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Abstract

The fundamental problem of reinforcement learning is to control a dynamical system whose properties are not fully
known in advance. Many articles nowadays are addressing the issue of optimal exploration in this setting by investigat-
ing the ideas such as curiosity, intrinsic motivation, empowerment, and others. Interestingly, closely related questions
of optimal input design with the goal of producing the most informative system excitation have been studied in adja-
cent fields grounded in statistical decision theory. In most general terms, the problem faced by a curious reinforcement
learning agent can be stated as a sequential Bayesian optimal experimental design problem. It is well known that finding
an optimal feedback policy for this type of setting is extremely hard and analytically intractable even for linear systems
due to the non-linearity of the Bayesian filtering step. Therefore, approximations are needed. We consider one type
of approximation based on replacing the feedback policy by repeated trajectory optimization in the belief space. By
reasoning about the future uncertainty over the internal world model, the agent can decide what actions to take at ev-
ery moment given its current belief and expected outcomes of future actions. Such approach became computationally
feasible relatively recently, thanks to advances in automatic differentiation. Being straightforward to implement, it can
serve as a strong baseline for exploration algorithms in continuous robotic control tasks. Preliminary evaluations on a
physical pendulum with unknown system parameters indicate that the proposed approach can infer the correct param-
eter values quickly and reliably, outperforming random excitation and naive sinusoidal excitation signals, and matching
the performance of the best manually designed system identification controller based on the knowledge of the system
dynamics.
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1 Introduction and related work

Adaptation and learning arise as a by-product of optimization in the belief space within the framework of Bayesian
decision theory [Stratonovich, 1968a, Stratonovich, 1968b]. In modern terminology, learning is planning in a partially
observable Markov decision process [Asmuth and Littman, 2011]. We pursue this line of reasoning and frame the prob-
lem of pure exploration (i.e., without any extrinsic reward) as a problem of online belief space trajectory optimization.

Optimal system identification and experimental design [Mehra, 1974, Bombois et al., 2011, Ryan et al., 2016] pursue a
similar objective. They seek an optimal exploration strategy in stochastic sequential decision making problems. Contrary
to the generic solution based on approximate dynamic programming [Feldbaum, 1960, Huan and Marzouk, 2016], we do
not aim to find an optimal parametric policy but instead let a belief space planner choose the most explorative actions.

Approaches to (approximately) optimal system identification based on model predictive control (MPC) have been stud-
ied before [Larsson et al., 2013]. Algorithmically, our method is most closely related to [Kahn et al., 2015], who also used
direct transcription in the belief space for trajectory optimization. However, what is different in our case is the objective
function and its particular decomposition into a sum of terms that facilitates computation. More concretely, since robot
dynamics is linear in the physics parameters [Atkeson, 1989], we can perform Bayesian inference in closed form.

The paper is structured as follows: Section 2 introduces the approach, Section 3 provides evaluations, and Section 4
highlights future directions.

2 Belief space optimization for system identification

Consider a dynamical system of the following form

x′ = Ax+B(x, u)θ (1)

where x ∈ Rn is the current state, u ∈ Rm is the current action, x′ ∈ Rn is the next state, matrix A ∈ Rn×n is constant
and matrix B(x, u) ∈ Rn×m is dependent on the state and action. Many classical continuous control environments can
be written in this way.

2.1 Example: pendulum dynamics

As a concrete instantiation of (1), consider the dynamics of a pendulum

q̈ = φ

((
q
q̇

)
, u

)T

θ = (− sin (q + π) −q̇ u)

 3g
2l
3b
ml2
3

ml2

 (2)

with mass m, length l, and gravity g. The state of the pendulum x = (q, q̇) is comprised of the angle q and the angular
velocity q̇. Crucially, the kinematic parameters φ(x, u) and the dynamic parameters θ separate. The system can be
discretized using the implicit Euler integration scheme

x′ =

(
1 h
0 1

)
x+

(
h2

h

)
φ(x, u)T θ. (3)

This representation directly corresponds to the generic form (1), with matrices A and B(x, u) straightforward to identify.

2.2 Propagation of uncertainty

If parameter values θ are uncertain, they should be characterized by a probability distribution p(θ). The full state of the
system should then include it and we have to describe its dynamics. Assuming the initial belief p(θ) = N(θ|µ,Σ) and the
system dynamics p(x′|x, u; θ) = N(x′|Ax + B(x, u)θ,Q) are Gaussian, the posterior after observing a transition (x, u, x′)
is also Gaussian with parameters given by the standard Kalman filter update equations [Bishop, 2006]

K(x, u,Σ) = ΣB(x, u)T
(
Q+B(x, u)ΣB(x, u)T

)−1
, (4)

L(x, u,Σ) = I −K(x, u,Σ)B(x, u), (5)
µ′ = µ+K(x, u,Σ) (x′ −Ax−B(x, u)µ) , (6)
Σ′ = L(x, u,Σ)Σ. (7)

Kalman gain K(x, u,Σ) and matrix L(x, u,Σ) are introduced for convenience to simplify Equations (6) and (7) that de-
scribe the dynamics of the sufficient statistics of the belief state.
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To plan using the model (6)-(7), future observations x′ need to be integrated out. This results in the maximum likelihood
transition dynamics x′ = Ax + Bµ and the constant mean update µ′ = µ. Intuitively, such constancy is a manifestation
of the fact that the mean of the parameter estimate µ cannot be improved before observing any data. Nevertheless, its
variance Σ can be controlled.

Equation (7) gives the update rule for the covariance matrix and serves as the key to our formulation of the objective
function. Namely, we exploit the fact that the covariance matrix at the next time step is given by a product of matrices.
For example, after two time steps, Σ′′ = L(x′, u′,Σ′)L(x, u,Σ)Σ.

2.3 Entropy minimization objective

What should the objective function be? A conceptually straightforward approach is to minimize the entropy of the
posterior distribution over the parameters at the end of the planning horizon. This objective essentially asks for the most
informative actions and can be identified with the information gain criterion [Lindley et al., 1956]. It also fits nicely with
the multiplicative form of the covariance matrix, turning the product into a sum. For example, for a two-stage problem,

J =
1

2
log det (2πeΣ′′) ∝ log det Σ′′ = log detL(x′, u′,Σ′) + log detL(x, u,Σ) + log det Σ. (8)

Similarly, for an N -step trajectory,

J ∝
N−1∑
k=0

log detL(xk, uk,Σk). (9)

Thus, the summand L(xk, uk,Σk) can be viewed as a running cost. Adding a regularization term uTRu for smoothness,
we arrive at the following optimization problem

minimize
u0:N−1

N−1∑
k=0

log detL(xk, uk,Σk) + uTkRuk (10)

subject to xk+1 = Axk +B(xk, uk)µ, k = 0, 1, . . . , N − 1, (11)
Σk+1 = L(xk, uk,Σk)Σk, k = 0, 1, . . . , N − 1, (12)

where L(x, u,Σ) = I − ΣB(x, u)T
(
Q+B(x, u)ΣB(x, u)T

)−1
B(x, u). This problem can be directly plugged into a trajec-

tory optimizer, e.g., CasADi [Andersson et al., 2012]; state and control constraints can be added if needed.

3 Evaluation

Having solved the problem above, we obtain a sequence of actions u0:N−1 that should reveal the most about the system.
Note that this sequence of actions depends on our prior belief p(θ|µ,Σ) because µ enters the state dynamics and Σ figures
in the covariance cost. Thus, the optimal sequence of actions is a function of the prior together with the initial state x0,
i.e., u0:N−1 = ψ(x0, µ,Σ). We can think of ψ as a call to the trajectory optimizer.

The main question is whether this sequence of actions is better than any other one given that the true value µ? is different
from µ. One way to evaluate this hypothesis is to execute u0:N−1 on the real system with parameters µ? and then find the
posterior p(θ|x0:N , u0:N−1) given the observed trajectory. An even better solution is to replan after every time step. Such
closed loop control should intuitively speed up convergence to the true parameter value. We call this approach belief
space model predictive control for approximately optimal system identification.

We compare the belief space MPC approach (Figure 1) against random and sinusoidal excitations (Figure 2) on the pen-
dulum environment from OpenAI Gym [Brockman et al., 2016]. Optimal exploration performs well and beats random
actions and a naively chosen excitation signal by a large margin (Figure 3). However, a wisely chosen excitation signal
can be as good as the optimal one (Figure 4). The optimization approach was found quite insensitive to the choice of the
action cost R in a reasonable range, although extremely small values were found to cause instability.

4 Conclusion

Although the preliminary results are encouraging, further investigation is required. First, evaluation on more complex
systems must be performed to demonstrate the scalability of the approach. Second, comparison to other exploration
strategies is needed to better understand the trade-offs between optimality and heuristics. Third, the assumption on
the system dynamics (1) can be relaxed to allow for more flexible models; for example, the feature mapping φ can be
learned by exploiting its invariance to dynamics parameters, or a non-parametric model, such as a Gaussian process, can
be employed to represent the system dynamics.

2



0 5 10
2
0
2

u

0 5 10

2.5
5.0

q

0 5 10
Time, sec

5
0
5

qd

2 4
q

7.5

5.0

2.5

0.0

2.5

5.0

7.5

qd

Optimal controls (N=50, n=5, Q=(0.05, 0.1), R=0.1)

(a) high action cost, R = 0.1

0 5 10
2
0
2

u

0 5 10

2.5
5.0

q

0 5 10
Time, sec

5
0
5

qd

2 4 6
q

7.5

5.0

2.5

0.0

2.5

5.0

7.5

qd

Optimal controls (N=50, n=5, Q=(0.05, 0.1), R=0.01)

(b) medium action cost, R = 0.01
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Figure 1: Effects of the action cost R on the closed-loop system performance. Trajectories are executed on Pendulum-v0
using belief-space MPC with horizon N and replanning every n steps. System noise Q is fixed and the action cost R is
varying. Three scenarios are shown. In (a), the action cost is high, therefore the controller quickly pumps the energy into
the system and fades away to observe the oscillations; this is possible because Pendulum-v0 is frictionless (although the
controller has a non-zero prior on the friction coefficient). In (b), the cost of actions is lower, therefore the controller can
enjoy taking larger actions a bit longer. In (c), the controller gets unstable, probably because the reward function is quite
flat without action regularization and the action limits are too small to escape the flat region.
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(b) slow sinusoid — sufficient excitation
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Figure 2: Compared to the optimal controls, random actions (a) perform very badly because they fail to explore the state
space. On the other hand, a naive sinusoidal signal (b) works quite well on the pendulum, making it swing in all kinds
of ways. However, the quality of system identification crucially depends on finding the right frequency of the sinusoid.
A more oscillatory signal (c) turns out to be better for system identification (see convergence plots below).
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(b) medium action cost, R = 0.01
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Figure 3: Convergence plots show how quickly the posterior concentrates around the true parameter value; convergence
in terms of distance from the mean and in terms of entropy of the posterior are shown. The posterior is updated after
every n steps in the environment with the newly obtained data; one iteration on the x-axis corresponds to one posterior
update. Three excitation signals are compared: random actions (blue), slow sinusoid (green), and optimal controls
(red). Three scenarios are displayed from left to right that correspond to different action costs; only the red curve is
different among the subplots, the other two curves are the same and kept for reference. All subplots demonstrate that
the optimal excitation controls are significantly better than random or sinusoidal ones. Subplots (a) and (b) show similar
red curves, which means that optimization is insensitive to the choice of the action cost in a reasonable range. Subplot (c)
demonstrates that extremely low action costs may lead to oscillations; also observe that the final entropy in (c) is lower,
meaning that the controller is more certain in the end.
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(b) medium action cost, R = 0.01
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Figure 4: A properly chosen excitation signal can yield very good results. These plots show that using a faster sinusoid
(green), one can obtain as good parameter estimates as with an optimal signal. In (a), the fast sinusoid discovers the
correct value faster and in the end it is even more certain than the optimal controller. In (b), both the optimal controls
and the sinusoid perform on par. In (c), the posterior mean found with the optimal actions is further away from the true
value and at the same time the controller is more confident about it; this shows the importance of the choice of costs.
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