
Distributionally Robust
Optimization for Optimal
Control
Verteilungsrobuste Optimierung für Optimalregelung
Master thesis by Tim Dorau
Date of submission: October 20, 2020

1. Review: M.Sc. Hany Abdulsamad
2. Review: M.Sc. Boris Belousov
3. Review: Prof. Jan Peters
4. Review: Prof. Debora Clever







Abstract

Optimal control techniques often rely on the validity of a dynamical system model. Since good models of
complex systems are difficult to obtain analytically, data-driven methods which learn a stochastic model
based on trajectories of the real system play an important role. A model learned from limited data has some
inherent ambiguity which should be considered during the optimization. Distributionally robust optimization
provides a principled approach to account for ambiguity in the probability distributions underlying a stochastic
optimization problem by optimizing expected performance under a worst-case distribution. In this work,
distributional robustness is applied to simple optimal control problems.

A first approach aims to find a controller for a linear system with quadratic cost which is robust to arbitrarily
distributed additive noise. Based on the assumption that some noise samples are available, we use recent
techniques from distributionally robust optimization based on Wasserstein distances to reformulate the robust
problem as a convex optimization problem. Comparison against the standard LQR controller shows possible
improved performance when evaluated under the worst-case noise but also dependence on hyperparameters.

Our second approach is based on data-driven trajectory optimization with linearized dynamics. We solve the
trajectory optimization problem with a relative entropy bound on the policy, while also considering ambiguity
in the distribution of model parameters. As expected, the resulting policy improves performance under
the worst-case parameter distribution while being slightly conservative and lowering performance for the
nominal distribution. We also discuss some problems related to the solvability and existence of this worst-case
distribution.



Zusammenfassung

Techniken der Optimalregelung beruhen oft auf der Gültigkeit eines dynamischen Systemmodells. Da gute
Modelle komplexer Systeme analytisch schwer zu erhalten sind, spielen datenbasierte Methoden, die ein
stochastisches Modell auf der Grundlage von Trajektorien des realen Systems erlernen, eine wichtige Rolle.
Ein Modell, welches basierend auf begrenzten Daten gelernt wird, hat eine gewisse Unsicherheit, die bei
der Optimierung berücksichtigt werden sollte. Die verteilungsrobuste Optimierung bietet einen prinzipiellen
Ansatz zur Berücksichtigung der Unsicherheit in den Wahrscheinlichkeitsverteilungen, die einem stochas-
tischen Optimierungsproblem zugrunde liegen, indem der Erwartungswert eines Gütemaßes unter einer
Worst-Case-Verteilung optimiert wird. In dieser Arbeit wird die verteilungsrobuste Optimierung auf einfache
Optimalregelungsprobleme angewendet.

Ein erster Ansatz zielt darauf ab, einen Regler für ein lineares System mit quadratischen Kosten zu finden, der
robust gegenüber beliebig verteilter additiver Störungen ist. Basierend auf der Annahme, dass einige Messwerte
der Störung verfügbar sind, verwenden wir moderne Techniken der verteilungsrobusten Optimierung auf der
Basis von Wasserstein-Distanzen, um das robuste Problem als konvexes Optimierungsproblem zu formulieren.
Der Vergleich mit dem klassischen LQR-Regler zeigt mögliche Verbesserungen unter der Worst-Case-Störung,
aber auch eine starke Abhängigkeit von Hyperparametern.

Unser zweiter Ansatz basiert auf einer datenbasierten Trajektorienoptimierung mit linearisierter Systemdy-
namik. Wir lösen das Trajektorienoptimierungsproblem mit einer Nebenbedingung für die relative Entropie
des stochastischen Regelgesetzes, wobei wir auch die Unsicherheit in der Verteilung der Modellparame-
ter berücksichtigen. Wie erwartet verbessert der resultierende Regler die Leistung unter der Worst-Case-
Parameterverteilung, während er leicht konservativ ist und die Leistung für die nominale Verteilung ver-
schlechtert. Wir diskutieren auch einige Probleme im Zusammenhang mit der Lösbarkeit und Existenz der
Worst-Case-Verteilung.
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1. Introduction

Control of complex systems in uncertain environments is a difficult challenge with many applications such
as robotics and autonomous driving. A popular paradigm for addressing these problems is reinforcement
learning, an umbrella term for approaches in which an agent learns to achieve a goal by interacting with its
environment and getting feedback about the choices made [1]. While applications like playing games at a
super-human level [2] have received significant attention, there are additional challenges in solving real world
physical control tasks. Random exploration in search of a suitable control strategy can lead to unsafe and
unpredictable behavior. In many cases, as for example if the system is a self-driving car or a robot working
close to humans, this behavior clearly needs to be avoided. Another important factor is that interaction with a
real system takes significantly more time and resources than with a simulated one.

One method to approach these difficulties is by building a computational model of the real system and training
the agent in simulation. This model can be derived completely from scratch, or by collecting a limited amount
of samples from the real system and fitting a suitable model to them. Given the complexity of the real
world, including changing environmental conditions, wear and tear of the system and hard-to-model physical
effects like friction [3], the model will never be perfect. An imperfect model in turn can strongly influence
performance of the learned control strategy on the real system [4]. For the model-based approach to work
well, it is therefore essential to account for the possible model misspecification.

Motivated by the above, in this thesis we look at an approach from the optimization community for including
uncertainty in a decision problem and try to apply it to simple control problems. We start by introducing some
terminology and key ideas, and in the following two chapters lay out two somewhat distinct approaches. For
each, we refer to some more closely related work and discuss results and issues regarding implementation.

1.1. Optimal Control

Broadly speaking, the field of optimal control is concerned with designing controllers for a system evolving
over time which are optimal with respect to some performance measure. Ideas from optimal control are at the
basis of much of modern control theory such as reinforcement learning [1], model predictive control [5] and
trajectory optimization [6].

In general, the system dynamics can be stochastic, which means at time t, they are described by Pt(s′|s,a), a
probability distribution over the next state s′ given the current state s and the control input or action a. This
formulation already includes the typical assumption that the system possesses the Markov property and the
next state depends only on the current state and action, not their past values. The aim of stochastic optimal
control is then finding a policy πt(a|s) which is a distribution over actions given the current state, such that it
maximizes a measure of reward Rt(s,a) summed up over the possibly infinite time horizon considered. The
optimization can equivalently be formulated as minimizing a measure of cost instead. The type of stochastic
control process described here is generally called a Markov decision process (MDP).
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One of the main tools of optimal control is dynamic programming. This solution method is based on the
insight that the problem of optimizing over the whole time horizon can be split into solving an optimization
at each timestep going backwards in time. The value of a state is characterized by the so-called state value
function Vt(s) as a measure of expected reward under a given policy starting from state s, while the value
of taking action a and then following the given policy is captured by the state-action value function Q t(s,a).
Dynamic programming uses a connection between the two functions known as Bellman’s equations [7], where

Vt(s) = Eπ[Q t(s,a)]

Q t(s,a) = Rt(s,a) +EPt
[Vt+1(s

′)].

These two value functions can be computed recursively and the optimization is reduced to finding the policy
which maximizes Q t(s,a).

1.1.1. Linear Quadratic Regulator

One of the fundamental problems in optimal control is that of controlling a linear system with dynamics given
as

Pt(s
′|s,a) =N (s′|Ats+Bta,Σs′,t)

in which At and Bt are the system and input matrices and Σs′,t is the covariance matrix of the Gaussian noise.
The problem of minimizing an expected quadratic cost

E

⎡

⎣

∞
∑︂

t=0

sTt Qst + aTt Rat

⎤

⎦

under the above dynamics can be solved by dynamic programming, yielding a solution for the optimal control
law which is linear in the state [8]. The controller parameter is found by solving a so-called Riccati equation.
This controller is known as the linear quadratic regulator (LQR). The above problem and many variations of
it have been studied extensively in the control literature [9]. Its usefulness lies in being easy to solve while
approximating many real world problems in their operating range quite well [10].

Furthermore, the above solution can be used as a building block in iterative methods to find locally optimal
controllers for nonlinear systems such as the iterative linear quadratic regulator (ILQR) [11]. For these iterative
methods, linear dynamics are used to approximate the nonlinear ones along a given trajectory which allows
finding a controller by solving the LQR problem. A new trajectory is then collected by applying the controller
to the actual nonlinear system and the whole process is repeated until convergence. Since the linearization is
only valid around the current trajectory, the policy update should not be too drastic, as otherwise the updated
policy might actually perform worse on the nonlinear system than the previous one.

1.1.2. Robustness

A generally important aspect in control is robustness. While this idea has many interpretations and nuances,
it can roughly be understood as coping with misspecification in the system model used to obtain a controller.
Under some specified level of uncertainty, the resulting controller should then guarantee a certain level of
performance [12, 13]. For the linear dynamics case, misspecification might for example include uncertainty
about the matrices At , Bt (which we treat in chapter 3), the noise distribution (which we consider in chapter
2) or even unmodeled effects such as nonlinearities.
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1.2. Distributionally Robust Optimization

Distributionally robust optimization (DRO) is a paradigm for optimization under uncertainty which has
received significant interest in recent years. To introduce its main idea and the connection to other concepts,
we will first consider a simple, deterministic optimization problem

min
x∈X

L(x,w),

in which the decision maker has to choose decision variables x from a given set X , such that the loss function
L(x,w), depending on x and some known parameters w, is minimized. In real world examples, the parameters
will typically not be known exactly and the solution to the above problem might be meaningless. Several
approaches exist to include this uncertainty in the problem formulation, where an important aspect is the
description of uncertainty.

In the paradigm of robust optimization, the parameters are assumed to lie in some set W, typically chosen
around a nominal estimate of the parameters. A possible formulation of the optimization problem for taking
this into account is then

min
x∈X

max
w∈W

L(x,w).

An optimal solution to this minimizes the worst-case loss and thereby gives an upper bound on the incurred
loss for all parameters in the given set [14]. Furthermore, the optimal solution must be feasible for all
possible parameter values. Robust optimal solutions typically introduce conservatism, meaning they worsen
performance under the nominal parameter values [15].

In a sense, robust optimization considers all parameter values from the uncertainty set as equally likely.
Stochastic optimization, in contrast, considers parameters which are random variables with a distribution p(w)
which is known exactly. A typical formulation might then minimize the expected loss under that distribution

min
x∈X
Ew∼p[L(x,w)].

Distributionally robust optimization is a superset of the two approaches to consider uncertainty. It considers
parameters which are stochastic but with a probability distribution which is itself uncertain. We can write the
problem as

min
x∈X

max
p∈P
Ew∼p[L(x,w)], (1.1)

where we again minimize an expected loss, but do so under the worst-case distribution from some set P of
distributions, the so-called ambiguity set. A connection to the other mentioned approaches becomes clear
when considering two extreme cases. If the set P contains merely a single distribution, we recover stochastic
optimization, if it contains all distributions supported on W, we get robust optimization [16]. The idea of
introducing an ambiguity set of distributions is that for stochastic optimization, the parameter distribution
is generally estimated from a limited amount of data. Relying too much on the estimated distribution can
then again lead to unexpectedly bad performance under the real underlying distribution. With this idea of
partial knowledge about the distribution, the distributionally robust approach falls in between the robust
approach assuming zero distributional knowledge and the stochastic optimization approach assuming perfect
knowledge.

Both robust and distributionally robust optimization approaches can also be interpreted from a game theoretic
perspective. The decision maker has to choose x in order to minimize the loss, without knowing the choice of
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’nature’, which picks the parameters of the loss or their distribution. Assuming ’nature’ is a malicious adversary
aiming to maximize the same loss, this amounts to a zero-sum game. A solution of the robust problem then
gives a choice x for which the adversary can not increase the loss over some limit.

1.2.1. Ambiguity Sets

A key component of the distributionally robust approach is the choice of ambiguity set. Intuitively, it should be
chosen such that it contains all distributions which can reasonably explain the existing data we have. There is
again a trade-off between increasing robustness, for which we would want to include all possible distributions,
and limiting conservatism, for which we would tend towards including only the empirical sample distribution.
Another important consideration not yet mentioned, is the tractability of problem (1.1), which often means
reformulating the DRO problem as a convex optimization problem.

There is a multitude of possible choices for the type of ambiguity set used as detailed in [16]. Here, we focus
on those characterized by some discrepancy measure. This particular type of ambiguity set means considering
all distributions in

P =
�

p : D
�

p(w), p̂(w)
�

≤ ϵ
	

,

where D is a discrepancy measure between two distributions, ϵ is the radius of the set considered and p̂(w)
is a reference distribution. The reference distribution can be made up of the empirical data samples or may
encode a belief about the distribution of w. As discrepancy measures, in this thesis, we use Kullback-Leibler
divergence and Wasserstein distance.

Kullback-Leibler divergence or relative entropy between two distributions on the same support is defined as

KL
�

p(w), q(w)
�

=

∫︂

W
p(w) log

p(w)
q(w)

dw

and quantifies how much information is lost when approximating distribution p by another distribution q [17,
18]. It can be understood as a measure of closeness between the two distributions and has successfully been
used in reformulating distributionally robust optimization [19] in a tractable way.

Wasserstein distances are a concept from optimal transport theory [20, 21]. The Wasserstein distance of order
k is defined by the solution the optimization problem

Wk(p, q)k = inf
π∈Π

∫︂

Wp×Wq

∥wp −wq∥k dπ(wp,wq),

where the optimization is over all joint probability distributions on Wp ×Wq with marginals p and q. An
intuitive explanation, stemming from the origins in optimal transport, is that the Wasserstein distance measures
the minimum cost for transforming a pile of material, represented by the distribution p, into another one,
represented by q. In this analogy, the cost for transporting a unit of material from point wp to point wq given
by some norm (e.g. Euclidean) measuring the distance between the points. The optimization variable π
can then be understood as a transport plan specifying how many units to transport from point wp to point
wq. Contrary to the Kullback-Leibler divergence, Wasserstein distances can be used to define distance of
distributions on different supports, for example between one with continuous and a one with discrete support.
In distributionally robust optimization, Wasserstein distance based ambiguity sets have gained significant
traction in the recent years [22, 23, 24].
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1.3. Distributionally Robust Optimization for Optimal Control

Distributionally robust optimization gives an approach to include uncertainty due to limited data in an
optimization problem, while limiting the introduced conservatism. Optimal control is an interesting application,
especially when system dynamics are learned from limited data and therefore have inherent uncertainty
about them. The goal of this thesis is investigating some approaches which combine these two fields on linear
control problems with continuous state and action spaces and different types of uncertainty. During the last
years, applications of DRO in control have seen a significant amount of attention.

In finite state and action space Markov decision processes, the distributionally robust approach is used to
account for uncertainty in the transition probabilities as well as the reward. As for the single stage DRO
problem, also in the sequential decision making case the main difference between the formulations are choice
of ambiguity set and tractability of the reformulation. Early work on this topic presented in [25] uses so-called
nested ambiguity sets, which give multiple sets of different sizes, each associated with a probability that
the real parameter lies inside them. These sets and probabilities are assumed to be known a priori and the
distributionally robust MDP is reformulated as a standard robust MDP with a single uncertainty set making
its solution tractable. Another approach developed in [26] uses an ambiguity set based on the Wasserstein
distance introduced above. This set can be constructed based on a limited number of samples for the transition
probability and reward vectors, a case for which a convex optimization formulation is obtained. In [27], a
more general approach is taken which encompasses ambiguity sets based on a discrepancy measure as well as
ones defined by constraints on the moments of the distribution. The proposed solution procedure requires
solving a sequence of convex optimization problems.

In a continuous control setting, distributional robustness has for example been used for so-called chance
constraints. These require a certain constraint for a stochastic system to hold at least with a given probability.
The extension to distributional robustness is then done by requiring the chance constraint to hold for all
distributions from an ambiguity set. In [28], the problem of controlling a linear system under such distribu-
tionally robust chance constraints is tackled for an ambiguity set containing all distributions with given first
and second moment. Another application presented in [29], aims to solve a predictive control problem. Here,
the objective is a worst-case expectation considering noise distributions from a Wasserstein distance based
ambiguity set.

The examples given here show that there are many ways of incorporating distributional ambiguity in optimal
control problems. Both the fields of optimal control and distributionally robust optimization provide a variety
of problem settings and solution approaches. When defining our two problem settings in the next chapters,
we also refer to some closely related approaches for each.
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2. Wasserstein Distributionally Robust LQR

Our first approach is based on extending the LQR problem by considering additive noise coming from an
unknown distribution. Assuming some samples of the noise are available, we derive a controller robust to any
noise distribution close to this sample distribution in terms of Wasserstein distance.

2.1. Related Work

In [30], dynamic programming equations for distributionally robust stochastic control with a Wasserstein
ambiguity set are given in a general form and an exact reformulation as a semi-infinite program is obtained.
As the nominal distribution, the empirical sample distribution is used. The derived value and policy iteration
schemes can be solved by discretization, as used in [31] on a specific example system.

For the linear quadratic regulator, in [30], a Lagrangian relaxation of the Wasserstein distributionally robust
problem is formulated and a solution in terms of a linear controller found by solving an algebraic Riccati
equation given. Here, the ambiguity is assumed to only be with respect to the additive process noise distribution.
This work is extended in [32] to the finite-horizon problem.

A different approach is taken in [33], where the case of the system and input matrices depending on a random
variable with unknown distribution is treated. From samples of this variable assumed given, an ambiguity set
based on moment constraints using the results of [34] is constructed. The controller synthesis is then done by
solving a semidefinite program (SDP) and can guarantee closed-loop stability with high probability.

2.2. Problem Formulation

For the approach described here, we formulate the distributionally robust Bellman equation akin to the
approach taken in [30], but make an assumption on the value function. This assumption allows for an exact
reformulation, not requiring the solution of a semi-infinite program. The random disturbance which we have
only limited distributional knowledge about is assumed to be additive noise only.

In particular, we consider the problem of finding a policy π(s) minimizing the expected infinite horizon
quadratic cost

E

⎡

⎣

∞
∑︂

t=0

c(st ,at)

⎤

⎦, c(s,a) = sTt Qst + aTt Rat

for a linear system
st+1 = f (st ,at ,wt) = Ast +Bat +wt , wt ∼ p,
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where the noise probability distribution p is unknown, but a limited number of samples {ŵi , . . . ŵN} are
available to us. To find a policy which is robust with respect to the ambiguity stemming from our partial
knowledge of the noise distribution, we follow the approach by Yang [30] and write a distributionally robust
Bellman equation

π(s) = argmin
a

max
p∈Pϵ,k
Ew∼p

�

c(s,a) + V ( f (s,a,w))
�

= argmin
a

max
p∈Pϵ,k
Ew∼p

�

sTQs+ aTRa+ V (As+Ba+w)
�

.

Where the set of probability distributions, over which the inner maximization problem needs to be solved, is

Pϵ,k =
�

p : Wk(p, p̂N )≤ ϵ
	

,

constituting a Wasserstein ball of order k and radius ϵ around the empirical sample distribution

p̂N =
1
N

N
∑︂

i=1

δ(ŵi),

where δ(ŵi) is the Dirac delta distribution supported at ŵi. For a proper choice of the radius, which depends
on the number of samples N , the real noise distribution will lie inside this set with high probability [22].
Solving the above optimization problem will then yield a policy with a probabilistic performance guarantee.

In [31], a similar approach is taken and made tractable by discretizing the state space and approximating the
value function by a piecewise linear function. Contrary to this, we assume a value function V (s) = sTPs+ pTs
quadratic in the state with a positive definite and symmetric matrix P. This assumption is motivated by the
fact that for normal LQR, the value function can be shown to be quadratic. For the distributionally robust case,
this is merely an approximation which does not require us to discretize the state space but still leads to a
tractable reformulation.

With this assumption, we have

π(s) = argmin
a

�

aTRa+ (As+Ba)TP(As+Ba) + pT(As+Ba) + max
p∈Pϵ,k
Ew∼p

h

wTPw+
�

2(As+Ba)TP+ pT
�

w
i

�

.

The inner maximization problem over the Wasserstein ball is untractable in this form. Using a Wasserstein ball
of order k = 2, we can however reformulate it as

min
γ,z

γϵ2 +
1
N

N
∑︂

i=1

zi

s.t. γ ∈ R+, z ∈ RN
+

⎡

⎣

γI− P P(As+Ba) + 1
2p+ γŵi

(As+Ba)TP+ 1
2pT + γŵT

i zi + γ∥ŵi∥2
2

⎤

⎦⪰ 0 ∀i ∈ [N],

which is a tractable semidefinite program given by [22, Theorem 11]. Thus, we can now rewrite the policy as

π(s) =argmin
a,γ,z

aTRa+ (As+Ba)TP(As+Ba) + pT(As+Ba) + γϵ2 +
1
N

N
∑︂

i=1

zi

s.t. γ ∈ R+, z ∈ RN
+

⎡

⎣

γI− P P(As+Ba) + 1
2p+ γŵi

(As+Ba)TP+ 1
2pT + γŵT

i zi + γ∥ŵi∥2
2

⎤

⎦⪰ 0 ∀i ∈ [N].

(2.1)
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For a given s, we can now solve the above convex optimization problem to find the optimal control a. While
we cannot find a closed form solution for this problem as we have for standard LQR, SDPs allow for numerical
solution with essentially the same tractability as linear programs [35]. However, the optimization problem
depends on the parameters of the quadratic value function approximation P and p, so we can not solve it
without choosing parameter values which yield a good approximation.

2.2.1. Reformulation as Disciplined Parametrized Program

Control policies given by such a parametrized convex optimization problem have recently been studied by
Agrawal et al. [36]. Their approach is based on the differentiability of so-called disciplined parametrized
programs with respect to the parameters [37]. Using simulated trajectories of the closed loop system to
compute a Monte Carlo approximation of the expected trajectory cost, the controller parameters which
minimize this cost can be found by stochastic gradient descent.

To apply this approach for the policy given in equation (2.1), we have to rewrite the optimization problem
slightly to make it compliant with the disciplined parametrized programming paradigm. We have

π(s) =argmin
a,γ,z

aTRa+ ∥θ s′∥2
2 + pTs′ + γϵ2 +

1
N

N
∑︂

i=1

zi

s.t. γ ∈ R+, z ∈ RN
+

s′ = As+Ba

s′′ = θ s′

θ ′ = θ
⎡

⎣

γI− θ ′Tθ θTs′′ + 1
2p+ γŵi

s′′Tθ + 1
2pT + γŵT

i zi + γ∥ŵi∥2
2

⎤

⎦⪰ 0 ∀i ∈ [N],

in which we change the parameter from P to θ , which is defined by P = θTθ , allowing us to rewrite the
quadratic form in the objective as s′TPs′ = ∥θ s′∥2

2, since P is positive definite. Additionally, we introduce
the auxiliary variables s′, s′′ and θ ′. These additional steps finally leave us with a policy given as a convex
optimization problem which we can differentiate with respect to the parameters of the value function.

2.2.2. Worst-Case Distribution

For evaluation, it is useful to obtain the worst-case distribution explicitly which, following [22], can be done
by solving the quadratically constrained quadratic problem (QCQP)

max
α,ρ i

1
N

N
∑︂

i=1

(ŵi +ρ i)
TP(ŵi +ρ i) +

�

(As+Ba)TPT +
1
2

pT
�

(ŵi +ρ i) +αλmax(P)

s.t. α ∈ R+, ρ i ∈ R
m

1
N

N
∑︂

i=1

∥ρ i∥
2
2 +α≤ ϵ

2,

(2.2)
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in which λmax(P) is the maximum eigenvalue of P. The worst-case noise distribution is then given by

Pworst =
1
N

N
∑︂

i ̸=i0

δ(ŵi +ρ
∗
i ) +

n− 1
nN
δ(ŵi0 +ρ

∗
i0
) +

1
nN
δ
�

ŵi0 +
⎷

nNα∗vmax(P)
�

(2.3)

for n→∞ and with vmax(P) as an eigenvector corresponding to λmax(P). The optimal solutions of problem
(2.2) are denoted by α∗,ρ∗i . This distribution assigns probability 1/N to the training samples perturbed by ρ∗i ,
while one sample indicated by i0 is perturbed infinitely far in the direction of vmax(P) and assigned vanishing
probability.

2.3. Implementation

Here we introduce our implementation of the controller described above, for which we use cvxpy[38] for
the formulation of the optimization problems and the PyTorch[39] implementation of cvxpylayers[37] to
differentiate through them.

We first need to find the optimal parameter θ of the controller. For this, we assume that some samples from
the real noise distribution are available as well as the system and input matrices A and B. We can initialize the
parameter by using the solution of the normal LQR problem or just choosing an arbitrary initial value. We
then improve it by stochastic gradient, with the objective of minimizing the rollout trajectory loss. For the
rollouts, we sample the noise from an arbitrary distribution Ptrain, for which we used a multivariate Gaussian.
While this seems counterintuitive at first, the empirical samples around which we construct the Wasserstein
ambiguity set determine the constraints of the optimization based control policy. Hence, the controller will
always consider the distributional robustness with respect to that sample distribution, while the value function
parameters have to be adapted to the system dynamics at hand.

One interpretation of this approach would be to understand the limited samples as coming from a real system
and costly to obtain. In the present case, the assumption would be that we have a good model A,B of the
system dynamics, but our knowledge of the noise distribution is limited to the few samples obtained from
the real system. We could then solve for the distributionally robust controller in simulation by the approach
described here and apply it on the real system. With some probability depending on the number of samples
and the robustness level ϵ chosen, we could then guarantee that the controller performs at least as good under
the real noise distribution as under the worst-case one in simulation.

For finding the worst case distribution which is interesting to evaluate and compare the robust to the nominal
controller, we need to solve the QCQP given in equation (2.2). The matrix P being positive definite makes this
problem non-convex, since it aims to maximize a convex function. To solve it directly, we utilized the dccp
[40] extension to cvxpy, which uses a heuristic approach for approximately solving so-called convex-concave
programs. Another option is reformulation to a convex SDP, which is possible following the approach described
in [41, Appendix B.1]. The reformulation for our specific problem is given in appendix A. We also implemented
this approach, which significantly speeds up the optimization and thereby the evaluation of the worst-case
distribution. Since the problem depends on the state s both directly and through the control a, which we
obtain from π(s), we need to solve it at each timestep during the rollout to sample from the worst-case
distribution.
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input : T // rollout time horizon
A,B // system and input matrices
ŵi , i = 1 . . . N // samples from real noise distribution
ϵ // radius of Wasserstein ball
nbatch // rollout batch size
Ptrain // rollout noise distribution

output :θ ∗,p∗ // optimal value function parameters

initialize :θ ,p // initial guess value function parameters

while not converged do
// get Monte Carlo estimate of loss from batch of trajectories under current policy
Ĵ ← rollout_loss

�

A,B, Ptrain, T, nbatch,π(ϵ, ŵi ,θ ,p)
�

// get stochastic gradient estimate by backpropagation
∇θ ,p Ĵ ← backprop(Ĵ ,θ ,p)

// update parameters by stochastic gradient descent
θ ,p← SGD_step(θ ,p,∇θ ,p Ĵ)

θ ∗← θ
p∗← p

Algorithm 1: Pseudo code for tuning parameters of Wasserstein distributionally robust LQR policy

2.4. Evaluation

With both controller and worst-case distribution formulated in a tractable form, we can compare the distribu-
tionally robust controller to the normal LQR solution. Also, we investigate the influence of the ambiguity set
size, as well as getting some intuition on the form of worst-case distribution.

2.4.1. Example System

Here, we first look at a one dimensional unstable example system. For this, we used a rollout horizon of T = 50
timesteps with the initial state sampled from a Normal distribution with zero mean and variance σ2

0 = 2. For
the additive noise distribution Ptrain during the parameter fitting process, we picked a Gaussian with zero
mean and σ2 = 10−3. We also took the N = 10 empirical noise samples, which make up the distribution at
the center of our Wasserstein ambiguity set, from this training distribution. We then solved for the normal
infinite horizon LQR controller by the discrete time algebraic Riccati equation, and for the distributionally
robust one by running algorithm 1 for a maximum of 200 steps or until convergence. Adam[42] was used as
the stochastic gradient descent algorithm.

Performance evaluation was done by obtaining 200 trajectories for both controllers, once under training noise
and once under worst-case noise, as given by equation (2.3). For a Wasserstein ball radius of ϵ = 0.1, figure
2.1 shows a comparison of the resulting trajectory losses. The almost complete overlap of the two histograms
shows that for this size of the ambiguity set, the difference between the two controllers is marginal both
when sampling Gaussian noise and when sampling from the worst-case noise. Increasing the radius to ϵ = 1.0
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however results in a slightly different picture. As shown figure 2.1, the distributionally robust controller
outperforms the Riccati based LQR controller on average if noise is sampled from the worst-case distribution,
while not worsening performance under Gaussian noise significantly. Still, the improvement is relatively
small and, as we will see in the following, the perturbations to the original samples forming the worst case
distribution are already quite large for this case.
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Figure 2.1.: Trajectory loss for Riccati based LQR and Wasserstein distributionally robust LQR with ϵ = 0.1.
Loss distribution is obtained by collecting 200 rollouts with each controller and sampling the
additive noise from the respective noise distribution.
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Figure 2.2.: Trajectory loss for Riccati based LQR and Wasserstein distributionally robust LQR with ϵ = 1.0.
Loss distribution is obtained by collecting 200 rollouts with each controller and sampling the
additive noise from the respective noise distribution.

For an understanding of what the worst-case noise looks like, we show it for both values of the parameter
ϵ in figure 2.3. Equation (2.3) shows, that the worst-case distribution consists of N + 1 probability atoms
and is state dependent. Hence, we show the support of this distribution for multiple values of the state. At
each value, the vertically aligned dots show the values at which the worst case distribution is supported. The
original samples, around which the ambiguity set is constructed are indicated by horizontal black lines. For
negative value of the state, the whole noise distribution is shifted to more negative values. For positive state,
the converse is true. Intuitively this makes sense, as it will lead the system state to stray even further away
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from zero, accumulating large losses. For a state close to zero, the noise variance is increased significantly
with some samples being perturbed in a negative, some in a positive direction.

To confirm that the obtained distributions fall within the prescribed Wasserstein ambiguity set, we use the
Python Optimal Transport library [43] for numerically calculating the Wasserstein distance between empirical
and worst-case sample distribution. For all cases checked, the result matched the previously set value of ϵ
well, both when solving problem (2.2) directly using dccp and by solving the reformulated SDP.
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(b) ϵ = 1.0

Figure 2.3.: Visualization of worst-case distribution for two different ambiguity set sizes. Horizontal black
lines indicate the empirical noise samples, while at each state value, vertically aligned dots
indicate the perturbed samples forming the worst-case distribution. The empirical samples are
the same for both cases.

For the example system treated here, we can see the distributionally robust controller improving performance
under the worst-case distribution, while performing similarly to the normal LQR controller under Gaussian
noise. However, the radius of ambiguity set at which the performance difference is seen leads to quite
significantly perturbing the empirical distribution as seen in figure 2.3.

2.4.2. Randomly Generated Systems

For the example system above, our controller approach showed some improved robustness to a perturbed
noise distribution when a large enough ambiguity set is considered. Here, we show that this is not generally
the case by considering some randomly generated systems for which we run the same process as above and
give some possible explanations. For 10 different systems, table 2.1 shows the average reward over 30 rollouts
under the worst-case distribution. All parameters were chosen as for the above example system. While for
some systems, highlighted by green coloring in the table, performance was slightly improved compared to the
LQR solution, for the rest this was not the case. Some tests showed pretty much equal performance (yellow)
and some even much worse performance (red) of the controller which should be robust to the worst-case
distribution used. While this is not an extensive evaluation, it provides evidence that the approach does not
work equally well for different systems.

12



As we find the robust controller by stochastic gradient descent, one explanation for this is choice of hyperpa-
rameters such as initialization of parameters, batch size, learning rate and convergence criterion leading to a
policy which has not properly converged. In the last column of the table, the results for the same systems with
a different learning rate are given. While the problem of underperforming with respect to LQR persists for the
same systems, changing the learning rate lowers the gap in this case. The best choice of hyperparameters will
depend on the particular problem and system dynamics to be solved.

Another explanation for why our method fails to improve performance might be the value function approxima-
tion chosen. While it allows the reformulation as a tractable SDP, the choice of a value function quadratic in
the state might not be an equally good approximation for all system dynamics. More flexible approximations
such as the piecewise linear approach used in [31] might be more generally usable.

Table 2.1.: Loss averaged over 30 trajectories for 10 randomly generated unstable systems evaluated under
the worst-case noise distribution. The standard LQR controller is compared to the Wasserstein
distributionally robust controller with two different learning rates during the gradient descent
parameter optimization. Rows colored in green indicate improvement over normal LQR, yellow
similar performance and red worse.

Average Trajectory Loss
System LQR WR-LQR, η= 0.1 WR-LQR, η= 0.2

1 7.89 · 101 7.50 · 102 1.70 · 102

2 1.07 · 101 1.06 · 101 1.08 · 101

3 1.31 · 101 1.31 · 101 1.29 · 101

4 1.52 · 101 1.33 · 101 1.34 · 101

5 1.49 · 101 1.39 · 101 1.25 · 101

6 6.05 · 101 6.45 · 102 5.51 · 102

7 1.21 · 102 1.13 · 103 2.34 · 102

8 2.79 · 101 2.47 · 101 2.04 · 101

9 5.18 · 101 1.55 · 103 2.90 · 102

10 4.57 · 103 6.25 · 106 6.10 · 106

Overall, the evaluation of our approach suggests that it can lead to some increase in robustness against
non-Gaussian additive noise. However, the improvement might be quite small and comes with an increase
in computational cost when comparing to the closed-form LQR solution. Furthermore, the introduction of
hyperparameters needed for the stochastic gradient descent fitting of controller parameters adds additional
complexity. Optimal parameter choice seems to also depend on the specific problem at hand, making the
approach less generally applicable.
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2.5. Future Work

From the above evaluation, some possible paths for improvement arise, which we will detail here.

Influence of Value Function Approximation
An important point would be the investigation of different ways of approximating the value function, which
still result in a tractable reformulation. Part of this investigation would also be studying the influence particular
system dynamics have on the quality of the quadratic approximation chosen here. Another option would be
directly solving the semi-infinite problem derived in [30] to compute the value function using for example the
SIPAMPL software package [44].

Choice of Ambiguity Set
To really make use of the probabilistic performance guarantees from distributionally robust optimization, a
principled approach of choosing an appropriate size for the Wasserstein distance based ambiguity set would
need to be included in our approach.

Another interesting comparison would be with regard to completely different ambiguity sets. Some options
include Wasserstein ambiguity sets based on different norms in the Wasserstein distance used or centered at a
Normal distribution instead of the empirical sample distribution used here.

Ambiguity in Dynamics Parameters
Ambiguity of the additive noise distribution might also not be the most important to robustify against. Here, it
was chosen mainly as an approachable first step to applying the distributionally robust methods to an optimal
control problem. Including the case of ambiguity in the dynamics parameters, stemming for example from
learning them from data, would thus be another important extension of the approach taken here.

Comparison to Related Approaches
In developing our approach, we focused on deriving a tractable reformulation and evaluating if the controller
improves performance under the worst-case noise. Detailed comparison against other approaches is another
important aspect for future work. This is somewhat difficult due to different approaches aiming for robustness
within a different ambiguity set, such as the one in [32]. These differences make performance under the
worst-case distribution hard to compare. A good way to evaluate the approaches would thus be comparing
performance on a set of realistic benchmark problems.
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3. Distributionally Robust Trajectory Optimization with
Kullback-Leibler Divergence Constraint

Ultimately, we would like to consider the ambiguity introduced by learning system dynamics from trajectories
directly in designing the controller. The approach discussed in chapter 2 only considered ambiguity in the
additive noise distribution with no straightforward extension to include parameter ambiguity. Additionally,
the controller execution still needed the numerical solution of a convex optimization problem, which also
grows in size with more empirical data points considered.

In this chapter, we therefore extend the framework of trajectory optimization with linearized dynamics to
include distributional robustness with respect to the distribution of dynamics parameters. Furthermore, the
ambiguity set chosen here is based on the KL-divergence, allowing a closed form solution of the worst-case
distribution assuming a Gaussian nominal distribution.

3.1. Related Work

3.1.1. Trajectory Optimization with Linearized Dynamics

Stochastic optimal control with linearized dynamics is a powerful technique for controlling nonlinear systems.
Based on approximating the nonlinear dynamics by a linear one around a given trajectory, a locally optimal
controller can be found by dynamic programming techniques. Using the updated controller to collect new
trajectories, the process is then iterated until convergence. While original methods such as Differential Dynamic
Programming (DDP)[45] or Iterative Linear Quadratic Gaussian (ILQG) [46] are based on a given nonlinear
model, we here assume the linear model is obtained by fitting directly to trajectory data collected from an
unknown nonlinear system.

As the linearized dynamics are only a good approximation close to the linearization point, it is important
to limit the optimism in the controller update of each iteration. One approach which has been successfully
used is enforcing a relative entropy or KL bound between the trajectory distributions of successive iterations.
This approach is used for trajectory optimization in the context of Guided Policy Search (GPS) [47, 48]. In
this policy search method, a reward maximizing trajectory is optimized using the local linear model and an
arbitrary parametrized policy is then optimized to match the obtained trajectory. Here we limit ourselves
to the trajectory optimization step and use the formulation derived in [49] which shows the constraint on
trajectory distributions to be equivalent to one on expected relative entropy between the policies of successive
iterations.
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3.1.2. Distributionally Robust Optimization with Kullback-Leibler Divergence Constraint

Distributionally robust optimization with a KL-divergence constraint on the ambiguity set has been formulated
in [19] where it is solved via strong duality reformulation as a convex optimization problem. More work on
φ-divergence based ambiguity sets, which KL-divergence is a special case of, appears for example in [50, 51],
with a more extensive overview given in [16].

In [52], KL based DRO is used in a reinforcement learning setting to account for the finite number of samples
utilized for estimating the value of a policy in modified policy iteration [53]. While this approach does not
directly relate to the one taken here, it illustrates another method of using KL based DRO for control and leads
to a worst-case adversarial policy with a similar exponential reweighting term as we find for the worst-case
parameter distribution.

3.2. General Problem Formulation

In the stochastic optimal control formulation chosen here, the system dynamics Pt(s′|s,a,θ ) are a distribution
over the next state s′ given the current state s, action a and dynamics parameters θ . Similarly, the policy
will generally be a distribution over actions given a state written as πt(a|s) and at each timestep, we will
obtain a state distribution µt(s). Contrary to the previous chapter, we here formulate the problem as reward
maximization instead of minimization of a loss. Based on the idea of robustifying the trajectory optimization
approach against uncertainty in the system dynamics, we formulate the distributionally robust optimization
problem as

max
πt (a|s)

min
pt (θ )

T−1
∑︂

t=1

∫︂

s

∫︂

a

Rt(s,a)µt(s)πt(a|s)dads+

∫︂

s

RT (s)µT (s)ds

subject to
∫︂

a

πt(a|s)da= 1, ∀s,∀t < T

∫︂

θ

∫︂

s

∫︂

a

µt−1(s)πt−1(a|s)Pt−1(s
′|s,a,θ )pt−1(θ )dadsdθ = µt(s

′), ∀s′,∀t > 1

∫︂

s

µt(s)

∫︂

a

πt(a|s) log
πt(a|s)
qt(a|s)

dads≤ ϵπ, ∀t < T (3.1)

µt(s) = µ1(s), ∀s, t = 1
∫︂

θ

pt(θ )dθ = 1, ∀t < T

∫︂

θ

pt(θ ) log
pt(θ )
p̂t(θ )

dθ ≤ ϵp, ∀t < T. (3.2)

The goal is to find a time-dependent policy π(a|s) maximizing the expected sum of rewards over the trajectory.
However, since we want to make this robust to variations in the dynamics parameters, the inner optimization
aims to minimize the same objective by changing the distribution of parameters pt(θ ). As in GPS, the policy is
constrained by equation (3.1) to not fall to far from a previous policy qt(a|s) in terms of expected KL-divergence.
This constraint is necessary, since the dynamics Pt(s′|s,a,θ ) and reward Rt(s,a) are assumed to be valid only
locally and thus optimizing the policy globally might lead to unstable behavior. For the parameter distribution,
we introduce a similar constraint as given in equation (3.2). Here, the distribution p̂t(θ ) expresses the decision
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maker’s prior belief about the parameter. In practice, this should be obtained together with the parametrized
dynamics when fitting them to given trajectories at each timestep. The constraint can be understood as limiting
the possible changes the imaginary adversary can make to the parameter distribution. Another interpretation
is limiting the distributions of the parameter, which we want robustness against, to ones which are close to
the empirical distribution and thus good candidates for the actual parameter distribution.

Our approach aims to directly account for the fact that not only is the dynamics approximation local, but also
learned from limited data. The unknown real stochastic and nonlinear dynamics will lead to varying parameter
estimates for the locally valid linear dynamics we use in the optimization. The aim of introducing the kind of
robustness used here is to yield a tractable algorithm which accounts for this apparent parameter stochasticity
during the optimization process and thus yields a policy update which is less likely to underperform on the
real nonlinear system.

We will try to solve the distributionally robust problem in an alternating fashion, first finding the worst-case
parameter distribution for a given policy πt(a|s) by solving

min
pt (θ )

T−1
∑︂

t=1

∫︂

s

∫︂

a

Rt(s,a)µt(s)πt(a|s)dads+

∫︂

s

RT (s)µT (s)ds

subject to
∫︂

θ

∫︂

s

∫︂

a

µt−1(s)πt−1(a|s)Pt−1(s
′|s,a,θ )pt−1(θ )dadsdθ = µt(s

′), ∀s′,∀t > 1

∫︂

θ

pt(θ )dθ = 1, ∀t < T

∫︂

θ

pt(θ ) log
pt(θ )
p̂t(θ )

dθ ≤ ϵp, ∀t < T

µt(s) = µ1(s), ∀s, t = 1

(3.3)

and then fixing pt(θ ) and solving

max
πt (a|s)

T−1
∑︂

t=1

∫︂

s

∫︂

a

Rt(s,a)µt(s)πt(a|s)dads+

∫︂

s

RT (s)µT (s)ds

subject to
∫︂

a

πt(a|s)da= 1, ∀s,∀t < T

∫︂

θ

∫︂

s

∫︂

a

µt−1(s)πt−1(a|s)Pt−1(s
′|s,a,θ )pt−1(θ )dadsdθ = µt(s

′), ∀s′,∀t > 1

∫︂

s

µt(s)

∫︂

a

πt(a|s) log
πt(a|s)
qt(a|s)

dads≤ ϵπ, ∀t < T

µt(s) = µ1(s), ∀s, t = 1

to obtain the new policy. These two steps are then repeated until convergence, where for each policy
optimization step, we fully optimize the worst-case parameter distribution using the current policy. In practice,
it turns out that we first need to find policy which is not too bad in some sense such that the inner minimization
problem becomes solvable.

Here, we will focus on solving the constrained reward minimization problem for the parameter distribution,
since the policy optimization step is equivalent to the one of GPS as derived in [49] just with a modified
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dynamics constraint. For the linear Gaussian case we will provide an approach to incorporate this modification.
To find conditions for the optimality of the problem given in (3.3), we write its Lagrangian

Lp(pt ,µt , Vt ,αt ,βt) =
T−1
∑︂

t=1

∫︂

s

∫︂

a

Rt(s,a)µt(s)πt(a|s)dads+

∫︂

s

RT (s)µT (s)ds

+

∫︂

s

V1(s)µ1(s)ds−
∫︂

s′
VT (s

′)µT (s
′)ds′ −

T−1
∑︂

t=1

∫︂

s′
Vt(s
′)µt(s

′)ds′

+
T−1
∑︂

t=1

∫︂

s′
Vt+1(s

′)

∫︂

θ

∫︂

s

∫︂

a

µt(s)πt(a|s)Pt(s
′|s,a,θ )pt(θ )dadsdθ ds′

+
T−1
∑︂

t=1

αt

�

∫︂

θ

pt(θ ) log
pt(θ )
p̂t(θ )

dθ − ϵp

�

+
T−1
∑︂

t=1

βt

�

∫︂

θ

pt(θ )dθ − 1

�

,

where αt > 0,βt > 0. Solving
∂ Lp

∂ pt
= 0,

∂ Lp

∂ βt
= 0

gives an expression for the worst-case parameter distribution

pt(θ )∝ p̂t(θ )exp

�

−
1
αt

∫︂

s

µt(s)Q t(s,θ )ds

�

, (3.4)

where
Q t(s,θ ) =

∫︂

s′
Vt+1(s

′)

∫︂

a

πt(a|s)Pt(s
′|s,a,θ )dads′

can be understood as the state-action value function of the adversary whose actions are the dynamics
parameters. Solving for βt results in the necessary normalization constant.

Furthermore, by solving
∂ Lp

∂ µT
= 0,

∂ Lp

∂ µt
= 0,

we get the backward pass

Vt(s) =

⎧

⎪

⎨

⎪

⎩

RT (s), t = T
∫︂

a

Rt(s,a)πt(a|s)da+

∫︂

θ

pt(θ )Q t(s,θ )dθ , 1≤ t < T
, (3.5)

which gives us an iterative formula for computing the Lagrange multipliers Vt(s) at each timestep backwards
in time. To find the forward pass, we solve

∂ Lp

∂ V1

= 0,
∂ Lp

∂ Vt
= 0, (3.6)

yielding an iterative formula

µt(s) =

⎧

⎪

⎨

⎪

⎩

µ1(s) t = 1
∫︂

θ

pt−1(θ )

∫︂

s

∫︂

a

µt−1(s)πt−1(a|s)Pt−1(s
′|s,a,θ )dadsdθ 2≤ t ≤ T

(3.7)
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for the state distribution. Using the above results, we can simplify

Lp(µt , Vt ,αt , pt) =

∫︂

s

V1(s)µ1(s)ds+
T−1
∑︂

t=1

αt

�

KL(pt(θ )∥p̂t(θ ))− ϵp

�

and finally get the last optimality condition

∂ Lp

∂ αt
= KL(pt(θ )∥p̂t(θ ))− ϵp

for the Lagrange multipliers of the KL constraint. In the following, the linear Gaussian case is considered.

3.3. Linear Quadratic Gaussian Case

Here, we will look at a problem where the dynamics at each timestep are linear in the state and have Gaussian
noise, while the reward function is quadratic in both state and action. Additionally, we assume ambiguity
just in the parameter matrix multiplying the state, which results in linear dynamics with random parameter
matrix Θ ∈ Rn×n given by

Pt(s
′|s,a,Θ) =N (s′|Θs+ bta+ ct ,Σs′,t).

Defining θ = vec(Θ), we can write this equivalently as

Pt(s
′|s,a,θ ) =N (s′|(sT ⊗ In)θ + bta+ ct ,Σs′,t),

where ⊗ denotes the Kronecker product. The quadratic reward function is

Rt(s,a) = (s− z)TMt(s− z) + aTHta,

RT (s) = (s− z)TMT (s− z),

with appropriately sized matrices Mt ,Ht ,MT and goal state vector z assumed given. From the policy optimiza-
tion step, we obtain a linear Gaussian policy

πt(a|s) =N (a|Kπt s+ kπt ,Σπa,t).

We also assume that the value function will remain quadratic through the backward pass and that the state
distribution will remain Gaussian through the forward pass. These assumptions allow us to write them as

Vt+1(s) = sTVt+1s+ sTvt+1 + vt+1,

µt(s) =N (s|τµs,t ,Σ
µ
s,t)

for all timesteps. As we will show below, the assumption on the value function is warranted. The parameter
distribution however leads to nonlinear dynamics, which in turn make it necessary to propagate the state
distribution approximately for it to remain Gaussian. Lastly, we will use a Gaussian

p̂t(θ ) =N (θ |θ̂ t , Σ̂θ ,t)

to express the prior believe the parameter distribution.
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3.3.1. Backward Pass

We will now derive the backward pass for the linear quadratic Gaussian case in closed form. Details are given
in the appendix B. To evaluate the integral given in the backward pass (3.5) in closed form, we first need to
evaluate the worst-case parameter distribution pt(θ ). For the integral in equation (3.4), we find

∫︂

s

µt(s)Q t(s,θ )ds= (θ −wt)
TWt(θ −wt) + cw,t ,

in which

Wt =
�

τ
µ
s,t(τ

µ
s,t)

T +Σµs,t
�

⊗Vt+1, (3.8)

wt = −vec(btK
π
t )−W−1

t (τ
µ
s,t ⊗ In)

T
�

Vt+1(btk
π
t + ct) +

1
2

vt+1

�

and cw,t is a constant term. For the new parameter distribution, we then get

pt(θ )∝ p̂t(θ )exp

�

−
1
αt
(θ −wt)

TWt(θ −wt)

�

.

Plugging in the Gaussian prior distribution, we find

pt(θ )∝ exp

 

−
1
2

�

(θ − θ̂ t)
TΣ̂
−1
θ ,t(θ − θ̂ t) + (θ −wt)

T
�

αt

2
W−1

t

�−1

(θ −wt)

�

!

,

which will be Gaussian again, if the resulting quadratic form in the exponent is positive definite. We can
express this condition as

Σ̂
−1
θ ,t +

2
αt

Wt ≻ 0. (3.9)

If the above is fulfilled, we can get the updated parameter distribution

pt(θ ) =N
�

θ |µθ ,t ,Σθ ,t

�

, (3.10)

where

Σθ ,t =

�

Σ̂
−1
θ ,t +

2
αt

Wt

�−1

µθ ,t = Σθ ,t

�

Σ̂
−1
θ ,t θ̂ t +

2
αt

Wtwt

�

.

Finally, we get the backward pass in closed form as

Vt(s) = sTVts+ sTvt + vt

which is again quadratic in the state with the iteration for the quadratic term given by

Vt =Mt + (K
π
t )

THtK
π
t + (Θ̄+ btK

π
t )

TVt+1(Θ̄+ btK
π
t ) + Pt . (3.11)

Here, Θ̄t is defined by µθ ,t = vec(Θ̄t).
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To understand if the condition given in (3.9) can be violated, we will consider the definiteness of the involved
matrices. Since the formulation here is with respect to a reward, the matrices Mt and Rt will be negative
definite, thereby yielding a reward function concave in state and action. For a negative semi-definite matrix A,
BTAB is negative semi-definite for any matrix B, which is easily seen from

xTBTABx= (Bx)TA(Bx).

Hence, at least the first three terms in calculating Vt in (3.11) will be negative semi-definite. While this does
not allow us to judge the definiteness of Wt at each timestep, it at least gives some idea that Vt may remain
negative definite throughout the backward pass. From equation (3.8) we can then see that for a negative
definite Vt+1, also Wt can be negative definite. An example easily illustrates this connection: if τµs,t is a vector
of zeros, the eigenvalues of Wt are all products of eigenvalues of Vt+1 (negative) and eigenvalues of Σµs,t
(positive) and thus all negative [54].

If Wt is negative definite, there can be some αt > 0 for which the condition given in equation (3.9) is no
longer met. This fact can again be demonstrated by example: for Σθ ,t = In and Wt = −In, any αt ≥ 1 leads
to a violation of the condition. Overall, we can therefore not assume that the condition is always met and
indeed observe its violation in the practical implementation. In the following, we try to give a somewhat
better understanding of what this means in general and why a solution to the inner minimization problem
might not exist.

3.3.2. Existence of the Worst-Case Distribution

As observed for the linear Gaussian case, calculation of the worst-case distribution does not always yield a
reasonable result. Going back to the general form of the worst-case distribution

pt(θ )∝ p̂t(θ )exp

�

−
1
αt

∫︂

s

µt(s)Q t(s,θ )ds

�

,

we can give some intuition on what makes the solution diverge in some cases and what factors influence it. We
obtain the new parameter distribution by reweighting the previously assumed distribution. Since the exponent
has negative sign and αt > 0, parameter values which lead to a large value of the adversary state-action value
function Q(s,θ ) will have lowered probability in the new distribution and vice versa. The problem described
above for the Gaussian case emerges if the distribution p̂t(θ ) has infinite support and decreases slower when
approaching infinity than the reweighting term increases. In that case, the whole expression goes to infinity
for large θ , which is clearly nonsensical.

Since the integral in the reweighting exponential is an expectation with respect to the current state distribution,
the exponent will be larger if the state distribution puts weight on low reward regions of the state space. The
state distribution in turn depends on how good the current policy is, as a completely converged policy will
focus the state distribution to high reward regions and decrease its variance.

Another factor influencing the magnitude of the exponent is the Lagrange multiplier αt . Its value at the
optimum will depend on the KL bound set for the parameter distribution. Increasing the value of αt , the
exponent becomes smaller and thus pt(θ ) moves closer to p̂t(θ ). Setting a large bound ϵp then corresponds
to a lower value of αt at optimum and larger exponent.

Lastly, the choice of p̂t(θ ) plays an important role. If it decreases very quickly, the parameter values extremely
far from the nominal ones will be small even when reweighted with a large exponential. In the limit where
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we have perfect parameter knowledge, the distribution will become a Dirac delta function centered at the
nominal value and all other values will still have zero probability, no matter the weight they are assigned.

The interplay of the above factors makes it difficult to see directly if the worst-case parameter distribution
exists or if the solution diverges. In our setting we assume p̂t(θ ) to be learned from data. If we can not find a
solution, we have the options to either decrease the size of the ambiguity set or to first find a better policy.
Both options limit how different the worst-case distribution can be from the nominal one and thereby reduce
the robustness we can expect from the solution. In the case of the policy, this happens by limiting the region
of the state space which the adversary can explore to one of generally high reward.

3.3.3. Forward Pass

For the forward pass as given in equation (3.7), we need to propagate a Gaussian state distribution

µt(s) =N (s|τµs,t ,Σ
µ
s,t)

through linear dynamics with random parameters obeying the distribution given in equation (3.10). We can
find the forced dynamics under the Gaussian parameter distribution from

Pt(s
′|s) =

∫︂

a

πt(a|s)
∫︂

θ

Pt(s
′|s,a,θ )pt(θ )dθ

=N
�

s′|(Θ̄t + btK
π
t )s+ btk

π
t + ct ,Σs′,t + btΣa,tb

T
t + (s

T ⊗ In)Σθ ,t(s
T ⊗ In)

T
�

.

(3.12)

These dynamics seem again linear in the state, but the noise covariance

Σt(s) = Σs′,t + btΣa,tb
T
t + (s

T ⊗ In)Σθ ,t(s
T ⊗ In)

T

is also state-dependent. The resulting distribution

µt(s
′) =

∫︂

s

µt(s)Pt(s
′|s)ds

will generally not be Gaussian. Here, we will however assume that it can be approximated well enough by a
Gaussian which we will obtain in a computationally efficient manner using the unscented transform.

The unscented transform is typically used to calculate the statistics of a random variable after propagation
through nonlinear dynamics [55]. For the case of state dependent noise covariance, we can reformulate our
problem in a way to make it applicable. First, we write the dynamics equivalently as

s′ = (Θ̄t + btK
π
t )s+ btk

π
t + ct + ξt , ξt ∼N (0,Σt(s)).

We then rewrite the noise term as
ξt =

Æ

Σt(s)ζt , ζt ∼N (0, I),

giving us
s′ = (Θ̄t + btK

π
t )s+ btk

π
t + ct +

Æ

Σt(s)ζt .

Here, we take the matrix square root to indicate the lower triangular Cholesky factor. These dynamics can
now be interpreted as a nonlinear noise-free dynamics in the augmented state sa = [sTt ζTt ]

T. Augmenting
the state by the process noise is a standard procedure given in [55] and suggested for dealing with state
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dependent noise in [56]. Mean and covariance of the augmented state distribution, which we then need to
propagate through these dynamics, are given by

s̄a
t =

⎡

⎣

τ
µ
s,t

0

⎤

⎦, Σa
t =

⎡

⎣

Σ
µ
s,t 0

0 I

⎤

⎦.

The propagation can now be straightforwardly performed using unscented or cubature transform. In this work,
we use the cubature transform as given in [57], which is a special case of the unscented transform without
additional parameters to choose. The whole algorithm for one step of the cubature forward pass is given
in algorithm 2. Since the forward pass stems from the optimality condition (3.6), solving it approximately
results in fulfilling this condition only approximately and thereby having no guarantee of optimality.

input : ft(s) // system dynamics
n // state dimension
Σt(s) // state dependent noise covariance
τ
µ
s,t ,Σ

µ
s,t // state distribution mean and covariance

output :τµs,t+1,Σµs,t+1 // next state distribution mean and covariance

begin
// augmented dynamics using lower triangular Cholesky factor for matrix square root
f a
t (s

a)← ft(sa
1...n) +

Æ

Σt(sa
1...n)s

a
n+1...2n

// form augmented state distribution parameters

s̄a
t ←

�

τ
µ
s,t
0

�

Σa
t ←

�

Σ
µ
s,t 0
0 I

�

// calculate lower triangular Cholesky factor of covariance
P←

Æ

Σa
t

// form cubature points, matrix subscript indicates column
xi ←

⎷
n(s̄a

t + Pi) i = 1 . . . n
xi ←

⎷
n(s̄a

t − Pn−i) i = n+ 1 . . . 2n

// propagate cubature points through augmented dynamics
xi ← f a

t (xi)

// estimate new augmented mean and covariance

s̄a
t ←

1
2n

∑︁2n
i=1 xi

Σa
t ←

1
2n

∑︁2n
i=1(xi − s̄a

t )(xi − s̄a
t )

T

// extract approximate mean and covariance for next state
τ
µ
s,t+1← (s̄

a
t )1...n

Σ
µ
s,t+1← (Σ

a
t )1...n,1...n

Algorithm 2: Pseudo code for cubature transform method of propagating a Gaussian state distribution
through dynamics with state dependent noise covariance
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3.3.4. Implementation

We will now give an overview of the robust trajectory optimization algorithm as implemented for this work in
the Julia programming language [58]. Here, we assume that linearized dynamics Pt(s′|s,a,θ ) together with
a parameter distribution p̂t(θ ) at each timestep are given. These could be obtained by sampling a number of
trajectories under the current policy and fitting linear Gaussian dynamics to subsets of these trajectories. The
variation of dynamics parameters between these fits can then be used to estimate the parameter distribution.

As mentioned in section 3.3.1, there is a balance between robustness and solvability of the problem. We will
iterate between policy and parameter distribution update steps. For the parameter distribution update to
work, we need a somewhat good but not completely converged policy. Thus, we start with a policy update
step and then iterate. For each update step of the parameter distribution, a certain number of policy update
steps is performed. This number, together with the KL bound between iterations, has to be set in a way to
ensure the policy does not converge completely. Even for the Gaussian case, we have no simple expression to
check whether the condition (3.9) is met for all timesteps. Instead, the parameter distribution update step
is started and, if it fails due to the condition not being met, restarted with the KL bound on the parameter
distribution reduced by a predefined factor. As the bound on the parameter distribution is always with respect
to the distribution estimated from data, the parameter distribution update for a given policy should converge
in a single iteration.

Both policy and parameter distribution update steps consist in performing a backward and a forward pass
which are obtained by solving the optimality conditions of the respective optimization problem. For the
Lagrange multiplier corresponding to the KL constraint, we use an iterative gradient-based method such as
BFGS provided by the Optim.jl package [59].

The policy update step is based on the algorithm for GPS given in [49]. Since in our case the dynamics have
state-dependent noise as seen in equation (3.12), we need to adapt it slightly. Firstly, in the backwards pass
for computing the policy value function, we need to use the update rule as given in equation (3.11) and
secondly, we have to perform the forward pass approximately using the cubature transform. This step is
detailed in algorithm 2, while the whole distributionally robust trajectory optimization algorithm is described
in algorithm 3. Backward passes of both policy and parameter optimization step are obtained in closed form
and the detailed equations given in appendices B and C.

It also needs to be noted that in our implementation we use time-independent Lagrange multipliers απ and
αp for the KL constraints of policy and parameter distribution respectively, which amounts to enforcing a
constraint on the sum of KL-divergence over all timesteps instead of individual constraints at each timestep.
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input : T // time horizon
Pt(s′|s,a,θ ) // linearized dynamics
qt(a|s) // initial policy
p̂t(θ ) // empirical parameter distribution
µ1(s) // initial state distribution
Rt(s,a) // quadratic reward function
Nπ // number of policy updates
ϵπ,ϵp // KL bounds
λp // KL bound reduction factor

output :πt(a|s) // optimal robust policy
pt(θ ) // worst-case parameter distribution
απ,αp // optimal Lagrange multipliers

initialize :απ,αp // initial guess for Lagrange multipliers

while not converged do
for i← 1 to Nπ do

while Lπ(µt , Vt ,απ) is not at minimum do
// perform backward pass according to equations in section C.1
�

πt(a|s), Vt(s)
�

← policy_backward_pass(qt(a|s), pt(θ ), Rt(s,a),Pt(s′|s,a,θ ),απ)

// cubature forward pass as given in algorithm 2
µt(s)← cubature_forward_pass(µ1(s), pt(θ ),πt(a|s),Pt(s′|s,a,θ ))

// compute objective and gradient with equations in section C.2
Lπ(µt , Vt ,αt)← policy_dual_value(V1(s),µ1(s),απ,ϵπ)
∂ Lπ
∂ απ
← policy_dual_gradient(µt(s),πt(a|s), qt(a|s),ϵπ)

// update Lagrange multiplier

απ← BFGS_step(Lπ(µt , Vt ,αt),
∂ Lπ
∂ απ
)

qt(a|s)← πt(a|s)

while Lp(µt , Vt ,αp, pt , p̂t) is not at maximum do
// perform backward pass according to equations in section B.1
�

pt(θ ), Vt(s)
�

← parameter_backward_pass(p̂(θ ),µ(s),Pt(s′|s,a,θ ),π(a|s),αp)

// cubature forward pass as given in algorithm 2
µt(s)← cubature_forward_pass(µ1(s), pt(θ ),πt(a|s),Pt(s′|s,a,θ ))

// compute objective and gradient with equations in section B.2
Lp(µt , Vt ,αp, pt , p̂t)← parameter_dual_value(V1(s),µ1(s),αp,ϵp, pt , p̂t)
∂ Lp

∂ αp
← parameter_dual_gradient(pt(θ ), p̂t(θ ),ϵp)

// update Lagrange multiplier

αp← BFGS_step(Lp(µt , Vt ,αp, pt , p̂t),
∂ Lp

∂ αp
)

if iteration failed then
ϵp← λpϵp

Algorithm 3: Pseudo code for KL distributionally robust trajectory optimization
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3.3.5. Evaluation

In this section, we will evaluate the performance of the algorithm introduced above. We here limit the
analysis to linear time invariant systems with a given nominal parameter distribution and focus on showing
the difference between robust and nominal controller as well as the influence of hyperparameters on the
solvability and robustness of the resulting controller.

Results on Example System

We consider an unstable example system with state dimension n= 2, action dimension m= 1. The goal is to
drive the system state to z = [1010]T over a time horizon of T = 20. We furthermore assume an estimated
parameter distribution with covariance matrix Σ̂= 10−4In2 . Algorithm 3 is used to obtain a robust controller,
while the version of GPS adapted to account for the parameter distribution in both forward and backward
pass is used as a comparison. For the policy update step, we set ϵπ = 150 and run Nπ = 1 iteration for each
update of the parameter distribution. In this case, four iterations between policy and parameter update steps
are enough for convergence. In the nominal case without parameter updates, we also iterate the policy update
step four times with ϵπ = 150. The KL bound for the parameter distribution is initially set to ϵp = 50 but
reduced during the optimization to ϵp = 4.92 to make the problem solvable as discussed in 3.3.4.
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Figure 3.1.: State distribution of example system under nominal parameter distribution over time with con-
troller obtained by solving themodified version of GPS including forward pass by cubature trans-
form and backward pass with parameter distribution dependent terms.

Figure 3.1 shows the state distribution under the nominal parameter distribution and controller over time. The
controller is able to steer the system towards the goal state with the remaining variance due to the variance in
the nominal parameter distribution.

In figure 3.2, the KL-divergence between the two parameter distributions is shown over time. Since the bound
here is on the sum of the KL-divergence over all timesteps, the resulting worst-case distribution can vary with
time. Clearly for this particular case, the strongest influence on the trajectory reward is possible in the first
few timesteps, where the worst-case distribution differs most from nominal one.

To evaluate the performance of nominal and robust controller under both the prior and worst-case parameter
distribution, 10000 trajectory rollouts using both controllers are collected and the resulting trajectory reward
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Figure 3.2.: KL-divergence between worst-case and nominal parameter distribution over the trajectory. The
constraint on its sum was iteratively adapted to ϵp = 4.92 to make the problem solvable, as
indicated in algorithm 3.

distributions compared. For the rollouts, the dynamics matrix multiplying the state is at each timestep sampled
from the respective parameter distribution. Figure 3.3 shows estimated densities of the resulting reward
distributions. The rightmost curve with the highest average reward corresponds to the nominal controller and
dynamics sampled from the nominal parameter distribution. For the same controller and dynamics sampled
from the worst-case distribution, the leftmost curve indicates clearly deteriorated performance. On the other
hand, the distributionally robust controller obtained by our algorithm shows higher average reward in the
worst case it was optimized for, while being worse in the nominal case.

−20000 −17500 −15000 −12500 −10000
0

2× 10−4

4× 10−4

6× 10−4

8× 10−4

Reward

D
en

sit
y

nominal π(a|s), worst pt(θ)
robust π(a|s), worst pt(θ)
nominal π(a|s), nominal pt(θ)
robust π(a|s), nominal pt(θ)

Figure 3.3.: Kernel density estimates of trajectory reward distribution for Ntraj = 10000 trajectories obtained
by sampling dynamics parameters and control from the respective distributions. The robust
controller increases worst-case average performance while lowering the average reward in the
nominal case.
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Results for Randomly Created Systems

Instead of measuring performance on a single example, here we generate 50 random linear unstable systems
of state dimension n= 2 and action dimension m= 1 and compare robust and nominal performance. Figure
3.4 shows the relative improvement in expected trajectory reward of the robust controller for all randomly
generated systems. For each system, the average trajectory reward was estimated from 1000 rollouts under the
respective policy and parameter distribution. The left histogram shows that under the worst case distribution,
the difference is positive for all 50 systems, indicating superior performance of the robust controller. As
would be expected, under the nominal distribution, the robust controller underperforms, hence the negative
difference in the right histogram. Both plots show rather large peaks close to zero, which means essentially no
performance difference between the two controllers. As in this case we again iteratively lowered the KL bound
on the worst-case parameter distribution when the optimization failed, one explanation would be that for
some systems this needed to happen more times, leading to less robustness and difference in performance.
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Figure 3.4.: Relative increase in expected trajectory reward by robust over nominal policy. The histogram
shows the average value over 1000 trajectories for 50 randomly generated system dynamics.
Under the worst-case distribution (left), the robust controller yields better reward while the op-
posite is true under the nominal one.

In figure 3.5, the wide spread along the x-axis shows that for many of the systems evaluated, the KL bound
had to be lowered from the initially set value of ϵp = 20. However, a larger final bound does not seem to
correspond directly to bigger performance increase when evaluated under the worst-case distribution. Hence,
other factors such as the particular system and input matrices, initial or goal state we generated randomly for
all 50 systems seem to influence the relation between KL bound and improvement in worst-case performance
rather strongly.

Lastly, we evaluate how the results change when increasing the policy step size per update step of the parameter
distribution. For the above results, a value of ϵp = 100 was used, which we will now compare to ϵp = 150.
Since this means the policy will converge more before each parameter distribution update, following the
discussion in section 3.3.2, less difference between performance of nominal and robust controller should be
the result.

Figure 3.6 compares the improvement of robust over nominal policy for the two different parameter choices.
Clearly the higher value leads to less difference between the two, confirming our statement.

The above evaluation shows that the robust controller can be successfully found by our algorithm and indicates
that it can robustify against ambiguity in the parameter distribution. It is not yet clear from these results
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Figure 3.5.: Influence of final KL bound on parameter distribution on the difference in performance of the
two controllers under the worst-case distribution.
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Figure 3.6.: Comparison of worst-case improvement for different values of policy KL bound. Counts indicate
the number of random systems for which the expected reward was estimated by averaging over
1000 trajectories. A higher bound (bottom) leads to the robust policy showing less difference to
the nominal one.

if the robustness to this ambiguity will provide an advantage for more realistic problems. From evaluating
on randomly generated systems, it became already clear however that there is quite a lot of variance in
the attainable robustness depending on the system parameters. We therefore suspect the usefulness of our
approach will depend on the problem characteristics also in general.
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3.4. Future Work

In the following we give some ideas on how the distributionally robust trajectory optimization algorithm
presented here can be applied and the extensions we deem necessary.

Evaluation in Model-Based RL Setting
Since the goal of the algorithm developed in this chapter is robustifying the trajectory optimization approach
against bad dynamics estimates learned from data, the next important step is to test it on actual learned
data from a nonlinear system. In each iteration, we would fit linear time varying dynamics to a set of
trajectories and a time varying quadratic reward function to the possibly nonconvex reward. These can then
straightforwardly be utilized in our algorithm. The only addition to standard methods would be the estimation
of the nominal parameter distribution p̂t(θ ) from a set of collected trajectories, for example by Bayesian
linear regression. With these extensions, we could run the algorithm for a completely unknown system in a
model-based reinforcement learning setting with the model being learned online. Incorporating this modified
trajectory optimization into an approach such as GPS would then allow learning arbitrarily parametrized
policies.

Additionally, the algorithm should be extended to include ambiguity not just in the system matrix parameters,
but also the input matrix and additive component of the dynamics which typically all would be learned from
trajectory data.

Application to Model Predictive Control
Another extension would be using the trajectory optimization approach in a model predictive control fashion.
Instead of finding the controllers for the whole trajectory, we would optimize over a certain time horizon and
only apply the control of the first timestep to the system which then leads to a new initial state. From there,
the process is repeated hence closing the control loop.

Evaluation of Computational Cost
With the application to more complex systems it would also be important to quantify the increased com-
putational cost due to the additional optimization of the parameter distribution for each policy update
step.

Different Ambiguity Sets
While the choice of KL-divergence together with the Gaussian assumption on the nominal parameter distribution
allowed us closed form solutions of both backward pass and worst-case distribution, other nominal distributions
and different types of ambiguity sets can also be considered. For example, other φ-divergences such as the
reverse KL-divergence may lead to tractable problems with different solution properties.

Resolution of Solvability Problems
Lastly, to make application more straightforward and give some guarantees of what level of robustness in
terms of KL-divergence can be achieved, the conditions for which the worst-case distribution exists need
further study. While we dealt with this problem heuristically by reducing the KL bound when necessary,
this is not satisfactory. A better understanding of influence of problem parameters as well as the choice of
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hyperparameters is needed. This understanding might also allow moving to individual timestep bounds on
the parameter distribution in the original derivation, a case for which our heuristic approach failed to solve
the problem.
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4. Conclusion

Distributionally robust optimization provides a principled approach of including ambiguity stemming from a
limited amount of data into an optimization problem. In this thesis, we investigated two methods of applying
it to the setting of continuous optimal control with the aim to account for model misspecification.

Our first approach, described in chapter 2, is an extension of LQR which is robust to ambiguity in the additive
noise distribution. Instead of assuming a Gaussian distribution, we consider the case where some samples from
the noise are given and the controller should be able to deal with all distributions which could have generated
those samples. For this set of reasonable distributions, we choose a Wasserstein ball which can be constructed
directly based on the sample distribution. The resulting controller is given by a tractable parametrized convex
optimization problem, for which we find the parametrization by stochastic gradient descent. Evaluation on
simple examples using the worst-case noise showed improved robustness in some cases, but also indicated
strong dependence on the particular system dynamics and hyperparameter choice.

In chapter 3, we present a trajectory optimization approach based on linearized dynamics. The goal in this
approach is to robustify the optimization against uncertainty in the parameters, which we assume come
from fitting a linear model to trajectories. We consider all parameter distributions close to the nominal one
in terms of Kullback-Leibler divergence and optimize the time-dependent controllers for the worst of these
distributions by iterating between policy update steps and parameter distribution update. An evaluation
on linear example systems shows improvement in the expected reward under the worst-case distribution.
Existence of the worst-case distribution turns out to be a critical issue and is not guaranteed for too large
ambiguity sets.

For both approaches presented, we give some ideas for future work and details on issues with the implemen-
tation. Further evaluation, especially of the second approach, in a setting where approximate dynamics are
learned from data is necessary to judge the robustness and improvement over standard methods.
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A. Reformulation of Non-Convex QCQP

We here show the reformulation of the non-convex QCQP given in equation (2.2). The derivation follows the
one given in [41, Appendix B.1].

For ease of notation, we will not explicitly write the constraints α ∈ R+ and ρ i ∈ Rm. The problem at hand is
then

max
α,ρ i

1
N

N
∑︂

i=1

(ŵi +ρ i)
TP(ŵi +ρ i) +

�

(As+Ba)TPT +
1
2

pT
�

(ŵi +ρ i) +αλmax(P)

s.t. 1
N

N
∑︂

i=1

∥ρ i∥
2
2 +α≤ ϵ

2.

Defining
q= P(As+Ba) +

1
2

p

and rearranging terms in the objective gives

max
α,ρ i

1
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∥ρ i∥
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2.

The problematic terms are ρT
i Pρ i, since P is positive definite. We can rewrite these as

ρT
i Pρ i = tr(ρT

i Pρ i) = tr(Pρ iρ
T
i ) = tr(PXi),

where the second equality is due to the cyclic property of the trace, and we defined Xi = ρ iρ
T
i . Using this, the

problem becomes

max
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Finally, we relax the equality Xi = ρ iρ
T
i by replacing it with an inequality Xi ⪰ ρ iρ

T
i , which can in turn be

written as

Xi ⪰ ρ iρ
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The resulting problem

max
α,ρ i ,Xi
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is then a convex SDP and strong duality holds with the original problem.
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B. Derivation of KL Robust Trajectory Optimization in
Linear Quadratic Gaussian Case

B.1. Backward Pass

In this section, we provide some detailed steps for obtaining the closed form backward pass used in the
parameter distribution update in section 3.3.1. Starting from the assumptions

Pt(s
′|s,a,Θ) =N (s′|Θs+ bta+ ct ,Σs′,t)

πt(a|s) =N (a|Kπt s+ kπt ,Σπa,t)

Vt+1(s) = sTVt+1s+ sTvt+1 + vt+1

µt(s) =N (s|τµs,t ,Σ
µ
s,t)

p̂t(θ ) =N (θ |θ̂ t , Σ̂θ ,t)

Rt(s,a) = (s− z)TMt(s− z) + aTHta

we need to first evaluate
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where the variables with superscript “cl” are the closed loop dynamics parameters introduced for brevity.

Worst-Case Distribution
For the worst-case distribution, we then compute the integral
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with a constant c which is independent of θ . Using

Θclτ
µ
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the first quadratic form can be rewritten as
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where T+ is the Moore-Penrose inverse of T. Using some basic properties of matrix trace, vectorization and
Kronecker product, we also get
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The integral is then given by
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found by the addition rules for two quadratic forms and including the term −vec(btK
π
t ) to convert back from

θ cl to θ . Using the above, the worst-case parameter distribution is
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�

−
1
αt

∫︂

s

µt(s)Q t(s,θ )ds

�

∝ p̂t(θ )exp

�

−
1
αt
(θ −wt)

TWt(θ −wt)

�

∝N (θ |θ̂ t , Σ̂θ ,t)exp

�

−
1
2
(θ −wt)

T
�

αt

2
W−1

t

�−1

(θ −wt)

�

∝ exp

 

−
1
2

�

(θ − θ̂ t)
TΣ̂
−1
θ ,t(θ − θ̂ t) + (θ −wt)

T
�

αt

2
W−1

t

�−1

(θ −wt)

�

!

.

Finally,
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Value Function
For t < T , the value function is given by
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For the second integral, we use equation (B.1) to write it as
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�

Θcls+ cclt
�

+
�

Θcls
�T

vt+1

�

dθ cl +
�

cclt
�T

vt+1 + vt+1 + tr
�

Vt+1Σ
cl
s′,t

�

⏞ ⏟⏟ ⏞

c′
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Similarly to what we did above, we introduce S= (sT ⊗ In) and its Moore-Penrose inverse S+ to rewrite as

I2(s) =

∫︂

θ cl
pt(θ

cl)
�

�

θ cl + S+cclt
�T

STVt+1S
�

θ cl + S+cclt
�

+ vTt+1Sθ cl
�

dθ cl + c′

=

∫︂

θ cl
N
�

θ cl|µθ ,t + vec(btK
π
t ),Σθ ,t

�

�

�

θ cl + S+cclt
�T

STVt+1S
�

θ cl + S+cclt
�

+ vTt+1Sθ cl
�

dθ cl + c′

=
�

�

µθ ,t + vec(btK
π
t ) + S+cclt

�T
STVt+1S

�

µθ ,t + vec(btK
π
t ) + S+cclt

�

+ vTt+1S
�

µθ ,t + vec(btK
π
t )
�

�

+ . . .

+ tr
�

STVt+1SΣθ ,t

�

+ c′

=
�

Θ̄
cl
t s+ cclt

�T
Vt+1

�

Θ̄
cl
t s+ cclt

�

+ vTt+1Θ̄
cl
t s+ tr

�

STVt+1SΣθ ,t

�

+ c′

= sT
�

(Θ̄cl
t )

TVt+1Θ̄
cl
t + P

�

s+
�

(Θ̄cl
t )

Tvt+1 + 2cclt Vt+1Θ̄
cl
t

�T
s+ tr

�

STVt+1SΣθ ,t

�

+ c′,

where Θ̄cl
t = Θ̄t +btK

π
t and vec(Θ̄t) = µθ ,t . Following [60], the elements of matrix Pt in the above are given by

Pi j
t = tr(Vt+1Σ

i j
θ ,t) where Σi j

θ ,t is obtained by partitioning the matrix Σθ ,t into n2 block matrices of size n× n as

Σθ ,t =

⎡

⎢

⎢

⎢

⎣

Σ11
θ ,t · · · Σ1n

θ ,t
... . . . ...

Σn1
θ ,t · · · Σnn

θ ,t

⎤

⎥

⎥

⎥

⎦

.

Collecting all the terms above finally yields the closed form update for the value function as

Vt(s) = sTVts+ sTvt + vt ,

where

Vt =

(

MT t = T

Mt + (Kπt )
THtK

π
t + (Θ̄

cl
t )

TVt+1Θ̄
cl
t + Pt t < T

vt =

(

−2MT z t = T

(Θ̄cl
t )

T(2Vt+1cclt + vt+1)− 2Mtz+ 2(Kπt )
THtk

π
t t < T

vt =

(

zTMT z t = T

(cclt )
T(Vt+1cclt + vt+1) + vt+1 + tr(HtΣ

π
a,t) + tr

�

Vt+1(Σs′,t + btΣ
π
a,tb

T
t )
�

+ zTMtz+ (k
π
t )

THtk
π
t t < T.
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B.2. Dual Objective

For evaluation of the objective and its derivative in closed form, we make use of the well known equation for
KL divergence between two Gaussians

Lp(µt , Vt ,αp, pt , p̂t) =

∫︂

s

V1(s)µ1(s)ds+αp

T−1
∑︂

t=1

KL(pt(θ )∥p̂t(θ ))−αpϵp

=(τµs,1)
TV1τ

µ
s,1 + (τ

µ
s,1)

Tv1 + v1 −αpϵp + . . .

+
αp

2

T−1
∑︂

t=1

 

tr
�

Σ̂
−1
t Σθ ,t

�

+ (θ̂ t −µθ ,t)
TΣ̂
−1
t (θ̂ t −µθ ,t)− n+ log

�

|Σ̂t |
|Σθ ,t |

�

!

∂ Lp

∂ αp
=

T−1
∑︂

t=1

KL(pt(θ )∥p̂t(θ ))− ϵp

=
1
2

T−1
∑︂

t=1

 

tr
�

Σ̂
−1
t Σθ ,t

�

+ (θ̂ t −µθ ,t)
TΣ̂
−1
t (θ̂ t −µθ ,t)− n+ log

�

|Σ̂t |
|Σθ ,t |

�

!

− ϵp.
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C. Summary of Closed Form Equations for GPS
Trajectory Optimization Step

We here give the policy optimization equations for the trajectory optimization of Guided Policy Search as
derived in [49] adapted for the case of dynamics which include a distribution over the parameter as given in
equation (3.12). Furthermore, we use the case of a single expected KL constraint on the policy.

C.1. Backward Pass

Augmented Reward

rt(s,a) = Rt(s,a) +απ log(qt(a|s))

= sTRss,ts+ aTRaa,ta+ aTRT
sa,ts+ sTRsa,ta+ sTrs,t + aTra,t + r0,t ,

where

Rss,t =Mt −
απ
2
(Kq

t )
T(Σq

a,t)
−1Kq

t

Raa,t = Ht −
απ
2
Σ

q
a,t)
−1

Rsa,t =
απ
2
(Kq

t )
T(Σq

a,t)
−1

rs,t = −απ(K
q
t )

T(Σq
a,t)
−1kq

t − 2Mtz

ra,t = απ(Σ
q
a,t)
−1kq

t

r0,t = zTMtz−απ log

s

|︁

|︁

|︁2πΣq
a,t

|︁

|︁

|︁−
απ
2
(kq

t )
T(Σq

a,t)
−1kq

t

State-Action Value Function

Q t(s,a) =
1
απ

�

rt(s,a) +EP
�

Vt+1(s
′)
�

�

= sTQss,ts+ aTQaa,ta+ aTQT
sa,ts+ sTQsa,ta+ sTQs,t + aTQa,t +Q0,t ,
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where

Qss,t =
1
απ

�

Rss,t + Θ̄
T
t Vt+1Θ̄t + Pt

�

Qaa,t =
1
απ

�

Raa,t + bT
t Vt+1bt

�

Qsa,t =
1
απ

�

Rsa,t + Θ̄
T
t Vt+1bt

�

Qs,t =
1
απ

�

rs,t + 2Θ̄T
t Vt+1ct + Θ̄

T
t vt+1

�

Qa,t =
1
απ

�

ra,t + 2bT
t Vt+1ct + bT

t vt+1

�

Q0,t =
1
απ

�

cTt Vt+1ct + tr(Vt+1Σs′,t) + vTt+1ct + vt+1 + r0,t

�

.

Here, when introducing a distribution over the parameters, the additional matrix Pt has to be accounted for.
Its elements are given by Pi j

t = tr(Vt+1Σ
i j
θ ,t), where Σi j

θ ,t indicates the (i, j)-th n× n block of the matrix Σθ ,t .
Furthermore, the dynamics matrix is given by the mean of the parameter distribution Θ̄t .

Policy

π(a|s) =
exp

�

Q t(s,a)
�

∫︁

a exp
�

Q t(s,a)
�

da

=N (a|kπt +Kπt s,Σπa,t),

where

kπt = −
1
2

Q−1
aa,tQa,t

Kπt = −Q−1
aa,tQ

T
sa,t

Σπa,t = −
1
2

Q−1
aa,t .

State Value Function

Vt(s) = sTVts+ sTvt + vt ,

where

Vt =

(

MT t = T

απ(Qss,t +Qsa,tK
π
t ) t < T

vt =

(

−2MT z t = T

απ(Qs,t + 2Qsa,tk
π
t ) t < T

vt =

⎧

⎨

⎩

zTMT z t = T

απ

�

1
2QT

a,tk
π
t +Q0,t +

1
2

�

m log(2π)− log
�|︁

|︁−2Qaa,t

|︁

|︁

�

�
�

t < T
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C.2. Dual Objective

Lπ(µt , Vt ,απ) =

∫︂

s

V1(s)µ1(s)ds+ ϵπαπ

= (τµs,1)
TV1τ

µ
s,1 + (τ

µ
s,1)

Tv1 + v1 + ϵπαπ

∂ Lπ
∂ απ

= ϵπ −
T−1
∑︂

t=1

Eµt

�

KL
�

πt(a|s)∥qt(a|s)
�

�
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