
Goal-Directed Reward Generation

Alymbek Sadybakasov
Autonomous Systems

TU Darmstadt
alymbek.sadybakasov@stud.tu-darmstadt.de

Boris Belousov
IAS

TU Darmstadt
boris@robot-learning.de

Abstract

Optimal control framework provides a way to generate a controller by specifying an
immediate reward function and subsequently minimizing the sum of rewards along
a trajectory. To every controller, there is an associated value function—derived
from dynamics and the reward function—that can be viewed as a measure of
goodness of the controller. Thus, what one really cares about is to synthesize a
controller that produces desired trajectories, and different controllers are ranked
using their value functions. In this paper, we consider the feasibility of constructing
the value function directly, for example as a Lyapunov function of a given nonlinear
system, and subsequently generating a controller from it. Using the method of
ideal Lyapunov functions combined with the method of formal linearization, we
are able to generate a nonlinear controller for the mountain car problem without
torque limits by formally applying linear-quadratic control techniques. Experiments
confirm superior performance of the resulting nonlinear controller, in particular of
the regularized and the damped nonlinear controller. The positive results suggest
that the current literature approach to controller synthesis based on the Lyapunov
theory can be potentially rather useful.

1 Introduction

Most robotic as well as biological systems are nonlinear and have nonlinear dynamics, and their
analysis is usually done using Lyapunov functions. The Lyapunov functions (Lyapunov [1992]) are
widely used in the stability analysis of nonlinear systems. A Lyapunov function can also be seen as an
optimal value function that correspond to a certain reward function. This value function is then used
to construct the corresponding control law. The relationship of such controllers to value functions
was shown by Todorov [2018]. This observation motivates the following: instead of generating a
controller from a reward function, we explore the possibility of generating a nonlinear controller from
a Lyapunov function using the desired goal state. Possible success results produced by the resulting
nonlinear controller will give a hint to an existing connection between value and Lyapunov functions.
Since the Lyapunov analysis of a nonlinear system is not a trivial task, a corresponding linearized
system offers itself to be used. Itschner [1977] proposed a simplified procedure to construct an "ideal
Lyapunov function" (IL-function). Subsequently, Sieber [1989] used these functions to model a
nonlinear controller by aligning the produced dynamics with the dynamics produced by a reference
linear controller using linearized system dynamics. The nonlinearity of the resulting controller can
potentially encode a very expressive nonlinear behaviour of control inputs while still having similar
trajectories of the states as those produced by the reference linear controller. This consideration
motivates us to consider designing a nonlinear controller for a dynamic system with perfectly known
dynamics and to learn later a controller assuming no knowledge of the system dynamics.
In this paper, we first provide the related work on nonlinear controllers and then show how a nonlinear
system can be transformed into a linear system and then controlled using a Linear Quadratic Regulator
(LQR). Afterwards, we provide the necessary knowledge on the Lyapunov analysis, i.e. how to
construct the Lyapunov functions for linear systems and their usefulness for analyzing the stability of



the system. We then describe how to construct a nonlinear controller by aligning its dynamics with
the dynamics of a reference linear controller and discuss our evaluations and further work.

2 Related Work

Most work on nonlinear control is done by analyzing the stability of the systems and deriving the
appropriate nonlinear controllers which are based on the linearization of the state feedback. However,
such methods become unfeasible as long as the number of degrees of freedom (DoF) of the system
increases which gives an intuition to use rather numerical techniques. For example, Sieber [1994]
used an observer to construct the nonlinear controller from a linear observer. The method is especially
useful when the state variables are not completely observable. Bemporad et al. [2002] derived an
LQR for constrained systems, e.g. with limited torques. Similarly, Johansen et al. [2000] derived
a suboptimal LQR constrained systems. Both controllers can be viewed as nonlinear due to their
piece-wise linearization.
Sieber [1989] used a full-state feedback (FSF) controller (Ackermann [1977]) to construct the
reference linear controller by using placement of the predefined poles. Instead of using the FSF-
controller, we evaluate the usefulness of LQR as a reference linear controller. In particular, LQR
allows us to define different cost functions which will affect the resulting trajectory of both reference
linear and nonlinear controller. In addition, we evaluate the usage of a regularized pseudo-inverse to
compute the gain matrix of the controller which helps us to avoid numerical instabilities. Moreover,
we improve the regular nonlinear controller by damping the control gain matrix.

3 Constructing a Reference Linear Controller

As mentioned before, we first need to linearize the nonlinear system in order to construct a linear
controller. The following subsection illustrates the process of linearization of a nonlinear system.
Subsequently, a concept of LQR is introduced which will be used later as a reference linear controller.

3.1 Linearization of Nonlinear Systems

Consider the following system
ẋ =f(x) + Bu,

where f(x) is a nonlinear function that depends on x and B is a constant matrix. This system is
underactuated due to the possibility of changing its behavior by applying some torque u. An example
of such system is the electrical generator that produces direct current using a commutator, also known
as dynamo (Keller [1986]).
In order to control such system with a linear controller, one linearizes the nonlinear parts of the
system around the equilibrium point.
We rewrite the nonlinear function as

f(x) = A(x)x,

and, thus, have
ẋ = A(x)x + Bu. (1)

Although the resulting equation is formally linear, the matrix A(x) still depends on x. Thus, we
rewrite the controller as

u = −Klinx

and substitute it into (1), obtaining

ẋ = [A(0)−BKlin]x = [Alin −BKlin]x. (2)

The last equation is obtained by linearizing around the equilibrium point using Taylor expansion
and neglecting higher order terms. The resulting system is fully linear and can be controlled using
standard linear controllers.
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3.2 LQR

One way to control linearized dynamical systems is to use the cost function described by a quadratic
function. Several variations on defining the quadratic cost exist. We restrict us to the following
definition of the quadratic cost:

J =

∫ ∞
0

(xTQx + uTRu)dt,

where Q = QT ≥ 0 denotes the state cost and R = RT ≥ 0 denotes the control cost. The design of
the matrices Q and R is an essential part of constructing LQR. The higher is Q, the more dynamical
the system becomes, while the higher is R, the more smooth the control signal has to be while
reaching the target point.
To obtain the gain matrix Klin from (2), we minimize J by solving numerically the following
algebraic Riccati equation over P:

AT
linP + PAlin −PBR−1BTP + Q = 0

Klin = R−1BTP.

Once the matrix Klin is found, the control input signal is computed online using u = −Klinx.

4 Lyapunov Theory

Lyapunov functions are widely used in the analysis of dynamical systems. Having a suitable Lyapunov
function allows us to give statements about the global asymptotic stability of the system. In the
following subsections, we introduce the Lyapunov functions and one possible way to construct them.

4.1 Lyapunov Functions

Consider the following dynamical system

ẋ = f(x) = Ãx,

which has an equilibrium point at x = 0. A Lyapunov function is then any positive definite function
V(x) around the equilibrium point of the system whose negative derivatives are positive definite as
well. Given these properties, one can make statements on the asymptotic stability of the equilibrium
points. This method is also called a Lyapunov’s direct method. The term direct method is used since
the stability problem is investigated directly instead of solving the state differential equations.

4.2 Constructing Lyapunov Functions for Linear Systems

We reconsider the system ẋ = (Alin −BKlin)x, where Klin is the gain matrix computed by LQR.
In order to apply Lyapunov’s direct method, we consider a quadratic Lyapunov function

V = xTPx, (3)

with its time derivative
V̇ = xTPẋ + ẋTPx.

Setting the derivative of the system into the above equation yields

V̇ = xTPAlinx + xTAT
linPx,

and, thus,

V̇ = xT(−Zlin)x,

−Zlin = PAlin + AT
linP,

(4)

where Zlin is a symmetric and positive definite matrix. The second equation from (4) is a so called
Lyapunov equation which is usually used to prove the asymptotic stability around the equilibrium
point xE.
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Theorem 4.1 Let Zlin be a symmetric and positive definite matrix, then there exists a clearly
determined symmetric and positive solution for P from (4), if the eigenvalues of the matrix A lie at the
left side of the j-Axis of the complex plane.

A proof of 4.1 was derived by LaSalle and Lefschetz [1967]. Given the conditions of 4.1 and that
Zlin can be any symmetric and positive definite matrix, a number of numerical techniques were
established to compute the matrix P. However, we are interested in finding rather the matrix Zlin

which we will use to construct the nonlinear controller. According to Itschner [1977], we find Zlin

using a predefined matrix P. We define the matrix P from (3) as a constant, symmetric and positive
definite matrix (e.g. a diagonal matrix with positive elements). Zlin can be then found as

Zlin = −(PAlin + AT
linP),

having in mind that V̇ = xT(−Zlin)x stays negative definite. The crucial part of this method is that
P depends on the system matrix Alin in the following way:

P =

n∑
i=1

P̃iiw̄iwi, (5)

where P̃ is any positive diagonal matrix, wi are the left eigenvectors of Alin and w̄i are their
corresponding complex conjugate vectors. P is, thus, positive definite, has real values and can be
now used to construct the nonlinear controller.

5 Nonlinear Controller

We consider now the nonlinear system:

ẋ = [A(x)−BK(x)]x.

The system has a formally linear form, in which the system matrix A(x) depends directly on x,
whereas the regularization matrix K(x) depends on x. The equilibrium point of the system is given
by xE = 0.
Suppose now that we are interested in finding such a trajectory that "transports" the system’s state
variable x(τ) from one equilibrium point to another. In Section 3.2, we have already seen how to
achieve this goal by linearizing the system around the target point. We will use the same linearized
system to construct a nonlinear controller by aligning its dynamics with the dynamics of the reference
linear controller and using the Lyapunov stability theory.
We first construct a quadratic Lyapunov function V = xTPx as given in (3) for the linearized system.
Its derivative is given by

V̇lin = −xTZlinx = xT(−Zlin)x,

where
Zlin = [KT

linBT −AT
lin]P + P[BKlin −Alin]. (6)

It should be noted that Zlin was written explicitly as −Zlin. Thus, by definition of Lyapunov
functions, the following rule has to be considered: if V̇ is negative definite, Zlin should stay positive
definite.
We construct now the Lyapunov function for the nonlinear systems by choosing the same quadratic
function as given by (3). For a nonlinear system, the time derivative of its Lyapunov function is now
different:

V̇(x) = −xTZ(x)x = xT[−Z(x)]x,

where the matrix Z(x) depends now on x:

Z(x) = [K(x)TBT −A(x)T]P + P[BK(x)−A(x)]. (7)

If we assume that the linear controller of the linear function is optimal, we can also say that a
nonlinear controller that aligns its dynamics with the resulting dynamics of the linear controller is
optimal as well.
It remains to show how the actual aligning works exactly. Due to optimality of Klin, Vlin strictly
decreases, V̇lin becomes strictly negative and the system, thus, converges to the equilibrium point
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rapidly. To obtain a nonlinear controller with similar dynamics, we intuitively align V̇(x) with V̇lin.
For this purpose, the difference

xTZlinx− xTZ(x)x = xT[Zlin − Z(x)]x

is minimized, leading to the minimization of the following norm:
N ≡ ||Zlin − Z(x)||. (8)

The minimization is performed by choosing a suitable gain matrix K(x) so that N = 0, inducing
Zlin = Z(x). After mathematical reformulations, we obtain

M · vec(K(x)) = vec(Zlin) + J · vec(A(x)), (9)
where vec(M) denotes a vectorization operator over the matrix M and

J = (I⊗P) + (P⊗ I)Un×n,

M = I⊗ (PB) + [(PB)⊗ I]Up×n,

where Ua×b denotes a permutation matrix.
Finally, solving (9) for the vectorized gain matrix vec(K(x)) yields

vec(K(x)) = M+[vec(Zlin) + J · vec(A(x)], (10)
where M+ stands for Moore–Penrose inverse. The resulting controller u = K(x)x aligns the
dynamics of the nonlinear controller with the dynamics of a reference linear controller.

6 Evaluations

We evaluate the described nonlinear controller on a classical nonlinear system mountain car ((Sutton
and Barto [1998])) with several modifications. We provide a derivation of the gain matrices for both
LQR and nonlinear controller as well as simulations of the resulting controllers. In addition, we
improve the performance of the regular nonlinear controller by using a regularized pseudo-inverse
and by damping the gain matrix K(x).

6.1 Environment

The problem of mountain car is described as follows:
ẋ1 = x2,

ẋ2 = −0.0025 cos(3x1) + 0.001u,

where x1 and x2 denote the position and the velocity respectively. The constraints of the system are
given by u ∈ [−1, 1] and x2 ∈ [−0.07, 0.07]. To analyze this problem, we consider it as a first-order
dynamic system and rewrite in the matrix form:

A(x) =

[
0 1

−0.0025·cos(3·x1)
x1

0

]
,

B =

[
0

0.001

]
,

x =

[
x1
x2

]
,

(11)

bringing it to the formally linear form.
We relax the constraints of the system by not clipping the state variables, i.e. u ∈ [−∞,+∞],
x1 ∈ [−∞,+∞] and x2 ∈ [−∞,+∞]. This assumption lets us to use LQR and the nonlinear
controller without any restrictions.
To drive the car to a desired position, we set

∆x = x− xE =⇒ x = ∆x + xE,

δu = u− uE =⇒ u = δu+ uE .

We substitute the above terms into (11) and obtain a system with the following dynamics:

A(∆x) =

[
0 1

− 0.0025·cos(3·δx1+3·x1E)
x1

0

]
,

B =

[
0

0.001

]
.
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(a) A slight difference can be observed between tra-
jectories of the car produced by LQR and the nonlin-
ear controller. The nonlinear controller drives the car
with a small outrunning.

(b) A comparison of resulting velocities produced by
LQR and the nonlinear controller.

(c) A comparison of resulting torques produced by
LQR and the nonlinear controller. A slightly higher
initial gain of the nonlinear controller leads the car
slightly faster to the goal position.

(d) The trend of the first element of the gain matrices.
We can observe that the gain matrix of the regular
nonlinear controller tends to the gain matrix of the
nonlinear controller.

Figure 1: A comparison between the regular nonlinear controller and LQR. The initial conditions are
given for both controllers as x0 = [−0.4, 0]T and xE = [π6 , 0]

T .

6.2 Nonlinear Controller

To construct a nonlinear controller, we need a reference linear controller, in particular LQR. We
choose Q = I ·35600 and R = 0.01 to drive the car to the goal position very rapidly. The gain matrix
has been computed by solving Riccati equations, yielding Klin = [1881.80285139, 2463.54834913].
To compute an example trajectory, we set xE = [π6 , 0]

T and x0 = [−0.4, 0]T . The resulting trajectory
is illustrated in Figure 1. Figure 1a shows that the trend of positions is smooth and reaches the desired
equilibrium point within a few seconds. Having such dynamics was a requirement for constructing a
nonlinear controller, as mentioned in Section 5.
To construct a nonlinear controller, we first construct a Lyapunov function. For this purpose, we set
P̃ as an identity matrix of size 2 and use (5) to gather the matrix P. Zlin,J and M are computed
in the next place and the controller’s gain matrix is computed according to (10). Subsequently, the
controller is computed using u = −K(∆x)∆x.
The controller’s gain matrix K(∆x) can be actually viewed as a linear combination of the elements
of the matrix A(∆x) as well, i.e.:

K(∆x) =

[
a12A(∆x)21 + a13 + α1

α22A(∆x)21 + α23 + α2

]T
,

a = M+J,

α = M+Zlin.

A nonlinear controller is, thus, given by

u = −K(∆x)∆x = −a12A(∆x)21δx1 − (a13 + α1)δx1 − α22A(∆x)21δx2 − (α23 + α2)δx2.

Finally, after obtaining the closed form solution for u, we set again xE = [π6 , 0]
T and x0 =

[−0.4, 0]T . Figure 1 shows a comparison between trajectories produced by the LQR and the regular
nonlinear controller. As can be seen, the nonlinear controller tends to copy the state variables of
the reference linear controller which was also expected. Although the nonlinear controller performs
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(a) The trajectory of the position produced by the reg-
ularized nonlinear controller still tends to the desired
equilibrium point with a slight phase change.

(b) The trajectory of the velocity produced by the reg-
ularized nonlinear controller, however, has a smaller
overshooting than the trajectory of the velocity pro-
duced by LQR.

(c) Just like the velocity trajectory, the torque pro-
duced by the regularized nonlinear controller tends to
zero in a slightly more damped manner with a slight
phase change.

(d) The trend of the first element of the gain matri-
ces. The one from regularized nonlinear controller
tends to the one from LQR towards the end of the
simulation.

Figure 2: A comparison between the regularized nonlinear controller and LQR. The initial conditions
are given for both controllers as x0 = [−0.4, 0]T and xE = [π6 , 0]

T .

slightly better, i.e. reaches the steady state a few moments earlier, the difference is rather small to be
called significant.
Analyzing it further, we found that the matrix Zlin is not positive because its first element is equal
to zero. This observation can be explained if we look at the matrices Alin and B which are used to
compute Zlin. It is obvious that if we apply (6) to compute Zlin, the result of matrix multiplications
will always produce zero for the first element of the resulting matrix. However, having a non-positive
definite matrix does not seem to affect the dynamics of the nonlinear controller significantly. Still, it
is possible to have a positive definite Zlin if we rewrite ẋ1 using an integral of ẋ2. This improvement
is left for a future work.

6.2.1 Regularized Nonlinear Controller

Figure 1c shows that the torque becomes too high in the beginning of the simulation. The reason
of it is that the computation of the pseudo-inverse in (10) results in numerical instabilities. To
solve this problem, we use a regularized pseudo-inverse M = (MTM + λI)MT, where λ is the
regularization parameter. The main advantage of this approach is that by tuning λ, we can achieve
different behaviors of the system: decreasing it results in lower torques but also in slower stabilization
of the system and vice versa. Figure 2 shows an example trajectory with λ = 10−7. As can be seen,
the velocity of the system produced by the regularized nonlinear controller (Figure 2b) has smoother
oscillations compared to LQR while still reaching the desired position at the same time (Figure 2a).

6.2.2 Damped Nonlinear Controller

Since we align the dynamics of the nonlinear controller with the dynamics of the reference controller,
we suggest to use the gain matrix Klin to damp the appropriate gain matrix K(∆x). Since the
second element in both gain matrices are equal, it makes sense to damp only the first element:

K(∆x)1− = Klin,1.
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(a) The position produced by the damped nonlinear
controller decays much faster. Such fast stabiliza-
tion is possible due to smoother torques without big
oscillations.

(b) The velocity produced by the damped nonlinear
controller is also very smooth and tends to the equi-
librium point in the same time as those produced by
LQR.

(c) Smooth torques produced by the damped nonlin-
ear controller are the main reason of a nice behavior
of the system. They are damped much calmer than
those produced by LQR.

(d) On one side, the first element of the gain matrix
K(x) does not tend to the gain matrix of LQR. On
the other side, it produces smoother torques as well
as position and velocity trajectories.

Figure 3: A comparison between the damped nonlinear controller and LQR. The initial conditions
are given for both controllers as x0 = [−0.4, 0]T and xE = [π6 , 0]

T .

Surprisingly, this method produces the best behavior of the system as can be seen in Figure 3. Both
position and velocity get damped with much less oscillations while the torque is initialized with a
much lower value and has almost no oscillation compared to the torque produced by LQR.

7 Conclusion

We introduced LQR for nonlinear systems and showed how to construct a nonlinear controller whose
dynamics is aligned with the dynamics of LQR. A mountain car problem with no torque limits was
extensively studied, including linearization, applying LQR and deriving the appropriate nonlinear
controller. It turned out that the regular nonlinear controller did not provide a significant improvement
compared to LQR. The main problem is in the computation of the inverse of M. Since the equation
in (9) is overdetermined, the computation rely on the Moore–Penrose inverse, possibly causing
numerical instabilities. Using a regularized pseudo-inverse yields a better performance in one of the
states leaving the other state and the torque the same as in regular nonlinear controller. The second
improvement was made because the initial torque was always higher than the torque of LQR. We
tried to alleviate this problem by additionally damping the gain matrix K(∆x) using Klin. Such
method showed a significant improvement mainly due to much smoother torques.
The success of both improvements as well as a limited success of the regular nonlinear controller
allow us to conclude our work by confirming superior performance of the resulting nonlinear
controller. Thus, we suggest that the current literature approach to synthesis of controllers based on
the Lyapunov theory can be potentially rather useful for generating appropriate reward functions and
plan to investigate further this approach.
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Appendix

A Mathematical Operations

The following subsections provide necessary mathematical operations needed for the norm derivation.

A.1 Kronecker Product

The Kronecker product is given by

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
am1B am2B . . . amnB

 . (12)

Just like matrix multiplication, the Kronecker product is associative and distributive and not commu-
tative.

A.2 Vectorization operator

According to Neudecker [1969], the vectorization operator vec(M) transforms the matrix M into a
vector in the following way:

vec(M) = vec([m1 . . .mn]) =

m1

.

.
mn

 ,
where m1, . . . ,mn denote the matrix columns. Subsequently, it follows that vec is linear and it holds

vec(ABC) = CT ⊗Avec(B). (13)

A.3 Permutation Matrix

A permutation matrix is given by

Un×m =


E11 E21 . . . Em1

E12 E22 . . . Em2

...
E1n E2n . . . Enm

 ,
where Eik is a (m,n)-matrix with 1 at the position (ik) and zeros at all other positions. For the
mountain car problem, the permutation matrices are given by

Un×n =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,
Up×n =

[
1 0
0 1

]
.

It holds that
Um×n ·Un×m = Imn,

where Imn is an identity matrix with the size mn.

B Norm minimization

To minimize (8) according to Sieber [1989], we consider the following equation

Zlin − Z(x) = Zlin + PA(x) + A(x)TP−PBR−RTBTP.
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After applying (A.2), we get

vec(Zlin − Z(x)) = vec(Zlin) + vec(PA(x)I) + vec(IA(x)TP)−
− vec(PBRI)− vec(IRTBTP).

The identity matrix was introduced in order to split the parts of summands. For that, we apply (13)
and obtain

vec(Zlin − Z(x)) = vec(Zlin)I⊗Pvec(A(x) + P⊗ IUn×nvec(A(x))−
−(I⊗ (PB))vec(R)− ((PB⊗ I)Up×nvec(R))

By grouping the summands of the last equation, we obtain the matrices M and J as defined in (9).

C Linearization of the Mountain Car Problem

Since A(∆x) is obviously nonlinear because of the function

f(x) =
−0.0025 · cos(3 · x)

x

we first need to linearize it at ∆x = 0 in order to construct a linear controller.
We use the first order Taylor expansion to approximate the nonlinear term:

f ′(x) ≈ f(x1E) + f ′(x1E)(x− x1E)

=
−0.0025 · cos(0)

0
+ f ′(0)x.

This function is obviously indeterminate because of the term −0.0025·cos(0)
0 . By applying l’Hopital’s

rule, we obtain for f(xE)

f(0) = lim
x→0

(−0.0025 · sin(3x))′

x′

= lim
x→0

(−3 · 0.0025 · cos(3x))
1

= −3 · 0.0025 · cos(3 · 0)
= −0.075.

For function’s derivative, we apply l’Hopital’s rule again and obtain f ′(0) = 0. Substituting the
resulting functions in the first order Taylor expansion, we obtain a numerical solution to the system
matrix:

Alin =

[
0 1

−0.075 0

]
.

This form of the system matrix allows us to apply LQR in order to find Klin as described in Section
3.2.
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