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Abstract
In this work, we address the problem of 6DoF
pose tracking of multiple objects using images
produced by a depth camera. This is achieved by
utilizing a hierarchical approach that consists of
a low-level detector that detects objects in depth
images and a high-level tracker that tracks mul-
tiple objects over time. The low-level detector
utilizes a YOLOv5 object detector and uses its
predictions and combines them with a particle fil-
ter and a Bayesian network to predict 6DoF poses
for all objects in the scene. The high-level tracker
processes these poses with a probability hypothe-
sis density(PHD) filter, which allows us to track
an arbitrary number of objects in the scene.

1. Introduction
Many robotic manipulation tasks require a recognition and
an estimation of the poses of multiple objects. Each pose
of an rigid object consists of a position and a orientation of
an object in space. Both, the position and orientation have
three degrees of freedom(DoF) and therefore this pose is
also called a 6DoF pose.

Tracking these poses over time allows to add a feedback
to the controllers that are used in applications like robotic
assembly. This should make these robots more robust to ex-
ternal disturbances than a robot with an open loop controller
would be. Further, a task like this requires the detection
of new objects in the scene and it requires the handling of
occluded objects because many objects are moved and when
assembling they occlude parts of each other.

Probabilistic approaches are able to track arbitrary objects
given a 3D model with high precision through filtering of
depth images. They also incorporate methods to deal with
occlusion, but they cannot initialize in real-time without
a strong prior and therefore they are not very efficient in
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detecting new objects. In a robotic assembly scenario the
number of objects varies, which gives rise to the need for a
tracking system that can handle multiple objects.

Therefore, we investigate an hierarchical filter with a prob-
ability hypothesis density (PHD) filter as the upper level.
PHD filters have a united probability potential for all objects
with the property that the integral of the potential equals the
number of estimated objects in the scene. The PHD filter
tracks on top of the lower level tracker, for which we use
a particle filter and a Bayesian network to find the 6DoF
poses of objects.

As these trackers cannot initialize arbitrarily in this high-
dimensional problem, we detect objects using a deep learn-
ing detector on the RGB images. The detector predicts
bounding boxes. On these bounding boxes we iteratively
estimate poses and introduce them to the PHD filter.

2. Related Work
There are different approaches to 6DoF object tracking in
the literature. Approaches like the PoseCNN (Xiang et al.,
2018) are able to track multiple objects with a high accuracy
from RGB-D images, incorporating convolutional neural
networks and end-to-end training. The downside of these
approaches is that they are limited to tracking objects they
were trained on and therefore this approach is not able to
track arbitrary objects given a 3D model.

It has been demonstrated that it is possible to use probilis-
tical graphical models for the tracking of arbitrary objects
based on depth images (Wuthrich et al., 2013; Issac et al.,
2016).

A dynamic Bayesian network, that models camera noise and
occlusions explicitly, can be utilized in a combination of
approximate inference, particle filters and Bayesian filters
to track a single moving object in a scene (Wuthrich et al.,
2013). Another approach is to directly apply a Gaussian
filter on the depth images (Issac et al., 2016). To do this, a
stochastic model for the object movement and an observa-
tion model, which models the probability of a pose given
an image, is defined. A ”heavy-tailed gaussian”, which is
a sum of a uniform distribution in the working range of
the camera and a gaussian distribution, is used to model
the camera noise and occlusions in a single step, but the
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covariance of this distribution is very large, which leads to
standard Gaussian filters failing. This is solved by using
robust gaussian filters (Wuthrich et al., 2016).

Both of the previously mentionend methods are limited to
track single objects in real-time because they are based on
single-object Bayes filters and their computationally com-
plexitiy is too high to handle many different objects.

The probability hypothesis density(PHD) was derived as a
generalization of the Bayes filter for tracking an arbitrary
number of objects with multiple sensors (Mahler, 2003),
but it is challenging to evaluate the probability hypothesis
density function, because it uses multiple integrals with no
known closed-form solution and it is necessary to find local
optima in this function to get a prediction of the location of
an object.

The Sequential Monte Carlo PHD(SMC-PHD) filter (Vo
et al., 2005) is a particle filter-based implementation of the
PHD filter which makes it possible to use the PHD filter
by just evaluating single points in the PHD function. This
approach was further developed into the Box-Particle PHD
filter (Schikora et al., 2012) where interval analysis is used
to evaluate volumes instead of point-masses for each particle.
The advantage of this approach is that it needs less particles
than the SMC-PHD filter, while achieving better results.

Another approach to make the PHD filter tractable is the
GM-PHD filter (Vo & Ma, 2006) where the PHD function
is modeled by a gaussian mixture model. This approach
was further developed in (Clark et al., 2006) to gain better
performances in cluttered scenes.

A problem of all of these approaches to make the PHD filter
tractable is that it was just demonstrated that they do work
for simplified tracking tasks in two dimensional space.

It was also demonstrated that it is possible to apply the PHD
filter on more complex and realistic tasks, like pedestrian
and vehicle tracking (Edman et al., 2013; Garcı́a et al., 2018)
and the usage of a GM-PHD filter in a hierarchical approach
was demonstrated (Song & Jeon, 2016), but to our knowl-
edge neither the GM-PHD filter nor the SMC-PHD filter
have been applied to multi-target 6DoF pose tracking.

Since it was shown that the SMC-PHD filter works very well
on simplified simulations, we decided on using these com-
bined with Bayesian networks for the tracking of multiple
objects in this work.

3. The PHD Filter
This section describes the basics of the SMC-PHD filter,
which is used by our tracking approach.

The intuition behind the PHD filter is that it embeds all of
the measurements it gets from multiple sensors into one

function that maps a location in the state-space onto a (un-
normalized) probability of a tracked object being present at
that location. Further, the sum over an area of the function
is equal to the expected number of objects in that region.
A function like this allows to track objects by tracking the
peaks of the function.

As discussed there are variants of the PHD filter which make
assumptions to make it tractable. In algorithm 1 we show
one iteration of the SMC-PHD filter (Vo et al., 2005) for
completeness. Note that wj,i describes a temporary variable
while wi is the weight of a particle, to keep the notation of
(Schikora et al., 2012).

The following equations are used in the algorithm for
timestep k, measurements zj and estimated target states
x̃i. Nk is the total number of particles at time step k. Like-
lihoods of particle states are normalized with this correction
term

λk|k−1,j(zj) =

Nk∑
i=1

pk(zj |x̃i)pDk (x̃i)wi, (1)

where pk is the likelihood of a target z and pDk is the proba-
bility of detection for a given type of target.

Weights per measurement j and particle i are computed

wj,i =
pk(zj |x̃i)
λk|k−1,j(zj)

· wi (2)

to obtain the marginal probability of a target j

Wj =

Nk∑
i=1

wj,i (3)

and estimate target states

yj =

Nk∑
i=1

x̃j,i · wj,i. (4)

Covariance matrices are computed as follows

Cj =

Nk∑
i=1

wj,i[(x̃i − ŷj)(x̃i − ŷj)]. (5)

The filter update equation is

wi = [(1− pDk (xj,i)) +
pk(z|xj,i)pDk (xi)
λk|k−1,j(z)

] · wi. (6)
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Algorithm 1 SMC-PHD Filter

Parameters: Number of total particles Nk, Number of
new particles Nk,new
Input: Set of new measurements Z, Set of particles P
Output: Set of target estimates Y , Set of particles P
for i = 1 to Nk do
x̃i := dynamicModel(x̃i)

end for
P := P ∪ initParticles(CJ , Z,Nk,new))
for j = 1 to |Z| do
λk|k−1,j := correctionTerms(zj , P, j) (Eq. (1))

end for
for j = 1 to |Z| do

for i = 1 to Nk do
wj,i := weights(zj , pi, λk|k−1,j) (Eq. (2))

end for
Wj := marginalize(wj,i) (Eq. (3))

end for
for j ∈ {j|Wj > τ} do
yj := estimateTargets(pi, wj,i) (Eq. (4))

end for
Cj := computeCovariance() (Eq. (5))
for i = 1 to Nk do
P := update(Z, xi, λk|k−1,j) (Eq. (6))

end for
η :=

∑Nk

i=1 wi
P := resample(P )
for i = 1 to Nk do
wi :=

η
Nk

end for

4. Methods
In this section, we will describe the individual parts of our
proposed tracking framework. Section 4.1 describes a modi-
fication of the approach proposed in (Wuthrich et al., 2013)
to process images of a depth camera and predict the poses
of each object in the image. These poses are then processed
by a PHD filter based approach, described in section 4.2, to
track objects across multiple images. This is also shown in
figure 1.

4.1. Low-Level Object Detector

The goal of the low-level object detector is to predict the
poses and object types of the objects in the image.
This is split into two stages, where the first stage runs an ob-
ject detection algorithm on the RGB-image, produced by the
depth camera, to find bounding boxes in the image contain-
ing an object and to find the type of the object inside of the
bounding box. In this work, we utilize a YOLOv5 (Jocher
et al., 2021) network, which is a neural network based and
fast method for object detections.

Figure 1. The architecture of our proposed method.

Figure 2. Visualization of the Bayesian network, which can be
used to calculate the likelihood of an observation given a pose.
Source: (Wuthrich et al., 2013)

The second stage uses the depth information of the previ-
ously identified bounding boxes to find the poses of the
objects utilizing a probabilistic graphical model.

The graphical model we use is identical to the observation
model used in (Wuthrich et al., 2013) and it is shown in
figure 2.

The random varible r corresponds to an objects pose, zi

denotes the depth measurement at the point i, oi is added to
the graph to model whether the point i is occluded or visible.
The variable bi is the distance to the pixel i and ai is the
distance to the tracked object with the pose r applied to it.

The independency assumptions made in the Bayesian net-
work allow the modeling of the noise that is present due to
errors in the 3D model of the object p(ai|r) and p(bi|ai, oi),
which defines the probability of an pixel showing the tracked
object rather than an object that occludes it independently.
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It also allows to integrate out the variable ai and bi by

p(zi|r, oi) =
∫
a,b

p(zi|bi)p(bi|ai, oi)p(ai|r)

which can be done prior to using the Bayesian network for
the object tracking.

We use this network in an iterative approach to find the pose
of the object in the depth image. Therefore, we crop out
the region in the image that contains an object according
to the YOLOv5 object detector. We then initialize multiple
poses such that the x and y positions are set to the center
of the bounding box and small disturbances sampled from
N (0, σx,y) are added to these positions. The z positions are
set to the average depth of the cropped out section of the
depth image and there we also add a disturbance sampled
from N (0, σz). Since the information we receive from
our object detector does not contain any information about
the rotation of the object, we have to start with uniformly
sampled rotations. By sampling u1, u2, u3 ∼ U(0, 1), we
can calculate

h =


√
1− u1 sin(2πu2)√
1− u1 cos(2πu2)√
u1 sin(2πu3)√
u1 cos(2πu3)


which is a uniformly sampled and normalized quater-
nion (Shoemake, 1992).

Next, we evaluate all of the generated poses using the
Bayesian network and do a priority resampling of the
weights based on the likelihood computed by the Bayesian
network for each proposed pose and then a small pertur-
bance is added to the new pose candidates and the process
is repeated again. This resembles a particle filter and a
pseudocode of our low-level object detector can be found in
algorithm 2.

4.2. High-Level Object Tracking

The purpose of the high-level object tracker is to track the
objects in the scene between the frames. Therefore it re-
ceives the poses created by the low-level detector. These
poses are then used as measurement in a SMC-PHD filter,
where these measurements are than embedded into the PHD
function. The peaks, which are tracked by the particles of
the SMC-PHD filter, then correspond to the locations and
orientations of the tracked objects.

Our SMC-PHD filter is the same algorithm as 1 except
following changes to adapt to 6D poses and our specific use
case.

The state space of the SMC-PHD filter is a 6D representation
of the pose.

Algorithm 2 Low-Level Object Detector

Input: Depth image I , Number of particles P , Number
of iterations N
boundingBoxes = YOLOv5.detect(I)
for each boundingBox ∈ boundingBoxes do

region = I[boundingBox]
for i = 1 to P do

Initialize particles[i]
particles[i].x = boundingBox.midX()+N (0, σx,y)

particles[i].y = boundingBox.midY()+N (0, σx,y)

particles[i].z = region.mean() +N (0, σz)
particles[i].orientation = uniformQuaternion()

end for
for iteration = 1 to N do

likelihoods = evaluate(particles, region)
particles = resample(particles, likelihoods)
particles = perturb(particles)

end for
poses[i] = particles[likelihoods.argmax()]

end for
return poses

We treat the position and orientation parts of the state space
differently in the estimateTargets function. Positions are
averaged exactly like in 1, while orientations, which are rep-
resented as quaternions, are averaged according to (Markley
et al., 2007).

The dynamic model and measurement model (pk(z|xi)) are
both modeled as a multivariate gaussian with six dimensions
for the six dimensions of the pose. We assume the dimen-
sions are independent. The variance for each dimension
is estimated beforehand from detection data given by the
lower-level filter. The orientation variances are estimated
based on the Euler angels representation. In both the dy-
namic and measurement model we assume small differences
in angles and can therefore linearize and safely use the Euler
angles representation.

5. Experiments
5.1. Dataset

We evaluate our proposed approach on the ”YCB-Video
Dataset” (Xiang et al., 2018) which consists of 113, 827
RGB and depth images in 91 video sequences captured by
an ”Asus Xtion Pro Live RGB-D” camera with a resolution
of 640× 480 pixels at 30 frames per second.

The dataset uses 21 different objects, like different types
of food cans, boxes and different tools. In each scene a
subset of these objects is lying on a table, where they may
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(a) RGB image

(b) Depth cloud

Figure 3. Visualization of one sample from the YCB-Video dataset.

also occlude each other, and the camera rotates around the
objects in each sequence. One example RGB images from
this dataset can be seen in 3.

Further, this dataset provides 6DoF poses for each object
in each image and it defines 2, 949 key frames from 12 of
these sequence that should be evaluated to make different
approaches using this dataset comparable.

The YCB benchmark (Çalli et al., 2015b; 2017; 2015a) pro-
vides 3D scans of these objects, which we down-sample
to a maximum of 860 vertices, because the original 3D
models consist of an average of 269, 808 vertices which
would significantly slow down our approach without yield-
ing any advantage for our algorithm because there are far
more vertices per object than there are pixels from the depth
camera.

The YCB-Video dataset does not provide a noise model of
the camera used, so we use the noise model from (Wuthrich
et al., 2013) which is a noise model for the same camera
type as used for the acquisition of the dataset.

5.2. Metrics

We use the ADD metric proposed by (Xiang et al., 2018) to
evaluate the accuracy of the pose of a single object in the
scene. It is defined by

ADD =
1

|M |
∑
x∈M
||(Rx+ T )− (R̃x+ T̃ )||

where M is the set of vertices in the mesh, R is the ground
truth rotation, T the ground truth translation, R̃ and T̃ are
the predicted rotation and translation, respectively. This
metric calculates the average distance between each point
of the mesh, transformed by the ground truth, and the mesh,
transformed by the prediction.

5.3. Low-Level Object Detector Evaluation

Figure 4. Visualization of one example output of the YOLOv5
object detector. The blue boxes are the ground-truth bounding
boxes of the objects and the red boxes are the predicted outputs.

The YOLOv5 detector we use for the experiments was
trained on a dataset that also uses YCB objects but it was
not trained on the exact dataset as we use in our experi-
ments. Therefore, there are classes that are never detected
because they were not present in the dataset that was used
for training the detector. For our further evaluations we just
consider the 12 different object types that are recognized by
the YOLOv5 detector.

Figure 4 shows the resulting predictions of the YOLOv5
detector on one image from the YCB-Video dataset and
it can be seen that the correct regions are detected, but
the predicted bounding boxes do not align perfectly with
the ground truth boxes. Figure 5 is a visualization of the
prediction of our low-level detector with 100 particles and
5 iterations per object.

Table 1 presents a detailed evaluation for the 12 object types
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Low Level Detector PHD Filter PoseCNN1

Object ADD ADD ADD
002 master chef can 0.66 0.62 0.50

003 cracker box 0.68 0.66 0.52
004 sugar box 0.70 0.69 0.69

005 tomato soup can 0.65 0.65 0.66
006 mustard bottle 0.52 0.52 0.79
007 tuna fish can 0.60 0.58 0.70
008 pudding box 0.67 0.66 0.63

010 potted meat can 0.66 0.64 0.60
011 banana 0.69 0.67 0.72

025 mug 0.54 0.57 0.57
051 large clamp 0.63 0.62 0.25

052 extra large clamp 0.54 0.54 0.15
Average 0.66 0.64 0.53

Table 1. Comparison of the ADD-score of our low-level detector, PHD-filtered detections and the PoseCNN (Xiang et al., 2018) on the
YCB-Video dataset.

Figure 5. Visualization of the depth image, as a point cloud, and
the resulting pose predictions of our low-level object detector.

in the YCB-Video dataset which are detected by our low-
level detector. It can be seen that the overall performance
of our probabilistic low-level detector is worse than the per-
formance of the PoseCNN which is a pure deep-learning
approach to pose estimation. The most noticable differ-
ence is in the performance on the ”051 large clamp” and
”052 extra large clamp” classes. However, the performance
of our approach on these two objects is very similar to the
performance on all the other objects and the huge gap in per-
formance between our approach and the PoseCNN comes
from the fact that the PoseCNN performs very well on these
types of objects.

It can also be seen that the performance of our approach is
very similar for all the different object types present in the
dataset. This shows that the object type does not matter for
the performance of our low-level detector.

1The results for the PoseCNN experiments are the results re-
ported in the PoseCNN publication (Xiang et al., 2018) trained on

5.4. High-Level Object Tracking Evaluation

Table 1 includes a detailed evaluation of our PHD filter. The
input to the PHD filter are the detections of the low-level
detector during evaluation. We see an overall improvement
of 0.02 in terms of ADD compared to the unfiltered poses.
This shows that the yield of the usage of the SMC-PHD
filter is not too big, but it also shows that the PHD filter
works for tracking the 6DoF poses of the detected objects.

6. Conclusion
In this work, we present an algorithm which is able to track
multiple objects in the RGB-D images produced by depth
cameras using probabilistic approaches and it demonstrates
that the SMC-PHD filter can be used for 6DoF multi object
tracking tasks.

A limiting factor in our work is the usage of YOLOv5 in
the low-level detector because this approach does just de-
tect objects it was trained on, while the other parts of our
pipeline do just require a 3D model of the object without
the necessity for any retraining. In a future work one might
investigate if it is possible to use real-time segmentations of
depth images like presented in (Abramov et al., 2012) and
the recognition of the object type by using feature points of
a 3D model and matching these with the image (Rothganger
et al., 2006).

Another possible future work is to compare different vari-
ants of the PHD filter with each other to find the approach
which works best for 6DoF pose tracking. The dynamic and
measurement models used by the PHD filter could also be
differentiated between the different target types.

the YCB-Video dataset and tested on the same validation set as we
use for our experiment.
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