
Generalizing to New Cup Positions in the Game of Beer Pong using Contextual ProMPs

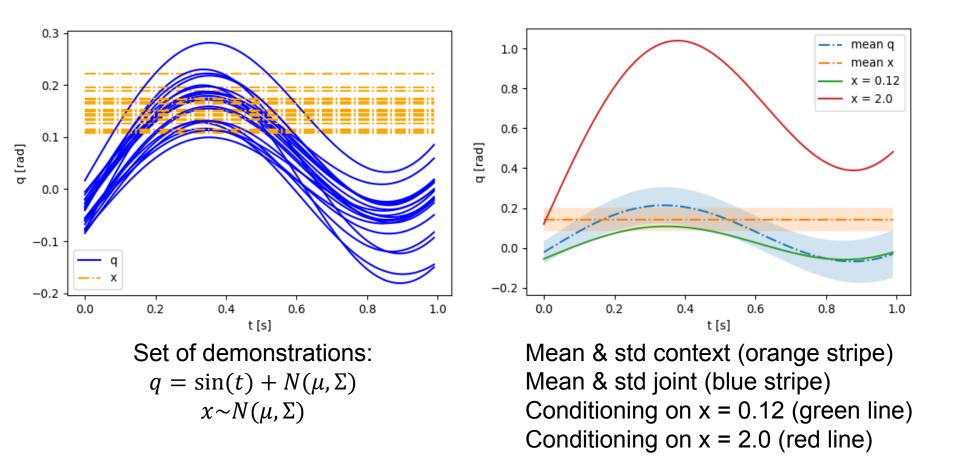
TECHNISCHE UNIVERSITÄT DARMSTADT

Alymbek Sadybakasov

Supervisor: Boris Belousov

Probabilistic Movement Primitives (ProMPs)

- Probabilistic representation of several trajectories
- Represent a trajectory using Gaussian radial basis functions
 - $y_t = \Phi_t^T w + \epsilon_y$
- Probability of a trajectory τ
 - $p(\tau|w) = \prod_t N(y_t | \Phi_t^T w, \Sigma_y)$
- Important properties:
 - Probabilistic conditioning
 - Represent uncertainty


ProMPs: Conditioning

- Given
 - Set of demonstrations (joint trajectories)
 - Desired y_t^* (start-, goal- or via-point)
- Goal:
 - Find a trajectory going through y^{*}_t
- Assumption: Gaussian trajectory distribution
- Mean: $\mu_w^+ = \mu_w^- + \Sigma_w \Psi_t (\Sigma_y^* + \Psi_t^T \Sigma_w \Psi_t)^{-1} (y_t^* \Psi_t^T \mu_w)$
- Variance: $\Sigma_w^+ = \Sigma_w^- \Psi_t (\Sigma_y^* + \Psi_t^T \Sigma_w^- \Psi_t)^{-1} \Psi_t^T \Sigma_w^-$

Contextual ProMPs: Toy Example With 1 Joint and 1 Context Variable

Experimental Setup: Barrett WAM

• An end effector with cup and a simple holder attached to it

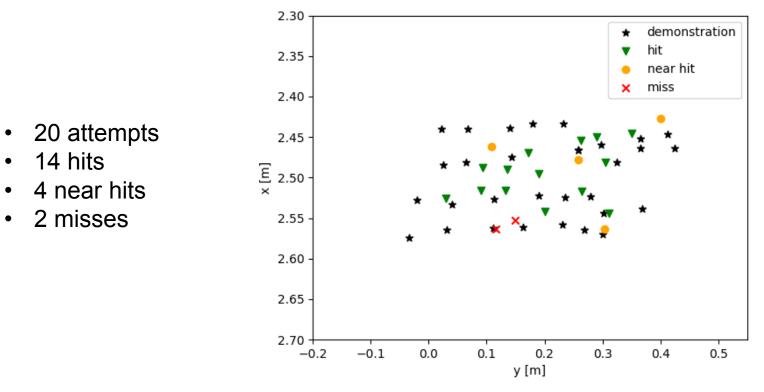
Cup with markers for tracking

Problems and Preprocessing

• Problems

- End effector too unstable
- Filtering has been done too many times
- Preprocessing:
 - Obtain one trajectory demonstrated by a human and filter it
 - Move only the base joints to obtain more demonstrations

Video: Reference Throwing Movement


TECHNISCHE UNIVERSITÄT DARMSTADT

Generalizing to New Locations of the Cup Using Contextual ProMPs

- 31 demonstrations around one location
- Conditioning on the new location within demonstration's area

Video: Conditioning on New Cup Positions With Contextual ProMPs

TECHNISCHE UNIVERSITÄT DARMSTADT

Contextual Linear Regression in the Weight-Space of ProMPs

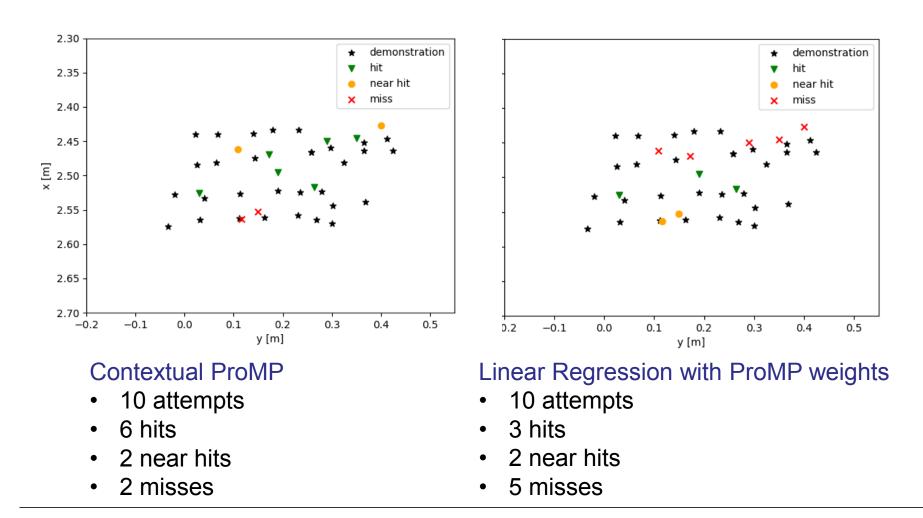
- Motivation:
 - Improve performance of contextual ProMPs
 - Compare different representation of context:
 - CLR (plain representation): $c_t = \begin{bmatrix} x \\ y \end{bmatrix}$
 - Contextual ProMPs (approximation): $c_t = \Phi_t^T w_c + \epsilon_c$

Relationship Between the Mean of Contextual ProMPs and Contextual Linear Regression

Contextual ProMPs

Contextual Linear Regression

- $\begin{bmatrix} W \\ c \end{bmatrix} \sim N(\mu, \Sigma)$
- $\mu = Ac + b$
- $A = \Sigma_{wc} \Sigma_{cc}^{-1}$


• w = Ac + b

•
$$J = \operatorname{tr}\{(W - AC)^T (W - AC)\}$$

•
$$A = WC^T (CC^T)^{-1}$$

Contextual ProMPs vs. Linear Regression with **ProMP Weights**

Linear Regression: ProMP Weights vs. DMP Weights

- Both produce almost the same resulting trajectory
- However, slight difference during throwing movement

Conclusion

- Contextual ProMP is better than using context variables directly (CLR)
- CLR-ProMP and CLR-DMP lead to same trajectories
 - Further investigation required
- Generalization to new cup positions achieved using contextual ProMPs
 - Still, some improvements are reasonable (next slide)

Future work

ProMPs

- Approximate trajectories adaptively
 - High number of basis functions only when needed
 - E.g., at high peaks during throwing movement
- Better end effector
- Model-based approach
 - Generalize to new environments
- Implementation of a full-game framework