment is said to be successful, if the distance between final- and desired state is less
than 0.05

Success (θ, c) =

{
1, if ‖xf (θ)− xg (c) ‖2 < 0.05

0, else.

In all experiments, we start with a wide initial sampling distribution µ̃0 to allow the SPRL algorithm to automatically
choose the initial tasks on which learning should take place. To allow the algorithm to make this choice, we set α to zero
or close to zero in the initial iterations of the experiments and then progressively increase its value. As the tasks have
different reward structures and target distributions, the exact α-schedules τ were chosen for each task individually and
are shown in appendix A.5.

5.1 Gate Environment

Although we have already outlined the experiment details in chapter 2, we want to recapitulate the experiment setup
before presenting the results to spare the reader the effort to leaf back and forth between pages. In this environment, the
agent needs to steer a point-mass in two-dimensional space from the starting position [0 5]T to the origin. The dynamics
of the point mass are described by a simple perturbed linear systemẋ

ẏ

 =

 5

−1

+ a + δ, δ ∼ N
(
0, 10−3I

)
,

where x is the x-position of the point mass, y its y-position and a the action of the agent. Complexity is introduced by
a wall at height y = 2.5, which can only be traversed through a gate. The x-position and width of the gate together
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C-REPS

Figure 5.3.: Trajectories generated by the final policies of SPRL and C-REPS for the “precision” setting in the gate environ-
ment. Starting from the black dot, the goal is to traverse the gate and reach the desired position, which is
marked by a red cross.

define a task c. If the point-mass crashes into the wall, the experiment is stopped and the reward computed based on the
current position.
We evaluate two setups in this gate environment: In the first one, the agent needs to be able to steer through a very small
gate far from the origin (“precision”) and in the second it is required to steer through gates with a variety of positions
and widths (“global”). Figure 5.1 illustrates the environment and the two settings that are used for evaluation.
The point-mass is controlled by two PD-Controllers

PDi(x, y) = Ki

x̃i − x
ỹi − y

+ ki, Ki ∈ R2×2, ki ∈ R2, x̃i, ỹi ∈ R,

whose parameters need to be tuned by the agent. The first controller PD1 is responsible for steering the point mass
towards the gate, which is always at height y = 2.5. When reaching this height, the second PD-Controller becomes active
and then needs to drive the point-mass to the origin. Only ỹ1 and ỹ2 are fixed to 2.5 and 0, while all other parameters
are controlled by the policy π, making θ a 14-dimensional vector. For this environment, we set the multipliers κ and ν
of the reward function to 100 and 10−4 respectively. Furthermore, we clip all rewards to a minimum value of −100, as
very large negative rewards can occur in initial iterations of the algorithm if the feedback matrices Ki contain negative
values on their diagonal. These negative entries make the control signals grow out of bounds over time, leading to a very
large penalty for the generated actions.
Figure 5.2 visualizes the obtained rewards and success rate for the SPRL and C-REPS algorithm in both settings as well
as the evolution of the sampling distribution µ̃ (c). We can see that the SPRL algorithm performs significantly better than
C-REPS. Especially in the “precision” setting, only SPRL is able to find a controller that successfully traverses the wall by
avoiding the local optima, to which C-REPS converges. With C-REPS achieving a success rate of zero, it is imaginable that
this local optima does not encode desirable behavior. However, figure 5.3 demonstrates how poor the resulting behavior
actually is.
Besides that, the visualized sampling distributions in Figure 5.2 show that in early iterations of both settings, µ̃ focuses
on tasks with wide gates positioned at the origin and then subsequently changes the sampling distributions to match
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Figure 5.4.: The success rate and reward achieved by SPRL and C-REPS in the reacher environment are shown in the left
plots, where thick lines represent the 50%-quantiles and shaded areas show the intervals from 10%- to 90%-
quantile. The right plot shows those quantiles for the entropy of µ̃ (c) over the SPRL iterations. The quantiles
were computed using 50 trials.
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Figure 5.5.: The small pictures show a top-down view on the table and the obstacles (cyan boxes) on top of it in different
tasks of the modified reacher environment. The goal in each task is to move the robot end-effector from its
initial position at the right end of the table to the red dot, while avoiding the obstacles. Crosses of match-
ing color show to which areas of the task space the individual tasks correspond. The target distribution is
visualized by the blue shaded area, which represents three times its standard deviation.

the desired ones. Looking back at figure 2.5, it seems that µ̃ indeed focuses on easy tasks in early iterations, as a wider
gate leads to a higher chance of traversing the wall even with a random policy. While figure 2.5 does not explain why
µ̃ initially favors gates with an x-position near zero, this can easily done by closer examination of the initial policy π0,
which is chosen to be a zero mean Gaussian with “wide” variance for all experiments, i.e. Σπ0 = ζI with a large value
of ζ. Despite the large initial variance, the chance of sampling a parameter vector θ with near zero entries is higher
than sampling one with larger positive or negative values. Since θ also contains the desired x-positions of the two PD-
Controllers x̃1 and x̃2, it is more likely that the initial PD-Controllers will steer the points mass near the positions [0 2.5]
and [0 0]. This leads to a higher probability of successfully traversing the wall with a gate whose x-position is near zero
for initial controllers. It hence looks like the capabilities of SPRL to control the context distribution also allow to deal
with a sub-optimal initial policy π0 for the desired task by first focusing on tasks in which this initial policy performs well.

5.2 Reacher Environment

The gate environment seems to consist of tasks with varying difficulty. Starting from a random policy, it seems to be
easier to find controllers that navigate the agent through a wider gate at the origin than through a narrower one far away
from it, especially with the initial policy being a zero-mean Gaussian.
The experiments in the following environment serve to evaluate the performance of SPRL when there are no tasks which
are inherently more or less complicated than others. For that evaluation, we choose the three-dimensional reacher
environment of the OpenAI Gym toolkit. In this environment, a task is defined by the three-dimensional end-effector
position of a robotic arm that should be reached at the end of the trajectory. The desired end-effector position is drawn
uniformly from

C = [1.19, 1.49]× [0.60, 0.90]× [0.38, 0.68] ⊂ R3.

We believe that in this setting, there are no hard and easy tasks, since the reward signal always smoothly guides the agent
towards the optimal policy. This is not the case in the previous environment, where the possibility of crashing into the
wall creates plateaus and discontinuities in the reward function as can be again seen in figure 2.5.
Since the actions in this environment correspond to the desired changes dx, dy and dz in the x-, y- and z-position of the
end-effector, the controls do not need to take the dynamics of the robot into the account. Hence we choose to make the
actions only depend on the current time-step ti. These actions are encoded using Gaussian Basis Functions over time

ai (θ) = θTψ (ti) ,

ψj (ti) =
bj (ti)∑L
l=1 bl (ti)

,

bj (ti) = exp

(
(ti − cj)2

0.6L

)
, j = 1, . . . , L,

such as e.g. used in [44]. We evenly spread the L = 10 centers cj over the time interval of the movement, which
gives θ ∈ R10×3, as ai (θ) is a three-dimensional vector. The multipliers of the reward function are set to κ = 10 and
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Figure 5.6.: The left plots show the 50%-quantiles (thick lines) and the intervals from 10%- to 90%-quantile (shaded areas)
of success rate and reward achieved by SPRL and C-REPS in the modified reacher environment. The quantiles
were computed using 25 algorithm executions. Colored areas in the right plot show the sampling distribution
µ̃ (c) at different iterations of one SPRL run together with the target distribution (dotted line). The legend
on the right shows the iteration that corresponds to a specific color.

ν = 10−2. We see that the value of ν is considerably higher than in the previous experiment. This is because the actions
encode the desired change in end-effector position. Looking at the space C of possible goal positions, we see that the
actions hence do not need to be as large as in the previous environment, as e.g. only a total displacement of 0.3 in the
x-position is necessary to move across C.
Investigating figure 5.4, we can see that the learning curves of SPRL and C-REPS are basically identical. This matches our
belief that a learning curriculum cannot significantly improve the learning performance in this environment, since all tasks
provide very good reward signals to learn from. Furthermore, the entropy of the initially wide sampling distribution is
not drastically reduced by the SPRL algorithm. This indicates that SPRL covered the set of target tasks right away instead
of first focusing on a specific subset. Note that we choose to plot the entropy of the sampling distribution, since actual
visualizations of µ̃ (c) are somewhat problematic with c being three-dimensional.

5.3 Modified Reacher Environment

In order to demonstrate the beneficial properties of SPRL in the previously investigated reacher environment, we intro-
duce obstacles that the agent needs to avoid while moving towards a goal position. These obstacles lie on a table and
the end-effector needs to be moved along the surface of this table towards the goal position, which is at the opposite end
of the table. Hence, the agent truly needs to navigate through the obstacles to reach the goal and cannot just avoid the
obstacles by moving the robotic arm over the obstacles.
With the obstacles becoming larger, the robot needs to introduce a more and more pronounced curve movement in order
to reach the goal without collisions. To allow for an easy visualization of the task distribution, we only allow two of the
four obstacles to vary in size. The sizes of those two obstacles make up a task c in this environment.
Figure 5.5 visualizes the target task distribution and illustrates different tasks that occur in this environment. Just as in
the first environment, the robot should not crash into the obstacles and hence the movement is stopped if one of the four
obstacles is touched.

SPRL
C-REPS

Figure 5.7.: Trajectories generated by the final policies learned with SPRL and C-REPS in the modified reacher environ-
ment. The trajectories should reach the red dot while avoiding the cyan boxes. Please note that the visual-
ization is not completely accurate, as we did not account for the viewpoint of the simulation camera when
plotting the trajectories.
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The actions are again encoded using Gaussian Basis Functions over time, as the actions again encode the desired change
in end-effector position and hence do not need to account for possibly complicated dynamics of the robot. However,
since the robot is forced to move along the surface of the table, it can only control the movement of its end-effector in
the xy-plane, while the position in the z-plane is fixed. With L = 20 basis functions, we hence obtain θ ∈ R20×2. The
multipliers for the reward function are set to κ = 20 and ν = 10−2. The higher value of κ is explained as additional
movement needs to be introduced to the end-effector compared to the previous reacher environment. The resulting high
penalty is compensated by the higher value of κ.
When looking at figure 5.5, one can imagine that it is hard to solve the target tasks starting from a random policy, as they
require a precise curve movement to reach the desired position without crashing into the obstacles. The performance
comparison of both algorithms in Figure 5.6 confirms this assumption, showing that SPRL is able to find a better optimum
of the reward function and that, just as in the ”precision” setting of the gate environment, reaching the one or the other
optimum decides whether the resulting policy is able to solve the task. This issue is as also illustrated in Figure 5.7, which
visualizes the final policies of SPRL and C-REPS. The figure also shows the only algorithm execution of C-REPS, in which
the final policy solves the target tasks. This indicates that indeed the high likelihood of finding a poor local optima causes
the low performance of C-REPS. Note that this one successful run of C-REPS is not reflected by the plots in Figure 5.6,
since the 10%- and 90%-quantiles remove such outliers from the visualization.
Furthermore, the distributions shown in figure 5.6 indicate that again, SPRL focuses on easier tasks with smaller obstacle
sizes first and then moves on to the harder desired tasks. Especially as opposed to the first environment, the easiness of
tasks is not implicitly influenced by the initial policy π0, as a zero-mean Gaussian in combination with the Gaussian Basis
Functions over time assigns the most probability to a sequence of actions that do not move the end-effector at all. Such
a behavior is equally good or bad in all contexts.
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6 Related Work
In this section, we want to briefly discuss ideas that share similarities to the introduced Self-Paced Contextual Reinforce-
ment Learning (SPRL) algorithm.
Obviously, our method shares conceptual ideas with homotopic continuation methods [17]. Tracing the roots of a function
for which those are easy to find towards the roots of those for which a default root search cannot be expected to be
successful corresponds to the idea of SPRL of first training in easy contexts and then subsequently transferring the found
solution to the one of the desired context. In behavioral psychology, a similar concept is known as shaping [45], and has
shown to have direct links to computational reinforcement learning [46].
The idea of co-evolving the task together with the learner was explored under different names in various contexts. In
evolutionary robotics, simulation parameters describing a robot were gradually evolved to match the observations from
the real system, while intermediate controllers were learned entirely in simulation [47]. Recently, this idea got into the
spotlight of reinforcement learning under the name ‘sim-to-real transfer’ [48].
In supervised learning, the paradigm of curriculum learning [49] shares strong similarities to our approach. In curricu-
lum learning, the function approximator is trained on a sequence of training sets with increasing difficulty, reusing the
parameters from the previous optimization as the initialization for the next. This has been shown to avoid local optima
of the objective function. However, the authors of [49] required the learning curriculum to be specified by hand. This
requirement was avoided in [50] by introducing a multiplier that was used to force the function approximator to include
more and more samples into the training set. The authors then showed that the algorithm tends to first include samples
in the training set, for which it can predict the most accurate values. Indeed, the name for the approach introduced in
our work is derived from the name of this algorithm, since the parameter α has similar behavior and interpretation as the
multipler in [50]. The approach presented in [51] extends the work of [50] by allowing to take prior knowledge about
“good” curricula into account. Our approach also allows to incorporate such prior knowledge through the specification
of the initial context distribution µ̃0.
The authors of [52] investigated the much harder problem of learning the optimal curriculum by formulating the context
selection problem as a Markov Decision Process (MDP) and learning an optimal policy in it. However, this turns out
to be computationally harder than learning the entire task from scratch at once. Our method employs local auxiliary
optimization instead as a surrogate for global optimization, which significantly improves sample efficiency of learning.
The process of adaptive task selection in SPRL can be seen as a form of active learning [53], which allows machine
learning algorithms to explicitly choose the data from which to learn instead of using a pre-determined set of training
samples. This has been shown to increase prediction accuracy while reducing the required number of samples. The
results in the “global” setting of the gate environment demonstrate a similar beneficial property of our algorithm, where
initially focusing on easy contexts led to a faster convergence to an optimal policy across all contexts compared to
Contextual Relative Entropy Policy Search (C-REPS). Active learning in turn is closely related to curiosity-driven learning
[54], which introduced such approaches as intelligent adaptive curiosity [55] and intrinsic motivation [56] that suggest
focusing learning on tasks that promise high change in reward based on the recent history of experiences [57]. Curiosity-
driven learning was combined with multi-armed bandit algorithms for automatic task selection in reinforcement learning
problems [58] and was applied in robotics to learn goal-reaching movements with sparse rewards [59].
The idea of reusing knowledge across related tasks is at the heart of transfer learning in general [60] and transfer
in RL in particular [7, 61]. Prioritization of tasks for which the agent obtains rewards falling into a certain interval
of values combined with additional reversibility assumptions was shown to enable learning of high-dimensional object
manipulation and maze navigation tasks [62, 63].
Assuming shared dynamics between tasks and knowledge about the functional form of the reward function allowed
to solve a variety of tasks in the classical computer game Doom by learning to predict measurements for various time
horizons [64]. These predicted measurements could then be combined in a linear way to define the current task that
the agent should solve. Enhanced with universal value function approximators [65], such a reward-based transfer was
extremely successful in robotics applications with sparse reward functions [66]. Later, this approach was argued in
[67] to acutally learn a long-term dynamics prediction due to the specific from of the reward function and the fact that
the agents learned goal reaching tasks. And indeed, if the assumptions of a shared environment and a known reward
function hold, model-based reinforcement learning approaches such as [68, 32] seem to be a natural and appealing way
to transfer knowledge between tasks.
Finally, an important theoretical relation to the presented algorithm is the already mentioned work on contextual MDPs
[23, 24]. Especially the considerations on the smoothness of MDPs in [24] is a topic that is also important for our
algorithm. Indeed, SPRL implicitly assumes a smooth change not only in the MDP structure but also in the optimal policy
as we typically represent the policy using a linear re-weighting of features.
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7 Discussion and Outlook
We have introduced homotopic predictor-corrector methods to motivate the potential of a predictor-corrector scheme
in reinforcement learning domains to avoid problematic local optima of reward functions. We then introduced and
investigated concepts from optimization and concurrent systems theory that can possibly be leveraged to implement
such a scheme. This investigation, however, revealed that a straightforward application of these concepts to general
reinforcement learning problems requires more theoretical work, since there are technical and practical aspects that
prevent their general application. Because of these shortcomings, we then took an episodic view of the contextual
reinforcement learning problem. This view allowed us to straightforwardly extend an existing policy search algorithm
to allow a reinforcement learning agent to control the, otherwise hidden, context distribution. In the experimental
section, we have demonstrated that this control over the context distribution is indeed utilized by the agent to focus on
easier tasks in initial iterations. The agent can then be increasingly “forced” to match the desired context distribution by
increasing the value of a penalty multiplier. This learning scheme allowed to solve obstacle avoidance tasks in different
environments, in which a default contextual policy search algorithm could not achieve satisfying results, by reusing
acquired knowledge from the initial algorithm iterations in easier tasks.
The results of this work leave many points for future work. First of all, addressing the encountered shortcomings of
sensitivity analysis and bisimulation in chapter 3 may allow to create an algorithm similar to the one presented in
chapter 4 that, however, relies on theoretical insights from optimization and process theory. This could drastically
improve sample efficiency of the overall algorithm.
Extending the SPRL algorithm to step-based policy search that learns a policy π(a|s), which directly maps from states s
in a Markov Decision Process (MDP) to actions a, could be another way to improve the sample efficiency of the algorithm
by removing the abstraction of episodic policy search, allowing to leverage more information about the structure of the
underlying MDP.
Furthermore, enforcing the KL-Divergence DKL(µ̃|µ) to be smaller than a certain threshold instead of penalizing it in
optimization problem 4.11 could allow for a more fine-grained control over the evolution of the context distributions µ̃i.
This is straightforward to implement, however needs to be evaluated in future experiments.
Another point for future work is to improve the inference of πi+1 and µ̃i+1 from the data set Dπ and Dµ̃. Currently, the
employed weighted linear regression and maximum likelihood estimation do not guarantee that the the bound of the KL-
Divergences DKL(πi+1‖πi) and DKL(µi+1‖µi) is satisfied. As mentioned at the end of chapter 4, we were also forced
to use the sample weights that are - theoretically speaking - not completely accurate. Appendix A.6 shows a potential
way of how to learn both the new policy πi+1 and µi+1 only from the dataset Dπ while respecting aforementioned KL
bounds. Whether this work in practice, however, is left to be shown by additional experiments.
Currently, the parameter α needs to be chosen by the user in every iteration. While the experiments demonstrated that
typically a simple step-function representing the values of α for the individual iterations is sufficient, finding ways to
automatically determine the appropriate α would allow to apply our algorithm while requiring less fine-tuning. At the
point of writing this thesis, we already obtained promising preliminary results by choosing α such that in every iteration,
the penalty due to the KL-Divergence between current- and target context distribution makes up a certain percentage β
of the current average reward. With this approach, β becomes the only open parameter.
Finally, the KL-Divergence is a non-geometric distance measure between probability distributions. While this may be
a sensible choice for the distance between successive policies πi+1 and πi, the context space C may indeed have a
geometric interpretation that should be utilized by the SPRL algorithm. The so-called wasserstein metric [69] allows to
incorporate a metric on the space C when computing the distance between two probability distributions. Inspired by
the computation of the wasserstein metric in [70], appendix A.7 allows to use the wasserstein metric to penalize the
distance between µ̃ and µ instead of the KL-Divergence in optimization problem 4.11. Again, actual experiments need to
be conducted to demonstrate that this approach works in a practical scenario.
Addressing aforementioned points will help to further increase the capabilities of the presented algorithm, allowing to
even better leverage the benefits of knowledge transfer between related tasks - and with that taking further steps towards
truly intelligent machines.
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A Appendix

A.1 Multi-Parametric Programming Conditions

Given the parametric optimization problem

θ∗(c) = arg min
θ

f(θ, c)

s.t. g(θ, c) ≤ 0

h(θ, c) = 0,

with θ ∈ Rnθ , c ∈ Rnc , g : Rnθ × Rnc 7→ Rng and h : Rnθ × Rnc 7→ Rnh , a point θ fulfills the so called Linear
Independence Constraint Qualification (LICQ) for a given parameter c, if the set of gradients

TC(θ, c) = {∇θhi(θ, c)|i = 1, . . . , nh} ∪ {∇θgi(θ, c)|i = 1, . . . , ng ∧ gi(θ, c) = 0}

is linearly independent. We also refer to points θ that satisfy the LICQ as normal points.

Now, as detailed in [9], if θ is a normal point and there exist λ ∈ Rng and µ ∈ Rnh such that

λi ≥ 0 ∀i ∈ [1, . . . , ng],

λi = 0 ∀i ∈ {i|i = 1, . . . , ng ∧ gi(θ, c) < 0},
∇θL(θ,λ,µ, c) = 0,

dT∇2
θθL(θ,λ,µ, c)d > 0 ∀d ∈ ker(TC(θ, c)) \ {0}

hold, then θ fulfills the so called strict second order optimality conditions. Above conditions assume that f , g and h are
twice continuously differentiable in a region around θ.

A.2 Value Function Relations

Given two Markov Decision Processes (MDPs) MDP1 = (S,A, p, r1) and MDP2 = (S,A, p, r2) with

r2(s,a) = αr1(s,a) + β,

we will show that

V ∗2 (s) = αV ∗1 (s) +
β

1− γ .

For that, we will iterate the value iteration operator

V i+1(s) = FV (V i)(s) = max
a

(
r(s,a) + γEp

[
V i(s̃)|s̃ ∼ p(s′|s,a)

])
,

which is known to converge to the optimal value functions V ∗1 and V ∗2 from any initial guess V0 in the limit i→∞. Due
to simplicity, we will assume that V 0

2 (s) = V 0
1 (s) = 0 for all s ∈ S. However, since operator FV is known to converge

from any initial V 0, the result naturally generalizes. With the aforementioned assumptions we obtain

V 1
2 (s) = max

a

(
r2(s,a) + γEp

[
V 0

2 (s̃)|s̃ ∼ p(s′|s,a)
])

= max
a

(r2(s,a))

= max
a

(αr1(s,a) + β)

= αmax
a

(r1(s,a)) + β

= αV 1
1 (s) + β.

47



Now assuming that V i2 (s) = αV i1 (s) +
∑i−1
j=0 γ

iβ, we show that this still holds for i + 1 by investigating V i+1
2 (s) =

FV (V i2 )(s)

V i+1
2 (s) = max

a

(
r2(s,a) + γEp

[
V i2 (s̃)|s̃ ∼ p(s′|s,a)

])
= max

a

(
αr1(s,a) + β + γEp

[
αV i1 (s̃) +

i−1∑
j=0

γiβ

∣∣∣∣∣s̃ ∼ p(s′|s,a)

])

= αmax
a

(
r1(s,a) + γEp

[
V i1 (s̃)|s̃ ∼ p(s′|s,a)

])
+ β + γ

i−1∑
j=0

γiβ

= αV i+1
1 (s) + β + γ

i−1∑
j=0

γiβ

= αV i+1
1 (s) + β +

i−1∑
j=0

γi+1β

= αV i+1
1 (s) + β +

i∑
j=1

γiβ

= αV i+1
1 (s) +

i∑
j=0

γiβ.

Now taking the limit i→∞ gives the desired result, as it holds that

lim
i→∞

i∑
j=0

γiβ =
β

1− γ

when γ < 1.

A.3 SPRL Derivation

The Lagrangian of optimization problem 4.7

L(p, µ̃, η, λ, V ) =

∫
C,Θ

r(θ, c)p(θ, c)dθdc− α
∫
C

µ̃(c) log

(
µ̃(c)

µ(c)

)
dc

+ η

(
ε−

∫
C,Θ

p(θ, c) log

(
p(θ, c)

q(θ, c)

)
dθdc

)
+ λ

(
1−

∫
C,Θ

p(θ, c)dθdc

)
+

∫
C

V (c)

(
µ̃(c)−

∫
Θ

p(θ, c)dθ

)
dc

=ηε+ λ+ Ep

[
r(θ, c)− η log

(
p(θ, c)

q(θ, c)

)
− λ− V (c)

]
+ Eµ̃

[
−α log

(
µ̃(c)

µ(c)

)
+ V (c)

]
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allows to express the optimal joint- and context distribution p∗ and µ∗ in terms of the Lagrangian multipliers. For this
we set the derivatives of L with respect to p and µ̃ to zero

∂L

∂p
= r(θ, c)− η

(
1 + log

(
p(θ, c)

q(θ, c)

))
− λ− V (c) = 0

⇔ r(θ, c)− V (c)− λ− η = η log

(
p(θ, c)

q(θ, c)

)
⇔ p∗(θ, c) = q(θ, c) exp

(
r(θ, c)− V (c)

η

)
exp

(
−λ− η
η

)
,

∂L

∂µ
=− α

(
1 + log

(
µ̃(c)

µ(c)

))
+ V (c) = 0

⇔ V (c)− α = α log

(
µ̃(c)

µ(c)

)
⇔ µ̃∗(c) = µ(c) exp

(
V (c)

α

)
exp(−1).

The dual of the optimization problem can be obtained by plugging the derived expressions back into the Lagrangian.
Before we do that, we will first derive a result that will later helps us to eliminate the Lagrangian multiplier λ by
plugging the derived expression for p into constraint 4.9∫

C,Θ

p∗(θ, c)dθdc = 1

⇔
∫
C,Θ

q(θ, c) exp

(
r(θ, c)− V (c)

η

)
exp

(
−λ− η
η

)
dθdc = 1

⇔ Eq

[
exp

(
r(θ, c)− V (c)

η

)]
= exp

(
λ+ η

η

)
⇔ η + λ = η log

(
Eq

[
exp

(
r(θ, c)− V (c)

η

)])
.

Now we are ready to derive the dual function

G(η, λ, V ) =ηε+ λ+ Ep

[
r(θ, c)− η log

(
p(θ, c)

q(θ, c)

)
− λ− V (c)

]
+ Eµ̃

[
−α log

(
µ̃(c)

µ(c)

)
+ V (c)

]
= ηε+ λ+ Ep

[
r(θ, c)− η log

(
exp

(
r(θ, c)− V (c)

η

)
exp

(
−λ− η
η

))
− λ− V (c)

]
+ Eµ̃

[
−α log

(
exp

(
V (c)

α

)
exp(−1)

)
+ V (c)

]
= ηε+ λ+ Ep [r(θ, c)− (r(θ, c)− V (c)− λ− η)− λ− V (c)] + Eµ̃ [− (V (c)− 1) + V (c)]

= ηε+ λ+ Ep [η] + Eµ̃ [1]

= ηε+ λ+ ηEp [1] + Eµ̃ [1] .

Assuming that we choose the multiplier λ according to the multipliers η and V , such that it enforces 4.9, we know that
Ep [1] = 1. With that we can simplify G to

G(η, V ) = ηε+ λ+ η + Eµ̃ [1]

= ηε+ η log

(
Eq

[
exp

(
r(θ, c)− V (c)

η

)])
+ Eµ̃ [1] .

However, we cannot easily apply the same trick to the expectation over µ̃, as although we know that constraint 4.9
holds, we can only be sure that Eµ̃ [1] = 1 if we would also choose the multiplier V to also enforce constraint 4.10.
Consequently, we can only replace this expectation by the definition of µ̃

G(η, V ) = ηε+ η log

(
Eq

[
exp

(
r(θ, c)− V (c)

η

)])
+ Eµ

[
exp

(
V (c)

α

)
exp(−1)

]
= ηε+ η log

(
Eq

[
exp

(
r(θ, c)− V (c)

η

)])
+ exp(−1)Eµ

[
exp

(
V (c)

α

)]
.
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A.4 Stable SPRL Derivation

To derive the optimal joint- and context distribution p∗ and µ̃∗, we first define the Lagrangian of optimization problem
4.7

L (p, µ̃, ηp, ηµ̃, V, λp, λµ̃) =

∫
C,Θ

p (θ, c) r(θ, c)dcdθ − α
∫
C

µ̃ (c) log

(
µ̃ (c)

µ (c)

)
dc

+ ηp

(
ε−

∫
C,Θ

p (θ, c) log

(
p (θ, c)

q (θ, c)

)
dcdθ

)
+ ηµ̃

(
ε−

∫
C

µ̃ (c) log

(
µ̃ (c)

µ̃i (c)

)
dc

)
+

∫
C

V (c)

(
µ̃ (c)−

∫
Θ

p (θ, c) dθ

)
dc

+ λp

(
1−

∫
C,Θ

p (θ, c) dcdθ

)
+ λµ̃

(
1−

∫
C

µ̃ (c) dc

)
= ηpε+ ηµ̃ε+ λp + λµ̃

+ Ep

[
r(θ, c)− ηp log

(
p (θ, c)

q (θ, c)

)
− V (c)− λp

]
+ Eµ̃

[
−α log

(
µ̃ (c)

µ (c)

)
− ηµ̃ log

(
µ̃ (c)

µ̃i (c)

)
+ V (c)− λµ̃

]
.

We see that compared to the Lagrangian of optimization problem 4.7, the derived Lagrangian has multiple parameters ηp
and ηµ̃ instead of only one η. This reflects the additional KL-Bound constraint on µ̃. The same holds for the parameters
λp and λµ̃. To derive p and µ̃ as expression of the multipliers, we again take the derivative of the Lagrangian with respect
to p and µ̃ and set them to zero

∂L

∂p
= r(θ, c)− ηp

(
log

(
p (θ, c)

q (θ, c)

)
+ 1

)
− V (c)− λp = 0

⇔p (θ, c) = q (θ, c) exp

(
r(θ, c)− V (c)

ηp

)
exp

(
−λp − ηp

ηp

)
,

∂L

∂µ
=− α

(
log

(
µ̃ (c)

µ (c)

)
+ 1

)
− ηµ̃

(
log

(
µ̃ (c)

µ̃i (c)

)
+ 1

)
+ V (c)− λµ̃ = 0

⇔V (c)− λµ̃ − ηµ̃ − α = α log

(
µ̃ (c)

µ (c)

)
+ ηµ̃ log

(
µ̃ (c)

µi (c)

)
⇔V (c)− λµ̃ − ηµ̃ − α = α log (µ̃ (c))− α log (µ (c)) + ηµ̃ log (µ̃ (c))− ηµ̃ log (µ̃i (c))

⇔α log (µ (c)) + ηµ̃ log (µ̃i (c)) + V (c)− λµ̃ − ηµ̃ − α = (α+ ηµ̃) log (µ̃ (c)) .

We want to emphasize above relation between µ̃, µ and µ̃i as we will need it later. A more intuitive way of expressing µ̃
requires some more reformulations

log (µ̃ (c)) =
α log (µ (c)) + ηµ̃log (µ̃i (c)) + V (c)− λµ̃ − ηµ̃ − α

α+ ηµ̃

⇔ log (µ̃ (c)) = log

(
µ (c)

α
α+ηµ̃ µ̃i (c)

ηµ̃
α+ηµ̃

)
V (c)− λµ̃ − ηµ̃ − α

α+ ηµ̃

⇔µ̃ (c) = µ (c)
α

α+ηµ̃ µ̃i (c)

ηµ̃
α+ηµ̃ exp

(
V (c)− λµ̃ − ηµ̃ − α

α+ ηµ̃

)
⇔µ̃ (c) = µ (c)

α
α+ηµ̃ µ̃i (c)

ηµ̃
α+ηµ̃ exp

(
V (c)− λµ̃ − ηµ̃ − α

α+ ηµ̃

)
⇔µ̃ (c) = µ (c)

α
α+ηµ̃ µ̃i (c)

ηµ̃
α+ηµ̃

−1
µ̃i (c) exp

(
V (c)− λµ̃ − ηµ̃ − α

α+ ηµ̃

)
⇔µ̃ (c) = µ̃i (c) exp

(
α

α+ ηµ̃
log (µ (c)) +

(
ηµ̃

α+ ηµ̃
− 1

)
log (µ̃i (c)) +

V (c)− λµ̃ − ηµ̃ − α
α+ ηµ̃

)
⇔µ̃ (c) = µ̃i (c) exp

(
α log (µ (c))− α log (µ̃i (c)) + V (c)

α+ ηµ̃

)
exp

(
−λµ̃ − ηµ̃ − α

α+ ηµ̃

)
.
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Following the derivation in appendix A.3, we can again show that

ηp + λp = ηp log

(
Eq

[
exp

(
r(θ, c)− V (c)

ηp

)])
.

However, since we introduced constraint 4.13 in optimization problem 4.11, we are now also able to show∫
µ̃ (c) dc = 1

⇔
∫
µ̃i (c) exp

(
α log (µ (c))− α log (µ̃i (c)) + V (c)− λµ̃ − ηµ̃ − α

α+ ηµ̃

)
dc = 1

⇔
∫
µ̃i (c) exp

(
α log (µ (c))− α log (µ̃i (c)) + V (c)

α+ ηµ̃

)
dc = exp

(
λµ̃ + ηµ̃ + α

α+ ηµ̃

)
⇔Eµ̃i

[
exp

(
α log (µ (c))− α log (µ̃i (c)) + V (c)

α+ ηµ̃

)]
= exp

(
λµ̃ + ηµ̃ + α

α+ ηµ̃

)
⇔λµ̃ + ηµ̃ + α = (α+ ηµ̃) log

(
Eµ̃i

[
exp

(
α log (µ (c))− α log (µ̃i (c)) + V (c)

α+ ηµ̃

)])
.

Again we can make use of these properties when deriving the dual function by plugging in the expressions for p and µ̃
into the Lagrangian

G(ηp, ηµ̃, V ) = ηpε+ ηµ̃ε+ λp + λµ̃

+ Ep

[
r(θ, c)− ηp log

(
p (θ, c)

q (θ, c)

)
− V (c)− λp

]
+ Eµ̃

[
−α log

(
µ̃ (c)

µ (c)

)
− ηµ̃ log

(
µ̃ (c)

µ̃i (c)

)
+ V (c)− λµ̃

]
= ηpε+ ηµ̃ε+ λp + λµ̃

+ Ep

[
r(θ, c)− ηp log

(
exp

(
r(θ, c)− V (c)

ηp

)
exp

(
−λp − ηp

ηp

))
− V (c)− λp

]
+ Eµ̃ [− (α+ ηµ̃) log (µ̃ (c)) + α log (µ (c)) + ηµ̃ log (µ̃i (c)) + V (c)− λµ̃]

= ηpε+ λp + ηµ̃ε+ λµ̃ + Ep [ηp]

+ Eµ̃
[
− (α log (µ (c)) + ηµ̃ log (µ̃i (c)) + V (c)− λµ̃ − ηµ̃ − α)

+ α log (µ (c)) + ηµ̃ log (µ̃i (c)) + V (c)− λµ̃
]

= ηpε+ λp + ηp + ηµ̃ε+ λµ̃ + Eµ̃ [ηµ̃ + α]

= ηpε+ λp + ηp + ηµ̃ε+ λµ̃ + ηµ̃ + α

= ηpε+ ηp log

(
Eq

[
exp

(
r(θ, c)− V (c)

ηp

)])
+ ηµ̃ε+ (α+ ηµ̃) log

(
Eµ̃i

[
exp

(
α log (µ (c))− α log (µ̃i (c)) + V (c)

α+ ηµ̃

)])
.

Note that we used the same “trick” as in appendix A.3 and assumed that the parameters λp and λµ̃ are chosen such that
Ep[1] = 1 and Eµ̃[1] = 1.

A.5 Alpha Schedules

The experiments in section 5 were run with the alpha schedules shown in tables A.1.

A.6 Improved Distribution Updates

We are given a dataset of N weighted samples D =
{

(wi,xi,yi)|i = 1, . . . , N,xi ∈ Rdx ,yi ∈ Rdy
}

and we would like
to fit a joint-distribution

p(x,y) = py(y|x)px(x) = N (y|Aφ(x),Σy)N (x|µx,Σx)
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Table A.1.: Schedules for α in the two gate environment settings (left) and the two reacher environments (right), showing
at which iterations (left column) which value of α was set. An ’×’ symbolizes that SPRL was not run for the
corresponding number of iterations in this setting.

Iteration Gate - Precision Gate - Global

0 0 0

80 1e-6 0

120 1e-6 0.05

150 0.1 0.05

200 2.5 2.5

300 2.5 50

350 × 500

400 × 1e4

450 × 1e5

500 × 1e6

Iteration Reacher Modified Reacher

0 1e-5 0

30 1e-3 0

70 1e-2 0

100 1e-1 5e-13

140 × 8e-13

180 × 1e-12

210 × 2e-12

240 × 3e-12

260 × 7e-12

300 × 1e-10

to this dataset, while limiting the change with regards to a reference distribution

q(x,y) = qy(y|x)qx(x) = N (y|Ãφ(x), Σ̃y)N (x|µ̃x, Σ̃x),

where the feature function φ : X 7→ Ro can be arbitrary. We can express this as the following constrained optimization
problem

max
A,Σy,µx,Σx

N∑
i=1

wi log(p(xi,yi))

s.t. DKL(q‖p) ≤ ε

= max
A,Σy,µx,Σx

N∑
i=1

wi log(p(xi,yi))

s.t. Eqx [DKL(qy‖py)] +DKL(qx‖px) ≤ ε

≈ max
A,Σy,µx,Σx

N∑
i=1

wi log(p(xi,yi))

s.t.
1

N

N∑
i=1

DKL(qy(·|xi)‖py(·|xi)) +DKL(qx‖px) ≤ ε

= max
A,Σy,µx,Σx

N∑
i=1

wi

(
− 1

2

(
log(det(Σy)) + (yi −Aφ(xi))

TΣ−1
y (yi −Aφ(xi))

)
− 1

2

(
log(det(Σx)) + (xi − µx)TΣ−1

x (xi − µx)
))

s.t.
1

N

N∑
i=1

1

2

(
tr(Σ−1

y Σ̃y) + (Aφ(xi)− Ãφ(xi))
TΣ−1

y (Aφ(xi)− Ãφ(xi)) + log(det(Σy))− log(det(Σ̃y))− dy

)
+

1

2

(
tr(Σ−1

x Σ̃x) + (µx − µ̃x)TΣ−1
x (µx − µ̃x) + log(det(Σx))− log(det(Σ̃x))− dx

)
≤ ε.

Note that we have already omitted constant terms in the Gaussian log likelihood, as they do not change the objective. In
order to solve this problem, we need to set the derivative of the Lagrangian

L(A,Σy,µx,Σx) =

N∑
i=1

wi log(py(yi|xi)px(xi)) + η

(
ε−

(
N∑
i=1

DKL(qy(·|xi)‖py(·|xi)) +DKL(qx‖px)

))
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with respect to the optimization variables to zero and solve for them to obtain expressions of the optimization variables
in terms of the multiplier η and the samples from D

∂L

∂A
=− 1

2

N∑
i=1

wi(−2)Σ−1
y (yi −Aφ(xi))φ(xi)

T − η 1

2

1

N

N∑
i=1

2Σ−1
y (A− Ã)φ(xi)φ(xi)

T = 0

⇔A =

[
N∑
i=1

(
wiyi +

η

N
Ãφ(xi)

)
φ(xi)

T

][
N∑
i=1

(
wi +

η

N

)
φ(xi)φ(xi)

T

]−1

,

∂L

∂Σy
=− 1

2

N∑
i=1

wi
(
Σ−1

y −Σ−1
y (yi −Aφ(xi))(yi −Aφ(xi))

TΣ−1
y

)
− η 1

2

(
−Σ−1

y Σ̃yΣ−1
y + Σ−1

y − 1

N

N∑
i=1

Σ−1
y (A− Ã)φ(xi)φ(xi)

T (A− Ã)TΣ−1
y

)
= 0

⇔Σy =

∑N
i=1 wi(yi −Aφ(xi))(yi −Aφ(xi))

T + η
(
Σ̃y + 1

N (A− Ã)
∑N
i=1 φ(xi)φ(xi)

T (A− Ã)T
)

∑N
i=1 wi + η

,

∂L

∂µx

=− 1

2

N∑
i=1

wi(−2)Σ−1
x (xi − µx)− η 1

2
2Σ−1

x (µx − µ̃x) = 0

⇔µx =

∑N
i=1 wixi + ηµ̃x∑N
i=1 wi + η

,

∂L

∂Σx
=− 1

2

N∑
i=1

wi
(
Σ−1

x −Σ−1
x (xi − µx))(xi − µx)TΣ−1

x

)
− η 1

2

(
−Σ−1

x Σ̃xΣ−1
x + Σ−1

x −Σ−1
x (µx − µ̃x)(µx − µ̃x)TΣ−1

x

)
= 0

⇔Σx =

∑N
i=1 wi(xi − µx)(xi − µx)T + η

(
Σ̃x + (µx − µ̃x)(µx − µ̃x)T

)
∑N
i=1 wi + η

.

With above equations, we can easily find the optimal variables A, Σy, µx and Σx by plugging in above equations into
the Lagrangian and then minimize the resulting dual with respect to η. This yields the optimal η∗ which can then be
used to compute the optimal variables. Note that we obtain the default maximum likelihood estimates for η = 0. This
seems natural, since η only becomes zero if the constraint on the allowed KL-Divergence is not active. In this case, the
maximum likelihood estimate does not need any regularization as it is close enough to the reference distribution.

A.7 Approximate Wasserstein Metric for SPRL

The wasserstein metric between the next and desired context distribution µ̃ and µ under a metric d : C ×C 7→ R on the
context space can be expressed in terms of the following optimization problem

DW(µ̃, µ) = min
γ

∫
C,C

γ(c1, c2)d(c1, c2)dc1dc2

s.t.

∫
C

γ(c1, c2)dc2 = µ̃(c1) ∀c1 ∈ C∫
C

γ(c1, c2)dc1 = µ(c2) ∀c2 ∈ C

γ(c1, c2) ≥ 0 ∀c1, c2 ∈ C.

While it is conceptually straightforward to incorporate this metric into optimization objective 4.11 by replacing the term
DKL(µ̃‖µ) with the term minγ

∫
C,C

γ(c1, c2)d(c1, c2)dc1dc2, adding the constraints of above optimization problem
to the constraints of 4.11 and then also optimizing over γ, this poses several technical difficulties. These problems are
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similar to the problems that we faced in the naive definition of the Self-Paced Contextual Reinforcement Learning (SPRL)
objective 4.7. However, we can just as before alleviate these problems by defining the optimization problem in the
following way

max
µ̃,γ,p

(∫
C,Θ

p(θ, c)r(θ, c)dcdθ − α
∫
C,C

γ(c1, c2)d(c1, c2)dc1dc2

)
s.t. DKL(p||q) ≤ ε

DKL(µ̃||µ̃i) ≤ ε∫
C,Θ

p(θ, c)dcdθ = 1∫
C

µ̃(c)dc = 1∫
C,Θ

p(θ, c)dθ = µ̃(c) ∀c ∈ C

DKL(γ||µ̃iµ) ≤ εγ∫
C,C

γ(c1, c2)dc1dc2 = 1∫
C

γ(c1, c2)dc2 = µ̃(c1)∀c1 ∈ C∫
C

γ(c1, c2)dc1 = µ(c2)∀c2 ∈ C.

The last two constraints are directly taken from the definition of the wasserstein metric. While those two constraints
implicitly enforce that the total probability mass of γ indeed sums to one, we nonetheless enforce this explicitly by the
third to last constraint. This yields, just as for the SPRL algorithm, easier to handle formulas for the dual. However, we
avoided the constraint that explicitly enforces γ(c1, c2) ≥ 0 by introducing a surrogate constraint DKL(γ‖µ̃µ) ≤ εγ .
We already know that the definition of the KL-Divergence implicitly prevents negative values of γ. Furthermore, it will
allow us to express γ in terms of the “reference” joint distribution µ̃(c1)µ(c2). This is desirable because we can sample
from both these distributions and hence can approximate expectations with regards to them. The KL-Bound εγ can be
set arbitrarily large to allow γ to significantly deviate from the reference distribution, while allowing to express γ in
terms of an exponential re-weighting of µ̃µ. This beneficial property of defining γ in terms of aforementioned reference
distribution was used in [70] to significantly speed up the computation of the wasserstein metric. In our case this allows
us to derive the following expressions for p, µ̃ and γ in terms of the multipliers of the optimization problem

p(θ, c) = q(θ, c) exp

(
r(θ, c)− V (c)

ηp

)
exp

(
−λp − ηp

ηp

)
,

γ(c1, c2) = µ̃i(c1)µ(c2) exp

(
−αd(c1, c2)− Γ̃(c1)− Γ(c2)

ηγ

)
exp

(
−λγ − ηγ

ηγ

)
,

µ̃(c) = µ̃i(c) exp

(
V (c) + Γ̃(c)

ηµ̃

)
exp

(
−λµ̃ − ηµ̃

ηµ̃

)
.

We skipped the derivation of these results here, as it is analogous to the ones in appendices A.3 and A.4. The multipliers
Γ̃(c1) and Γ(c2) correspond to second to last constraints, while ηγ and λγ correspond to the constraints enforcing the
KL-Bound and a total probability mass of one. The dual of this optimization problem is given by

G(ηp, ηµ̃, ηγ , V,Γ, Γ̃) =ηpε+ ηµ̃ε+ ηγεγ

+ ηp log

(
Eq

[
exp

(
r(θ, c)− V (c)

ηp

)])
+ ηγ log

(
Eµ̃iµ

[
exp

(
−αd(c1, c2)− Γ̃(c1)− Γ(c2)

ηγ

)])
+ ηµ̃ log

(
Eµ̃i

[
exp

(
V (c) + Γ̃(c)

ηµ̃

)])
+ Eµ [Γ(c)] .

We see that we again obtain expectations over distributions from which we can easily sample. However, we now also
need to approximate Γ(c1) and Γ̃(c2) by some parametric function approximators to be able to optimize the dual.
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