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Abstract— Construction is an industry that could benefit
significantly from automation, yet still relies heavily on manual
human labor. Thus, we investigate how a robotic arm can be
used to assemble predefined structures from complex building
blocks autonomously. We propose to split the task of adding
a building block to an existing structure into three subtasks:
grasping, transporting, and placing. For the grasping and trans-
porting subtasks, we apply the sampling-based motion-planning
algorithm RRT-connect to plan collision-free trajectories in a
simulated scene. These trajectories are then executed on a real
UR10 robot arm. Since placing a block involves complex contact
dynamics, we propose to use reinforcement learning for this
task. We use the model-free reinforcement learning algorithm
TD3 to train such a controller. In our evaluation, we show that
the learned controller is able to place a block on another one
with an average accuracy of around 8mm.

I. INTRODUCTION

Nowadays, automation is an integral component in many

parts of the world-wide economy. However, working in the

construction industry requires solving complex manipulation

tasks. Hence, automation in this field is still an active area of

research (e.g., [1, 2, 3]). To date, the construction industry

relies heavily on manual human labor.

Working in the construction industry, however, is linked

to a series of health and safety issues. For example in the

UK, a report from 2020 found that the rate of fatal injuries

in the construction industry is almost four times as high

as the national average [4]. Furthermore, heavy lifting and

working in cramped positions for long durations, which

is typical in the construction industry, also increases the

risk of musculoskeletal disorders [4]. Therefore, construction

workers are often forced to quit their job early due to

health problems. Furthermore, there are construction tasks in

locations that are inherently inaccessible or unsafe to human

workers, such as areas of recent natural disasters, deep sea,

or outer space [5]. Many of these problems can be avoided

by using robots instead of human workers to fulfill harmful

and dangerous tasks on construction sites.

The Robotic Assembly project is part of an interdisci-

plinary cooperation with the Digital Design Unit1 of the

architecture department at TU Darmstadt with the goal of

automating the construction of modular structures. These

structures consist of predefined building blocks. In this work

we take a look at two different kinds of blocks, the block

in figure 1a, we call rectangular block and the one shown

in figure 1b, we call SL block. From the architecture point

of view, these shapes are interesting since they interlock

when stacked. Thus, these blocks allow to construct stable

1https://www.dg.architektur.tu-darmstadt.de/

fachgebiet_ddu/index.en.jsp

(a) Rectangular block (b) SL block

Fig. 1. The types of blocks that are used to construct modular structures
from. The blocks are designed in such a way that they interlock during
construction. Hence, less mortar is needed to construct stable structures
from these blocks.

Fig. 2. Example structures built from rectangular blocks and SL blocks

structures, while needing less mortar. In this work we aim

to tackle the problem of constructing small structures from

these blocks using a UR10 [6] robot arm with a Robotis

RH-P12-RN [7] gripper. Example structures that can be built

from the blocks are visualized in figure 2.

A. Combining planning and reinforcement learning

To complete a single step of the construction process,

the robot has to perform three steps: grasping a block at

the pickup location, transporting it to the vicinity of the

target location, and placing it. During construction, there

is a multitude of sources of inaccuracies, like inaccurately

placed blocks, incorrectly placed grasps, and slippage. In

the contact-rich manipulation task of placing a block on

the existing structure, very small offsets of a couple of

millimeters can already have a significant impact on the task

performance. For example, a small error in the estimated

block position can make the difference between placing the

block correctly and hitting and potentially destroying the

present structure. Thus, it is clear that a controller needs

to adapt to external feedback to solve the task with high

accuracy in spite of these inaccuracies. Furthermore, for

complex shapes, like SL blocks, the motions for joining

two blocks are complicated and depend on the direction

https://www.dg.architektur.tu-darmstadt.de/fachgebiet_ddu/index.en.jsp
https://www.dg.architektur.tu-darmstadt.de/fachgebiet_ddu/index.en.jsp


from which the blocks should be joined. While we focus

on placing rectangular blocks for now, we strive for a

method that is also applicable for these very complex blocks.

Therefore, we propose to use reinforcement learning to

solve the placing subtask. That is, we train a controller

to place a block on the existing structure, with the block

already starting close to the target location. Learning such a

controller for rectangular blocks is described in section III.

For the subtasks of grasping and transporting, we use open-

loop motion planning, as described in section IV.

An alternative to this approach would be to learn all three

of these steps in sequence with a single controller. However,

this would cause very long training sequences, which are

generally hard to learn. This is especially the case if the

rewards are sparse. A general way of dealing with such

problems is reward shaping [8], where expert knowledge

about the solution is incorporated into the reward function to

guide the learner towards a good solution. Yet, methods that

require reward shaping are usually less general as the reward

function is solution specific and they might result in a lower

final performance as the agent is prevented from exploiting

strategies that the expert did not consider [8].

II. RELATED WORK

A. Task and motion planning

Similar to our work, Hartmann et al. [1] investigate the

problem of constructing structures from a given set of

building blocks with autonomous robots. They tackle the task

by bringing sampling-based motion planners into the Logic-

Geometric Programming framework [9]. This framework

allows to formulate task and motion planning (TAMP) prob-

lems as continuous mathematical programs with constraints

formulated in first-order logic. The problems are then solved

by alternating search over symbolic action sequences and

solving the corresponding path planning problems. Driess

et al. [10] propose to use a neural network to predict promis-

ing sequences of symbolic actions directly from images of

the initial configuration of the scene.

Lozano-Pérez and Kaelbling [11] tackle TAMP prob-

lems by converting them to constraint satisfaction problems

(CSPs). A generic CSP solver, e.g. [12], is then used to obtain

a solution.

A comprehensive overview of other approaches for task

and motion planning is given in [13].

B. Reinforcement learning for assembly tasks

Thomas et al. [14] tackle the task of assembling small

objects autonomously. The authors first apply motion plan-

ning to compute trajectories for solving the task. Due to

inaccuracies in the trajectory-tracking controller and the

localization of the objects in the scene, this approach often

does not succeed. Therefore, the idea of the authors is to

warm-start a policy search with a policy that follows these

planned trajectories. They show that the policy resulting from

this optimization is able to outperform the original trajectory-

tracking controller.

Sartoretti et al. [15] tackle the problem of building a

structure with many tiny autonomous robots. They use re-

inforcement learning to learn a common collaborative policy

for all robots. The fact that the policy is shared across all

robots allows to vary the number of robots without much

additional effort.

III. LEARNING TO PLACE RECTANGULAR BLOCKS

In the following section, we describe how the placing

subtask, described in section I-A, is framed as a reinforce-

ment learning problem. We then describe the techniques that

we use to tackle the task for the rectangular blocks (see

figure 1a) in simulation.

In the report of last semester, we showed how reinforce-

ment learning can be used to place a single block in an oth-

erwise empty scene with an accuracy of 1cm. This semester,

we tackled the task of stacking two blocks in different config-

urations. We achieved a slightly higher accuracy in this more

challenging task, while requiring less training samples. These

improvements were achieved mainly through hyperparameter

tuning and changes in the observations and cost function. The

changes in the observations included adding the current time

step as observation. Further improvements were achieved by

changing the scaling and clipping of different components

of the cost function, described in section III-B. Additionally,

the controller was made more robust to changes in the

environment by introducing further randomizations in the

initial state of the scene and robot during the training, which

is highlighted in section III-A.

A. Task Definition

At the beginning of each episode, the starting block is

placed at random in a square with 60cm side length. This

block is assumed to be placed correctly already, e.g., by the

controller that was trained last semester. The robot then has

to place a second block on top of the starting block in a given

stable configuration. Examples of these stable configurations

are shown in figure 3. While placing the second block, the

robot has to ensure that the first block is not displaced.

The spawning location of the second block is sampled

uniformly in a cube of side length 2cm that is located

30cm above the center of the starting block’s spawning

area. The spawning orientation is obtained by perturbing

the goal orientation slightly. This perturbation is achieved

by sampling Euler angles between −5° and 5° and rotating

the block accordingly. Each episode, the robot starts with

the block in its gripper. To avoid overfitting with respect

to the exact grasp location, the position of the grasp on

the block is also randomized along the ridges of the block

and along the block’s up-axis. Figure 4 displays a possible

starting configuration of the training environment. All these

randomizations are included to make the controller more

robust with respect to deviations in the positioning of the

block and gripper that might occur on the real robot due to

inaccuracies in the localization of the blocks and controller

deviations.



Fig. 3. Examples of stable configurations. The red block is already placed
at the beginning of the episode. The robot has to place the blue block
without displacing the red block.

Fig. 4. Example of a starting configuration simulated in PyBullet [16]. The
blue silhouette marks the target pose in which the block has to be placed.

An episode terminates if the gripper moves more than

10cm away from the current block or if the time limit of 3

seconds is reached. With the controller frequency of 20Hz,

this yields a maximum sequence length of 60 steps.

B. Optimization Objective

The objective is to learn a policy πθ (a | o) that minimizes

the expected cost of an episode τ = (s1,a1, . . . ,aT−1, sT ):

min
θ

Eτ∼p(τ |πθ)

[

φf (sT ) +
1

T

T
∑

t=1

φi (st,at)

]

where st is the full system state at time step t, ot is the

observation the policy gets of st, at is the chosen action,

φf (sT ) is the final cost, φi (st,at) is the intermediate cost

at step t, and

p (τ | πθ) = p (s1)

T−1
∏

t=1

p (st+1 | at, st)πθ (at | ot) p (ot | st)

is the trajectory distribution induced by policy πθ.

The action vector is composed of two components: a =
(aarm, agripper), where the entries of aarm ∈ R

6 are the target

joint velocities of the 6 arm joints and agripper ∈ [0, 1] is the

target closure state of the gripper. Concerning the gripper

control signal, a 1 indicates that the gripper shall be fully

closed, while a 0 indicates that the gripper shall be fully

opened. The signal is realized by a position controller on

the gripper motor.

Our main objective is that both blocks of the structure are

placed in their respective target pose. Hence, we chose the

final cost function as follows:

φf (sT ) = αposeφpose (sT ) (1)

where αpose ∈ R is a weighting factor. φpose is a penalty for

the pose error of the blocks. To ensure that the robot does

not displace the block that is already placed at the beginning

of the episode, this penalty includes the pose errors of both

blocks. Note that “pose” here refers to a combination of

position and orientation. It is challenging to define a distance

metric on poses directly since it is not straightforward to

weight position and orientation error up in a useful manner.

Thus, we chose a different approach to measuring pose error.

To measure the error of the pose, we compute the average

positional error of the eight vertices of the bounding box of

each block:

d2k =
1

8

8
∑

j=1

‖mk,j − m̃k,j‖
2
2

where mk,j is the target position of vertex j of block k at the

final time step and m̃k,j is the actual position, respectively.

While it would be possible to use the mean of the distances

d2k directly as a cost function, this approach comes at a

major drawback: the closer a block is to its target pose, the

flatter the squared penalty becomes and the less incentive

the learner has to place the block even more precisely. In

construction tasks, even tiny deviations from the correct

position can have a huge impact on whether a structure can

be assembled properly. Due to the complex shape of the

building blocks that we consider, even tiny deviations from

the target poses might cause that future blocks cannot be

stacked on the existing structure properly. We therefore adapt

the work of Levine et al. [17] and use

δlog
(

d2
)

= d2 + 0.01
(

ln
(

d2 + ǫ
)

− ln (ǫ)
)

as cost function, where ǫ = 10−5. Due to the function’s

concave shape close to 0, even small positioning errors are

punished significantly.

The final pose cost is then computed as

φpose (sT ) = min

{

1
B

∑B

k=1 δlog
(

d2k
)

φmax
pose

, 1

}

where B = 2 is the number of blocks in the scene and φmax
pose

is a hyperparameter that controls the clipping of this term.

The intuition behind the clipping is that if the block is placed

too far away from the target location, we consider the task as

failed and simply assign a maximum cost. Hence, the reward



becomes more sparse and the Q-function in regions far away

from the target state (e.g., if the robot threw the block away

from itself) becomes easier to learn. The scaling of this term

by 1
φmax

pose
simply ensures that φpose (sT ) ∈ [0, 1], which makes

it easier to choose the weights α later since all cost terms

will share the same domain.

The intermediate cost φi (st,at) consists of a constant

term, a penalty for movements of the current block while

it is not grasped, and a penalty on the acceleration of the

end-effector:

φi (st,at) = αtime + αrelφrel(st) + αaccφacc (st,at) (2)

The first term encourages the learner to complete the episode

quickly. φrel is a penalty for the movement of released blocks,

i.e., blocks that are not grasped. Previously, the controllers

often learned a strategy of throwing the block to the target

location to finish the task quickly. While this strategy works

well in simulation, it is not sensible for the real setup. In

reality the dynamics of the blocks are more complex and less

predictable due to effects that are not simulated with high

accuracy, like friction. Hence, we assume that this strategy

does not work as well in reality as it does in simulation.

Furthermore, this strategy potentially damages the blocks and

can be dangerous to humans that might work in the vicinity

of the robot.

As long as the block is in the gripper, the agent should

be able to move it around freely, without additional cost.

The cost φrel, thus, is activated only if the block is released

from the gripper. Whether the block is grasped is determined

by checking if the distance from the block to the gripper’s

fingers dfingers is larger than 1cm.

φrel (st) =

{

φvel (st) if dfingers > 0.01m

0 otherwise

The cost for the movement of a released block is realized

as a quadratic penalty on the block’s linear and angular

velocity.

φvel (st) = min

{

‖vlin‖
2
2 + ‖vang‖

2
2

φmax
vel

, 1

}

Here, vlin is the linear velocity of the block’s center, vang the

angular velocity, respectively, and φmax
vel is again a hyperpa-

rameter.

The penalty on the accelerations of the end-effector is

realized as a quadratic cost on the linear and angular velocity

differences between the current and the last time step.

φacc (st,at) =
1

φmax
acc

(
∥

∥

∥
(vee

lin)t − (vee
lin)t−1

∥

∥

∥

2

2

+
∥

∥

∥

(

v
ee
ang

)

t
−
(

v
ee
ang

)

t−1

∥

∥

∥

2

2

)

(3)

where (vee
lin)t and

(

v
ee
ang

)

t
are the linear and angular velocities

of the end-effector at time t, respectively. The purpose of this

term is to encourage smooth movements in order to reduce

energy consumption and decrease the strain on the robot’s

motors and gears.

C. Observation space

The observation ot of the agent consists of the joint angles

and velocities of both the robot arm and gripper, as well

as the end-effector pose and velocity in cartesian space.

For both blocks in the scene, the agent observes the center

positions and orientations, as well as their linear and angular

velocities. Furthermore, the target poses are included in the

observations as center position and orientation.

While it is straightforward to find vector representations

of all the state attributes mentioned above, some of them

need a bit of tweaking to work well with neural network

policies. For the joint positions of the robot, we use the

two-dimensional representation (sin (ϕ) , cos (ϕ))
T

. In com-

parison to using the angles directly, this representation has

the advantage that there is no discontinuity between the

representations of −π and π. To represent the 3D orientations

of the end-effector and blocks, we use two columns of the

respective rotation matrices. As shown by Zhou et al. [18],

this representation has the advantage that it is unique and

the mapping of the representation to the rotation space is

continuous. Hence, the authors found that this representa-

tion is better suited for neural networks. While both these

representations increase the observation dimensionality, we

found that using them leads to a more stable training.

Lastly, we also add the current time step to the observa-

tions. The importance of observing the time step in tasks

with time limits is shown by Pardo et al. [19]. The authors

argument that the time step is inherently part of the system’s

state since the termination of the environment at the time

limit can be seen as a transition to a terminal state that

only occurs if the final time step is reached. Thus, to avoid

violating the Markov property of the system, the time step

needs to be included in the system state. In our case this

problem can also be seen by the fact that the cost at the last

time step, defined in equation (1), is very different from the

intermediate cost, defined in equation (2). Hence, the agent

needs a notion of time to estimate the Q-function properly. In

practice, we found that adding the time step as observation

significantly improved the rate of convergence, as well as the

overall performance of the controller.

D. Algorithm

We decided to use the model-free reinforcement learn-

ing algorithm Twin Delayed DDPG (TD3) [20] to learn

the controller since it supports continuous state and action

spaces and there already exists a stable implementation [21].

Furthermore, TD3 is said to require relatively little hyperpa-

rameter tuning [22]. TD3 is a successor of the well-known

algorithm Deep Deterministic Policy Gradients (DDPG) [23].

Note that the following section is formulated with rewards

r instead of costs φ to match the formulation in the original

paper [20]. The use of TD3 with our cost formulation

from section III-B is straightforward since costs are nothing

but negative rewards: r = −φ.

TD3 learns two Q-functions Qθ1 and Qθ2 and a policy

πψ , which are parameterized by neural networks. To make

learning more stable, TD3 uses separate target Q-functions



Qθ′
1

and Qθ′
2

and a target policy πψ′ to update the current

Q-functions Qθ1 and Qθ2 . The parameters of the target

networks are updated to slowly track the parameters of the

current networks:

θ′i ← τθi + (1− τ)θ′i
ψ′ ← τψ + (1− τ)ψ′

where τ ∈ (0, 1) is a hyperparameter.

TD3 maintains a replay buffer, in which it stores previ-

ously seen transitions as tuples (s, a, r, s′). For each update

step, TD3 samples a random minibatch of N transitions

(sj , aj , rj , s
′
j) from the replay buffer. Both Q-functions Qθ1

and Qθ2 are then trained to minimize the error of the Bellman

equation. To counter the overestimation bias that is present in

DDPG, both target Q-functions Qθ′
1

and Qθ′
2

are evaluated

and the smaller of the two values is used as target. This

results in the following loss function:

L(θi) =
1

N

∑

j

(yj −Qθi(sj , aj))
2

yj = rj + γ min
i=1,2

Qθ′
i
(s′j , ãj)

where ãj denotes the action chosen by the target policy πψ′

plus Gaussian noise.

ãj = πψ′(s′j) + ǫ

ǫ ∼ clip(N (0, σ),−ǫmax, ǫmax)

The noise ǫ is added to enforce the notion that in a given

state similar actions should result in similar values.

The policy πψ is trained to maximize the agent’s perfor-

mance J .

J(ψ) = E

[

T
∑

t=1

γtr(st, πψ(st))

]

This optimization is done by estimating the policy gradient

with Q-function Qθ1 :

∇ψJ(ψ) ≈
1

N

∑

j

∇aQθ1(s, a)|s=sj ,a=πψ(sj)∇ψπψ(s)|s=sj

E. Results

For training the controller, we used following values for

the hyperparameters introduced in section III-B: αpose = 0.6,

αrel = 0.39, αacc = 0.005, and αtime = 0.005, as well as

φmax
pose = 0.2, φmax

vel = 0.1 + π
4 , and φmax

acc = 100.

The controller was trained with 10,000 randomly gen-

erated structures as training data. Every 100,000 steps,

the controller is evaluated on 1,000 unseen test structures.

Figure 5 shows the evolution of the cost and the position

error of the block that is placed by the robot. The controller

reaches a block center position error of around 8mm after 12

million steps or 48 hours of training. However, in the graph it

is visible that the controller reaches similar accuracy already

after 4 million steps (16 hours). This clearly shows that the

training could be stopped much earlier without a significant

drop in task performance.

While an accuracy of 8mm is not perfect and could likely

be improved with further hyperparameter tuning, we are

confident that these results validate the feasibility of our

approach and move on to the subtasks of grasping and

transporting blocks.

IV. GRASPING AND TRANSPORTING SL BLOCKS

From now on, we consider assembling structures from

SL blocks (see figure 1b). These blocks are even more

challenging than the rectangular blocks since they interlock

more tightly. At the moment, other students of the Robotic

Assembly project are working on placing SL blocks on

existing structures based on tactile feedback. Thus, we now

tackle the grasping and transporting subtasks, described in

section I-A. That is, the blocks start fixed on the table as

shown in figure 6. The robot then has to grasp a block, lift

it up and move it close to its placing location. For now, we

assume that each block is already in the correct orientation.

Fig. 6. In the real setup the blocks are fixed with holes in the table. This
allows to provide blocks in different orientations.

We approach both grasping and transporting with

sampling-based motion planning. For planning, we use the

library pybullet-planning [24] since it allows to plan

directly in the scene simulated in PyBullet. Furthermore, it

supports a wide range of planning algorithms.

A. RRT-connect

We use the planning algorithm RRT-connect [25]. The al-

gorithm is based on Rapidly-exploring Random Trees (RRTs)

[26]. An RRT is a scheme for sampling in the configuration

space C that is biased towards regions that are unexplored.

Let Cfree ⊆ C be the set of configurations that are free, i.e.,

not blocked by obstacles. Each node in an RRT is a free

configuration. Initially, the RRT contains only the initial node

qinit. In each iteration, a configuration q is sampled uniformly

from C. Then the node of the RRT closest to q is selected. We

call this node qnear. From qnear the algorithm takes a small step

of fixed size ǫ towards q. The resulting configuration qnew is

added to the RRT if qnew ∈ Cfree. This extend operation is

visualized in figure 7.
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Fig. 5. Evolution of the cost and the final center position error of the block to be placed over the course of the training using TD3. Number of steps

refers to the total number of simulator steps made at the respective point in the training. The data was obtained by evaluating the model on 1,000 unseen
test configurations every 100,000 steps. The lines show the mean over the test configurations and the shaded areas show the percentiles 5 to 95. We started
with a learning rate of 10−4.5 and multiplied it by a factor of 1

√

10
after 40%, 60%, 80%, 90%, and 95% of the total training time of 48 hours.

Fig. 7. Extending an RRT (image taken from [25]). First, q is sampled
uniformly from the configuration space. From the closest node of the RRT
a step of length ǫ is taken towards q. The resulting configuration qnew is
added to the RRT if it is not blocked by an obstacle.

For RRT-connect [25], two RRTs are extended in an

alternating fashion. One of the trees is rooted at the initial

configuration qinit and one at the goal configuration qgoal.

After one of the trees is extended by qnew as described above,

the algorithm tries to connect the two trees. This is done by

taking multiple steps from the other tree towards qnew until

either that node or a blocked configuration is reached. If

connecting the two trees is successful, the algorithm returns

the path that connects the root nodes of the two trees. Since

only unobstructed configurations are added to the RRTs, this

is a collision-free path from qinit to qgoal.

B. Planning sequence

For grasping the planner checks both for self-collisions

and collisions of the arm and gripper with obstacles, like

the blocks on the table and the table itself. As soon as the

block is grasped, collisions of the grasped block with the

robot and obstacles are checked as well. In practice, the joint

controllers exhibit tiny deviations from the target trajectory.

Furthermore, the actual position of a grasped block might

differ slightly from the expected position due to slippage

in the gripper and inaccuracies in the localization. Both

these effects potentially lead to collisions if the planned

trajectory leads too close around the obstacles. Therefore,

during planning, we define a margin of width dmin around

the obstacles. If the arm or the current block penetrates into

the margin of one of the obstacles, this is counted as a

collision. In our experiments we found that a margin width of

dmin = 5mm is sufficient to ensure safe movements around

the obstacles. For grasping the block, however, the gripper

has to move closer than 5mm to the block, which would

be counted as a collision. To solve this problem, we split

the planning for grasping in two stages. First, a motion is

planned with a margin width of dmin = 5mm that brings the

gripper directly above the grasp location. In the second stage,

a motion is planned from this pre-grasp location to the grasp

location. During the motion planning for the second stage, a

reduced margin width of dmin,reduced = 2mm is used. Since

now the gripper just has to move down for a short distance,

the controller deviations are not as large as for the motions

of the first stage. Thus, we found that this reduced margin

is sufficient for the motion.

Then the gripper has to lift up the block from the table and

transport it close to its target location. As the block is fixed

in a hole on the table (see figure 6), it is naturally in collision

with the table. This collision would cause the planning to fail.

To avoid the problem, we first move the block straight up

for a short distance without checking for collisions. This is

always possible since there are no obstacles above the pickup

location. From this new position, we start the collision-aware

motion planning to obtain a trajectory to the location from

which the block can be placed.

C. Transitioning to the real system

After validating our approach for grasping and transport-

ing SL blocks in simulation, we now move on to the real

system. Note, that we could not use the Robotis gripper in



Fig. 8. The state of the real system is copied to the PyBullet simulation.
Motions are then planned in the simulated scene. The resulting trajectories
are visualized in simulation before the execution on the real robot.

Fig. 9. The position of the table is constrained in one direction.
Therefore, knowing the precise position of one of the corners is sufficient
for calibration.

the real setup since it is needed in another experiment at

the moment. Instead, we use a Schunk EGH gripper [27].

We use the Real-Time Data Exchange (RTDE) interface to

control the UR10 robot arm. A Python API is provided

by the ur rtde library [28]. For the communication with

the gripper, a proprietary Schunk server is executed on the

control box of the UR10 arm. This server communicates with

the gripper via Modbus. The gripper is then controlled with

remote procedure calls to the server.

To plan motions for the real robot with pybullet-

planning, we first extract the state of the robot, i.e.,

the current joint positions. This state is then copied to the

robot simulated in PyBullet. Afterwards, the trajectories are

planned in the simulated scene. To ensure safe operation of

the robot, the trajectories are first visualized in simulation

before they are executed on the robot, as shown in figure 8.

One issue that arises in the real setup is that the tables

for picking up and placing the blocks are not fixed to the

ground. Hence, the location of the tables do not match the

simulation precisely. As displayed in figure 9, the position

of the tables is constrained in one direction by the base of

the robot. This ensures that both the position in this direction

and the table orientation are sufficiently precise. To match

the real setup, we use the robot to calibrate the positions of

the tables for the simulation. For the calibration, the robot is

moved by hand, so that the tool center point of the gripper is

directly above the corner of the table. Since the orientation

of the table is assumed to be precise, the center position of

each of the tables can be determined from the location of this

corner point. With this information the tables and blocks can

be moved in the planning scene to the locations of their real

counterparts.

As visualized in figure 10, we are able to grasp blocks

on the pickup table and move them to their respective

target locations on the placing table autonomously. For now,

placing the blocks is done by an open-loop controller as well.

As mentioned earlier, in the future placing will be done by

a controller that utilizes tactile feedback.

V. CONCLUSION AND FUTURE WORK

In this work we tackled the problem of autonomously

constructing modular structures. We separated the problem

of adding a block to a structure into three subtasks: grasping,

transporting, and placing. We regarded two different kinds

of building blocks, the rectangular block and the SL block.

For the rectangular block we tackled the placing subtask

with reinforcement learning. We showed that the learned

controller is able to stack two blocks with an average

accuracy of around 8mm in simulation. For the SL block, we

used motion planning to solve the grasping and transporting

subtasks for the real system.

At the moment, the learned placing controllers are able to

build structures consisting of exactly two blocks. In order to

construct arbitrary structures, a controller is needed that is

able to deal with structures consisting of a variable number

of blocks. Since every structure is different, the robot needs

a way of sensing where other blocks of the structure are

in order to place the next block without collisions. Here,

a major challenge is to process an arbitrary number of

block poses and achieve invariance to permutations. Both

of these challenges could be tackled with Graph Convolu-

tional Networks [29]. Alternatively, these challenges could

be approached by using images of an RGB or depth camera

as input to the policy instead of the block poses. However,

using camera images introduces a series of new challenges,

as some blocks might be occluded and the robot additionally

has to learn to interpret complex visual signals.

Furthermore, only the planning-based controller for grasp-

ing and transporting has been transferred to the real robot.

For transferring the learned placing controller there are still

some open challenges. First of all, especially when contact

is happening, simulators tend to be fairly inaccurate, which

necessitates fine-tuning the controller with the real system

dynamics. Additionally, some measurements are not easy to

obtain in the real system. One such example is the pose

of the blocks, which is used in the cost function and as

observation for the policy. In the real setup, these poses can

only be obtained from camera images. There are currently

two student groups in the Robotic Assembly project working

on extracting block poses from camera images.

Using RRT-connect as planning algorithm sometimes leads

to motions that go very far around obstacles. While this is

a valid solution to the planning problem, the solution is far

from optimal. This means that the robot consumes more time



(a) The gripper moves to the next block (b) The gripper picks up the block

(c) The block is moved above the target location (d) The block is placed at the target location

Fig. 10. Assembly with the real setup. The robot arm picks up a block and places it at a predefined location in the existing structure on the second table.
The trajectories for these motions are planned in a simulated scene that is calibrated to match the real scene.

and energy than necessary to solve the problem. It also means

that the movements of the robot are less predictable, which

could lead to problems should the robot work with humans

in a shared workspace. These suboptimal paths are a problem

that is inherent to RRTs. In fact, Karaman and Frazzoli [30]

proved that even in the infinite steps limit, planning with

standard RRTs does not find the shortest possible path. The

authors propose a modified version of the algorithm, which

is called RRT*. In RRT* new nodes are not necessarily

connected to the closest node, but to the node with the

smallest cumulative path length in a neighborhood around the

new node. Furthermore, existing nodes in the neighborhood

are rewired if the path over the new node is shorter than the

previously shortest path. The authors prove that this modified

algorithm converges to the optimal solution in the infinite

steps limit. In future work, experiments with RRT* could be

conducted to see whether this planner avoids the problem

described above.

For now, we assumed that all blocks are already in the

correct orientation. To remove this limitation, the robot needs

to be able to re-orient blocks. Since blocks on the table

cannot be grasped from every direction and the gripper must

be in a specific orientation for placing a block, such a re-

orientation cannot always be achieved by only rotating the

gripper. Ali and Lee [31] solve this problem by planning a

sequence of stable poses in which the block is laid down on

the table and re-grasped from a different angle. Alternatively,

two separate robot arms could be used for picking and

placing. In this scenario one robot picks up the block and

hands it over to the other robot in a desired orientation. Since

the block is lifted up from the table during the hand-over,

the second robot can grasp it more freely in order to then

place it in the target orientation.

At the moment, the order in which the blocks should be

placed needs to be specified manually. To facilitate the task

of specifying the target structure, it is sensible to instead

plan this construction order automatically. For a construction

order to be feasible, the assembled structure needs to be

stable at every intermediate step. Furthermore, there must be

a valid trajectory for the robot to place each block without

being obstructed by previously placed blocks. Determining

such a feasible construction order requires solving a task and

motion planning problem similar to that tackled by Hartmann

et al. [1].
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