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Abstract

Decision Transformer (DT) is a recently proposed architecture for Reinforcement Learn-
ing (RL) that frames RL as an auto-regressive sequence modeling problem and uses a
Transformer model to predict the next action in a sequence of states, actions and rewards.
Despite of the appealing performance of DT in the original paper, our empirical evaluations
of DT on real-time continuous control tasks show two issues of the original DT architecture:
the DT architecture yields bad performances in fine-grained stabilization tasks around
unstable equilibriums, and long response times are necessary to generate actions, which
precludes using DT for real-world tasks. To address these issues, we propose an extension
of DT, called Decision LSTM (DLSTM), an architecture that replaces the Transformer
model inside DT by an Long Short-Term Memory Network (LSTM) architecture. We eval-
uate the performance of DT, DLSTM and a Behavioral Cloning (BC) architecture in offline
RL stabilization tasks, as well as their real-time capabilities in a real-world pendulum
setting. Empirically, we show that DLSTM outperforms both BC and DT and achieves
expert level in the stabilization tasks. We conclude that framing RL as a sequence modeling
problem in principle enables solving the fine-grained stabilization tasks, as demonstrated
by the good performances of DLSTM. Also, significant improvements regarding faster
response times can be achieved by using DLSTM instead of DT. However, the performance
of these models proves to be highly dependent on the sequence modeling architectures
that are used to make predictions.



Zusammenfassung

Decision Transformer ist eine kürzlich vorgestellte Architektur für Reinforcement Lear-
ning, die RL als ein auto-regressives Sequenzmodellierungsproblem formuliert und ein
Transformer-Modell nutzt um die nächste Aktion in einer Sequenz aus Zuständen, Aktionen
und Belohnungen vorherzusagen. Trotz der guten Performanz von DT im ursprünglichen
Aufsatz, zeigen unsere empirischen Evaluationen von DT an Echtzeit-Systemen zwei Pro-
bleme auf: die DT-Architektur erzielt schlechte Leistungen in Stabilisierungs-Aufgaben
um instabile Gleichgewichtslagen und benötigt verhältnismäßig lange Reaktionszeiten,
um Aktionen zu generieren, was die Anwendung von DT für Aufgaben in der echten Welt
verhindert. Um diesen Problemen entgegenzuwirken, führen wir eine Erweiterung von
DT mit dem Namen DLSTM ein, welche das Transformer-Modell in DT durch eine LSTM-
Architektur ersetzt. Wir evaluieren die Performanz von DT, DLSTM und einer Behavioral
Cloning Architektur in offline RL Stabilisations-Aufgaben, sowie ihre Performanz an einem
echten Pendulum. Unsere Experimente zeigen, dass DLSTM sowohl BC, als auch DT in den
Stabilisations-Aufgaben übertrifft. Der Ansatz, RL als ein Sequenzmodellierungsproblem
zu beschreiben, erweist sich als prinzipiell in der Lage, instabile Gleichgewichts-Aufgaben
zu lösen, was durch die Erfolge von DLSTM belegt wird. Außerdem können durch die
Nutzung von der LSTM-Architektur schnellere Reaktionszeiten erreicht werden. Anderer-
seits ist die Leistungsfähigkeit der untersuchten Architekturen stark von der genutzten
Sequenzmodellierungsarchitektur abhängig.
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1 Introduction

Transformers [1] are a neural network architecture that has shown impressive successes
across many domains such as Natural Language Processing (NLP) [2, 3, 4] and Computer
Vision [5], and they have become state-of-the-art architectures for sequence modeling
problems. Inspired by these successes, there have been two papers [6, 7] that frame RL
as a sequence modeling problem, in which models predict the next element in a sequence
of states, actions and rewards. In [6], DT is proposed, an architecture that uses a GPT-2
Transformer [8] to auto-regressively model sequences of states, actions and rewards. DT
works in the field of offline RL where an agent is limited to learning from a fixed dataset
of trajectories that were generated by another policy, and can not perform additional
exploration and exploitation by itself.
In the original paper, the performance of DT is evaluated on tasks from the D4RL dataset
[9]. The evaluations include discrete Atari tasks as well as continuous control tasks in
OpenAI gym [10]. However, from these experiments it remains unclear whether DT is also
competitive for dynamic tasks that require stabilization of systems around an unstable
equilibrium, as well as for real robot control tasks.
In this thesis, we address the evaluation of DT for Robot Learning tasks, where we
focus on two aspects. First, we evaluate DT on stabilization tasks, more precisely on
different pendulum environments. The goal of an agent in these tasks is to reach an
unstable equilibrium target state, and remain in this state. Second, we validate our
experimental results in a real-world robotic setting. This evaluation is crucial since large
gaps between simulations and real world systems are common in robotics and RL [11].
Moreover, important measures such as the computational capability of the learned models
to generate actions in real-time are not accounted for in simulated environments.
In addition to our evaluations of DT on stabilization tasks and a real robot setting, we
propose a related architecture to DT, called DLSTM, which builds on top of the DT
architecture but replaces the GPT-2 Transformer by an LSTM model. We use DLSTM to
test whether framing RL as a sequence modeling problem allows using other sequence
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modeling architectures than Transformers, and if these other architectures can yield better
results. We compare the performances of both DT and DLSTM against each other, and
against the performance of a simple BC model which mimics actions based on the observed
states.
The structure of this thesis is as follows. In Chapter 2, we provide an overview over the
fundamentals of RL, offline RL and sequence modeling to then explain the DT architecture.
In Chapter 3, we outline related work including extensions of DT and foundation models.
Then, in Chapter 4 we introduce the methodology behind our conducted experiments. We
describe the experimental environments and datasets as well as the evaluated architectures
including their training and evaluation process. In Chapter 5, we present and analyze our
experimental results for the simulated and the real system tasks. These results are further
discussed in Chapter 6. Finally, Chapter 7 provides a conclusion of the experimental results
and an outlook on further research regarding the use of DT and related architectures in
RL.
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2 Foundations

In this section, we provide an overview of RL, offline RL, sequence modeling, and the DT
approach.

2.1 Reinforcement Learning

Reinforcement Learning, which forms a subfield of Artificial Intelligence, deals with
sequential decision making problems under uncertainty where the problem setting can be
described as follows. An agent explores its environment by applying actions based on the
current state the agent finds itself in. For every time step, the agent receives a reward,
which is given by the environment for the last taken action and the outcome of this action,
i.e., the state following the action. This reward can be discounted, such that the reward
of an action is smaller if it is taken at a later time step than the reward for taking this
action at an earlier time step. An episode is defined as a sequence of states, actions and
rewards which leads to a terminal state. The behavior of the agent is determined by the
agent’s policy. For every episode, the objective of the agent is to maximize the expected
cumulative episode rewards, i.e., the episode return. To obtain high returns, the agent
distinguishes which actions are good and bad by mapping them to the obtained rewards,
which enables the agent to learn a desired behavior by applying actions which lead to high
rewards, and avoiding actions that lead to low rewards. In this trial-and-error approach,
the RL algorithm has to trade off between exploration and exploitation. During exploration,
the agent takes actions that are suboptimal in regard to the currently learned policy, in
hope of exploring new state-action pairs that lead to even higher rewards in the long-term.
During exploitation, the agent uses the currently learned policy to generate actions that
yield high rewards.
The setting of RL therefore distinguishes itself both from Supervised Learning (SL), where
the goal is to generalize predictions to unseen inputs while learning from a fixed expert
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dataset, and from Unsupervised Learning (UL), where the goal is to find patterns in
unlabeled input data. According to [12], the distinguishing features of RL are trial-and-
error search through exploration and exploitation, and the delayed reward signal.

2.1.1 Mathematical Formulation of Reinforcement Learning as Markov
Decision Process

The following definitions align with the standard RL textbook definitions from Sutton et
al. [12].
RL problems are mathematically described as Markov Decision Processs (MDPs), where
an MDP is characterized as a tuple (S,A,R, p, γ). In this tuple,
• S is the set of states (the state space),
• A is the set of actions (the action space),
• R is the set of immediate rewards R which the agent obtains for applying certain
actions in certain states,

• p(s′, r|s, a) = Pr(st = s′, Rt = r|st−1 = s, at−1 = a) is a probability distribution
which defines the probability of transitioning into the state s′ and receiving the
reward r after applying the action a when starting in state s. The dynamics of the
MDP are defined by the probability distribution p.

• And γ ∈ [0, 1] is the discount factor. This factor discounts future rewards such that
high rewards, which are obtained in later time steps, are considered to be worth
less in comparison to immediate high rewards.

This definition applies for finite MDPs where the sets S, A and R all have a finite number
of elements.
MDPs have theMarkov propertywhich states that the transition dynamics p only depend on
the previous state st−1 and the applied action at−1, but not directly on any other previous
or future states and actions. In this regard, states are assumed to implicitly contain all the
information about past actions and states.
RL policies π(a|s) are described as distributions that assign probability to taking the action
at = a at time step t when the current state is st = s.
The objective of an RL agent is to maximize the expected return, i.e., the cumulative
discounted sum of rewards in the next time steps. The return is mathematically defined as
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Gt =
∞∑︂
k=0

γkRt+k+1 = Rt+1 + γGt+1 . (2.1)

For γ = 1, the discounted return corresponds to the undiscounted return. Note that the
summation is infinite, since generally episodes can have an infinite horizon. For problems
with a finite horizon, i.e., episodes with a fixed final time step T , we can also use the
infinite summation of Equation 2.1 by considering all rewards {Rt : t > T} to be zero.
We can define the objective of RL algorithms to maximize the expected episode return:

J(π) = Eπ[G0] = Eπ[
∞∑︂
k=0

γkRk+1] ,

where we can again use this formula for finite horizon problems.

2.1.2 Bellman Equations of Optimality

Value functions express how good it is for an agent to be in a specific state, or taking
a specific action when being in a specific state, under a given policy π. The state value
function

Vπ(s) = Eπ[Gt | St = s] ,∀s ∈ S

denotes the expected return when the agent is in state s at time step t, and afterwards
follows the commands of the policy π. The action value function

Qπ(s, a) = Eπ[Gt | St = s, At = a] , ∀s ∈ S, a ∈ A

expresses the expected return of taking the action a after starting in state s, and afterwards
following the policy π.
To find an optimal policy, Bellman’s principle of optimality [13] can be used. Bellman’s
principle of optimality states that independent of the initial state and action, the remaining
decisions of an optimal policy must be optimal regarding the state which results from the
initial action. The optimal value functions can be defined recursively, such that

V ∗(s) = max
a

Qπ∗(s, a)

= max
a

E[Rt+1 + γV ∗(St+1) | St = s, At = a] (2.2)
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describes the optimal state-value function, and

Q∗(s, a) = E[Rt+1 + γmax
a′

Q∗(St+1, a
′) | St = s, At = a] (2.3)

describes the optimal state-action value function.

2.1.3 Fundamental Reinforcement Learning Approaches

Equations 2.2 and 2.3, which derive from the Bellman optimality principle, provide
conditions for optimal solutions for RL problems. Dynamic Programming (DP) methods
calculate the value functions iteratively to obtain optimal policies. DP has two main
components: in policy evaluation, the state-value function V π is computed for the current
policy π by iterating the Bellman equation

V π(s) = Eπ[Rt+1 + γV π(St+1) | St = s]

until convergence to the stationary point. In policy improvement, the policy is greedily
improved such that the actions which promise to lead to the highest return are taken. The
repeated process of performing policy evaluation and policy improvement is called policy
iteration.
Another related approach is value iteration, where the state-value function is directly
iterated to be

Vk+1(s) = max
a

E[Rt+1 + γVk(St+1 | St = s, At = a] .

Independent of the initializiation of the value function V0, the state-value function con-
verges to the optimal state-value function V ∗ from which an optimal policy π∗ can be
extracted.
Naively applying policy iteration and value iteration is not feasible for most problems,
since these methods require full prior knowledge of the problem’s dynamics. However, DP
represents the fundamental idea behind most RL algorithms.
In contrast, Monte Carlo (MC) methods do not assume any knowledge of the system
dynamics, but base the whole learning process on learning from experience, i.e., sampled
observations from interaction with the environment. MCmethods can learn value functions
from the sample returns.
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Temporal Difference Learning (TD) methods include aspects from both DP and MC
methods: they directly learn from sampled experience, similar to MC approaches, and
perform updates of the value functions based on other learned estimates, similar to DP
approaches. In addition, TD methods do not wait for the final outcome to update their
estimates such as MC methods do, but rather bootstrap and learn before obtaining the
final outcome.

2.2 Offline Reinforcement Learning

In offline RL, the agent can not explore its environment directly, but rather learns from
a fixed dataset of trajectories which were generated by another policy. Offline RL is
motivated by two aspects.

1. RL should be enabled to make use of large, previously collected datasets, such as it
has lead to great successes in Supervised Learning.

2. Offline RL especially becomes important in scenarios where access to the environ-
ment is infeasible which prevents the agent from exploring and interacting with
the environment to learn. An approach to dealing with this issue is to simulate
the environment and let the agent learn there. However, simulators are often not
available, and learning results suffer from the sim to real gap [11], which occurs
due to wrong or missing modeling assumptions when creating the simulators. Here,
offline RL promises to be an efficient way to make use of RL without requiring access
to the environment.

2.2.1 Terminology

As [14] points out, there exist two related terms for offline RL. To avoid confusion, the
terms are briefly described in the following.
• Off-policy RL refers to algorithms which in some sense make use of data that was
generated from other policies than the learned policy. In contrast, in on-policy RL
the exploring behavior policy is identical to the learned target policy. Off-policy RL
can be seen as a generalization of offline RL, where offline RL is the special case of
off-policy RL where the agent only has access to data from other policies, and can
not perform any additional online exploration and exploitation.
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• Batch RL is synonymous to offline RL.

2.2.2 Formulation

As stated in [14], offline RL is a data-driven formulation of RL. Rather than exploring the
state-action space through direct interaction with the environment, offline RL algorithms
learn from a static training dataset D = {(Si, Ai, Si+1, Ri)}, which consists of transition-
tuples containing the state Si, the taken action Ai, the state after transition Si+1, and
the reward for the transition Ri. The behavior policy, i.e., the policy that generated the
dataset’s state-action pairs, is denoted as πβ , and the learned policy of the offline RL
algorithm is denoted as πθ. As in classical online RL, the offline RL algorithm attempts to
learn a policy πθ which maximizes the RL objective, i.e., the episode return.

2.2.3 Common Offline RL Approaches

In [14], common current approaches to offline RL are presented.

• Importance Sampling Approaches. The idea behind importance-sampling-based
offline RL algorithms is that the policy tries to directly estimate its own return in
offline manner, i.e., without directly evaluating its performance in the environment.
After evaluation, the algorithm can select the expected best policy, i.e., the policy
with the highest performance. Since sampling from the learned policy πθ itself is
not possible in the offline setting, the respective algorithms perform importance
sampling using trajectories from the behavior policy πβ. Using this approach, the
algorithms either estimate the RL objective J(πθ) of the learned policy directly, or
estimate its gradient ∇J(πθ) for gradient descent methods.

• Dynamic Programming Approaches. DP methods, as described in Section 2.1,
can be utilized in offline RL. Using DP, optimal policies can be derived by learning
the state-value function and the state-action-value function of the MDP. Offline RL
algorithms either constrain the learned policy πθ to be close to the behavior policy
πβ, or evaluate the uncertainty in the estimates of the learned value functions to
avoid distributional shift between πθ and πβ , where distributional shift occurs when
πθ leads the agent into states that are not covered in the training dataset.
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• Model-Based Approaches. In model-based RL, the RL algorithm learns a dynamics
model from data, which can then be used to optimize the learned policy, or for
planning. Using model-based approaches, prior knowledge on the environment
dynamics can be incorporated into RL algorithms. To avoid the problems caused
by wrong modeling assumptions, model-based RL approaches can estimate the
uncertainty in the states and actions which were produced by the model to prevent
learning from highly improbable data. In offline RL, one can directly use standard
model-based RL approaches, or use the models for off-policy evaluation when online
evaluation is not wanted or impossible.

2.2.4 Common Challenges in Offline Reinforcement Learning

Since classical online RL relies on direct interaction between the agent and its environment,
and this interaction is not possible in the offline RL setting, offline RL is inherently prone
to difficulties.

• Distributional Shift. The fundamental problem of offline RL occurs when the agent
encounters unseen states at test time. Online methods deal with this problem by
exploring possible actions in these states and learning from the received rewards.
However, offline methods are limited to the fixed training dataset D, which might
not contain an optimal action, or even any action, for the particular state the agent
currently finds itself in. When the offline RL agent at test time enters a state which
is not contained in the dataset, i.e., the agent is out-of-distribution of the dataset’s
behavior policy πβ , the agent will likely take a suboptimal action, which endangers
the agent to get even wider out of distribution (e.g., when it enters a state that is
farther away of the state space which is covered by the dataset trajectories). In a
broader sense, this problem is called distributional shift, and exists due to the fact
that the behavior policy which generated the learning data, and the policy which is
actually learning from this data, are different from each other. There are multiple
approaches to limit distributional shift in offline RL, where a simple idea is to limit
the learned policy πθ such that it stays to a certain degree similar to the behavior
policy πβ [14].

• Limited Exploration. Due to the missing direct access to the environment in the
offline setting, the offline RL policy is limited to the state-action coverage of the
training dataset, and it can not perform any additional exploration. Most offline RL
algorithms therefore assume that the training dataset provides a sufficient coverage
of the high reward regions of the environment’s state-action space [7].
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• Influence of the Dataset Quality. As [15] points out, certain characteristics of the
training dataset, mainly the quality of the trajectories in terms of episode returns
and the coverage of the state-action space, are crucial to the performance of offline
RL algorithms. The performance of offline RL policies must therefore always be
evaluated in comparison to the characteristics of the training dataset. Online RL
algorithms are in principle not limited to any such characteristics, which makes
them easier to compare and evaluate.

• Offline Evaluation. In cases where access to the real setting or simulators for
evaluation is infeasible, evaluating the learned policy is a hard task. This becomes
especially critical for model validation and policy selection which are usually done by
evaluating the learned models directly in the environment [16]. Offline evaluation
is critically important for many RL algorithms which rely on estimating the RL
objective J(πθ) or its gradient ∇J(πθ). The problem of evaluating policies in an
offline setting is addressed by off-policy policy evaluation [17].

2.2.5 Benchmarks and Datasets

To compare different offline RL methods, it is necessary to have comparable datasets and
benchmarks. In NLP, such datasets are common to compare architectures across different
domains. Examples are the GLUE benchmark [18], and decaNLP [19].
A notable framework for benchmarking offline RL methods is D4RL [9], which consists of
standardized environments and datasets for a wide range of control and planning tasks,
building on top of OpenAI gym [10]. Similarly, RL Unplugged [16] provides a benchmark
suite to compare offline RL algorithms in different domains. SaLinA [20] is a another
library for learning agents in sequential decision processes which emphasizes sequential
agents in RL.

2.3 Sequence Modeling

In sequence modeling [21], the task is to model sequences where sequences consist of a
number of ordered sequence elements. Prominent examples of sequence modeling appear
in NLP, where, for instance, a sentence can be considered as a sequence of words and
sequence models predict the next word in this sequence by taking the previous words of
the sentence as an input [22].
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More precisely, we consider the task of predicting the next sequence element x̂t+1 given
the previous sequence elements xi, by learning a function f that describes a temporal
dynamics model

x̂t+1 = f(x1, ..., xt) . (2.4)
Note that here f processes inputs of varying length, since the number of sequence elements
which the model receives as input increases by 1 at each time step. Sequence models
are called auto-regressive if the outputs of the function f depend on its previous outputs.
In Equation 2.4, these previous outputs are denoted as function inputs xi, and in an
auto-regressive sequence modeling setting they were generated by the function f .
In this section, we present common architectures which are used in sequence modeling. In
Section 2.4, we then describe how RL can be abstracted as a sequence modeling problem.

2.3.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [23, 24] are neural networks that implement recur-
renct structures to make information inside the network persistent. Therefore, RNNs are
a natural choice for modeling sequences since sequence elements can be processed one
after another, while information from previous sequence elements remains in the network.
Also, unlike standard neural networks, RNNs are not limited to fixed input sizes but can
in principle process inputs of arbitrary length. RNNs can be visualized as a sequential
structure, in which, at every time step t, a network layer gets fed with two vectors: first,
the input vector xt, i.e., the (embedded) t-th element of the input sequence, and second the
hidden state ht−1 which is the output from the previous layer. The drawback of standard
RNNs is that they have a small context, i.e., the amount of information the network can
attend to at a certain position in the sequence is limited to only the last few sequence
elements.

2.3.2 Long Short-Term Memory Networks

LSTMs [25] overcome the small context issue of RNNs by refining the internal structure
of the RNN, such that, in addition to the hidden state of the network, there is a cell state
Ct which stores information along the sequence. The cell state is regularly updated after
each layer, and the information flow through the network is controlled by three gates.
1. The forget gate decides, based on the last hidden state Ct and the input xt, which
information should be removed from the cell state.
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2. The input gate decides which values from the cell state should be updated.
3. The output gate determines the output of the current layer, based on the cell state.
This output is then passed to the next RNN layer.

Through this mechanism, DLSTMs overcome the problem of vanishing and exploding
gradients. We limit ourselves to this intuitive explanation of LSTMs, and refer to [25, 26]
for the mathematical details on how information is processed inside LSTMs. We put
emphasis on three aspects of RNNs and LSTMs that are important for this thesis.
• RNNs are a good choice for modeling sequential data since they are designed to
process data sequentially while retaining important information of previous sequence
elements to later attend to this information.

• LSTM is a widely used modified RNN model which has shown to perform well on a
variety of sequence modeling and NLP tasks [27, 28].

• The most important bottleneck of LSTMs is that they process data sequentially,
which precludes parallelization and often leads to long training times.

2.3.3 Transformers and (Self-) Attention

Transformers [1] represent an architecture for auto-regressive sequence modeling that is
purely based on the attention mechanism. Other than most previous sequence modeling
architectures, Transformers do not contain any recurrent or convolutional structures.
In general, an attention module maps a set of query vectors q, keys k and values v to
an output value. The output is obtained as a weighted sum over the values, where the
weights are computed via a measure of similarity between the query vector q and the
key vector ki which corresponds to the value vector vi. Precisely, Transformers compute
attention via scaled dot product attention according to the equation

Attention(Q,K, V ) = softmax
(︃
QKT

√
dk

V

)︃
,

where Q, K, V are matrices which contain the queries, keys and vectors respectively,
and dk is the dimension of the keys. Intuitively, the multiplication QKT represents the
matrix form of the dot-product between queries and keys, which itself is a measure of the
similarity between queries and keys. This matrix product is scaled by dk to avoid large
intermediary results which would cause very small gradients. The softmax is then taken
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to map the computed similarities to a probability distribution which computes the weights
for each query-key pair. These weights are then used to compute the final attention output
via weighted summation in matrix form, i.e., via matrix multiplication with the value
matrix V . This way, every key-value pair attends to every query.
Transformers extend this notion of attention to multi-headed attention. In multi-headed
attention, the original Q, K and V matrices are linearly projected h times into new
subspaces, where h is the number of attention heads. For each attention head a different
linear projection is used. After that, for each head the attention output is computed using
Equation 2.3.3. These outputs are then concatenated and, using another linear projection,
mapped to a single attention output again. Multi-head attention has the advantage that it
allows the Transformer model to detect different dependencies in the sequence, and not
only focus on one. Also, the head’s dimension is reduced such that the total computational
time is equal to that of a single attention module with full dimensionality.
Transformers consist of an encoder, which maps the Transformer inputs to an internal
representation, and a decoder, which maps an internal representation to the outputs of the
Transformer. Both the encoder and the decoder side contain multiple stacked attention
layers. In this context, attention is used in two ways.
1. In encoder-decoder attention layers, queries come from the decoder side, and keys
and values, which represents the Transformer inputs, come from the encoder side.

2. Self-attention modules are used both on the encoder and the decoder side. On the
encoder side, self-attention is used to attend all positions of the current attention
layer to all positions from the previous attention layer. On the decoder side, self-
attention makes each position in the decoder attend to all other positions which
are previous to this position because on the decoder side, access should only be
allowed to positions which are already included in the decoder’s output sequence,
which resembles the generation of a sentence from left to right. Transformers ensure
that only previous position are attended by using an attention mask that forbids
attending to future positions in the sequence.

Since Transformers do not have a recurrent or convolutional structure, sequences are not
required to be processed in sequential order. However, Transformers need to compute
positional embeddings for the inputs to retain the sequence order. These embeddings can
either be predefined, such as the (co-)sinusoid embeddings for the original Transformer
architecture [1], or they can be learned. Using self-attention, the number of sequential
operations becomes constant and is no longer linearly dependent on the length of the
input sequence, as it is the case for recurrent and convolutional structures. Also, the
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computational complexity for each layer becomes linear in the input dimensionality
and quadratic in the input length, whereas it is linear in the input dimensionality and
quadratic in the input length for recurrent and convolutional layers. This is advantageous
for short inputs with high representation dimensions (such as it is the case for natural
language sentences), but can be problematic for long input sequences (such as sequences
of states, actions and rewards for RL problems). Still, with these properties the learning
and evaluation process of Transformers can be parallelized over the different input items,
which is a major computational advantage over other recurrent architectures.
Transformers have become state-of the art models in sequence modeling and NLP over the
last years, as shown by the successes of BERT [2] and the GPT-x architectures [3, 8]. Both
architectures build on top of the original Transformer model and implement a two-step
learning process. First, the models are pre-trained on an unsupervised large training
corpus to obtain a first estimate of the model parameters. In a second step, this pre-
trained model is fine-tuned on smaller datasets which are specific to the concrete task that
should be solved with the models, in a supervised learning setting. While there are also
approaches towards transfer learning using LSTMs [29, 30], Transformer models that are
pre-trained on large datasets are more common than pre-trained LSTMs models.

2.4 Decision Transformer

Decision Transformer [6] is an architecture for model-free offline RL which is proposed as
an approach to solve RL problems without making use of conventional methods such as
DP and TD that learn a value functions for this purpose.

2.4.1 Reinforcement Learning as Sequence Modeling

DT frames the RL problems as a sequence modeling problem, where a model auto-
regressively models the joint distribution of states, actions and rewards, given a sequence
of previous states, actions, and rewards.
A trajectory in the DT framework is represented as a sequence

τ = (R̂1, s1, a1, R̂2, s2, a2, ..., R̂T , sT , aT ) , (2.5)

where R̂t is the Returns-to-go (RTG) value, i.e., the sum of the (desired) future rewards,
st is the state, and at is the action at time step t respectively.
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From an auto-regressive viewpoint, this formulation of the trajectory is appropriate, since
it follows the order of the RL process at time step t. First, an RTG value R̂t is specified
that tells the (expected) cumulative sum of future reward in this episode. This RTG value
represents hindsight information, i.e., knowledge about future time steps (the future
return) is introduced into the current predictions. Given R̂t and the current state st of
the agent, the DT model then predicts an action at, which leads to a reward signal Rt.
This reward signal is included into the next RTG value R̂t+1 by subtracting the obtained
reward from the previous RTG value, i.e., R̂t+1 = R̂t −Rt. Rewards are not discounted in
the DT model. The transition dynamics in the MDP also lead the agent into a new state
st+1. From there on, the auto-regressive dynamics of the sequence generation is repeated
again, where the action at+1 is predicted from the RTG R̂t+1 and the state st+1.
In DT, the generation of the sequence is conditioned on the future rewards in form of
RTG value, similar to as it is the case in other related approaches [31, 32, 33]. Another
model that frames RL as a sequence modeling problem and is highly similar to the DT
approach is Trajectory Transformer [7]. The main difference between the approaches is
that Trajectory Transformer does not use the RTG formulation for sequence generation
like DT, but rather uses beam-search planning. Also, Trajectory Transformer uses state
and reward prediction as well as discretization, which is not the case for DT.

2.4.2 Motivation Behind Decision Transformer

The key motivation of the DT approach can be summarized to two aspects.

1. In sequence modeling and NLP, there has been tremendous progress in recent years,
especially through pre-trained Transformer networks such as BERT and GPT-x. DT
proposes a framework in which RL can benefit from these advances through framing
RL as a sequence modeling problem.

2. One of the main ideas behind framing RL as a sequence modeling problem and
using a Transformer architecture is that the problem of long-term credit assignment
can be solved efficiently using this setup. The long-term credit assignment problem
states that for classical RL algorithms, it is generally hard to determine which of the
previously taken actions of a sequence are responsible for the episode return. The
Transformer architecture allows to explicitly find the relationships between states,
actions, and rewards in a sequence using its attention module, which makes the
solution to the long-term credit assignment problem inherent to DT, and avoids
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the need of performing direct credit assignment or using Bellman backups for this
purpose.

DT is as an expressive, yet simple implementation of the presented idea of framing RL as
generative trajectory modeling for model-free offline RL. However, the general approach
behind DT does not forbid using a modified version of DT in an online setting, and can be
extended to work in online settings.

2.4.3 Architecture Details

The DT architecture accepts a sequence of RTG values, states and actions as input. For each
modality (i.e., RTG, states and actions), DT gets fed with the tokens from the previous K
time steps such that the input length is 3K. We denote K to be the context length of DT.
The inputs are mapped via linear layers to internal representations, where a separate linear
layer is learned for each modality. The internal representations of the modalities are then
stacked such that the trajectories are ordered according to the trajectory representation in
Equation 2.5. In addition, the last K time steps are fed into the model to obtain positional
embeddings for the tokens. For the positional embeddings, the time steps are processed
by an embedding layer, and then added to the trajectory representation, similar to how
positional embeddings are added to the representation of natural languages sentences in
[1]. The obtained input sequence is then processed by a GPT-2 Transformer model [8].
The output of the GPT-2 model is ultimately fed into a final linear layer, which predicts an
action based on the obtained trajectory representation.

2.4.4 Training Process

The training process for DT is fully offline, i.e., the model learns from a fixed dataset
D containing previously collected trajectories. For one training epoch, DT samples n
mini-batches of length K from the dataset. These mini-batches are propagated through
the architecture in a forward pass, which results in an action prediction apred for each
mini-batch. Then, the loss is computed as the Mean Squared Error (MSE) between the
predicted action apred, and the actual next action in the dataset aD:

MSE =
1

n

∑︂
(apred − aD)

2 .
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Using the computed loss, a backward pass is performed, in which the DT model’s parame-
ters are updated according to the MSE. The forward-backward pass scheme is repeated
multiple times for each training epoch.

2.4.5 Decision Transformer Performance Results

The authors show empirical evaluation results of the performance of DT on the D4RL
dataset, specifically on continuous OpenAI Gym control tasks, as well as discrete tasks
inside Atari games. The evaluation results indicate that DT performs comparably to state-
of-the-art model-free offline reinforcement learning algorithms and even outperforms
some of them. Also, DT is evaluated to be particularly powerful in sparse reward settings,
as well as settings where long-term credit assignment is necessary.
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3 Related Work

In this section we name several extensions of the original DT architecture and reference
research on foundation models, i.e., powerful pre-trained models that can be applied to a
variety of downstream tasks.

3.1 Foundation Models

Foundation models are models which are pre-trained on large datasets and used for
transfer learning, in which these models can be adapted to a wide range of downstream
tasks. DT, and especially its extensions from Section 3.2, can be viewed as foundation
models, since they provide a framework to solve a variety of tasks using transfer learning.
Also, the underlying Transformer model of DT, the GPT-2 architecture, is a foundation
model itself.
In [34], an overview of the chances and risks of foundation models is provided and it
is outlined that foundation models are applicable to a wide variety of tasks, including
language, vision, and robotics. However, foundation models have several risks, e.g., it
is critical that errors in the originally pre-trained model will also be integrated into the
fine-tuned models. Also, foundation models might bear harmful problems with societal
impact, such as ethical issues. It is concluded that foundation models require lots of future
research with a strong emphasis on interdisciplinary collaboration.
Additionally to Transformer-based foundation models like BERT and GPT-x, as described
in Section 2.3, recently Perceiver [35] and Perceiver IO [36] have been proposed. The
Perceiver architectures are foundation models that are intended to be compatible with
arbitrary inputs from different domains, like vision, language, and touch. Perceiver and
Perceiver IO build on top of Transformer networks. Their main idea is to reduce the
computational complexity of the architecture to be linear in the input size, other than
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regular Transformers which scale quadratically with the input size [1]. Perceiver achieves
the linear complexity in the input length by introducing latent units which build an
attention bottleneck. The inputs are attended iteratively, which allows Perceivers to only
consider the most relevant inputs. While the Perceiver architecture can only produce
simple outputs, like class labels, Perceiver IO is an extension that is able to produce
arbitrary outputs and scales linearly in both the input and the output size.

3.2 Extensions of Decision Transformer

As stated in Section 2.4, the original DT represents a rather simple approach to framing
RL as sequence modeling. The DT approach allows for further extensions in multiple
directions, some of which we reference here.
In [37], it is stated that DT blongs to a class of RL algorithms which perform hindsight
information matching by generating trajectories that match some statistics of future state
information. The standard DT architecture is expanded to generalized DT, an architecture
that is in principle able to solve arbitrary hindsight information matching problems. The
notion of the reward in the original DT is generalized to be an arbitrary feature function
Φ(s, a), and the γ-discounted summation over rewards is generalized to an arbitrary
aggregation operation. Through different choices of the feature function Φ(s, a) and the
aggregation function, the authors propose different DT versions for hindsight information
matching problems.
Online DT [38] presents a DT implementation which combines offline pre-trained DT
models with an online fine-tuning process of the model’s parameters. This combined
approach promises to overcome the distributional shift in DT, since additional exploration
can be performed in the online fine-tuning process, while remaining the advantages of
offline RL, such as making use of large previously collected datasets. Similarly, [39]
proposes an approach that combines offline pre-training of DTs with online fine-tuning
for multi-agent RL tasks.
In [40], transfer learning for the DT architecture is addressed and achieved by first pre-
training the DT model on large datasets from other domains, such as Wikipedia-trained
Transformers from language domains, and then fine-tuning the model in the offline
RL setting. This transfer learning approach outperforms standard DT and indicates the
existence of some underlying universal structure across sequence modeling problems,
which enables transfer learning across different domains.
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4 Methodology

In the original paper [6], Decision Transformer is evaluated on Atari tasks, as well as
control tasks from the D4RL datasets, where the latter include the Mujoco environments
Hopper, Halfcheetah, Walker2D, and Reacher2D. In a robotics context, especially the
results on D4RL are interesting, and they promise that DT is performing comparably to
existing offline RL methods in fine-grained control tasks while even outperforming some
of them.
In this thesis, we conduct further experiments to thoroughly evaluate DT and understand
its properties as well as its drawbacks. The contributions are two-fold.

1. Focus on stabilization tasks. While DT has been evaluated on several D4RL tasks,
these do not include control tasks where the target state is an unstable equilibrium.
However, to evaluate DT and its potential use for robotic systems these kinds of tasks
are particularly important. Stabilization tasks with unstable equilibrium points are
generally of demanding nature since small deviations in the actions can lead to the
policy failing to solve the task, whichmakes fine-grained control necessary. Therefore,
we focus on several stabilization tasks with varying difficulty. The environments are
presented in Section 4.1.

2. Evaluation on a real robot platform. While all of the tasks from the D4RL bench-
mark are evaluated in simulated environments, the performance of DT on real-world
systems is unexplored. Sim-to-Real [11], i.e., the gap between simulated envi-
ronments and the real environments which occurs due to modeling errors, is a
particularly important challenge in Robot Learning. Also, Transformers are gen-
erally computationally demanding, since they scale quadratically with the context
length. This computational complexity makes it important to thoroughly evaluate
the real-time capabilities of DT, especially in comparison with existing BC methods.
Therefore, we evaluate the performance of DT on the Furuta pendulum real-world
setup (Furuta Pendulum RR).
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4.1 Environments

We describe the environments for our experiments, which are visualized in Figure 4.1.

4.1.1 OpenAI Gym Mountain Car

Mountain car, as depicted in Figure 4.1a, is a classical RL environment [41] in which an
underpowered car tries to move up a hill. The car starts in the hill valley and can not climb
the hill directly using its limited power, so it needs drive back and forth to accumulate
enough kinetic energy to move up the hill. This movement resembles the movement of
a pendulum which is swung up. In this regard, mountain car can be seen as a simple
environment which we use to show the general capabilities of a policy to learn how to
accumulate kinetic energy and perform a swing-up movement.
Once the target position on the hilltop is reached the episode terminates and is considered
successful. The target pose can therefore be seen as a stable equilibrium, and a policy
does not have to stabilize the car in this pose. For our experiments, we consider the
continuous OpenAI mountain car environment, in which the policy receives a small
negative reward for every time step in which the car has not reached its target position on
the hilltop, and receives a large positive reward for reaching the hilltop. The observations
are two-dimensional (the car’s position and velocity), while actions are one-dimensional.

4.1.2 Mujoco Inverted Pendulum

In Mujoco [42] inverted pendulum, as visualized in Figure 4.1b, the goal of the agent is
to stabilize an inverted pendulum such that it stays in an upright pose and does not fall
down for 1000 time steps. However, this target state is unstable, since the pendulum’s
center of mass is above its pivot point. A stabilizing policy needs to perform additional
actions after reaching the target state, such that the pendulum is stabilized.
For our experiments, we enlarge the range of initial angels such that for the initial angle
holds θ ∈ [−π/15,+π/15], where θ is the angle between the upright target pose and the
actual pendulum’s pose. The wider range of initial states makes stabilization generally
harder compared to the original environment. The initial angular velocity is always set to
zero.
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(a) OpenAI Mountain Car Environment.
(b) Mujoco Inverted Pendulum Environ-

ment.

(c) OpenAI Pendulum Environment. (d) Furuta Pendulum Environment.

Figure 4.1: Visualization of the different simulation environments from the experiments.
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In the environment, actuation is done by a motor which allows the pendulum to perform
a translational movement along a rail. The motor applies one-dimensional actions, the
observation space is four-dimensional. The episode terminates once the pendulum is not
stabilized anymore, i.e., it falls down such that it reaches a critical angle. The episode
return corresponds to the number of time steps in which the pendulum stays out of this
critical range, and the maximum episode return is therefore 1000.

4.1.3 OpenAI Pendulum

The OpenAI pendulum environment is depicted in Figure 4.1c. Here, the goal is again
to stabilize the pendulum in an upright unstable equilibrium. However, there are two
main differences to the Mujoco inverted pendulum environment. First, the pendulum’s
initial state is not necessarily in an upright pose. Rather, the pendulum starts in an initial
angle θ ∈ [0,+2π], where θ = π corresponds to the pendulum hanging down vertically,
and both θ = 0 and θ = 2π describe the upright target pose of the pendulum. To obtain
high returns, a policy is required to first swing up the pendulum and then stabilize it
in the upright target position. Also, once the pendulum reaches an upright position, it
usually has high angular velocities due to the previous swing-up movement which makes
stabilization harder. Second, the motor no longer moves the pendulum along a rail in a
translational movement, but directly controls the pendulums angle by applying forces at
the pendulum’s pivot point. The actions are again one-dimensional, while observations
are three-dimensional.
In the environment, high rewards are obtained for stabilizing the pendulum in the upright
target pose. It must be noted that the episode return is highly dependent on the initial
pose the pendulum starts in. When the initial state is already an upright pose, policies
often only need to stabilize the pendulum there or swing around the pendulum once
which yields a high episode return. Meanwhile, in situations where the pendulum starts
hanging down a policy must put more effort into swinging up the pendulum which also
takes more time steps and limits the possible return for this episode. This dependency on
the initial state generally leads to a higher variance in the episode returns. In general,
episodes with a return larger than -400 can be described as successful, i.e., the pendulum
is mostly stabilized in the target pose in these episodes.
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4.1.4 Furuta Pendulum

Finally, we consider the Quanser Furuta pendulum, as visualized in Figure 4.1d, where
the task is again to stabilize a pendulum. However, the system consists of two parts: a
rotary arm which is controlled by the actuating motor, and a pendulum which is placed
vertically on the rotated arm. The pendulum has a four-dimensional state space because
there are two angles to consider: the angle θ of the rotated arm relative to the motor’s
base coordinate system, and the angle α between the pendulum’s upright target pose and
its actual pose, as well as their velocities. An angle of α = π corresponds to the pendulum
hanging down vertically whereas α = 0 and α = 2π describe the same equilibrium point,
i.e., the upright target pose of the pendulum. The observation space is six-dimensional
since angles are represented by their cosine and sine values instead of their absolute
values. Actions are again one-dimensional.
To obtain a high episode return the pendulum must be stabilized in an upright position
such that α is close to the target position. In addition, the reward is to a smaller degree
dependent on θ as well as both angular velocities where both θ and the velocities should
become zero to obtain the maximum reward.
In the Furuta pendulum environment we perform experiments on two tasks, stabilization
and swing-up.

Furuta Pendulum Stabilization

In the stabilization task, both angles are initially deflected such that they differ from the
target angles by not more than π/12 and not less than π/24. The goal is to stabilize the
pendulum in the upright position, such that it does not fall down. Once the pendulum
falls down, the environment theoretically allows the policy to still obtain a high return
by swinging the pendulum up again, such as in the swing-up task. However, the training
data for the stabilization task does not contain any swing-up movements which makes it
practically impossible for an offline RL policy to learn the swing-up movement. Therefore,
in our experiments a policy can only obtain high episode return through stabilizing the
pendulum without letting it fall down. For the stabilization task, returns close to the
environment’s maximum obtainable return of 6.0 are possible.
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Furuta Pendulum Swing-Up

In the swing-up task, the pendulum initially starts hanging down. To obtain high returns
a policy needs to swing up the pendulum and stabilize it in an upright pose. For the
swing-up task the achievable maximum return is significantly lower than the maximum
return of 6.0 since swinging up the pendulum takes many time steps that yield lower
rewards than when stabilized in the target pose.

4.2 Datasets

As pointed out in [15], datasets are crucial for the performance of offline RL algorithms,
which is mainly due to the fact that in offline RL the agent has no opportunity of interacting
with its environment to perform exploration and exploitation. Offline RL algorithms are
therefore limited to learning from the experience which is contained in the dataset. Similar
to the D4RL benchmark, we consider two types of datasets for our experiments: expert
datasets which contain high return episodes, and replay datasets which are obtained during
the training process of a Proximal Policy Optimization (PPO) policy [43] and therefore
contain suboptimal data (trajectories which are obtained during the first training epochs
of the PPO policy) as well as expert data (trajectories which are obtained in late training
epochs, after the performance of the PPO policy has reached expert level).

4.2.1 Dataset Characteristics and Metrics

According to [15] there are two main characteristics which determine the quality of offline
RL datasets. These are the average episode return in the dataset and the coverage of the
state-action space. Two simple measures are proposed to evaluate offline RL datasets.
The Relative Trajectory Quality (TQ) compares the average returns of the dataset
trajectories to the maximal possible return. When the dataset policy performs better than
a random policy, which is the case for all datasets we consider, TQ can be defined as

gD,norm =
gD − grandom

gonline − grandom

where grandom is the mean return of a random policy in the environment, gonline is the max-
imum return in the dataset, and gD is the mean return in the dataset. The normalization
is necessary to compare datasets across different environments.
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Intuitive explanation: TQ measures the quality of the dataset trajectories by their return.
A dataset with a high TQ can be described as an expert dataset, whereas datasets with
low TQ contain bad quality demonstrations. We use TQ as a metric for our datasets and
present their TQ values in Table 4.1.
Also, the authors present the Relative State-Action Coverage (SACo) as a measure of the
coverage of the state-action space where a high SACo value corresponds to a high number
of unique state-action pairs in the dataset. The state-action space is assumed to be discrete,
because in continuous spaces in principle all state-action pairs are unique. We find that
for our purpose SACo is not an appropriate measure, since for the continuous spaces of
our environments it would require to discretize the state-action space. We include no
empirical measure of the state-action space coverage of the datasets, but rather state that
the coverage of the expert datasets is in general smaller compared to the coverage of
the replay datasets since during exploration the PPO policy generates many suboptimal
state-action pairs, whereas the expert behavior policies focus on a smaller subset of actions
that lead to high rewards.

4.2.2 Dataset Overview

An overview of the used datasets can be seen in Table 4.1. For every environment from

Name Environment ntraj Behavior Policy Task TQ
mountain-car-expert OpenAI Mountain Car 200 PPO Drive up 0.99
mountain-car-replay OpenAI Mountain Car 80 PPO Drive up 0.50

mujoco-inverted-pendulum-expert Mujoco Inverted Pendulum 500 PPO Stabilization 1.00
openai-pendulum-expert OpenAI Pendulum 250 PPO Swing up 0.83
openai-pendulum-replay OpenAI Pendulum 100 PPO Swing up 0.32

furuta-pendulum-stabilize-expert Furuta Pendulum 500 PPO Stabilization 0.99
furuta-pendulum-swing-up-expert Furuta Pendulum 500 PPO Swing up 0.49
furuta-pendulum-swing-up-replay Furuta Pendulum 515 PPO Swing up 0.29

Table 4.1: Overview of the used training datasets for the stabilization experiments. ntraj
denotes the number of trajectories in the dataset.

Section 4.1 we provide an expert dataset, which contains trajectories from a PPO policy
which we consider to solve the respective task well. For OpenAI mountain car, OpenAI
pendulum, and the Furuta pendulum swing-up task, we also provide replay datasets.
Comparing the TQ values we see that in general the expert datasets have a higher TQ value
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than the replay datasets. We also find that the expert demonstrations in the stabilization
tasks, as well as in OpenAI mountain car yield very high TQ values, while the expert
dataset in the Furuta pendulum swing-up task only has a TQ value of 0.49, which is due
to the generally higher difficulty of the task itself and the fact that even expert policies do
not achieve the maximum possible return for the task.

4.3 Model Architectures

In our experiments we compare three architectures against each other: Decision Trans-
former (DT), Decision LSTM (DLSTM) and Behavioral Cloning (BC).

4.3.1 Decision Transformer Architecture

To evaluate DT, we use the original architecture as presented in Section 2.4. We only
extend the DT architecture by an additional scaling layer which scales all generated actions
by a constant. The scaling layer is necessary because in the original architecture the last
layer is a tanh activation which restricts the range of actions to a ∈ [−1, 1]. This restriction
is fairly appropriate for environments in which actions are normalized to be in this range,
however, it is problematic for environments where the action range is larger, such as it
is the case for our environments. We choose the scaling constant of the scaling layer to
be the absolute maximum action which is possible in the respective environment. The
scaling layer can also be used to restrict the actions to an arbitrary range in safety-critical
environments.

4.3.2 Decision LSTM Architecture

Framing RL as a sequence modeling problem, as proposed in [6, 7], in principle allows to
use other sequence modeling architectures than Transformers. We propose DLSTM, a novel
architecture that replaces the GPT-2 model inside DT by a vanilla PyTorch [44] LSTM.
For DLSTM, the following additional architectural adjustments are made in comparison
to the DT model from Section 4.3.1.
• The LSTM model’s hidden state and cell state are both initialized with zero vectors.
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• The attention mask is removed because the LSTM in our model does not perform
attention.

• Positional embeddings are removed since LSTMs, unlike Transformers, process their
inputs sequentially which makes further positional encodings unnecessary.

In the following, we will at some points reference DT and DLSTM as decision architectures
to highlight their similarities and the fact that both are based on the idea of framing RL
as a sequence modeling problem.

4.3.3 Behavioral Cloning Architecture

We use a simple BC implementation as a comparison for the decision architectures. We
build our BC implementation on top of the BC implementation from the DT codebase.
This BC model is a Multi-Layer Perceptron (MLP) which takes a set of states as input, and
outputs a set of actions. Training is done by minimizing the squared loss between target
actions (as provided in the dataset) and the predicted actions from the BC model. Again,
we introduce a final scaling layer, as described for the DT architecture in section 4.3.1.
Also, we replace the ReLU activations inside the MLP by tanh activations since we find
this to improve the model’s performance in evaluation.
It must be noted that the considered BC model is only one implementation of a family of
Behavioral Cloning and imitation learning algorithms [45, 46, 47], and a fairly simple one.
We use this BC implementation as a baseline for comparisons. However, we emphasize
that the performance of this architecture does not serve as a general measure to evaluate
whether BC or imitation learning approaches are able to solve the respective tasks, but
rather indicates that the respective tasks pose challenges for conventional BC models
which require more sophisticated approaches.

4.4 Training Process

In [48], it is pointed out that for deep RL methods the reproducibility of experimental
results poses an important challenge. There are multiple factors of non-determinism in
deep RL, such as network architectures, random seeds, and environment randomness,
whichmake it difficult to compare experimental results. It is proposed that when evaluating
a deep RL algorithm, on the one hand strong hyperparameter searches are necessary, and

29



that on the other hand experimental runs have to be reproduced multiple times to obtain
measures of confidence in the results. Following this proposal, we let every training run
on five different random seeds, and we include the results from all random seeds for the
model evaluation. We plot the experimental results using confidence bounds, i.e., the
standard deviation in the episode returns, when evaluating the model performance.

4.5 Hyperparameters

Also, as proposed in [48], we put emphasis on finding an appropriate set of hyperparame-
ters for our models. In this section, we name the most important hyperparameters and
sources of non-determinism for model training in the evaluated models, and provide an
overview of the used hyperparameters for each environment to allow for reproducible
and comparable results. We present an overview of the used hyperparameters for the
experiments in Table 4.2.

• Context lengthK. The context length defines the length of the sequence of previously
encountered states, actions and RTG values which is passed as an input to the models.

• Number of hidden layers. MLPs are built of a number of layers of neurons. The number
of hidden layers determines the number of such layers inside the architectures.

• Hidden layer size. The hidden layer size determines the number of neurons inside a
hidden layer.

• Batch size. For one training epoch, the models sample mini-batches of lengthK from
the dataset. The batch size determines the number of sequences that is sampled in
one training epoch.

• Number of training steps per training epoch. This hyperparameter determines the
number of forward and backward passes that the network performs in one training
epoch.

• Input normalization. In the models, states are normalized via

snorm =
s− s̄data
ŝdata

,

where s is a state in the inputs which will be propagated through the network, s̄data
is the mean of the states in the dataset, ŝdata is the standard deviation of the states
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in the dataset, and snorm is the normalized state. Concretely, the last K time steps
are passed as input.

• Dropout. Dropout is used as a regularization technique to avoid overfitting. The
dropout hyperparameter determines the rate at which dropout occurs.

• Activation function. Both inside the GPT-2 model and the prediction layers, activation
functions are crucial parts that help the networks to learn complex patterns.

• Learning rate. The learning rate determines the step size of the parameter updates
during backpropagation. Too high learning rates can lead to model divergence,
while too low learning rates can yield slow training processes.

• Number of attention heads. As outlined in Section 2.3.3, Transformers use multi-
headed attention for training stability. The number of attention heads corresponds
to the number of heads used for multi-headed attention.

DT DLSTM BC

Context length K 20 20 20
Number of hidden layers 3 3 3
Hidden layer size 128 128 256
Batch size 64 64 128

Number of training steps per training epoch 3000 3000 3000
Input normalization yes yes yes

Dropout 0.1 0.1 0
Activation function tanh tanh tanh

Learning rate 3× 10−5 3× 10−5 3× 10−5

Number of attention heads 1 - -

Table 4.2: Overviewof the used hyperparameters for the different evaluated architectures.

4.6 Evaluation Process and Metrics

Evaluation in offline RL can generally be performed in two ways: either in a pure offline
setting, or in an online setting. While the offline evaluation is generally harder and less
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intuitive, the online evaluation violates the pure offline assumptions of offline RL methods
and is not possible in many environments.
For our experiments, we only consider online evaluations since we have access to simulated
environments, as well as to Furuta Pendulum RR. We consider the mean and the standard
deviation of the episode returns that are obtained during evaluation as metrics to measure
how successful the models are at solving the respective tasks. We do not perform offline
evaluation, but refer to [14] for some directions towards offline evaluation.

4.6.1 Online Evaluation in Simulation

We perform evaluations in simulation for OpenAI mountain car, OpenAI pendulum, Mujoco
inverted pendulum, and the Furuta pendulum environments. For all experiments we
evaluate each model training epoch on 30 evaluation episodes for each of the five random
seed which totals to 30 · 5 = 150 evaluation episodes per model and training epoch.

4.6.2 Online Evaluation in Furuta Pendulum RR

We also evaluate the learned policies in Furuta Pendulum RR. We use the policies which
have been trained on simulation data and apply them to Furuta Pendulum RR. The swing-
up task is evaluated using two approaches: first, using the learned decision architectures
and BC directly, and second, for DLSTM only, using the learned DLSTM to swing up the
pendulum and an additional PD controller for stabilization around the equilibrium point.
Also, we perform evaluations on the stabilization task by swinging up the pendulum until
it is stabilized using a energy-based PD controller, and then letting the learned decision
model or BC take over to stabilize the pendulum in the equilibrium for an additional 1500
time steps. Detailed explanations of the evaluation procedure on Furuta Pendulum RR can
be found in Section 5.3. In the real setting, we again evaluate on 30 evaluation episodes,
but only for the final model of the best random seed of the training runs.
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5 Experiments & Results

In this chapter, we describe and analyze the experimental results we obtained for the
evaluations of DT and DLSTM in comparison to BC. We present the results from training
the architectures on expert and replay datasets as well as the results we obtained for
applying the architectures on the Furuta pendulum real-world setup (Furuta Pendulum
RR). Finally, we analyze the influence of the specified Returns-to-go value.
In Table 5.1 we present the mean and standard deviation of the episode return in the
simulated environments for the different models. When analyzing the experimental results
we will often refer to this Table. Additionally, we provide plots for the mean episode
return of the different training epochs in the subsections for every environment. For
some experiments, we also evaluate the phase plane plots of the evaluation trajectories to
explain the behavior of the learned policies in more detail.

Mean Evaluation Episode Returns
Environment Dataset GData DT DLSTM BC

OpenAI Mountain Car Expert 91.80 ± 1.54 94.39 ± 0.89 94.03 ± 1.22 94.05 ± 1.17
OpenAI Mountain Car Replay -379.86 ± 744.23 93.58 ± 0.09 96.50 ± 5.15 95.46 ± 0.86

Mujoco Pendulum Stabilization Expert 1000.00 ± 0.00 454.72 ± 360.12 985.31 ± 71.96 61.61 ± 170.16
OpenAI Pendulum Swing-up Expert -207.53 ± 167.75 -761.44 ± 375.71 -252.86 ± 233.21 -235.78 ± 204.45
OpenAI Pendulum Swing-up Replay -837.35 ± 414.12 -1083.78 ± 346.79 -569.89 ± 568.49 -815.41 ± 577.83
Furuta Pendulum Stabilization Expert 5.95 ± 0.02 0.46 ± 0.03 5.93 ± 0.01 1.82 ± 1.60
Furuta Pendulum Swing-up Expert 2.93 ± 0.63 0.74 ± 0.24 1.79 ± 1.12 0.87 ± 0.21
Furuta Pendulum Swing-up Replay 1.56 ± 1.70 0.51 ± 0.25 1.30 ± 1.28 0.89 ± 0.83

Table 5.1: Overview of the experimental results of the final models in the different simu-
lation environments. The table shows the datasets with their mean trajectory
returns ( GData and the mean and standard deviation of the episode returns
from evaluating all final models.
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5.1 Expert Dataset Experiments

In this section, we analyze the results from the experiments which were conducted on
expert datasets.

5.1.1 OpenAI Mountain Car Expert Results
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Figure 5.1: Average episode returns obtained in evaluation for the OpenAI mountain car
expert dataset experiments.

The results of the models in OpenAI Mountain Car can be seen in Figure 5.1. All three
architectures are capable of solving the mountain car task after only a few training
iterations. In the OpenAI mountain car setting, the models therefore yield optimal results
and all three models are even capable of performing slightly better in average than the
behavior policy of the dataset. In general, all three architectures prove to be able to solve
the, fairly simple, task of controlling the mountain car such that it reaches its stable target
state. The strong performance of the models indicates that all policies should in principle
also be capable of learning the necessary movement to swing up a pendulum since moving
the mountain car up the hill resembles this swing up movement.
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Figure 5.2: Average episode returns obtained in evaluation for the Mujoco inverted pen-
dulum expert dataset experiments.

5.1.2 Mujoco Inverted Pendulum Expert Results

The results from evaluating the learned models in the Mujoco inverted pendulum environ-
ment are shown in Figure 5.2. Here, it is obvious that DLSTM outperforms both DT and
BC by a large margin. DLSTM shows a reasonable training process in the first epochs, and
converges to expert performance after eight iterations. The mean episode return of the
final DLSTM model of 985.31 is slightly below the expert dataset mean which shows that
there are still evaluation episodes where DLSTM fails to achieve the maximum reward of
1000, and lets the pendulum fall down in a late time step. However, these episodes are
very rare for DLSTM.
In the Mujoco inverted pendulum task DT further yields better results than BC while being
significantly worse than DLSTM. For DT, we observe that the learned policy improves over
the training epochs, and the performance settles at an average episode return of around
500. DT solves the task with an adequate episode return in some episodes, while it fails to
do so in other episodes, which is indicated by the high standard deviation in the episode
returns. The behavior of the DT policy is highly dependent on the initial state, where for
some intial states DT achieves reasonable stabilization and for other initial states it fails
to do so.
Meanwhile, it becomes clear that BC fails to solve the Mujoco inverted pendulum task
because of the very low mean episode return of 61.61. Furthermore does the learning
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curve of BC show no significant improvement over the training epochs.

5.1.3 OpenAI Pendulum Expert Results
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Figure 5.3: Average episode returns obtained in evaluation for the OpenAI pendulum
expert dataset experiments.

The evaluation results for the OpenAI pendulum expert dataset task are depicted in Figure
5.3. Considering the learning curves and the final model results we find that both DLSTM
and BC prove capable of solving the OpenAI pendulum swing-up task at expert level, while
DT does not. The BC policy reaches expert level already after the third training epoch, and
its performance stays slightly below the mean dataset return for the remaining training
epochs. In comparison, the convergence takes DLSTM slightly more training epochs, and
the model converges more smoothly. After roughly ten training epochs the performance
of BC and DLSTM is nearly identical. However, there still takes place a learning process
inside DLSTM since the model performance improves over the next training iterations.
While DLSTM and BC prove to perform on an expert level, DT does not achieve expert
level and its performance lacks behind the other two models as well as the mean dataset
return by a large margin. After convergence, the performance of DT settles at a mean
episode return between -800 and -600, which, as described in Section 4.1.3, is too small
to solve the pendulum task adequately.
In Section 4.1.3, it is pointed out that the OpenAI pendulum environment is generally
prone to high variance when evaluating the episode returns since the achievable episode
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return is determined by the initial pose of the pendulum. We observe this high variance in
the results shown in Figure 5.3 since the confidence intervals, i.e., the standard deviations
of the mean episode returns, are larger than in the previous environments. Therefore, the
relatively large confidence intervals can be explained with the variance in the environment
itself, and generally do not indicate a high variance inside the models. Still, the high
variance for the DT curve shows that there are also episodes in which DT proves capable
of solving the task and stabilizing the pendulum in an upright position. Otherwise, its
mean episode return would be much smaller.
To provide further analysis of the behavior of the learned policies we present phase plane
plots which show how the model performance of the evaluated architectures changes
over different training epochs in Figure 5.4. We plot the phase plane trajectories for
every model for the first, the fifth, and the final training epoch. The episode returns of
the respective trajectories are indicated by the color of the lines, where red lines signal
low episode returns, and green lines signal high episode returns. Since states in the
OpenAI pendulum environment range from 0 rad to 2π rad, the single equilibrium state
is represented by two markers where one marker represents the target state in which the
pendulum tends slightly to the left, and the other marker represents the target state in
which the pendulum tends slightly to the right.
Starting with the behavior of the DLSTM policy, as seen in Figure 5.4a, after the first
training epoch most trajectories yield only low returns. We observe two characteristic
behaviors in this subplot. The first behavior is represented by the red circles in the center
of the phase plane plot. In these very low return episodes, the pendulum swings from side
to side, but does not accumulate enough energy to swing up to a higher position such
that the upright target position is reached. The policy mostly shows this behavior when it
starts hanging down, i.e., close to an initial angle of θ = π. The second behavior occurs
when the pendulum starts more closely to the target state: the pendulum falls down at
first, but then the DLSTM policy swings it up again such that it passes the equilibrium
point, and the same movement starts over again. In this case the pendulum sees the target
equilibrium state multiple times but the policy does not attempt to stabilize it there. In
the phase plot, the second behavior can be detected at the dense top curves. These lines
yield higher episode returns than the first characteristic behavior that are indicated by
the circles in the plot. After the first training epoch of the DLSTM model, the policy does
not manage to stabilize the pendulum in the target equilibrium state in any episode.
After the fifth training epoch, another characteristic behavior appears in the DLSTM plot:
in the episodes which are indicated by green lines, the pendulum manages to swing up
the pendulum and stabilize it in the target equilibrium point. In the phase plot, these
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(a) DLSTM phase plots on OpenAI pendulum expert.
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(b) BC phase plots on OpenAI pendulum expert.
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(c) DT phase plots on OpenAI pendulum expert.

Figure 5.4: Phase plane plots of the trajectories over the first, fifth and final training
epochs obtained in evaluation for the OpenAI pendulum swing-up expert
dataset experiments.

38



trajectories reach the equilibrium point markers and stay there. When starting hanging
down, the DLSTM policy mostly achieves this high-return behavior. However, as indicated
by the top red lines, when starting closer to the target position, the DLSTM model fails to
stabilize the pendulum, but rather generates the high velocity behavior of swinging up
the pendulum multiple times as after the first training epoch.
Finally, after 40 training epochs, the behavior in the right subplot shows that the DLSTM
policy manages to stabilize the pendulum in all evaluation episodes, and achieves high
returns. This high-return behavior is also achieved in situations where the pendulum is
initialized in an upright position.
The behavior of the BC policy, as visualized in Figure 5.4b, is notably different from the
behavior of the DLSTM policy. First, the characteristic trajectories in which the DLSTM
policy does not manage to swing up the pendulum after the first training epoch, which
are visualized as circles in the phase plane plots, do not occur for the BC policy. Rather is
BC prone to the high velocity swing up behavior after the first training epoch as indicated
by the dense yellow lines at the bottom of the left subplot. BC overcomes this problem
after the fifth training epoch and shows high-return behavior. However, the characteristic
behavior of swinging up the pendulum and passing the equilibrium pose multiple times
remains for the BC policy. We observe that, in most episodes, BC swings up the pendulum
and then achieves stabilization in the target pose for some time steps. However, after few
time steps the policy lets the pendulum fall down, and afterwards the policy swings up
and stabilizes the pendulum again.
For the DT model, the behavior in Figure 5.4c shows that after the first training epoch the
model manages to swing up the pendulum but does not stabilize it. Rather we see the
high-velocity behavior of swinging up the pendulum multiple times. However, as expected
considering the low mean episode return, DT does not overcome the problem of high
angular velocities, and even after the 40-th training epoch shows lots of trajectories in
which the pendulum swings up and down with high speed. Also, we only rarely observe
higher-return trajectories which indicates that the DT policy fails to stabilize the pendulum
and achieve high episode returns. Episodes in which the trajectories converge into the
equilibrium point markers are rare for the DT architecture.

5.1.4 Furuta Pendulum Stabilization Expert Results

Results from training the models on expert data from the Furuta pendulum stabilization
task can be seen in Figure 5.5. Again, DLSTM is the only model to solve the task on an
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Figure 5.5: Average episode returns obtained in evaluation for the Furuta pendulum swing-
up expert dataset experiments.

expert level. After roughly eight training epochs the model performance converges to be
5.93 which is almost as high as the near-optimal average dataset return of 5.95. The phase
plot for the DLSTM policy is depicted in Figure 5.6a and shows that after five training
epochs, the DLSTM policy stabilizes the pendulum in every evaluation episode.
For BC it is notable that the policy does not improve its performance over the training
epochs. BC yields an average episode return of roughly 2.0 after the first training epoch
but refuses to show any training progress after that. We can explain this learning curve
as follows. The mean episode return of around 2.0, combined with the high standard
deviation in the episode returns, signifies that BC stabilizes the pendulum successfully
under some initial states while it fails to do so under other initial states. This explanation
is further supported by the phase plane plots of the performance of the BC policy in Figure
5.6b, where we observe high-return trajectories when starting very close to the target
pose, and other low-return trajectories which do not show successful stabilization.
Meanwhile, the DT policy fails to solve the stabilization task. The DT model shows only
minimal learning progress in the first few iterations, and converges to a very low mean
episode return of roughly 0.5. Also, the evaluation plots of DT show only small standard
deviations in the obtained episode returns which indicates that DT never solves the task
of stabilizing the pendulum for the whole episode, and that there are no outlier episodes
with high returns. Further, the phase plane plots in Figure 5.6c indicate that no successful
stabilization episodes occur for DT. The only notable trend between the first and later
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(a) DLSTM phase plots on Furuta pendulum stabilization expert.
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(b) BC phase plots on Furuta pendulum stabilization expert.
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(c) DT phase plots on Furuta pendulum stabilization expert.

Figure 5.6: Phase plane plot of the trajectories over the first, fifth and final training epochs
obtained in evaluation for the Furuta pendulum stabilization expert dataset
experiments.
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training epochs is that the trajectories become shorter which is due to the fact that DT
learns a behavior in which it stabilizes the pendulum for a few time steps and then lets
the pendulum fall down. The behavior of DT when stabilizing the pendulum for these
few time steps leads to an early episode termination because the pendulum reaches its
borders.

5.1.5 Furuta Pendulum Swing-Up Expert Results
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Figure 5.7: Average episode returns obtained in evaluation for the Furuta pendulum swing-
up expert dataset experiments.

The mean evaluation returns for the Furuta Pendulum swing-up task are depicted in Figure
5.7. Again, DLSTM outperforms both DT and BC in terms of evaluation episode returns.
In late training epochs, DLSTM achieves a reasonable average return of around 2.0 which
indicates that it solves the Furuta Pendulum swing-up task in many episodes. Still, the
final average episode return is significantly below the mean dataset return of 2.93. The
fact that DLSTM fails to stabilize the pendulum in some of the evaluation episodes is
clearly indicated by the relatively high standard deviation of 1.12.
Both DT and BC converge to a mean episode reward below 1, and both policies show
the behavior of swinging up the pendulum, but not stabilizing it. Also, DT and BC have
relatively small standard deviations in the episode returns which signifies that these
models do not have large outliers episodes with high returns.
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Figure 5.8: Phase plane plot of the trajectories obtained in evaluation for the Furuta
pendulum swing-up expert dataset experiments for the final training epochs
of the models.

Comparing the evaluation results of the final models in the phase plane, as depicted in
Figure 5.8, we see that all models in principle learn to swing up the pendulum to reach
the target position. However, DLSTM is the only policy which proves to have successful
episodes where it stabilizes the pendulum, as indicated by the green lines which lead into
the equilibrium points. The DT and BC policies learn to swing-up the pendulum multiple
times which accumulates a higher return than when the pendulum stays in a low position,
but they do not achieve stabilization.
Therefore, the behavior of DT and BC is suboptimal and both fail to learn stabilization,
which would be crucial to obtain high episode returns. Meanwhile, DLSTM manages to
learn stabilization, and achieves higher average returns.

5.2 Replay Dataset Experiments

The following evaluations describe the experimental results from training DT, DLSTM and
BC on replay data from the training process of an online RL policy, precisely a Proximal
Policy Optimization (PPO) policy [43]. Learning from replay datasets requires policies
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to extract higher-return trajectories and prioritizing them for the learning process, while
ignoring trajectories of the dataset which yield low returns. In theory, DT and DLSTM
are able to use hindsight return information, provided by the sequences’ RTG values, to
distinguish low reward from high reward actions, while BC only attempts to mimic the
state-action pairs from the dataset without taking the obtained rewards of these pairs into
account.

5.2.1 OpenAI Mountain Car Replay Results
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Figure 5.9: Average episode returns obtained in evaluation for the OpenAI mountain
car replay dataset experiments. The mean dataset return of -379.86 is not
included since it is too low for a proper visualization.

The results from training DT, DLSTM, and BC on replay data from the OpenAI mountain
car environment are depicted in Figure 5.9. All of the models converge to expert level
performance after few training epochs as it has been the case on the mountain car expert
dataset in Section 5.1.1. It is notable that DLSTM lacks behind both DT and BC in the
first training epochs and only converges to expert level after the seventh training epoch
while both other models already converge after two training epochs. However, all of the
three models prove to be capable of solving the mountain car task when being trained on
replay data from the learning process of an online policy.
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5.2.2 OpenAI Pendulum Replay Results
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Figure 5.10: Average episode returns obtained in evaluation for the OpenAI pendulum
replay dataset experiments.

The evaluation results of the replay experiments on the OpenAI pendulum swing-up task
can be seen in Figure 5.10. In the OpenAI pendulum replay setting, the DLSTM policy
surpasses the average dataset return and performs best out of the three evaluated models.
Still, when compared to the results from training on expert data in Table 5.1, the average
episode return of the final model of -596.89 is by a large margin smaller than the average
return of the final DLSTM model from the expert dataset experiments, which is -252.86.
Also, a very large standard deviation in the episode returns for DLSTM occurs. This high
standard deviation can not be explained alone by the high variance in the environment,
but it indicates that the model performance differs heavily between different episodes. In
some episodes, the DLSTM policy manages to stabilize the pendulum and achieves a high
episode return, while in other episodes it fails to do so.
The BC model lacks behind DLSTM throughout almost the whole learning process and
does not surpass DLSTM, as it has been the case on the expert dataset. The high standard
deviation also occurs for BC which indicates that the evaluations contain both high and
low return episodes. Finally, the performance of DT is again worse than the performance
of the other two models. Also, the DT policy has the lowest standard deviation out of the
models which indicates that high-return outlier episodes do not occur often. DT again
proves to be unable to solve the task adequately.
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Figure 5.11: Phase plane plot of the trajectories obtained in evaluation for the OpenAI
pendulum replay dataset experiments for the final training epochs of the
models.

The phase plots of the final learned models in Figure 5.11 confirm that the evaluations of
DLSTM and BC contain both high return and low return episodes. The final DLSTM model,
as depicted in the left subplot, solves the task with high episode returns when it starts in
initial angles that deflect enough from the pendulum hanging down vertically, as can be
observed by the green trajectories. However, when the pendulum starts hanging down
vertically, i.e., close to an initial angle of θ = π, the DLSTM policy does not accumulate
enough energy to swing up the pendulum and reach the upright target position, as
characterized by the red trajectories in the center of the plot.
For the BC model we observe all three characteristic behaviors of the pendulum as they
have been outlined in Section 5.1.3. Fist, for some episodes there are circular trajectories
which show that the pendulum is not swung up high enough. Second, the dense red lines
at the bottom indicate the behavior of swinging up the pendulum multiple times. And
finally, the green trajectories show episodes where the pendulum reaches its target pose
and gets stabilized by the BC model there.
For DT, we observe that in some episodes it encounters the problem of not stabilizing
the pendulum, as indicated by the red circles in the center of the plot, but also does not
achieve stabilization in episodes where the pendulum accumulates enough kinetic energy
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to reach the target position. In these episodes the model swings up multiple times with
high velocities, but fails to stabilize the pendulum.

5.2.3 Furuta Pendulum Swing-Up Replay Results
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Figure 5.12: Average episode returns obtained in evaluation for the Furuta pendulum
swing-up replay dataset experiments.

Figure 5.12 shows the evaluation results for training the evaluated models on replay
data from the Furuta pendulum swing-up task. As it is the case for the other replay
experiments, DLSTM performs best with an average episode return of 1.30. The final
model performance of DLSTM stays slightly under the average dataset return of 1.56. The
high standard deviation of 1.28 shows that the model performance differs significantly
from episode to episode, and that the model performance is dependent on the initial states
of the evaluation episodes. Again, the high standard deviation also indicates that there
are many episodes with high returns.
For the BC policy, the model performance after training on replay data is even slightly
better than after training on expert data, as shown in Table 5.1. Also, the standard
deviation of 0.83 is higher than for the expert dataset which shows that there are outlier
episodes with high returns.
The evaluation results for DT show that the performance of the DT model converges early
to an average episode return which is significantly lower than for DLSTM and BC. Again,
DT does not prove to be able to solve the Furuta pendulum swing-up task.
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Figure 5.13: Phase plane plot of the trajectories obtained in evaluation for the Furuta
pendulum swing-up replay dataset experiments for the final training epochs
of the models.

In the phase plane plots of the final models in Figure 5.13 we see that DLSTM is the only
policy to achieve successful episodes where the pendulum is swung up and then stabilized,
as indicated by the green trajectories in the left subplot. However, there are also many
unsuccessful episodes as indicated by the yellow and red trajectories. The BC plot looks
similar but lacks green lines which indicate successful stabilization. As can be seen in the
right subplot, the DT model fails to even reach the equilibrium, similar to as it is the case
for some policies in the OpenAI pendulum environment in Sections 5.1.3 and 5.2.2 where
this behavior was indicated by red circular trajectories. We see that, other than DLSTM
and BC, DT does not accumulate enough energy to swing up the pendulum after being
trained on the replay dataset which is also the cause for the low mean episode return of
DT.

5.3 Real Robot Experiments

In the original DT paper, the models are only trained and evaluated in simulated envi-
ronments. As explained in Chapter 4, we also contribute an evaluation of the decision
architectures on Furuta Pendulum RR. We evaluate the learned models from Sections
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5.1.4 and 5.1.5 in the real setting. The models are trained in simulation and evaluated on
the real Furuta pendulum platform. We note that this approach generally suffers from the
sim-to-real gap [11]. Since simulations often fail to resemble the real setting adequately
the model performances in simulation and reality can differ drastically.
First, we evaluate the performance of the learned models in the Furuta Pendulum RR
swing-up task. Then, we consider the stabilization task and evaluate the models there.
Finally, we provide additional evaluations regarding the real-time capabilities of the models,
namely the response times to obtain actions.

Evaluation Returns
Environment Dataset GData DT DLSTM BC

Furuta Pendulum RR Swing-up Expert 2.93 ± 0.63 0.38 ± 0.15 1.11 ± 0.52 0.22 ± 0.18
Furuta Pendulum RR Swing-up with PD stabilization Expert 2.93 ± 0.63 − 2.17 ± 0.60 −

Furuta Pendulum RR Stabilization Expert 5.95 0.38 ± 0.08 5.98 ± 0.00 5.96 ± 0.02

Table 5.2: Overview of the experimental results of the final models on Furuta Pendulum
RR. The table shows the datasets with their mean trajectory returns (GData and
themean and standard deviation of the episode returns from evaluating all final
models. We do not report results for the swing-up task with PD stabilization
for the DT and BC policy since evaluations are only done for DLSTM.

Table 5.2 summarizes the obtained results for the experiments on Furuta Pendulum RR.

5.3.1 Swing-Up Without Additional Help

First, we present the results from evaluating the models, which are trained on expert
simulation data, on the Furuta Pendulum RR swing-up task. As expected after the
simulation results, DLSTM performs the best out of the three models with an average
episode return of 1.11. However, this return is small compared to the average return of
1.79, which is obtained for DLSTM in simulation. On the real setting, the DLSTM policy
suffers from similar problems as DT and BC suffer from in simulation: it manages to swing
up the pendulum such that it sees the target position, but fails to stabilize it most of the
times.
Again, both DT and BC fail to solve the task appropriately, which is indicated by low
average episode returns of 0.38 (DT), and 0.22 (BC) respectively. It is notable that DT
performs significantly better than BC. Also, the relatively low standard deviations indicate
that there are no outlier episodes with higher returns. Both the DT and the BC policy are
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not able of accumulating enough kinematic energy, such that the pendulum is swung up
to an upright pose, unlike DLSTM which proves capable of swinging up the pendulum
and only lacks the ability to stabilize it in the target pose.

5.3.2 Swing-Up With PD-Aided Stabilization
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Figure 5.14: Phase plane plots to compare the trajectories obtained during evaluation for
the Furuta Pendulum RR swing-up task with and without additional PD-aided
stabilization.

To show that with additional help when stabilizing the pendulum the DLSTM model is
capable of solving the Furuta Pendulum RR swing-up task, we evaluate the performance
of a controller which uses the trained DLSTM model to swing up the pendulum, and lets a
Proportional-Derivative controller (PD) controller take over once the pendulum is swung
up and must be stabilized. The combined controller switches from the swing-up model to
the PD controller once it has encountered a high reward (here: 0.0039) in the previous
time step. We only evaluate the performance of DLSTM for this task since both BC and
DT have proven incapable of swinging up the pendulum such that an appropriate pose is
reached, from where the PD controller could stabilize the pendulum.
With a mean episode return of 2.17, we obtain a significantly better performance of the
combined DLSTM-PD controller in comparison to pure DLSTM control. The PD controller
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proves capable of dealing with the high velocities after the DLSTM policy has swung up
the pendulum. The high average episode return proves that stabilization is what causes
the pure DLSTM policy to fail achieving good performance on Furuta Pendulum RR.
In addition, we compare the phase plane plot of the evaluation of the final DLSTM model
on the swing-up task without additional help with the phase plane plot of the final DLSTM
model with additional PD-controlled stabilization, as depicted in Figure 5.14. We observe
that while the plots show that the swing-up movement is achieved by both policies, the
DLSTM model without additional help does not stabilize the pendulum in the equilibrium
point. The DLSTM policy rather swings up the pendulum multiple times as indicated by
the dense yellow lines at the bottom of the left subplot. The right subplot shows that the
PD-aided DLSTM model achieves stabilization in the equilibrium in most episodes.

5.3.3 Pure Stabilization

For the stabilization task in Furuta Pendulum RR, evaluation has not been possible directly
since resetting the pendulum to an arbitrary initial state from where a policy should
stabilize it is hard due to the influence of gravity. To evaluate the stabilization performance
of the learned models on the real robot we let an energy-based PD controller swing up the
pendulum until a certain reward has been reached for the last time step. This high reward,
which we choose to be 0.0039 (the maximum reward for a time step in the environment
is 0.004) signifies that the pendulum has been stabilized by the energy-based controller.
After this reward has been reached, we switch the controller to the learned model (DLSTM,
DT, or BC), which then must stabilize the pendulum for an additional 1500 time steps.
The evaluation setting can be seen as in contrast to the situation in Section 5.3.2, where it
is the task of the model to swing up the pendulum, while stabilization is afterwards done
by a PD controller.
The results from these evaluations can be found in Table 5.2. We find that both DLSTM
and BC show near-optimal performance and prove capable of stabilizing the pendulum for
the whole episodes with average episode returns of 5.98 and 5.96 respectively. Meanwhile,
DT fails to solve the stabilization task, achieving an average episode return of only 0.38.
This very low return corresponds to a behavior, in which the pendulum is only stabilized
for a few time steps, and then falls down.
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5.3.4 Real-Time Capabilities and Response Times

Another important aspect to consider for the models which has been underexplored in
the original DT paper is if they are capable of generating actions in real time since the
D4RL dataset, which serves as an evaluation framework for DT, only contains simulation
data. Using simulations often is not appropriate for evaluating the real-time capabilities
of policies because the simulation can stop and wait until the policy has generated an
action to continue the simulation, even if this takes very long. For real-world settings,
dynamic properties such as gravity make it necessary to consider real-time capabilities
of the models. These circumstances make it critical that controllers generate actions in
an appropriate time frame, because otherwise the applied action would lack behind the
observations which are used to generate the action. Such an offset can lead to a worse
policy behavior or even to total failure.
We denote the time which is necessary for the policy to generate an action based on
the current observation as the response time. The response time depends heavily on the
computational power of the system that computes the actions which makes evaluations
difficult. However, we can observe certain trends regarding the response times of different
architectures when evaluating the response times under different computational settings.
For our evaluations we test the response times of DLSTM, DT, BC and a PD controller on
two settings with different computational power:

1. Laboratory Computer with Intel(R) Core(TM) i7-9700K CPU @ 3.60 GH (8 cores).
2. Mobile Notebook with Intel(R) Core(TM) i5-7200U CPU @ 2.50 GH (2 cores).

We note that, especially for the DT models which are able to process inputs in parallel
a speedup is expected when making use of a dedicated graphics card which we do not
test here. We consider two main criteria for our evaluation of the real-time capabilities
of DT and DLSTM: First, we observe whether, under the given hardware setup we are
using, actions are generated in appropriate time such that the response time aligns with
the frequency in which the environment applies actions. For the Furuta Pendulum, this
frequency is 250 Hz, i.e., an action is applied every 0.004 s. Then, we compare the models
to each other, as well as to the energy-based PD controller which has been used to generate
the training dataset itself. This comparison allows to understand whether one model
needs significantly more time than another to generate an action and if this can cause
problems for real-time usage.
We present the results from evaluating the response times of the different policies in Figure
5.15. For the computationally stronger laboratory computer setup, as seen in Figure 5.15a,
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Figure 5.15: Response times of the evaluated architectures in Furuta Pendulum RR under
two different computational setups.

all response times are far below the environment period length of 0.004 s. Still, it becomes
apparent that DT by far has the highest average response time, more than twice as large
as the second highest average response time, which is DLSTM. Both the BC model and
the PD controller are much faster at generating actions.
We observe the same trend for the second setup with a weaker CPU in Figure 5.15b. It is
important to notice here that the average response time of the DT model is already equal to
the period length in the Furuta Pendulum environment, which prohibits a real-time usage
of the DT model in this setting. Real-time usage of DT is not possible in this setup because
on the one hand there are time steps where the model’s response time is already above the
period length, and on the other hand other computations need to take place during the
period as well, such as communication between the devices and data processing. Under
these circumstances, DT is not able to generate an action in an appropriate time, which
leaves the DT policy lacking behind the current observations and leads to suboptimal
behavior. Again, DLSTM has the second longest response time, which however is still
appropriate for real-time usage in this setting. Both BC and the PD controller again have
notably smaller response times than DT and DLSTM.
We conclude that for using the decision architectures on real systems the models’ response
times are an important factor to consider. Crucial for the application of the models is
the computational power of the devices which use the models: for our experiments in
the robotic lab setting with an appropriately strong CPU, the models are fast enough to
perform in real-time settings, while with weaker computational power we find especially
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DT, but also DLSTM, to have significantly longer response times to generate actions. It is
necessary to consider this weak scalability of the models in comparison to standard BC
when using the models on real systems, since for more complex models, or settings with
even higher action frequencies, the computational power will be a bottleneck which either
allows or prohibits real-time usage of the decision architectures.

5.4 Influence of Returns-To-Go Values

As described in Section 2.4, the DT architecture works with Returns-to-go values to
condition the evaluation on the (desired) episode return. Before evaluation, such a desired
target return must be specified in advance. In the original DT paper, it is stated that
the specified RTG value and the episode return are highly correlated and that using an
adequate RTG value is crucial to obtain good model performance. To specify the RTG
value, the authors mostly use the mean episode return of an expert policy. However, in
some settings, there might be only suboptimal data available, and the optimal episode
return might be unknown in advance. For these settings, specifying an appropriate RTG
value would therefore pose an important problem.
To investigate the influence of the RTG value on our experiments, we plot the mean
episode return of the final training models for each environment over different RTG values.
We evaluate the final DT and DLSTM models for the OpenAI pendulum, Mujoco inverted
pendulum, and Furuta pendulum tasks in simulation. The BC policy is not evaluated in
this regard since it does not make use of any form of hindsight information regarding the
returns, and therefore the RTG value is irrelevant for BC. We evaluate each RTG-model
combination on 50 evaluation episodes. The results from these experiments can be seen
in Figure 5.16.
For the OpenAI pendulum swing-up task in Figure 5.16a, there are only minimal differences
between the evaluation runs with different RTG values. Similar results are obtained for
the Mujoco inverted pendulum stabilization task as can be seen in Figure 5.16b: the
DLSTM model is able to achieve optimal performance for all RTG values, and the DT
model does not show to be significantly impacted by the RTG value. The same holds for
the Furuta pendulum stabilization task, as visualized in Figure 5.16c. Finally, for the
Furuta pendulum swing-up task in Figure 5.16d, the results between different RTG values
only differ slightly again, and we can not detect any significant trend towards better
performance with different RTG values.
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(b) RTG evaluations on Mujoco Inverted Pen-
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(c) RTG evaluations on Furuta Pendulum Sta-
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Figure 5.16: Average episode return of the final DT and DLSTM models for different
Returns-to-go values in the experiment environments.

We conclude that there is no observable trend regarding a better model performance by
using certain RTG values for our experiments, and that the minimal fluctuations between
the evaluations in the environments are due to the randomness in the environments and
the models themselves. These results question the expressiveness of return conditioning
inside the decision architectures.
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6 Discussion

Considering the simulation experiments from Sections 5.1 and 5.2, we obtain the following
general results.

• DLSTM proves capable of solving all stabilization experiments in simulation at expert
level when trained on expert data. For the experiments on the replay datasets, we
find that the learned DLSTM policy yields worse results compared to when trained
on expert data, but is still able to reach appropriate performance to solve the
stabilization tasks in all environments.

• The BC model reaches expert level in the OpenAI mountain car environment as
well as high average episode returns in the OpenAI pendulum environment when
trained on expert data. For the other environments, we find that the used BC model
performs significantly worse than DLSTM. Furthermore, in the OpenAI pendulum
and the Furuta pendulum environments, we observe that BC is not able to solve the
respective stabilization tasks when trained on replay data.

• DT yields the lowest episode returns in our experiments and only solves the mountain
car task appropriately, while failing at all tasks that require stabilization around an
unstable equilibrium.

Our experimental results clearly indicate that DT struggles heavily with tasks that require
stabilization around an unstable equilibrium. Even though we test different datasets,
hyperparameters, and environments, DT does not learn reliable stabilization in any of
the tasks. Meanwhile, we find that DLSTM significantly outperforms DT in the conducted
stabilization experiments. The central conclusion of our experiments is that solving fine-
grained stabilization tasks is possible using the approach of framing RL as a sequence
modeling problem if a suitable model is used for making predictions, such as DLSTM
for our experiments. We show that DLSTM, which fully builds on top of DT, solves the
stabilization tasks with high average returns. However, the results are heavily dependent
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on the used sequence modeling architecture, and for our stabilization experiments using
a LSTM model yields significantly better results than using a Transformer.
The results of the BC model further indicate that these stabilization tasks are non-trivial
to solve for standard imitation learning methods. However, as stated in Section 4.3.3, the
BC architecture we use is a simple MLP to predict actions from a sequence of states, and
we assume that more sophisticated architectures are able to solve the stabilization tasks
appropriately.
For the experiments on the Furuta pendulum real-world setup (Furuta Pendulum RR),
the sim-to-real gap leads to worse performance of all models in comparison to when
evaluated in pure simulation. Especially the fine-grained stabilization after swinging up
the pendulum poses an important challenge. Our results from Section 5.3.2 show that
with the additional help of a PD controller for stabilizing the pendulum, DLSTM is able to
solve the task. For the stabilization task on Furuta Pendulum RR, we find that both the
DLSTM and the BC policy are able to stabilize the pendulum in the target state. These
results seem confusing at first since we show that DLSTM is both capable of swinging
up the pendulum, and stabilizing it when we test both of the tasks independently on
Furuta Pendulum RR. However, the DLSTM policy is not able to combine the swing-up
and stabilization movements on its own. We assume that this problem is mainly due to
high angular velocities which occur after swinging up the pendulum, and the DLSTM
policy is not capable of performing the fine-grained stabilization in these states.
Another possible reason for the suboptimal behavior of DLSTM and an important aspect
to consider for real-time usage is the response time of the models, as we evaluate in
Section 5.3.4. We show that the GPT-2 architecture inside DT yields significantly higher
average response times than the other evaluated models, and that these response times
can become critical to solve the experimental tasks under certain computational settings.
By using DLSTM, we obtain faster response times, but the evaluated BC model still works
significantly faster. The relatively long response times of DT are mainly due to the fact that
Transformers scale quadratically with the input size, while the computational complexity
of other architectures like DLSTMs is linear in the input size. However, we expect that DT
can strongly benefit from using graphic cards which enables parallelization at training
and test time.
Finally, the results from Section 5.4 question the expressiveness of Returns-to-go values as
task-defining conditions inside the decision architectures. The evaluations indicate that
the specified RTG value has no significant influence on the performance of DT and DLSTM
in our experiments. These results clearly contradict the results which are shown in the
original DT pape, where a strong correlation between the RTG value and the evaluation
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performance is claimed. Using RTG values requires further evaluations to prove or refute
their expressiveness as task-defining inputs.
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7 Conclusion & Outlook

Framing RL as a sequence modeling problem proves to be a reasonable approach for
achieving stabilization around unstable equilibriums, when using an appropriate sequence
model for predictions, which is indicated by the good performance of DLSTM on the
stabilization experiments. The sequence modeling framework behind DT and DLSTM
is simple and allows to bridge the gap between advances in NLP and RL such that they
benefit from each other.
However, our experiments also show potential drawbacks and open questions regarding
the DT architecture. DT yields bad performance on the stabilization tasks even though we
test various different environments and hyperparameters. Apparently, the performance of
the decision architectures is highly dependent on the used sequence modeling architecture.
The DT approach can benefit from using LSTMs instead of Transformers even though
Transformers are considered to be state-of-the art architectures in sequence modeling.
The potential benefits of using Transformers inside DT, such as effective long-term credit
assignment through self-attention, and good results on control tasks, can not be validated
by this thesis. Further evaluations are necessary to prove whether DT is capable of
learning stabilization around unstable equilibriums, and if DT shows notable advantages
in comparison to BC approaches.
It remains an open question whether approaches that frame RL as a sequence modeling
problem provide significant advantages over standard BC. Our results indicate that there
is no correlation between the RTG values and the model performance in the stabilization
experiments. The effectiveness of using RTG values as task-defining inputs that provide
hindsight information for the decision architectures is therefore unclear. Moreover, the
frameworks and training processes of the decision architectures and BC are very similar.
In our experiments, DLSTM outperforms BC on stabilization tasks, but only one specific
BC architecture is evaluated. Therefore, we can not state that decision architectures are
generally superior to BC in stabilization tasks.
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Finally, to make DT and DLSTM applicable for real-world settings, the sim-to-real gap and
the response times of the models are crucial aspects to consider. The response times of the
decision architectures are significantly longer in comparison to standard BC architectures
and yield problems in our real-time experiments, which makes it necessary to further
investigate the response times of the models. Purely relying on successful simulation runs
where the actual response times of the models are ignored will certainly cause problems
under real-world conditions. For settings where DT performs too slow to be used in real
time, an LSTM architecture may be preferred over the GPT-2 Transformer model due to
the faster run time.
Based on our experimental results, there are multiple directions for further research on
Decision Transformer and framing RL as a sequence modeling problem. Especially, more
evaluations of DT under conditions such as sparse rewards environments and low data
regimes are necessary to find whether the advantages of DT over BC that are claimed in
the original DT paper [6] can be confirmed. Moreover, extensions of the DT architecture
such as online DT [38] and generalized DT [37] promise to make DT applicable to a wider
variety of tasks and settings. Online DT approaches are promising since, as outlined in
Section 2.4, the idea behind DT is not limited to the offline RL setting which ia considered
in this thesis, but can also be useful for online RL.
The successes of DLSTM in the stabilization experiments support the claim that framing
RL as a sequence modeling problem can be a powerful and attractive approach for Rein-
forcement Learning. We expect that further research on the mentioned topics will help to
bridge the gap between advances in sequence modeling and RL.
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