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Abstract

In this report, we research on the task of
a KUKA robot arm playing badminton un-
der SL simulator. Due to the irregularity of
shuttlecock shape, dynamic analysis and tra-
jectory prediction of the shuttlecock is un-
certain. In order to estimate the shuttlecock
relatively ideally, Kalman filter is introduced.
Meanwhile playing badminton requires high
velocity for hitting, which makes controlling
the racket with robot arm more challenging.
A combined controller based on two phases
controlling is introduced. Overall a simple
implementation under SL simulator is deliv-
ered.

1 Introduction

To accomplish a humanoid behavior in robot scenario,
a range of multidisciplinary techniques need to be im-
plemented simultaneously. To tackle down this partic-
ular challenge we integrate diverse technologies from
different areas of science.

In order to perform the desired behavior of hitting
shuttlecock on a robot arm simulated under the envi-
ronment of SL, this challenging task can be dissolved
into several aspects of sub-issues: simulations of a bad-
minton racket and the motion of a flying shuttlecock,
simulation of kinematic features of the shuttlecock in
real world, learning the trajectory of a flying shuttle-
cock, prediction of possible interception points and to
make the robot arm end-effector move to he intercep-
tion point and performing the hitting behavior.

Considering the limitations of robot arm motion speed
and the short duration of shuttlecock flying motion,
a prediction algorithm with fast convergence should
be introduced to provide an estimated distribution of

Preliminary work. Under review by AISTATS 2012. Do
not distribute.

Figure 1: Robot arm with a racket

shuttlecock trajectory. With the prediction of possible
interception point in advance, several controller are
introduced in different stages of interception process.

2 Shuttlecock Trajectory Estimation

Shuttlecock in badminton is quite different from all
those in regular ball sports, as a result there are
more complicated factors to consider, which affects the
prediction significantly. Self-spin of round objects is
hard to detect with vision reception. As described by
(Cooke, 1999) shuttlecock has relative less self-spin,
but self-spin of shuttlecock causes turbulence, which
easily change the orientation of shuttlecock. Another
leading factor, air resistance, makes the shuttlecock
kinematics even more complicated. For simplicity, we
only consider air resistance and regard turbulence as
model error.

Besides the vision system cannot really get accurate
signals of realtime shuttlecock state, there is always
error in the reception of signals.

However, the accuracy of shuttlecock trajectory pre-
diction is very important for a good hitting per-
formance. Following we introduce Kalman filter to
smooth the real-time trajectory estimation.
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2.1 Shuttlecock Kinematics

Based on some facts mentioned below, we may only
consider the leading factor, air drag. Air buoyancy of
a standard shuttlecock with a volume of 19 m3 is about
0.02 gw, which is neglectable. There is no self-spin of
shuttlecock, so we can also ignore the turbulence.

There are two kinds of resistance standard model, ei-
ther proportional to speed or to the speed squared. By
making a trade-off between complexity and execution
time, this results the equation below

~f = −b~v (1)

In equation (1) b is a resistance factor decided by the
object itself as flowing

b = 6πηr (2)

in which η is viscosity, for motions in air at tempera-
ture 15◦C this value is 1.8× 10−5kg/(ms)

r is equivalent spherical diameter, for a shuttlecock
with volume V = 1.9× 10−5m3 we have

r =
3

√
3V

4π
= 1.7× 10−2m (3)

Besides only gravity has influence on the shuttlecock
motion. So according to Newton’s law we have the
shuttlecock acceleration equation.

m~a = ~f + ~G (4)

For convenience of calculation, the acceleration of
shuttlecock is decomposed into three dimensions. i.e.,
we transform formula (4) to

ax =
−b
m
vx

ay =
−b
m
vy

az =
−b
m
vz − g

By integration operation on both side of equations
above we can get a closed form solution of ball po-
sition as following.

xt =
−mvx0

b
(1− e

−b
m t) + x0

yt =
−mvy0
b

(1− e
−b
m t) + y0

zt = −(
m2g

b2
+
vz0m

b
)e

−b
m t +

mg

b
t+

m2g +mvz0b

b2
+ z0

This closed form shuttlecock motion can also be used
for prediction with least squared regression method.

Take xt as an example, regard 1− e−b
m t as x, −mvx0

b as
beta1, x0 as beta2, then we have

y = β1x+ β2 (5)

After collecting a certain number of real time ball po-
sition data, let X be the list of result of observed vari-
ables, and Y be the dependent variables. By doing a
least square regression we get parameter estimation

β̂ = (XTX)−1XTY (6)

However the performance of least square regression in
this case relies really on the shape of the closed form
of shuttlecock motion. And our closed form model is
based on some assumption, its accuracy has already
been reduced when we use this model in practice.
Therefore in next section, we introduce a better way
to optimize the accuracy of shuttlecock motion predic-
tion.

2.2 Trajectory Estimation by Kalman Filter

The following section covers our solution to smooth-
ing the real-time estimation of the shuttlecock and the
prediction of a proper hitting position.The shuttlecock
approaches the set hitting point approximately one to
two second after the launch, which requires the robot
arm to start its movement in advance, and to make
sure the measurement of the shuttlecock position is
close to the true value,so we introduce a algorithm
with fast convergence Kalman filter.

2.2.1 Model Statement

Estimation and prediction of the trajectory are both
based on the kinematic equations of shuttlecock mo-
tion described as above. Take the air resistance into
consideration, the accelerations of three axes are not
constant,so we include accelerations in the state vec-
tor.

X̂ = (x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈)T (7)

2.2.2 State Space Description

The state vector considered relates to discrete-time lin-
ear systems on the form

X̂t+1 = AtX̂t +Btut + vt (8)

zt = HtXt + et (9)

Where z is the measurement of positions. The distur-
bance v and e are assumed to be white noise process
with zero mean values. At denotes the state transition
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Table 1: Kalman Filter Flow
Kalman Filter

Initialize:

Q=const, R=const, P 0=const
For each iteration:

predict stage
update stage
Simulate:
ball predict ← state vector

Output: ball predict

matrix which can be derived from the kinematic equa-
tions described above. Ht denotes the measurement
matrix which maps the state vector into measurement
vector.In our case, we only care about the three dimen-
sional positions of shuttlecock, then the measurement
matrix will be

Ht(3,9) =

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0


Basically, the Kalman filter involves two stages:
Prediction stage

X̂t|t−1 = AtX̂t−1|t−1 +Btut (10)

Pt|t−1 = AtPt−1|t−1A
T
t +Qt (11)

Update stage

X̂t|t = X̂t|t−1 +Kt(zt −HtX̂t|t−1) (12)

Pt|t = Pt|t−1 −KtHtPt|t− 1 (13)

Where X̂t|tdenotes the posterior esimation of X̂,

X̂t|t−1 denotes the prior estimation of X̂ , Pt|tis the co-

variance matrix of X̂t|t , Kt denotes the Kalman gain
in each iterations of Kalman filter, which is defined as
below

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)

−1 (14)

2.2.3 Implementation in SL

For the accomplishment of the estimation of a proper
hitting position and also a distribution of the trajec-
tory closer to the real distribution, the results of the
previous sections are required. With the estimation
of trajectory, the robot arm now just needs to adjusts
its joints to the desired joints configuration by using a
controller which we are going to discuss later.

As described in the Kalman Filter Flow table, the pro-
cess of Kalman filter is executed in the order of initial-
ization of relevant parameters, iterations in real-time
servo and output.

First we have to state the initial conditions.The initial
covariance propagation P0 is given by the following
formula:

P0 = E[(X0 − X̂0)(X0 − X̂0)T] (15)

Since there is no information about the initial state of
the robot arm, we resort to trial and error methods,
and this is what we specified about the magnitude of
initial state covariance: 0.04.

With the input of a desired threshold of the hit-
ting plane and real-time iterations executed, we can
get a fusion of two probability distributions,the mea-
surement distribution simulated by adding zero-mean
gaussian noise into current actual state and the predic-
tion distribution. Then we can get a relatively more
accurate estimation of the shuttlecock trajectory.

Here is one thing which should not be neglected
when implementing Kalman filter. As described by
(Man,2009) , the difference between the magnitudes of
process covariance matrix Q and measurement covari-
ance matrix R has influence on the estimated states.
Q, the process covariance . contributes to the overall
uncertainty. When Q is large, the Kalman Filter tracks
large changes in the data more closely than for smaller
Q. R determines how much information from the mea-
surement is used. If R is relatively high, the Kalman
Filter considers the measurements as not very accu-
rate. For smaller R, it will follow the measurements
more closely.

3 Racket Controller

In this section, we work on controlling the robot arm
to hit the shuttlecock. Firstly our target object is mov-
ing all the time, tracking a moving point is far more
complicated than a fixed point. Another problem is
that at the hitting moment, as by observation on other
badminton playing robot or on real human-to-human
playing, requires instant acceleration on racket, while
bringing the racket to a desired position with a desired
velocity.

3.1 Two Phases Controller

Before the shuttlecock comes close to the racket, bad-
minton players doesn’t move a lot. Instead they try
to figure out, which point the shuttlecock shall fall
and then try to locate himself as precisely as pos-
sible to a preparation point. Short time after this,
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the badminton player does a precise analysis to find a
point, for which there remains enough time to bring
the racket to target.

Inspired by these observations we introduce a two
phases racket controlling strategy as follows.

Preparation phase In this phase, we use shuttle-
cock motion prediction by Kalman filter to predict a
position with a certain lower height, at where the shut-
tlecock will fall. Then we use transpose Jacobian con-
troller to bring the racket to this preparation position.

Striking phase Our robot has to firstly estimate a
target position, to which the racket and shuttlecock
will arrive at the same time. However it’s very diffi-
cult to find such a position along the shuttlecock tra-
jectory. A better controller for this part is also more
complicated than that in preparation stage, as not only
position matters, but also the velocity. In order to get
a steady controlling of robot arm end-effector, we use
minimum jerk method to plan a smooth tracking tra-
jectory of racket, other words to say the robot arm
end-effector, while in our SL simulator there is a fixed
projection between robot arm end-effector and bad-
minton racket. By using minimum jerk controller we
can also define a time duration for this tracking period,
which solves the striking point estimation problem.

In Figure 2 a loop flow diagram for controller is given,
this procedure will be called in every task servo loop.

3.2 Preparation with transpose Jacobian
controller

As described by J. J.Craig (2005), the Jacobian matrix
relates the joint space q with the end-effector position
and orientation space X. Formally, a Jacobian is a set
of partial differential equations:

J =
∂x

∂q
(16)

ẋ = Jq̇ (17)

The basic idea of transpose Jacobian is very simple,
we use the transpose of J instead of the inverse of J.
Although transpose of Jacobian is not really the in-
verse, the correctness of using transpose Jacobian has
already been proved in many papers. With transpose
of J we have an update formula for joint space con-
troller as below.

q̇ = αJT ẋ (18)

where α is the learning rate.

Figure 2: Controller loop flow disgram



Manuscript under review by AISTATS 2012

Transpose Jacobian is sensible to learning rate, but it
works still good in our case. As we don’t have so much
time constraints, we have relatively more time to bring
the end-effector to the preparation position. In order
to make controlling more stable, a relatively smaller
gain will be enough and safe.

3.3 Striking phase with minimum jerk
controller

3.3.1 Minimum jerk trajectories

The main idea of minimum jerk controller is to plan a
trajectory from start joint configuration to target joint
configuration with minimum jerk. After estimation
of target racket state, we transfer this target state to
joint state by inverse kinematic model. With start and
target joint state we initialize the minimum jerk con-
troller. Here we use a sixth order polynomial, which
is safe for robot arm. The constants in the trajectory
will be decided as follows.

Our minimum jerk trajectory has this form

xt = a0 + a1τ + a2τ
2 + a3τ

3 + a4τ
4 + a5τ

5 (19)

Note that dτ
dt = 1

T , where T is the total time duration.
With (19) we have the first and second order derivation
of xt as follows.

ẋt =
a1
T

+
2a2
T
τ +

3a3
T
τ2 +

4a4
T
τ3 +

5a5
T
τ4 (20)

ẍt =
2a2
T 2

+
6a3
T 2

τ +
12a4
T 2

τ2 +
20a5
T 2

τ3 (21)

With boundary values x0, ẋ0, ẍ0, xT , ẋT , ẍT we can
get the constants as follows.

a0 = x0

a1 = T ẋ0

a2 =
T ẍ0

2

a3 = −3T 2

2
ẍ0 − 6T ẋ0 + 10(xT − x0)

a4 =
3T 2

2
ẍ0 + 8T ẋ0 − 15(xT − x0)

a5 = −T
2

2
ẍ0 − 3T ẋ0 + 6(xT − x0)

3.3.2 Deciding target racket state

The task of playing badminton is not only to hit the
ball at a certain position with a certain velocity, but

also to make a effective strike, which means the player
has to make the ball return in a way, such that the
adversary will not easily hit it back.

Meanwhile, this impact point should also be easier for
robot arm to reach. This can be achieved by our pre-
diction model by Kalman filter in capital 2.

An effective estimation of the target racket state, more
precisely to say the velocity and orientation of racket,
will be quite helpful. In order to make the shuttlecock
fall in a certain area in the adversary side, meanwhile
the shuttlecock must also fly over the net, we have to
estimate the desired outgoing velocity of shuttlecock.

Assume we know where on the adversary area the shut-
tlecock should fall, other words to say, at time T , the
shuttlecock is at position xT , yT , zT . With closed form
shuttlecock trajectory in capital 2 we have now three
equations.

xT =
−mvx0

b
(1− e

−b
m T ) + x0 (22)

yT =
−mvy0
b

(1− e
−b
m T ) + y0 (23)

zT = −(
m2g

b2
+
vz0m

b
)e

−b
m T +

mg

b
T+

m2g +mvz0b

b2
+z0

(24)

In order to make sure that the shuttlecock flies over the
net, we consider at time N (net), xN the coordinate
of shuttlecock is same as the x axis coordinate of net.
And we only have to make sure that zN > net height.
Let net height be hN , let sN be a given safe distance
from the shuttlecock to the net, we have two equations
as below.

xN =
−mvx0

b
(1− e

−b
m N ) + x0 (25)

zN = hN + sN = −(
m2g

b2
+
vz0m

b
)e

−b
m N

+
mg

b
N +

m2g +mvz0b

b2
+ z0

(26)

Now we have five equations (22)-(26) with five un-
known variables vx0, vy0, vz0, T , N . Solve the equa-
tions we get desired outgoing velocity of shuttlecock.

Now we have desired outgoing velocity of shuttlecock,
we only have to transfer it into desired racket veloc-
ity. To achieve this, we have to do an inverse impact
analysis. The forward impact kinetics is modeled as
follows.

In ideal case, shuttlecock goes back in a reflexive di-
rection with same speed, due to air drag there is a
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Figure 3: Forward impact kinetics

reduction on the speed.

~vred = ~vref − b~vref∆t (27)

Adding gravity influence into (24) we get the final
model of forward kinetic of impaction.

~vout = ~vref − b~vref∆t+ g∆t (28)

The inverse impact kinetics can be done in a easy way
according to the equation above.

4 Summary

In this paper we mainly concentrate on two things, one
is to fix reception error and model error by applying
Kalman filter. The other is to control the racket effec-
tively in order to hit the shuttlecock. Our badminton
playing robot has not yet good adversary playing func-
tionality, thus our next step will concentrate on effec-
tive adversary playing strategy.
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