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Abstract
Deep Learning yielded multiple neural architec-
tures effectively targeting the specifics of input
data in different domains and achieved break-
through results in the past decade. Deep Rein-
forcement Learning brought these successes to
the Reinforcement Learning setting and raised
big hopes to solve previously unreachable prob-
lems, many of which are coming from the field of
robotics. An architecture specialized to the prop-
erties of input data from robotic systems indeed
was not developed so far. In this work, we investi-
gate the question if sparse architectures are better
suited for robot input data compared to the default
choice of a fully connected Multilayer Perceptron
(MLP). We find hints of an optimal sparsity in an
MLP and reduce the size of the policy network by
85% retaining the desired performance.

1. Introduction
Deep Reinforcement Learning (deep RL) introduces deep
neural networks to the Reinforcement Learning (RL) setting
(Li, 2018). This combination yielded agents outperforming
humans in Atari Games (Mnih et al., 2015) and raised the
hope to manage the complexity of bipedal locomotion in
robotic systems (Peng et al., 2018; Xie et al., 2018).

Deep Learning (DL) began with the introduction of the
Multilayer Perceptron (MLP) that still plays an important
role today. The most prominent successes of DL in the last
decade indeed were achieved by introducing neural archi-
tectures considering the specifics of data in a given domain
and thus guiding the networks to learn better features:

• To deal with images, Convolutional Neural Networks
(CNNs) introduce layers consisting of many identical
copies of a neuron that apply different filters to the
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input image and preserve its spacial structure for sub-
sequent layers (Sermanet et al., 2012).

• Recurrent Neural Networks (RNNs) brake up the pure
forward structure of vanilla networks and utilize a
memory concept to deal with time series data (Mikolov
et al., 2010).

These architectures found their way in deep RL, e.g. by
using CNNs as feature extractors for visual input data (Mnih
et al., 2015), but deep RL is also applied to robotics and
there is no established architecture targeting at the specifics
of sensory data in robotic systems.

Some approaches introduce strong inductive biases in archi-
tecture design by considering the kinematic structure of the
robot to control. Gaier & Ha (2019) successfully applied
Neural Architecture Search to the OpenAI Bipedal Walker
Environment, a simulated 2D bipedal robot (Brockman et al.,
2016). The found architecture show clear characteristics

1. high sparsity

2. each action is a function of its own unique features

3. presence of many residual connections

These observation raise the question whether these prop-
erties are specific to the utilized search algorithm and the
considered architecture building blocks or general character-
istics of an architecture for Reinforcement Learning applied
to robotics. In this paper, we would like to initiate the inves-
tigation of this question and focus on the property of high
sparsity. Therefore, we implement and evaluate multiple
versions of sparse architectures for the policy network and
compare them with the default choice of a fully connected
MLP. Our goal is to find an architecture that will beat the
vanilla network on the Bipedal Walker Environment consid-
ering performance, stability and smoothness of the learned
controllers.

2. Related Work
Neural Architecture Search. One possibility to fulfill our
goal of finding a sparse architecture for the policy network
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that will outperform the fully connected Multilayer Percep-
tron is to use algorithms dedicated to find specific archi-
tectures. The field summing up those approaches is called
Neural Architecture Search, or NAS for short (Zoph & Le,
2016).

The search consists of three main stages. At the begin-
ning, the search space is defined by choosing architecture
building blocks, possible connections between the compo-
nents and the desired properties of the architecture. Next,
a search strategy has to be chosen. The process of find-
ing an architecture usually starts with the simplest possible
architecture building it up iteration by iteration in a bottom-
up fashion. The two main approaches for choosing the
modification of the architecture for the next iteration are
evolutionary and Reinforcement Learning algorithms. In
the former case, several possible mutations are produced, in
the latter a policy provides a distribution over possible next
adjustments. The last step of an iteration is the performance
estimation. All candidate architectures are tested on the task
the architecture is optimized for. When searching an archi-
tecture for machine learning applications, the architectures
would optimally need to be trained and evaluated on unseen
data. Most of the time, this procedure would be too costly
computationally and in terms of required time. Therefore,
recent research is targeted at reducing the cost of evaluation
(Elsken et al., 2018).

The high computational requirements in applying NAS for
our purposes are a strong argument against this approach
(Elsken et al., 2018). Moreover, (Yu et al., 2019) question
the supremacy of this approach over Random Search in
multiple applications.

Fortunately, (Gaier & Ha, 2019) overcame these barriers and
successfully applied NAS to a Reinforcement Learning task,
one of which was the Bipedal Walker from OpenAI Gym
(Brockman et al., 2016). Building on the NEAT algorithm
that simultaneously updates the weights and the architecture
at each iteration (Stanley & Miikkulainen, 2002) and dras-
tically reducing the cost of performance estimation, their
algorithm found an architecture that performed on par with
the traditional fully connected MLP on several deep RL
tasks. The authors’ motivation was to find architectures
that even without training the weights would reach high
performance. Therefore the architectures were evaluated
at each iteration by setting all weights in the network to
a fixed weight from the sequence [−2,−1,−0.5, 0.5, 1, 2]
and averaging the results. This approach gave the yielded
architectures the name of Weight Agnostic Neural Networks
(WANNs).

The architecture found for the Bipedal Walker environment
show clear characteristics: The networks are very sparse
with most neurons combining only a single or small fraction
of possible inputs. Further, it is worth noticing the high

amount of residual connections and the fact that each output
neuron combines a distinct set of features in contrast to
the outputs in a fully connected network where all actions
consider the same inputs. Each of these observations make
sense in the context of the considered task and have a sound
explanation.

Throughout this work, we put our focus on the property of
high sparsity. One intuition of neural networks is their abil-
ity to learn meaningful high level features by combining the
input data. In contrast to images, where individual pictures
bear no useful information, the kinematics and forces of
individual joints as well as other sensor output in a robotic
system is an important component to describe the state of
the robot and choose an appropriate action. Therefore, it is
expected that high level features can be built up by combin-
ing only a few inputs which corresponds to a high sparsity
of the policy network.

Sparse Neural Networks. The most common way to intro-
duce sparsity in a neural network is referred to as network
pruning (LeCun et al., 1990). The main goal of approaches
in this area is often the increase of memory and compu-
tational efficiency, e.g. to deploy complex networks on
embedded systems (Han et al., 2015). The pruning happens
after training following different heuristics. An effective
and often used approach is called Magnitude Pruning (Guo
et al., 2016). Here, the weights with the smallest magnitude
are considered to be less important in the considered model
and are thus removed.

Following this and other pruning approaches the network
size is reported to be reduced by up to 90% without signifi-
cantly reducing performance (Frankle & Carbin, 2018). An
increase of performance after pruning was not yet reported
reducing the direct relevance of this field to our goal of find-
ing a better performing sparse architecture. Furthermore,
retraining the architecture after pruning by far missed the
performance of the original network until (Frankle & Carbin,
2018) presented the Lottery Hypothesis. They found out
that a pruned network can still be trained to the same or
even higher performance compared to its dense counterpart
when the remaining weights are initialized with exactly the
same values as for the original training. This finding raises
the hope of existing sparse architectures that can be trained
from scratch and achieve a desired performance.

Attention Mechanisms. Talking about sparsity as remain-
ing only a fraction of possible input connections compared
to the fully connected network suggests the question of how
to choose the values to remain and prune. Introduced in
the context of encoder-decoder networks for sequence mod-
elling, attention mechanisms do exactly that (Vaswani et al.,
2017b). Given all the hidden states of a recurrent encoder
at different timesteps of the input sequence, the few input
states relevant for each position of the decoder output se-
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quence are chosen by learning a distribution over the input
importance. This approach introduces new parameters into
the model but reduces the number of considered inputs and
is therefore worth investigating in our approach of finding
performant sparse architectures.

3. Methods
3.1. Sparsity Definitions

Official Definition of Sparsity. The official definition of
sparsity from graph theory is the fraction of zero values in a
matrix.

Our Definition of Sparsity. Our intuition of neural net-
works learning high level features by combining raw input
data asks for a slight modification of the official definition.
A single neuron y in the hidden layer combines the n inputs
~x in a weighted sum s before applying the activation func-
tion φ, resulting in the following simplified equation (bias
term ignored):

s(~x) = ~w~x =

n∑
i=1

wixi = w1x1 + ...+ wnxn

y(~x) = φ(s)

By normalizing the input data and choosing the tanh activa-
tion function in each hidden unit, the inputs to each layer
are guaranteed to be in a similar range of about [−1 : 1].
Therefore, the absolute value of the i’th weight |wi| deter-
mines the contribution of the i’th input to the constructed
high level feature.

Due to the high information in individual sensor outputs of
a robotic system, we expect each neuron to combine only a
few of the inputs to form a better feature. In this context, we
define sparsity of a single hidden unit as the fraction of not
considered inputs in a hidden unit. By taking the average
over all units in a hidden layer, we get the sparsity of the
whole layer. An input xi is defined to be not considered,
when its corresponding weight wi is below 10% of the
maximum input weight of the neuron.

Explicit and implicit sparsity. Another distinction we
make in the paper is that of explicit and implicit sparsity. In
our search of a better architecture through sparsity we con-
sider different approaches. A network is explicitly sparse,
when a fraction of possible connections between layers is
absent by construction. The sparsity of this kind of networks
cannot be decreased during training but can be increased by
setting the remaining weights to a negligibly small value.
The minimal sparsity is a feature of the architecture.

Implicit sparsity is achieved by reducing the weights of a
fully connected neural network to an absolute value that
can be disregarded. Having all possible connections, the

minimal sparsity of 0% can be achieved. During training
the weights get updated and with them the sparsity at that
point in time.

3.2. Experimental Setup

Algo, Env, Hypers, Cluster, Evaluation Metrics

The final search for a policy architecture optimized to deal
with sensory data of robotic systems as inputs should be
independent of an algorithm, architecture and environments.
This indeed would drastically exceed the scope of the inte-
grated project in every dimension.

Within this work, we compare multiple policy network ar-
chitectures used in a single algorithm, applied to the same
single Reinforcement Learning (RL) environment.

The algorithm chosen for our investigation is called Proxi-
mal Policy Optimization (PPO) and was presented by (Schul-
man et al., 2017). PPO is considered to be among the most
popular deep RL algorithms due to its simplicity and high
reproducibility (Li et al., 2019; Hämäläinen et al., 2018). A
second reason for this choice is presented in the following.

We use the implementation of the algorithm from the open
source Python library Stable-Baselines (Hill et al., 2018). In
addition to the high quality algorithm implementations the
authors provide a set of optimized hyperparameters for mul-
tiple pairs of environments and algorithms (Raffin, 2018).
Our environment of choice, the Bipedal Walker - v2 from
the OpenAI Gym collection (Brockman et al., 2016), was
also target of the hyperparameter optimization for different
algorithms. The results of this optimization put PPO again
at the best position. The Twin Delayed DDPG (TD3) algo-
rithm (Fujimoto et al., 2018) required a significantly bigger
policy architecture compared to PPO. Finally, Soft Actor-
Critic (Haarnoja et al., 2018) was used with a custom policy
network, so our baselines would lack optimized hyperpa-
rameters. Table X summarizes the optimized parameters
that were used in all our evaluations.

The Bipedal Walker is a simple RL environment simulating
a two-dimensional footless bipedal robot. The goal is to
torque control the knee and hip actuators of the robot and
walk over a flat slightly uneven terrain. The reward is pro-
portional to the traveled distance with small punishments
for high motor torque. The inputs consist of twelve joint
and center of mass kinematics as well as two Boolean flags
indicating ground contact for each leg. The additional 10 LI-
DAR measurements, simulating the vision part of the robot,
were removed to focus on kinematic and kinetic inputs, re-
sulting in overall 14 inputs. An episode ends when the agent
reaches the end of the environment or falls down. The latter
case results in a high negative reward.
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3.2.1. EVALUATION METRICS

Each architecture is evaluated within six runs using different
seeds. The average score of an architecture is determined
by averaging the results of individual runs. All evaluations
are executed in parallel on the Lichtenberg-Cluster. Per run,
the agent is trained for 6 Million steps. After training, each
agent is observed for 100 episodes, collecting rewards and
action trajectories for further investigations. We calculate all
evaluation metrics per run and average them to get the mean
architecture score. Due to the random generated terrain in
each episode, the seeds of the environment are hold constant
between all architecture evaluations in order to ensure a fair
comparison.

In the following, we present

Performance. The performance of an agent is measured
as the mean return over 100 episodes. The episode return
is also considered in case of an early termination of the
episode due to the agent falling.

Learning Curves. The learning curves show the mean
reward of a batch which are collected during the training.
This gives us a performance estimate of the current policy
after each update. Moreover, the learning curve can be used
to derive the sample efficiency and the convergence behavior
of the agent.

Stability. A fall is the worst case scenario in a bipedal
walking robot. Therefore, we count the number of falls
during the 100 evaluation episodes as a metric of instability.
As the falls are most probably caused by the randomness of
the ground shape in each episode the inverse of this metric
corresponds to the robustness of the learned controller to
terrain changes.

Policy Smoothness. We estimate the policy smoothness by
taking the mean smoothness over all 4 motor trajectories
and 100 evaluation episodes. (Balasubramanian et al., 2015)
compare different approaches for estimating smoothness
of trajectories and among others propose the Log Dimen-
sionless Jerk (LDLJ), which we use in our work with the
following formula, where v(t) is the first derivative of the
considered trajectory, t1 and t2 the start and end times of
the movement and vpeak the maximum derivative on the
examined interval:

LDLJ = ln| (t2 − t1)
5

v2peak

∫ t2

t1

|d
2v(t)

dt2
|2dt|

Sparsity Evolution. With the sparsity being the main prop-
erty of the proposed architectures to investigate, we save
the weight matrices of each hidden layer every 200 000
timesteps during training and calculate their sparseness, re-
sulting in 30 recordings per architecture. This procedure is
indeed only relevant for implicitly sparse architectures as

the explicit sparsity can be estimated by a constant value.
By plotting the sparsity of each recording over the training
time we observe how the sparsity change over training time,
which we call the evolution of sparsity. The calculation of
sparsity is carried out according to our definition in 3.1.

3.3. Architectures

In this section we present the architectures considered in
our evaluation. After starting with the fully connected
Multilayer Perceptron (MLP) as our baseline, we take the
logic next step of introducing implicit sparsity by using
L1-Regularisation (Liu et al., 2019). Next, we investigate
the effect of sparse weight initialization by setting a frac-
tion of the weights to zero before training begins. After
that, explicit sparsity becomes the target of our attention
where we combine the input features in a binary tree like
architecture with different number of considered inputs per
hidden unit. This approach opens the question of how to
choose the inputs to be combined to form a better feature
which leads us to the introduction of attention mechanisms
to automatically detect the best input tuples for each hidden
unit.

3.3.1. IMPLICIT SPARSITY ARCHITECTURES

Fully Connected MLP. Our search for a better architecture
starts with the baseline, the fully connected Multilayer Per-
ceptron (MLP) with two hidden layers, each containing 64
units. The input layer consists of 14 inputs and we have
four outputs, having 14× 64 + 64× 64 + 64× 4 = 5248
parameters. The number of hidden units remains constant
for all architectures with implicit sparsity.

L1 Regularisation. Fully connected MLPs have a high
number of parameters and thus tend to overfit to the training
data. As the training and test environment in Reinforcement
Learning (RL) are often the same, especially in simulation
studies, this hasn’t been an issue so far in deep RL. In other
areas of Machine Learning this situation is handled using
regularization techniques. (Liu et al., 2019) recently evalu-
ated different regularization methods in RL application. L1
Regularisation is implemented by extending the loss func-
tion with a term punishing non zero weights. While focusing
on improving generalization, this effect can be interpreted
as increasing the implicit sparsity of the weight matrices in
the hidden layers, which is subject of our investigation.

Sparse Weight Initialization. Another approach to investi-
gate the effect of implicit sparsity in fully connected MLPs
is to initialize the weight matrices of both hidden layers
sparsely. After initializing the weight matrices to be or-
thogonal as in earlier, in the next step a fraction of random
chosen weights is set to zero. Two settings are evaluated
within this approach: setting 70 and 50% of weights to zero
after initialization. An important final note is that all values
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remain trainable after initialization and thus the implicit
sparsity can be changed during training.

3.3.2. EXPLICITLY SPARSE ARCHITECTURES

In this subsection we describe architectures that no longer
use fully connected hidden layers combining all inputs in a
hidden unit but instead are constructed to combine only a
few of the inputs.

Binary Tree Architectures. The search for a better archi-
tecture with explicit sparsity starts at the extreme case of
only combining two inputs in each hidden unit, hence the
name binary. The hypothesis behind this approach is that a
high level feature can be constructed by combining only a
small fraction of inputs. Simultaneously, having only two
features in each hidden unit a residual connection, propa-
gation of one of the inputs, can easily be learned during
training by setting a single weight to zero. In a fully con-
nected setting 13 weights would need to be set to zero during
training to accomplish the same effect.

As a high level feature might require more that two inputs,
the next hidden layer combines units having a disjoint set of
input features. This allows to combine 2h inputs in h hidden
layers. We start with three hidden layers, expecting that no
high level feature would require more that 8 inputs.

To ensure a fair comparison, the number of hidden inputs
per layer is chosen to be 70, only 6 units more compared
to previous architectures. An additional hidden layer does
not contradict the fairness due to the significantly smaller
parameter count of 916 compared to 5248 in fully connected
architectures. With 14 inputs, 7 units in the first hidden layer
are enough to have every input combined. To achieve a com-
parable size of hidden layers, each input tuple is therefore
combined in 10 units, resulting in overall 70 units in the
first hidden layer. The second hidden layer then combines
the i’th and the (i+ 10)’th input to ensure combining only
features with disjoint input sets.

A variation of the binary tree architecture is one that is
combining 4 inputs in each unit of the first hidden layer
and 3 inputs in the second hidden layer. This way up to 12
inputs are combined in order to build a high level feature.

Even these approaches achieve high sparsity, the results are
expected to depend on the order of the inputs as we combine
subsequent inputs in each unit. But a good feature in the first
hidden layer might need to combine the first and 8th input,
which is only accomplished in the second hidden layer. To
overcome this barrier, we introduce attention mechanisms.

3.3.3. ARCHITECTURES WITH ATTENTION

Combining only a fraction of inputs instead of all as in the
fully connected settings raises the question which features to

combine in a hidden unit. Where an expert might be able to
choose groups of features that have to be combined together
we let the network choose the inputs itself by implementing
an attention mechanism (Vaswani et al., 2017b). Every input
of every hidden unit gets a weight between 0 and 1 signaliz-
ing how important this input for the formation of a feature is.
This can be simply accomplished in a vectorized fashion for
the whole layer by introducing an attention matrix ~A with
the shape of the weight matrix ~W that is pointwise multi-
plied with ~W . Without additional constraints the pointwise
multiplication of two matrices could be summed up into a
single one giving no room for an interpretation of ~A as an
attention matrix. Interested in the relevant inputs to form
a hyper-feature we want ~A to have zero values for features
to ignore (no attention) and a one for required features (full
attention. We propose two different ways to transform the
matrix in order to achieve the desired properties.

Softmax Attention. The concept of attention is best known
in the context of encoder-decoder networks for sequence
modeling (Vaswani et al., 2017a). Here, the encoder states
at different timesteps are combined into a single state rep-
resentation. A softmax function is used to distribute the
attention across all states. The straightforward implemen-
tation of attention for our purposes therefore was to apply
a softmax function to the attention weights of each hidden
unit. This corresponds to the row-wise application of the
softmax function to the attention matrix ~Aw.

This approach introduces three new hyperparamters. The
obvious one is the initialization of the attention matrix. We
set all values of the attention matrix to zero. This way all
inputs have equal attention before the training and even
small changes of the attention weights during Backpropa-
gation can significantly change the distribution of attention.
Expecting to have only a few relevant inputs, a spiky dis-
tribution is preferred which can be achieved by scaling the
matrix before applying the softmax function. This approach
is known in the literature as temperature τ (He et al., 2018).
Finally, having a distribution, the attention over possible
inputs sums up to one. This means that in average, a single
input is considered in a hidden layer. To allow for more
considered inputs, we scale the attention matrix after ap-
plying the softmax function with the number of expected
number of inputs required to form a high level feature, de-
noted as k. The following equations gives an overview over
all parameters and computations for the i’th hidden unit,
corresponding to the i’th column of ~A:

~Ai = k softmax(
1

τ
~Aw,i)

Remoid Attention. Another approach to turn ~Aw into an
attention matrix with ones for full attention and zeros for
inputs to ignore is to transform each element with a sigmoid
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function σ:

~A = σ( ~Aw) with σ(x) =
1

1 + e−x

To reduce the computational costs the sigmoid function is
approximated as a sum of two ReLU functions, giving it the
name remoid ρ. With the variable slope α we further get a
hyperparameter for controlling how fast an attention weight
converges to 0 or 1:

ρ(x) = relu(αx)− relu(αx− 1)

The attention weight matrix ~Aw is then initialized with 1
α

resulting in all attention weights being at 0.5 during ini-
tialization and thus exactly in the middle between 0 and
1.

4. Results
We investigated multiple approaches to introduce sparsity
in the policy network architecture and their effect on several
evaluation metrics. Our goal was to beat the fully con-
nected Multilayer Perceptron (MLP) on the Bipedal Walker
Environment, which in our experimental setup with fixed
hyperparameters optimized for the MLP architecture turned
out to be a hard to beat baseline. Having not significantly
outperformed it, most architectures reached the same level
of performance even without hyperparameter tuning.
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Figure 1. Learning Curves of evaluated architectures.

Learning Curves. Figure 1 shows the high similarity of
learning curves for different approaches. Here, we see that
sparse initialization of the weight matrices delays the steep
increase in mean batch reward. The delay is proportional to
the percentage of the weights set to zero during initializa-
tion. The learning curve steepness of architectures with the
Softmax attention mechanism is proportional to the average
number of considered inputs in a hidden unit as can also be
seen in figure 1. The sparsely constructed binary tree archi-
tectures reduce the size of the policy network by up to 85%
with no significant loss in performance and other evaluation
metrics. The corresponding learning curve indeed shows
the same steep slope as the MLP for the first one million
training steps but decreases thereafter.

The performance and policy smoothness plots are not dis-
played due to insignificant differences between compared
approaches. Figure 2 shows a slight tendency to the impor-
tant role of initialization and the potential of the Remoid
Attention, both having learned to control the robot with the
minimal probability of a fall.
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Figure 2. Comparison of Instability of the learned controller mea-
sured by the number of falls in 100 episodes.

Sparsity Evolution Comparison. The main insight within
our comparison is the convergence of sparsity to the same
value across different approaches, shown in figure 3. Start-
ing with different sparsities at the training’s beginning, all
architectures incorporating implicit sparsity converge to a
similar value at the training’s end. This value seems to de-
pendent on the size of the hidden layer and is about 20%
for the first hidden layer with 896 parameters and about
30% for the second one with a size of 4096 connections. At
the same time, the sparsity of the original fully connected
MLP remains almost constant during training. Introducing
L1-Regularization slightly increases the sparsity during the
training approaching the same reported values but does not
reach these.

5. Discussion
Deep Reinforcement Learning (RL) introduced deep net-
work architectures into the reinforcement learning setting.
While the successful data specific architectures like Convo-
lutional Neural Networks (CNNs) and Recurrent Networks
(RNNs) found their way into RL, no architectures were de-
veloped targeting at the specifics of input data from robotic
systems. Inspired by the high sparsity of Weight Agnostic
Neural Networks (WANNs) on a walking robot environment
we investigated different approaches to introduce sparsity to
the policy architecture. Our focus laid on exploring different
methods with the goal to find architectures that are worth to
further exploit.

We implemented several mechanisms to encourage high
sparsity in the fully connected Multilayer Perceptron (MLP).
Against our expectation, all architectures with implicit spar-
sity converged to the same small level of sparsity. Fully
connected MLPs seem to have an optimal sparsity that is
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Figure 3. Sparsity Evolution of both hidden layers over training time for all compared architectures.

most probably specific to the considered RL environment.
We believe, this insight should be further investigated and
might be beneficial in tuning parameters of attention mecha-
nisms and guide the pruning process of networks.

Interestingly, a similar performance can be achieved with
significantly sparser architectures with only 15% of weights,
when connections are dropped during architecture construc-
tion and cannot be recovered during training. This means
that up to 85% of memory taken by the policy network can
be saved without noticing a drop in the performance. Simi-
lar and even stronger numbers are reported by the network
pruning community (Frankle & Carbin, 2018). The much
lower number of parameters is expected to decrease over-
fitting and better generalize to changes in the environment.
This property is especially important for the transition from
simulation to the real robotic systems. One explanation is
that combining only a few inputs to form a better feature
is enough to reach a reasonable performance but having
a fully connected structure the additional information can
still be used for improvement. The learning curves in fig-
ure 1 support this claim. The shape of the curves of the
fully connected MLP and the Binary Tree architecture is
almost identical for the first 20% of the training. Thereafter,
the dense network proceeds with a slightly higher slope
which could be due to its higher capacity. Another explana-
tion could lie in the properties of used activation functions.
(Gaier & Ha, 2019) introduced a notion of symmetry and
periodicity by allowing the absolute and trigonometric func-
tions. This allows to capture relevant patterns with a much
smaller number of parameters and thus sparser networks.

The highly similar evaluation metrics between architectures
with implicit sparsity and the fully connected MLP can be
explained by the fact that most architectures tend to con-
verge to a dense network and do not significantly differ from
the baseline. The preferred sparsity, which we expect to be

dependent on the environment, is indeed bigger compared
to the fully connected setting. This promises a room to save
memory usage and increase the calculation speed, which
can be significant for much bigger networks.

Our last point to discuss considers the usage of hyperpa-
rameters beyond the architecture. During all evaluations the
hyperparameters of the algorithm and optimizer have been
hold constant, changing only the architecture. Indeed, the
used hyperparameters were chosen from the Stable Baseline
RL Zoo (Raffin, 2018), which were optimized for the fully
connected policy architecture. Having reached almost equal
and often slightly better results with other architectures with-
out tuning the hyperparameters shows the potential of the
investigated architectures.

6. Limitations
The hyperparameters used during all evaluations were op-
timized for the combination of the fully connected MLP
and the targeted environment. That results in a hard to
beat baseline, but more importantly do not allow the con-
sidered architectures to show their full potential. Even the
additional hyperparameters introduced with different archi-
tectures were only tuned by hand on a few runs instead
of using optimization techniques like Bayesian Optimiza-
tion or Random Search. Several proposed architectures are
tested in their first or second version and have known areas
of improvement. The attention mechanism for example is
expected to be improved by utilizing a regularization pun-
ishing values that are away from one or zero, corresponding
to full and no attention for an input.

The evaluation on a single environment can of course be
only a first small step on the way to finding a better policy
architecture targeted on the usage with robotic systems. In
addition, the considered environment only supports a few



Searching for a better Policy Network Architecture

properties of state of the art physics engines like MuJoCo
(Todorov et al., 2012). An example is the lack of friction
and damping in the joints.

7. Conclusion
Following our search for a policy architecture that would out-
perform the default fully connected Multilayer Perceptron
on the Bipedal Walker Environment we explored multiple
architectures. Inspired by the high sparsity in Weight Ag-
nostic Neural Networks (WANNs) we introduced several
approaches to reduce the density of a neural network. This
inspiration was backed by our intuition of deep networks
combining the inputs to form high level features and the
assumption that robotic input data has a high degree of infor-
mation. Therefore, we expected only a few inputs needed to
be combined to form good hyperfeatures which is given in
sparsely connected architectures. To our surprise indeed, a
all network with learnable sparsity always converged to the
same small sparsity showing a clear preference for dense
solutions. However in line with our expectations, we found
architectures that combined only 2-4 inputs in each hidden
layer, thus reduced the size of the policy network by up to
85% and have not reduced the performance compared to the
fully connected baseline.
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