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Abstract— Construction is an industry that could benefit
significantly from automation, yet still relies heavily on manual
human labor. Thus, we investigate how a robotic arm can be
used to assemble a structure from predefined building blocks
autonomously. Since assembling structures is a challenging task
that involves complex contact dynamics, we propose to use a
combination of reinforcement learning and planning for this
task. In this work we take a first step towards autonomous
construction by training a controller to place a single building
block in simulation. Our evaluations show that TD3 can be
used on this task to achieve placement errors of around 1cm
on average. We conclude that this precision - albeit not being
perfect - validates our approach and gives reason to move on
to more complex assembly tasks which include structures with
multiple blocks.

I. INTRODUCTION

In modern society, automation is omnipresent in large parts
of the world-wide economy. Yet construction - despite being
one of the biggest industries - is still relying heavily on
manual human labor. Due to the versatility and complexity
of the work performed on construction sites, human work
force is vital and cannot easily be replaced by machines.

However, working in the construction industry is linked
to a series of health and safety problems. For example in
the UK, 27% of fatal workplace injuries happen in the
construction industry [1]. Heavy lifting and working in
cramped positions for long durations, which is typical in
the construction industry, also increases the risk of muscu-
loskeletal disorders [1]. Therefore, construction workers are
often forced to quit their job early due to health problems.
Furthermore, there are construction tasks in locations that are
inherently inaccessible or unsafe to human workers, such as
areas of recent natural disasters, deep sea, or outer space [2].
Many of these problems can be avoided by using robots
instead of human workers to fulfill harmful and dangerous
tasks on construction sites.

In this work we aim to tackle the problem of constructing
modular designs in simulation using a UR10 [3] robot arm
with a Robotis RH-P12-RN [4] gripper. The designs we
construct consist of predefined building blocks, which we
will call parts for the remainder of this report. A predefined
construction plan defines the target positions and orientations
of each part as well as the order in which the parts have to
be placed. For a visualization of the described setup, please
refer to Figure 1.

An additional benefit of simulating the construction pro-
cess is that the target structure can already be optimized for
automated assembly during the design phase. Such a design-
for-robotic-assembly [5] process would allow for modifica-

Fig. 1. UR10 robot with a Robotis RH-P12-RN gripper manipulating a
part in a PyBullet simulation. The objective is to move the grasped part
to the target location on the left. For reference: the robot arm has a length
of 130cm, the building block is 10cm high, 30cm wide and 20cm long.

tions in the target structure that avoid instabilities during the
construction process or increase the overall efficiency of the
automated construction.

During construction, accumulating inaccuracies in the
placement of parts, incorrectly placed grasps, and slippage
make it necessary for the controller adapt to feedback from
sensors. Typically, an RGB or depth camera is used to
provide sensor input to the controller in such scenarios.
Cameras, however, have the disadvantage that crucial parts
of the scene can be occluded by the robot or by the object
that is manipulated by the robot [6]. Additionally, in contact-
rich manipulation tasks, very small offsets of a couple of
millimeters can already have a significant impact on the task
performance. For example, a small error in the estimated part
position can make the difference between placing the part
correctly and hitting and potentially destroying the present
structure.

Since it is hard to consistently obtain such levels of
accuracy from a camera alone, we compliment the input from
an Intel RealSense LiDAR L515 [7] depth camera with a
DIGIT [8] vision-based tactile sensor on each fingertip of the
robot gripper. Tactile sensors have been shown to be capable
of detecting slippage [9, 10] and have been used for a variety
of manipulation tasks in the past [11, 12, 13]. The DIGIT



sensor was chosen for this task since it is provides high-
resolution feedback, is comparably inexpensive, and small
enough to be attached to the fingers of the Robotis RH-P12-
RN gripper.

Using such high-dimensional sensors comes with the ma-
jor drawback that the sensor readings are typically hard to
interpret. Therefore, we approach the task with a combination
of reinforcement learning and planning as further described
in subsection III-D. In section V we evaluate our method on
a task where a single part has to be placed in a predefined
pose in an otherwise empty scene and show that our method
achieves a mean placement error of around 1cm. We con-
clude that our results validate our method and give reason
to move on to more complex assembly tasks consisting of
multiple parts.

II. RELATED WORK

Similar to our work, Hartmann et al. [5] also investigate
the problem of building structures from a set of given
blocks with autonomous robots. They approach the task by
applying task-and-motion planning to calculate a path in
the configuration space of the robots. However, the authors
neglect the actual control problem and instead assume that
the robots are able to follow the plan perfectly without any
deviations and that the parts can be grasped without any
slippage, which limits the applicability of this approach.

Sartoretti et al. [14] tackle the problem of building a
structure with many tiny autonomous robots. Reinforcement
learning is used to learn a common collaborative policy for
all robots. The fact that the policy is shared across all robots
allows to vary the number of robots without much additional
effort.

Utilizing tactile information for robotic manipulation tasks
is an area of active research [15, 16]. Since information
from tactile sensors is typically high-dimensional and hard to
interpret, oftentimes learning is applied to create controllers
that use this kind of information. For example in [11] a
model is learned that predicts whether a future grasp will
be stable, based on input from a GelSight [17] tactile sensor
and the actions to be executed. The controller then searches
the action space for a actions that will result in a stable
grasp. In [12] reinforcement learning is used to stabilize an
object with a robot arm based on tactile feedback from a
BioTac [18] tactile sensor. Tian et al. [13] use reinforcement
learning to move and rotate small objects like marbles and
dice based on sensor information from a modified GelSight
sensor.

III. METHODOLOGY

In the following section we describe the construction task
to be solved, how the task is simulated, and which techniques
are used to solve the task.

A. Task Definition

The objective of this work is to use a robot to build
modular structures out of different types of building blocks
(parts) according to a predefined construction plan. This

construction plan defines not only the target position and
orientation of each part in the structure but also the order in
which the parts have to be placed. While it would be possible
to include finding the optimal placement order as part of
the task, we decided that solving this discrete optimization
problem would require intensive research that goes beyond
the scope of this project. Thus, we model the construction
plan P as a list of steps si = (ti,pi,qi), where ti ∈ N
is a part type identifier, pi ∈ R3 is the target part position
and qi ∈ R4 is the quaternion that describes the target part
orientation.

B. Simulation Environment

Since training reinforcement learning algorithms on real
robots is time and labor intensive, we use a simulator to
enable rapid training. Later, the learned controllers will be
transferred to the real robot and fine-tuned. While our first
choice of a simulator was CoppeliaSim [19], we later
decided to perform our experiments using PyBullet [20]
instead, as the lower communication overhead of the latter
reduced our runtime to roughly 25% of the original runtime.

As visible in Figure 1, we use a simulated version of
the UR10 [3] robot arm with the Robotis RH-P12-RN [4]
gripper. The UR10 arm has 6 motorized joints, which we
control in velocity mode, while the RH-P12-RN gripper has a
single motor to operate 4 joints, which we control in position
mode. On the fingertips of the gripper, we attached simulated
DIGIT sensors, as further described in subsection III-C. The
robot controller is executed at a rate of 20Hz which is
realistic for a real system as well. However, contrary to a
real system the simulator is fully synchronized and hence
will not produce any delayed signals and any action issued
by the controller will be applied immediately.

C. Simulating the DIGIT sensors

DIGIT [8] is a high-dimensional vision-based tactile sen-
sor, similar to GelSight [17]. It consists of an opaque layer
of gel, which is illuminated from the inside of the sensor
by three differently colored LEDs. These LEDs are placed
inside the casing so that they illuminate the gel from different
directions. The reflections of the LEDs’ light from the gel is
captured by an RGB camera. If the sensor touches an object,
the gel deforms according to the geometry of the object. This
deformation changes how the light of the LEDs reflects from
the gel and thus the geometry of the touching object can be
seen in the image captured by the camera (see Figure 2).

To train the agent in simulation, it is necessary to simulate
the DIGIT sensor. PyBullet is one of the few simulators
that features a deformable object simulation. However, this
feature is still experimental and thus often yields not very
realistic behavior, as noted by Matas et al. [21]. We found
that the deformable object simulation is not realistic enough
to simulate the gel of the sensor properly.



Fig. 2. Output of the real DIGIT sensor (image taken from [8]). Touching
the coin with the sensor causes the gel to deform according to the coin’s
surface geometry. Fine details of the coin are clearly visible in the reflections
of the LEDs’ light from the gel.

Hence, instead of relying on deformable object simulation,
we adapted the work of Gomes et al. [6]. Gomes et al.
simulate the GelSight [17] tactile sensor with the help of
a simulated depth camera. They do not simulate the layer
of gel at all and instead use the depth camera to sense the
geometry of objects that are close enough so that they would
touch the gel layer. The authors use Phong shading [22] to
calculate how the light of the LEDs is reflected from the
gel if it is deformed by the sensed object geometry. For an
exemplary output of the simulated DIGIT sensor, please refer
to Figure 3.

Fig. 3. Output of the simulated DIGIT sensor. One sensor is mounted on
each fingertip of the gripper as it grasps a small sphere.

Since the resolution of the sensor is fairly high (640 × 480
pixels), the simulation is computationally expensive. Initially,
one measurement took 136.9 milliseconds1, which is quite
limiting since measurements are required at every simulation
step during training. By using the GPU to accelerate the sen-
sor simulation, we were able to reduce the computation time
for one measurement to 8.5 milliseconds1. This corresponds
to a speedup of factor 16.

D. Combining Planning and Reinforcement Learning

To complete a single step of the construction process,
the robot has to perform three steps: grasping the part at
the pickup location, transporting the part to the vicinity of

1Measurements taken on an AMD Ryzen 5 3600 CPU with an Nvidia
GeForce RTX 2070 GPU

the target location, and placing the part. One option is to
use reinforcement learning and learn to perform all three
steps at once. However, this would cause fairly long training
sequences, which are generally hard to learn, especially if
the rewards are sparse. A general way of dealing with such
problems is reward shaping [23], where expert knowledge
about the solution is incorporated into the reward function
to guide the learner towards a good solution. Yet, methods
that require reward shaping are usually less general as the
reward function is solution specific and they might result in
a lower final performance as the agent is prevented from
exploiting strategies that the expert did not consider [23].

Hence, in this work we chose a different approach. Instead
of applying reinforcement learning on all steps at once,
we only learn to perform the placing step and use open-
loop trajectory planning for the grasping and transporting
steps. Using trajectory planning for the transporting step is
reasonable, as the way the part is transported is unlikely
to influence the quality of the final placement if the part
was grasped properly. Algorithms for collision-free trajectory
planning have been developed for years and we found them
to be robust enough for this application [24].

Using planning for the grasping step on the other hand
comes at two major disadvantages. Firstly, for each type of
part, a grasping sequence has to be created manually, which
limits the generality of this method. Secondly, depending
on the target position of the part, different grasps might be
appropriate. While most parts can probably be placed by
grasping them from the top, there might be some configu-
rations where this is not possible. As an example, consider
a part that has to be placed on the very top of a structure,
barely in reach of the robot arm. Grasping that part from
the side or below would increase the effective workspace
of the robot and maybe make a placement possible that
would be impossible if the part was grasped from the top.
However, due to the limited scope of this project, we leave
reinforcement learning for the grasping step as future work.

E. Learning to Place Parts
In the placing step, the robot starts with the part grasped

and close to the target location.

a) Optimization Objective: The objective is to learn
a policy πθ (a | o) that minimizes the expected cost of an
episode τ = (s1,a1, . . . ,aT−1, sT ):

min
θ

Eτ∼p(τ |πθ)

[
φf (sT ) +

1

T

T−1∑
t=1

φi (st,at)

]
where st is the full system state at time step t, ot is the
observation the policy gets of st, at is the chosen action,
φf (sT ) is the final cost, φi (st,at) is the intermediate cost
at step t, and

p (τ | πθ) = p (s1)

T−1∏
t=1

p (st+1 | at, st)πθ (at | ot) p (ot | st)

is the trajectory distribution induced by policy πθ. Here, T
is not fixed but we terminate the episode when the robot



releases the part or when a maximum number of steps Tmax

has been reached.
The action vector is composed of two components: a =

(aarm, agripper), where the entries of aarm ∈ R6 are the target
joint velocities of the 6 arm joints and agripper ∈ [0, 1] is the
target closure state of the gripper. Concerning the gripper
control signal, a 1 indicates that the gripper shall be fully
closed, while a 0 indicates that the gripper shall be fully
opened. The signal is realized by a position controller on
the gripper motor.

Our main objective is that all parts in the structure are
placed properly and in a stable manner. Hence, we chose
our final cost function to be a linear combination of two
functions to cover both aspects of that objective:

φf (sT ) = αposeφpose (sT ) + αvelφvel (sT )

where αpose, αvel ∈ R are weighting factors and φpose and φvel

are cost functions for the part poses and velocities, further
explained below.
φpose is a penalty for the pose error of any part in

the scene. To ensure that the robot is not displacing any
previously placed parts, this penalty includes the pose errors
of previously placed parts. Note that “pose” here refers
to a combination of position and orientation. Since it is
challenging to define a distance metric on poses directly, as
it is not straightforward to weight position and orientation
error up in a useful manner, we chose a different approach
to measuring pose error. To measure the error in pose, we
compute the average positional error of the 8 vertices of the
bounding box of each part:

d2k =
1

8

8∑
j=1

‖mkj − m̃kj‖22

where mkj is the target position of vertex j of part k at the
final time step and m̃kj is the actual position, respectively.
The final pose cost is then computed as

φpose (sT ) = min

{
1
P

∑P
k=1 δlog

(
d2k
)

φmax
pose

, 1

}
where P is the number of parts of the structure, including the
part to be placed and φmax

pose is a hyperparameter that controls
the clamping of this term. The intuition behind the clamping
is that if the part is placed to far away from the target
location, we consider the task as failed and simply assign
a maximum cost. Hence, the reward becomes more sparse
and the Q-function in regions far away from the target state
(e.g. if the robot threw the part away from itself) becomes
easier to learn. The scaling of this term by 1

φmax
pose

simply
ensures that φpose (sT ) ∈ [0, 1], which makes it easier to
choose the weights α later, since all cost terms will share
the same domain. Further, δlog is defined as follows:

δlog
(
d2
)
= d2 + 0.01

(
ln
(
d2 + 10−5

)
− ln

(
10−5

))
(1)

While it would be possible to use the mean of the distances
d2k directly as a cost function, this approach comes at a
major drawback: the closer a part is to its target pose, the

flatter the squared penalty becomes and the less incentive
the learner has to place the part even more precisely. Yet,
as argued before, in contact-rich manipulation tasks, even
sub-millimeter accuracy can be crucial for the successful
completion of a task. The function in Equation 1 on the
other hand has a concave shape near the optimal position
while being similar to a quadratic cost term further away, as
visible in Figure 4. We follow prior work with this type of
cost function [25].
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Fig. 4. Plot of the distance term used in the cost function. The concave
shape introduced by the logarithmic term encourages the optimization to
reach the target position as precisely as possible.

φvel is a penalty for part velocity at the final time step for any
part in the scene. By including this term in the cost function,
we ensure that the structure is stable after the part has been
placed. We formulate this term as a quadratic penalty on the
linear and angular velocity of parts:

φvel (sT ) = min

{
1
P

∑P
k=1

∥∥vklin∥∥22 + ∥∥vkang

∥∥2
2

φmax
vel

, 1

}
where vklin is the linear velocity of the center of part k at the
final time step, vkang the angular velocity, respectively, and
φmax

vel is again a hyperparameter.
The intermediate cost φi (st,at) consists of a constant

term and penalty on the acceleration of the end-effector:

φi (st,at) = αtime + αaccφacc (st,at)

The first term encourages the learner to complete the episode
quickly, while the second term is defined as follows:

φacc (st,at) =
1

φmax
acc

(∥∥∥ (vee
lin)t − (vee

lin)t−1

∥∥∥2
2

+
∥∥∥ (vee

ang

)
t
−
(
vee
ang

)
t−1

∥∥∥2
2

) (2)

where (vee
lin)t and

(
vee
ang

)
t

are the linear and angular
velocities of the end-effector at time t, respectively. The
purpose of this term is to encourage smooth movements
in order to reduce energy consumption and decrease



the likelihood of the part being accidentally dropped.
Additionally, we found the contact simulation between the
part and the gripper to be less stable when the grippers
movement is jagged.

b) Observation space: The observation o of the agent
consists of the joint angles and velocities of both the robot
arm and the gripper and the end-effector pose and velocity
in cartesian space. While the observations eventually would
also include the images from the LiDAR camera and DIGIT
sensors, we simplify the task for now by giving the agent
access to the true poses of the current part and the k parts
closest to the target position. Since the target pose of the
part is different for every part, we also include it in the
observation and hence train a goal-conditioned policy.

While it is straightforward to find vector representations of
all the state attributes mentioned above, some of them need
a bit of tweaking to work well with neural network policies.
Firstly, the joint positions of the robot could for example
be represented by the joint angle in radians. However, then
they either would not be unique as angles are 2π periodic
or if they are restricted to lie within e.g. [−π, π], there
would be a discontinuity in the representation between −π
and π. We deal with this problem by representing each
angle ϕ in a continuous 2-dimensional fashion, namely
as (sin (ϕ) , cos (ϕ))

T . While this increases the observation
dimensionality, we found it to lead to a more stable training.

Finally, a lot of the observed properties are poses of some
kind (e.g. part poses or the end-effector pose), which consist
of a 3D position and orientation each. There are many ways
to represent orientations in 3D, the most popular of which are
probably Euler angles and quaternions. Euler angles suffer
from the disadvantage that they are neither unique nor is
their mapping to the space of 3 dimensional rotations con-
tinuous [26]. While quaternions are almost unique (there are
always two quaternions that describe the same rotation), their
mapping to the rotation space is also not continuous [26] and
they are hence not well suited to be used as input for neural
networks. Instead, we follow Zhou et al. [26] and use rotation
matrices to represent orientations. Since rotation matrices are
orthogonal, their entries are highly redundant and could in
theory be reduced from 9 to 5 without loosing information.
Zhou et al. found, however, that using two full columns of
the rotation matrix yielded the best results. Hence, instead
of 3 or 4 dimensions, we use a continuous 6 dimensional
representation of orientations in 3 dimensional space.

F. Algorithm

We decided to use the model-free reinforcement learning
algorithm Twin Delayed DDPG (TD3) [27] to learn the
controller since there already exists a stable implementation
as part of the stable-baselines3 [28] project and TD3
is said to require relatively little hyperparameter tuning [29].
TD3 is a successor of the well-known algorithm Deep
Deterministic Policy Gradients (DDPG) [30].

Note that the following section is formulated with rewards
r instead of costs φ to match the formulation in the original

paper [27]. The use of TD3 with our cost formulation
from subsection III-E is straightforward since costs are
nothing but negative rewards: r = −φ.

TD3 learns two Q-functions Qθ1 and Qθ2 and a policy
πψ , which are parameterized by neural networks. To make
learning more stable, TD3 uses separate target Q-functions
Qθ′1 and Qθ′2 and a target policy πψ′ to update the current
Q-functions Qθ1 and Qθ2 . The parameters of the target
networks are updated to slowly track the parameters of the
current networks:

θ′i ← τθi + (1− τ)θ′i
ψ′ ← τψ + (1− τ)ψ′

with τ ∈ (0, 1) being a hyperparameter.
TD3 maintains a replay buffer, in which it stores previ-

ously seen transitions as tuples (s, a, r, s′). At each update
step TD3 samples a random minibatch of N transitions
(sj , aj , rj , s

′
j) from the replay buffer. Both Q-functions Qθ1

and Qθ2 are then trained to minimize the error of the Bellman
equation. To counter the overestimation bias that is present in
DDPG, both target Q-functions Qθ′1 and Qθ′2 are evaluated
and the smaller of the two values is used as target. This
results in the following loss function:

L(θi) =
1

N

∑
j

(yj −Qθi(sj , aj))2

yj = rj + γ min
i=1,2

Qθ′i(s
′
j , ãj)

where ãj denotes the action chosen by the target policy πψ′

plus Gaussian noise:

ãj = πψ′(s′j) + ε

ε ∼ clip(N (0, σ),−εmax, εmax)

The noise is added to enforce the notion that in a given state
similar actions should result in similar values.

The policy πψ is trained to maximize the agent’s perfor-
mance J :

J(ψ) = E

[
T∑
t=1

γtr(st, πψ(st))

]
This optimization is done by estimating the policy gradient
with Q-function Qθ1 :

∇ψJ(ψ) ≈
1

N

∑
j

∇aQθ1(s, a)|s=sj ,a=πψ(sj)∇ψπψ(s)|s=sj

IV. RHINO 6 INTEGRATION

This project is part of a cooperation between IAS and the
Digital Design Unit (DDU) of the architecture department,
with the long term goal of automating design and construc-
tion tasks. Currently, the process of designing buildings and
other structures is typically done manually in a 3D-CAD
tool, like Rhino 6 [31]. A team of the DDU is working on
the challenging task of automating the design of structures
using reinforcement learning. Since it is possible to create
arbitrarily complex structures in modern 3D-CAD programs,



Fig. 5. The path finding task in simulation: the robot starts in a randomly
perturbed upright position and has to reach the target position (marked with
a yellow sphere) with its gripper.

they simplified the problem to creating structures out of a set
of predefined modules (parts). The objective is then to create
a construction plan consisting of the pose of each part and the
order of placement that minimizes some cost function. These
construction plans can then be used to construct the structure
automatically and potentially report information about the
constructability back to the architect. It is also thinkable
to directly use constructability as a cost measure for the
reinforcement learning algorithm creating the design in the
future.

One of the key factors in rating a structure’s quality is
stability, which can be evaluated using a physics simulator
like CoppeliaSim or PyBullet. While it is possible
to try to construct each structure with the robot in order
to assess its stability, the resource and time requirements
would be high. Especially since most potential structures are
already unstable without any kind of robot intervention, it
is reasonable to filter those out without going through the
effort of trying to construct them.
Rhino itself does not offer any kind of physics simulation

off the shelf but it allows to write extensions in Python using
the Grasshopper [32] plugin. Grasshopper allowed
us to contribute to the DDU team’s efforts by integrating
the PyBullet simulator into Rhino. Specifically, this
integration allows to simulate a modular structure for a fixed
amount of seconds and visualize the resulting poses of all
parts. The results of this simulation can either be used to
manually refine a structure until it is stable or as a cost
measure for a structure generating reinforcement learning
algorithm.

V. EVALUATION

We evaluated our approach on two different tasks: path
finding and single part construction. The path finding task is

a toy-task we used to check the sanity of our environment and
the algorithms used. As further described in subsection V-
A, the objective here is to move the gripper to a varying
target position. In the single part construction task, further
described in subsection V-B, the robot has to place a single
part in an otherwise empty environment. Hence, this task can
be seen as a first step towards autonomously constructing
complex modular structures. We approach both tasks using
the stable-baselines3 [28] implementation of TD3.
The same hyperparameters are used for both problems. The
values of all these hyperparameters are listed in appendix A.

A. Path Finding

In this task, the robot arm always starts in a slightly
randomly perturbed upright position as visible in Figure 5.
The objective is to move the end-effector as close as possible
towards a target position within a time window of 2 seconds.
This target position is drawn uniformly randomly from a
sphere with 30cm radius placed around 1.15m above the
ground. As a cost function we use a linear combination of the
end-effector acceleration penalty introduced in Equation 2
and the distance function of Equation 1 on the Euclidean
distance to the target position:

φpath (τ) =
1

T

T∑
t=1

0.95 · φee (st) + 0.05 · φacc (st,at)

where T = 40 is the number of steps. We define the
gripper distance cost φee as follows:

φee(st) =
δlog

(
‖ptg − pee

t ‖
2
2

)
φmax
ee

where ptg ,pee
t ∈ R3 are the target and current end-effector

positions, respectively and set φmax
ee = 0.4.
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Fig. 6. Path Finding task: evolution of the gripper position error in the
final time step of an episode (2s) over the course of the training using TD3.
Number of steps refers to the total number of simulator steps made at the
respective point in the training. The data was obtained by evaluating the
model on 100 unseen test configurations every 100,000 steps. We started
with a learning rate of 10−4 and multiplied it by a factor of 1√
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Fig. 7. Single Part Construction task: evolution of the cost function and the part center position error in the final time step of an episode (5s) over the
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part starts 30cm above the ground. Number of steps refers to the total number of simulator steps made at the respective point in the training. The data was
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every 5 million steps, which likely explains the sudden convergence at the 5 million step mark. The reason the training stopped at different

step counts for each run was due to the time limit of 72h being reached before the maximum step count of 25 million could be reached.

Figure 6 shows the results of TD3 on the path finding
task. As visible in the graph, TD3 is able to reduce the mean
displacement of the gripper to its target location to 5cm at the
end of an episode. The slight descent at the end of the graph
also seems to indicate that further improvement is possible
by continuing the training with a smaller learning rate.
However, as this is only a toy task and our simulations are
generally fairly time and computation intensive, we decided
not to continue the training and rather focus our resources
on learning manipulation skills.

B. Single Part Construction
In this task, the robot has to perform the placing step on

a randomly generated structure consisting of a single part,
measuring 30×20×10 cm. Since there is only one part, the
only difference between the structures is the pose of that part.
We generate each training structure by placing the part uni-
formly randomly on the bottom a cube of 60cm side length
while keeping the orientation constant. The robot starts with
the part already grasped in the correct orientation around
50cm from its target location. As described in subsection III-
E, the objective of this task is to place the given part as
precisely in its target pose as possible, in a way that it does
not move at the end of the episode.

Figure 7 shows the course of the training for two different
instances: in the first the part starts laying on the floor
(marked as gnd) and in the second the part is around 30cm
above the ground when the episode starts (marked as air).
The starting configuration of the former instance is visualized
in Figure 1, where the transparent part marks the target
location of the part. In both instances we use αpose = 0.65,
αvel = 0.3, αacc = 0.04, and αtime = 0.01, as well as
φmax
pose = 0.5, φmax

vel = 1 + π, and φmax
acc = 100. 10,000

randomly generated structures serve as training data while
100 unseen structures are used for evaluation every 100,000
steps.

As visible in the graph, the mean final part position error
is around 1cm for the gnd configuration and around 1.7cm
for the air configuration. While a placement accuracy of
1–2cm is not perfect yet and could likely be improved by
hyperparameter tuning, we believe that these results validate
the feasibility of our approach and give reason to move on
to constructing structures consisting of multiple parts.

VI. CONCLUSION AND FUTURE WORK

In this work we tackled the problem of autonomous con-
struction of modular structures in simulation. We separated
the problem of placing a part into 3 stages: grasping, trans-
porting, and placing and focused on the latter step. During
our evaluation we showed that reinforcement learning can be
used to learn to place parts in an otherwise empty structure
with reasonable accuracy. While the accuracy presented
in Figure 7 can likely be improved with more hyperparameter
tuning, our main focus will lie on constructing structures with
multiple parts in the future.

One issue of our implementation is the fairly high training
time required in each run. The training presented in sub-
section V-B was stopped after it reached the time limit of
72h before reaching the target step count. Considering that
a higher number of parts in the scene not only increases
the task complexity but also the computational effort of the
simulator at each time step, much higher training times are
to be expected when learning to construct more complex
structures. While increasing the training time limit is the
most straightforward way of dealing with this problem, it



comes at the drawback that hyperparameter tuning becomes
prohibitively expensive in terms of time. A better, yet more
complex solution would be to optimize the learning proce-
dure in order to increase the number of training steps per
second. Since the bottleneck of the training are the simulator
rollouts, which are currently drawn in a sequential way, we
will focus on extending our implementation to allow parallel
drawing of rollouts from multiple simulator instances. As
we are training on a computer cluster with many CPU
cores, we expect a substantial increase in performance from
parallelization.

Model-based reinforcement learning algorithms often tend
to require less training samples than model-free algo-
rithms [33]. Thus, a way to reduce the training time could
also be to switch from the model-free algorithm TD3 to a
model-based algorithm, such as PlaNet [34]. PlaNet has been
shown to reach similar performance as model-free algorithms
on several continuous control tasks, while needing 200 times
less training samples on average. In future work, we will
apply PlaNet to our task to investigate whether it is more
sample-efficient than TD3 for this task.

Furthermore, we currently only evaluate the construction
of structures consisting of a single part. While our cost
function is already designed to work with multiple parts,
there are other challenges that need to be tackled in order
to construct larger structures. One major challenge is the
inclusion of the previously placed parts into the robot’s
perception. Since every structure is different, the robot has to
have some way of sensing where other parts in the structure
are in order to place the next part without collision. One
way of adding this information is to include depth cameras
in the simulation and use a CNN in the policy to evaluate
those. However, adding cameras introduces a series of new
challenges, as some parts might be occluded and the robot
now additionally has to learn to interpret visual signals.
While eventually the real robot is going to use a camera
to sense the existing structure, we will start by providing
information about other parts in the scene directly to the
policy in terms of positions and orientations for now. The
challenge here is to deal with different numbers of parts
in the scene and achieve invariance to permutations. Both
of these challenges could be tackled by utilizing Graph
Convolutional Networks [35].

Additionally, we plan to learn a controller also for the
grasping step in the future. Learning a controller for grasping
allows the agent to adjust its grasp to the part type and target
position. Adjusting the grasp is crucial to be able to place
parts at the boundary of the workspace or in areas where the
grasp from above might be blocked by already placed parts.

Finally, the long term goal of this project is to be able to
construct structures using a real robot. While the real robot
is already operational, there are a number of challenges that
need to be tackled when transferring our method to the real
world. First of all, especially when contact is happening,
simulators can be fairly inaccurate, which makes transferring
the policy to the real system challenging as it first has to be
fine-tuned on the new system dynamics. Furthermore, some

measurements that are easy to obtain in simulation are not
directly available in the real system. One example is the pose
of the parts, which is used in the cost function and as sensor
input to our robot and can only be obtained by evaluating the
images of our depth camera. Finally, the simulation of the
DIGIT sensors is likely to be inaccurate, as the deformation
of the gel is not simulated in our approach. While we did
some experiments with soft body simulation, we found the
results to be very unstable and inaccurate and hence decided
to refrain from simulating deformation.
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APPENDIX

A. Stable-baselines3 model hyperparameters

In Table I the hyperparameters that were passed to the
TD3 implementation in stable-baselines3 are given.

Parameter name Value
gamma 0.99

buffer size 500000
learning starts 4096

batch size 256
train freq 1024

gradient steps 100

TABLE I
PARAMETERS USED FOR THE TD3 ALGORITHM FROM

STABLE-BASELINES3

For the policy and Q-functions we used a two-layer fully-
connected network with ReLU activations and 400 and 300
neurons per layer. The action noise is distributed normally
with µ = 0 and σ = 0.01. The parameters that are not
mentioned above were left at the default value.
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