
Computer Science
Department
Intelligent Autonomous
Systems

Active Inference for Robotic
Manipulation
Master thesis by Tim Schneider
Date of submission: October 20, 2021

1. Review: Boris Belousov
2. Review: Hany Abdulsamad
3. Review: Prof. Jan Peters
Darmstadt



Erklärung zur Abschlussarbeit
gemäß §22 Abs. 7 und §23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Tim Schneider, die vorliegende Masterarbeit ohne Hilfe Dritter
und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen,
die Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit
hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Fall eines Plagiats (§38 Abs. 2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung gemäß §23 Abs. 7 APB überein.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Darmstadt, 20. Oktober 2021
Tim Schneider

ii



Abstract

Despite significant advances in robotics and machine learning in the last decades, robotic
manipulation stands as a largely unsolved problem. One of the central challenges of
manipulation is partial observability, as the agent usually does not know all physical
properties of the objects it is manipulating in advance. A recently emerging theory that
deals with partial observability in an explicit manner is Active Inference. It does so by
driving the agent to act in a way that is not only goal directed, but also informative
about the environment. In this work, we apply Active Inference to simulated robotic
manipulation tasks. We show that the information seeking behavior induced by Active
Inference allows the agent to systematically explore challenging sparse environments.
Furthermore, we propose to replace the information seeking objective of Active Inference
by one that is based on Lautum Information and argue that this choice facilitates a more
sample efficient approximation. Our experimental results indicate that this choice of
objective achieves performance comparable to the original objective on simulated robotic
manipulation tasks. Additionally, we provide an in-depth formal analysis of the origin of
information seeking behavior in Active Inference. In this analysis, we cast doubt on the
mathematical soundness of a central claim of Active Inference, namely that it explains
curiosity and thereby resolves the exploration-exploitation dilemma. Finally, we conclude
that using an information seeking objective is beneficial in sparse environments and allows
the agent to solve tasks in which methods that do not exhibit directed exploration fail.
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1 Introduction

Figure 1.1: Robot using Active Inference to
solve a challenging manipulation
task.

A common belief in cognitive science is that
the evolution of dexterous manipulation
capabilities was one of the major driving
factors in the development of the human
mind [1] and the success of mankind in
general [2]. Our manipulation skills al-
low us to interact with our environment in
a highly sophisticated way, setting us hu-
mans apart from all other known species
on this planet. Performing manipulation
is cognitively highly demanding, forcing
the actor to reason not only about the im-
pact of its actions on itself, but also about
the impact on its environment. This inher-
ent complexity leaves autonomous robotic
manipulation as a largely unsolved topic,
despite significant advances in robotics and
machine learning in the last decades.

One of the central challenges of manipula-
tion is partial observability. While we are
manipulating an object, we rarely know all
of its physical properties in advance. Instead, we must resort to inferring those properties
based on observations and touch. To deal with this issue as effectively as possible, humans
have developed a variety of active haptic exploration strategies that they constantly apply
during manipulation tasks [3, 4].

A recently emerging theory from cognitive science that tries to explain this notion of
constant active exploration is Active Inference (AI) [5]. Active Inference formulates both
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action and perception as the minimization of a single free-energy functional, called the
Variational Free Energy. In doing so, Friston et al. [6] derive an objective function that
consists of an extrinsic, goal-directed term and an intrinsic, information seeking term. The
combination of these two terms drive the agent to act in a way that is both goal directed
and informative. E.g. in the context of a pick-and-place task, goal directed behavior would
be to pick the object up and move it to the target location. Information seeking behavior,
on the other hand, would be to haptically explore the object, learning more about its
shape, texture, pose and weight. A combination of both could be realized by picking the
object up and exploring it on the way to the target location.

In this work, we show how Active Inference can be used to learn challenging robotic
manipulation tasks without prior knowledge. For now, we assume that the environment is
fully observable and only consider epistemic uncertainty1. To implement Active Inference
in practice, we utilize an ensemble of neural network models and deploy Model Predictive
Control for action selection. We show that agents driven by Active Inference explore their
environments in a directed and systematic way. These exploratory capabilities allow the
agents to solve complex sparse manipulation tasks, on which agents that are not explicitly
information seeking fail.

A significant challenge we address in this work is the approximation of the intrinsic term.
To obtain an efficient estimate, we propose to nest two Monte Carlo (MC) approximators
and share samples among them. Although reusing samples violates the i.i.d. assumption
of the approximators, we show empirically that it improves sample-efficiency substantially.
Furthermore, we propose to use Lautum Information [7] as a novel intrinsic term and
show empirically that it allows a more efficient reuse of samples than our approximator of
the original intrinsic term.

Another contribution of this work is an in-depth formal analysis of the origin of the intrinsic
term in Active Inference. We argue that the intrinsic term cannot be naturally obtained,
but rather arises from an assumption that is not fulfilled in the overwhelming majority of
cases. By empirically showing that only those agents that make this assumption exhibit
information seeking behavior on a small example environment, we cast further doubt on
the soundness of the derivation of the intrinsic term. In other words, we argue that if the
mathematical derivations leading to the Active Inference objective are done exactly, then
the agents do not exhibit information gain maximizing behavior.

This thesis is structured as follows. In Chapter 2, we summarize approaches related to

1Epistemic uncertainty is the uncertainty the agent has over its model of the world. In contrast, aleatoric
uncertainty is uncertainty over the agent’s state.
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ours and point out their similarities and differences. We provide a summary of the Active
Inference formalism in Chapter 3. In Chapter 4, we cast doubt on the mathematical
soundness of a central claim of Active Inference, namely that it explains curiosity and
thereby resolves the exploration-exploitation dilemma. Chapter 5 contains the formal
derivation and a detailed description of our method. In Chapter 6, we present four different
tasks we evaluated our method on and discuss its performance. Finally, in Chapter 7 we
elaborate on merits and limitations of our method and discuss potential future research
directions.
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2 Related Work

In this chapter, we discuss prior work that is related to our approach. For a better
overview, we separate the discussed publications into three categories. In the first category,
we investigate how and to which extent Active Inference has been used in practical
applications related to robotics or Reinforcement Learning. In the second category, we
briefly summarize current model-based Reinforcement Learning methods and relate them
to our approach. Finally, in the third category, we investigate other approaches in the
field of Bayesian Optimal Experimental Design and Artifical Curiosity.

Practical applications of Active Inference

In the recent years, Active Inference (AI) has gained a lot of attention and started to find
practical application in different fields. One field relevant to this work is robotics, in which
AI has been used for a variety of tasks, ranging from control [8–13] to planning [14],
navigation [15], and learning of dynamic models [14, 16–18].

Few approaches have yet used AI to solve Reinforcement Learning (RL) problems. One
of those approaches was proposed by Millidge [19], who applies AI to three small RL
benchmarks [20]. Unlike our approach, they do not use the Expected Free Energy (EFE)
functional for planning, but rather use it to learn a neural network policy and value
function. Another difference is that they do not assume that the model parameters
are part of the hidden state, but rather train the model jointly with the variational
distribution. Consequently, their method does not compute the intrinsic term w.r.t. the
model parameters, but only w.r.t. the state.

Similar to the approach of Millidge [19] are the approaches of Ueltzhöffer [21] and Himst
and Lanillos [22]. Ueltzhöffer [21] is different from Millidge [19], in that they deploy an
evolutionary algorithm to optimize their models, which limited the method to very small
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neural networks. Himst and Lanillos [22] use a similar overall approach as Millidge [19],
but operate on pixel input instead of the numeric state vectors of the environments.

Related to our approach is Tschantz et al. [23], who also use Model Predictive Control
(MPC) for control and use an ensemble to track model uncertainty. A difference to
our approach is the free energy functional used for planning. While we rely on the
Expected Free Energy, they use the Free Energy of the Expected Future, which we describe
in detail in Section 3.3. The difference between the two functionals is the resulting
extrinsic term, which is expressed as a KL divergence in case of the Free Energy of the
Expected Future (FEEF) and a cross-entropy in case of the EFE. Furthermore, they chose a
different approximation of their intrinsic term, which requires them to make a mean-field
assumption over consecutive states. Similar to our approach, they also assume a Markov
Decision Process (MDP) as their generative model. They evaluate their approach on
multiple RL benchmarks, including Mountain Car [20] and Cup Catch [24].

Model-Based Reinforcement Learning

Since our method learns a model of its environment, it is related to methods in the field
of Model-Based RL. A popular model-based RL approach is MBPO [25], which we also
compare against in this work. MBPO uses samples of the environment to train an ensemble
of dynamics models, which are used to generate novel artificial data. This artificial data is
then used to train a SAC agent. A difference to our approach is that the ensemble model
is not used during roll-outs, as the actions are sampled from the SAC policy.

Another approach is PILCO [26], where a Gaussian Process model is trained on data from
the environment. Then PILCO uses the differentiability of its model to compute the policy
gradient analytically. Similarly to MBPO, only the policy is used during roll-outs.

An approach similar to ours in PETS [27]. Like our method, PETS trains ensemble models
for both the transition and reward distributions and selects actions with a Cross Entropy
Method (CEM) planner. Another approach that learns a probabilistic model and uses
CEM for planning is PlaNet [28]. Unlike our method, however, PlaNet learns a latent
representation, which makes it capable of operating on Partially Observable Markov
Decision Process (POMDP) environments. The key difference to our approach is that both
PETS and PlaNet do not use intrinsic terms and instead greedily select the actions they
predict to yield the highest reward.
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Bayesian Optimal Experimental Design and intrinsic motivation

Our method is related to Bayesian Optimal Experimental Design (BOED). In Bayesian
Optimal Experimental Design (BOED), the objective is to choose experiment configurations
in such a way that is their results will be maximally informative. Typically, this notion is
formulated as the maximization of the expected information gain [24, 29–31].

Particularly relevant to our work is the approach of Shyam, Jaśkowski, and Gomez [32],
who use active exploration for model learning in a dynamic environment. Similar to our
approach, they make use of the expected information gain and approximate it with MC.
Contrary to our method, they do not use MPC and instead use SAC to learn a policy that
maximizes information gain. Crucially, during exploration, their method does not consider
extrinsic reward and purely acts upon the information gain as objective. They show that
their method is capable of solving Mountain Car and evaluate it on Half Cheetah [24].
Similar to the approach of Shyam, Jaśkowski, and Gomez [32] is the approach of Sun,
Gomez, and Schmidhuber [30], who use policy iteration to obtain an information-gain
maximizing policy.

Another, more general concept that is related to our approach is the use of intrinsic
motivation. Intrinsic motivation can be understood as any kind of active drive that is
not caused by an extrinsic reward signal. Schmidhuber [33] and Chentanez, Barto, and
Singh [34] propose to formulate intrinsic motivation in terms of the disagreement over
outcomes of multiple agents. Hence, instructions become intrinsically interesting if the
agents predict different outcomes. Pathak et al. [35] take this idea one step further
and use model disagreement as reward signal for A3C [36], to obtain an information
seeking policy. Other approaches [29, 37] use an uncertainty aware model and rate the
informativeness of actions by the entropy of the resulting prediction. Thus, actions for
which the model prediction exhibits a high entropy receive a higher intrinsic value than
actions that result in a low prediction entropy.
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3 Active Inference

Active Inference (AI) [5, 38] is a process theory that implements the Free Energy Principle
(FEP), a concept that recently emerged in the field of cognitive science. The Free Energy
Principle (FEP) offers a unified brain theory that accounts for action, perception and
learning. At its core lies the idea that any living organism has to restrict the space of
possible states it is visiting in order to resist the second law of thermodynamics. For
example, fish restrict themselves to remain underwater, while many species of birds
migrate each year to ensure that the surrounding temperature is restricted to some
acceptable levels. By formulating this notion of the purposeful restriction of the state
space as the minimization of Bayesian surprise, Friston et al. [5] obtain a formulation that
they claim explains intelligent behavior.

In this chapter, we summarize four formulations that attempt to implement the FEP
mathematically. We describe the Variational Free Energy (VFE) [5], which implements
the FEP for stationary systems without any notion of past and future, in Section 3.1, and
show how it can be reformulated to facilitate operation on Partially Observable Markov
Decision Processs (POMDPs). In Section 3.2, we derive the Expected Free Energy (EFE) [6,
39] which allows agents to plan their actions into the future, while still relying on the
Variational Free Energy (VFE) for perception and learning. For simplicity, we will use the
term Active Inference (AI) to refer to the process theory that results from the combined
minimization of VFE and EFE, although in the literature the term is also used to refer to
other process theories in the context of free energy minimization [5, 38, 39]. Finally, we
briefly highlight an alternative formulation to the combination of VFE and EFE that also
operates on POMDPs in Section 3.3.
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3.1 Variational Free Energy

According to the FEP, any organism must restrict the states it is visiting to a manageable
amount. Mathematically, AI implements this restriction as follows: every agent maintains
a generative model p of the world and avoids sensations o that are surprising, hence have
a low marginal log-probability ln p(o). Thus, the objective can be written as

min
π
− ln p(o) (3.1)

where o is generated by some external process that can be influenced by changing the
policy π.

The agent’s generative model is assumed to consist of not only observations o, but also
contain hidden states x, making it a joint distribution over o and x: p(o, x) = p(o |x) p(x).
It is assumed that the agent can efficiently compute the likelihood p(o |x) and the hidden
state prior p(x). Computing the objective in Eq. (3.1) requires to marginalize out the
hidden states x, giving

− ln p(o) = − ln
∫︂
p(o, x) dx (3.2)

However, p(o, x) can be an arbitrarily complex distribution for which the integral in
Eq. (3.2) does not have an analytical solution. We tackle this issue by introducing a
variational posterior qφ(x), which gives us the VFE formulation that the FEP owes its name
to.

− ln p(o) = − ln
∫︂
p(o, x) dx

= − ln
∫︂
qφ(x)

qφ(x)
p(o, x) dx (3.3)

≤ −
∫︂
qφ(x) ln

p(o, x)

qφ(x)
dx (3.4)

= −Eqφ(x)[ln p(o, x)− ln qφ(x)]
=: F (o, φ)

where F (o, φ) is the free energy, depending on the observation o and the parameters
of the variational posterior φ. Note that to get from Eq. (3.3) to Eq. (3.4), we applied
Jensen’s inequality.
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The free energy F (o, φ) can now be decomposed as follows:

F (o, φ) = −Eqφ(x)
[︃
ln
p(o, x)

qφ(x)

]︃
= −Eqφ(x)

[︃
ln
p(x | o) p(o)
qφ(x)

]︃
= DKL[qφ(x) ∥ p(x | o)]− ln p(o) (3.5)

which shows that the difference between Eq. (3.3) and Eq. (3.4) is exactly the KL di-
vergence between the variational posterior and the real posterior. This decomposition
reveals that by minimizing F (o, φ) w.r.t. the variational parameters φ, we are effectively
minimizing the KL divergence between the variational posterior and the real posterior.
Due to the positivity of the KL divergence, this minimization makes F (o, φ) a better
approximator of the surprise − ln p(o). To summarize, by minimizing F (o, φ) w.r.t. o,
we are minimizing an upper bound of the surprise − ln p(o), which we can tighten by
minimizing F (o, φ) w.r.t. φ. Note however, that we cannot control o directly, but rather
choose actions that produce observations minimizing the free energy.

While Eq. (3.5) neatly demonstrates the relation between surprise and the free energy, it
does not provide a straightforward way of computing the free energy. Eq. (3.5) is not the
only decomposition of the free energy however, and we can find one that better facilitates
computing F (o, φ):

F (o, φ) = −Eqφ(x)
[︃
ln
p(o, x)

qφ(x)

]︃
= −Eqφ(x)

[︃
ln
p(o |x) p(x)

qφ(x)

]︃
= DKL[qφ(x) ∥ p(x)]⏞ ⏟⏟ ⏞

complexity

−Eqφ(x)[ln p(o |x)]⏞ ⏟⏟ ⏞
reconstruction

(3.6)

If, for example, p(x) and qφ(x) are Gaussian, then the KL divergence in Eq. (3.6) can be
computed analytically, while the expectation can be straightforwardly approximated with
a Monte Carlo estimator.

A common argument against the FEP is the so called Dark Room Problem [40]: if all an
agent tries to achieve is to reduce its surprise, why does it not simply search a dark room
and stays in it forever? Inside a dark room any observation can be predicted perfectly and
thus the agent should never be surprised. Yet, this is obviously not how animals or humans
behave, which raises the question whether the FEP is a feasible brain theory. According
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to Friston [41], however, this argument neglects the fact that the agent could find it
surprising to be in a dark room in the first place. It could have observation preferences
encoded in a prior probability distribution p(o) that might be violated in such situations.
Even agents that are not surprised to be in dark places per se, like mice hiding in their
burrows, might find other preferences violated which cause them to act. For example, an
animal might expect a-priori not to be hungry, urging it to leave the dark room to search
for food.

In a RL setting, controlling the observation preferences allows us to define the target
behavior of the agent. While it is common in RL literature to use a reward function to give
the agent a notion of “good” and “bad” behavior, in the AI framework, we define a prior
distribution over target observations p(o) that we would like the agent to make. Note that
by making the reward part of the observation and setting the maximum reward as target
observation [23], we can transform any reward-based task to fit into the AI framework.

Variational Free Energy for POMDPs

As we are dealing with discrete time series data, we adapt the VFE formalism to POMDPs,
following Parr and Friston [39]. Hence, in the following, we assume a discrete time setting
in a Partially Observable Markov Decision Process (POMDP), where we denote the hidden
state at time τ as xτ and the observation as oτ . We further use the notation vτ1:τ2 to refer
to (vτ1 , vτ1+1, . . . , vτ2) for time series data v and τ1 ≤ τ2. Hence, the generative model of
our environment can be factored as

p(x1:t, o1:t, π) =
t∏︂

τ=1

p(oτ |xτ ) p(xτ |xτ−1, π) p(π) (3.7)

where t is the current time step, xτ and oτ are the hidden state and the observation
at time τ , and π is a policy. In order not to clutter the notation, we simply define
p(x1 |x0, π) = p(x1).

We further assume that the observation distribution p(oτ |xτ ) and the dynamics
p(xτ |xτ−1, π) are given and known to the agent. While it might sound limiting to assume
that the agent must know these two distributions, it is important to emphasize that the
hidden state x can be arbitrarily complex and could, for example, contain the parameters
of a universal function approximator used inside these distributions. Hence, in that case,
inferring the hidden state is includes learning the parameters of those function approxima-
tors. Consequently, p(oτ |xτ ) and p(xτ |xτ−1, π) can be arbitrarily powerful distributions
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that are configured by parts of the hidden state. For example, in this work, we chose the
dynamics to be a Gaussian distribution parameterized by a neural network:

p(x̃τ , θτ | x̃τ−1, θτ−1, π) = N (x̃τ | µ (x̃τ−1; θτ−1) , σ (x̃τ−1; θτ−1)) δ (θτ − θτ−1)

where xτ = (x̃τ , θτ ) and the delta distribution δ (θτ − θτ−1) simply ensures that the
parameters stay constant between steps.

To ensure consistency with the Expected Free Energy formalism introduced later, we
additionally introduce π to the variables inferred with the variational posterior q, resulting
in the following definition:

F (o1:t, φ) = −Eqφ(x1:t,π)
[︃
ln
p(o1:t, x1:t, π)

qφ(x1:t, π)

]︃
= −Eqφ(x1:t,π)

[︃
ln
p(x1:t, π | o1:t) p(o1:t)

qφ(x1:t, π)

]︃
= DKL[qφ(x1:t, π) ∥ p(x1:t, π | o1:t)]− ln p(o1:t) (3.8)
≥ − ln p(o1:t)

To make this objective more tractable, we choose the variational distribution qφ(x1:t, π)
such that the hidden states of different time steps are independent:

qφ(x1:t, π) = qφ(π)

t∏︂
τ=1

qφ(xτ |π)

This assumption is commonly referred to as a mean-field approximation. While a mean-
field approximation drastically reduces the expressive power of the variational distribution,
it allows us to decompose the VFE into a sum over time steps:

F (o1:t, φ) = Eqφ(π)[Fπ (o1:t, φ)] +DKL[qφ(π) ∥ p(π)]

Fπ (o1:t, φ) = −Eqφ(x1:t |π)

[︄
ln p(o1:t, x1:t |π)−

t∑︂
τ=1

ln qφ(xτ |π)

]︄
(3.9)

=
t∑︂

τ=1

Fπ,τ (oτ , φ)

where the free energy at time τ is given as

Fπ,τ (oτ , φ) =− Eqφ(xτ |π)qφ(xτ−1 |π)[ln p(oτ |xτ ) + ln p(xτ |xτ−1, π)− ln qφ(xτ |π)]
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Note that F (o1:t, φ) depends only on the past, as we defined t to be the current time step,
making ot our most recent observation. Hence, optimizing the variational distribution
over policies qφ(π) is not about finding a policy that minimizes surprise, but rather
retrospectively inferring a policy that explains the observations we made in the past.

The optimal variational policy distribution can now be computed by setting the derivative
of F to 0:

0 =
∂F (φ)

∂qφ(π)
= Fπ (φ)− ln p(π) + ln qφ(π)

⇔ q∗φ(π) = σ (ln p(π)− Fπ (φ)) (3.10)

where σ is the softmax function, defined as

σ (f (π)) =
ef(π)∫︁
ef(π̂)dπ̂

One issue of the VFE formulation is that it only considers the past up to the present
and does not allow the agent to plan into the future. Practically, this means that the
agent cannot use this formulation to perform action selection unless it knows the relation
between action and observation a-priori. To tackle this shortcoming, multiple attempts
have been made to extend the free energy formalism to facilitate action planning into the
future, which we summarize below.

3.2 Expected Free Energy

For reference, we summarize the Expected Free Energy (EFE) as it is formulated in Parr
and Friston [39]. To extend this formalism for planning into the future, Parr and Friston
[39] propose to replace Fπ (φ) in Eq. (3.10) by EFE Gπ (φ):

q∗φ(π) = σ (ln p(π)−Gπ (φ)) (3.11)

The EFE is defined as

Gπ (φ) =

T∑︂
τ=t+1

Gπ,τ (φ)

Gπ,τ (φ) = −Eqφ(oτ ,xτ |π)[ln p(oτ , xτ )− ln qφ(xτ |π)] (3.12)
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where qφ(oτ , xτ |π) = p(oτ |xτ ) qφ(xτ |π), t is the current time step and T is the planning
horizon. Note that unlike the VFE, the EFE does not depend on any observations, but
rather uses the variational distribution to take an expectation over future observations.

Eq. (3.12) can now be decomposed into an epistemic and an extrinsic term:

Gπ,τ (φ) = −Eqφ(oτ ,xτ |π)[ln p(xτ | oτ )− ln qφ(xτ |π)⏞ ⏟⏟ ⏞
epistemic term

+ ln p(oτ )⏞ ⏟⏟ ⏞
extrinsic term

] (3.13)

The intuition behind the extrinsic term is fairly straightforward: it drives the agent
towards realizing its observation preferences, which are encoded in the observation prior
p(oτ ). As described above, observations that the agent favors have a higher probability
in the observation prior than observations that the agent disfavors. The intuition behind
the epistemic term, however, is less obvious. Parr and Friston [39] offer the following
explanation: using the approximation

p(xτ | oτ ) ≈ qφ(xτ | oτ , π) (3.14)

we can apply Bayes’ rule and obtain

p(xτ | oτ )
qφ(xτ |π)

≈
qφ(xτ | oτ , π)
qφ(xτ |π)

=
qφ(oτ |xτ , π)
qφ(oτ |π)

(3.15)

where we defined qφ(oτ |π) :=
∫︁
p(oτ | x̂τ ) qφ(x̂τ |π) dx̂ in the final step.

Inserting Eq. (3.15) back into Eq. (3.13), we obtain the EFE as a sum of the expected
information gain (also known as Mutual Information) and the extrinsic term:

Gπ,τ (φ) ≈ −Eqφ(xτ |π)[DKL[qφ(oτ |xτ , π) ∥ qφ(oτ |π)]]⏞ ⏟⏟ ⏞
expected information gain

−Eqφ(oτ |π)[ln p(oτ )]⏞ ⏟⏟ ⏞
extrinsic term

(3.16)

=: G̃π,τ (φ)

where we defined the approximated EFE as G̃.

This decomposition is often highlighted as one of the key features of Active Inference, as it
neatly combines exploration and exploitation into a single objective [6, 42]. Friston et al.
[6] even claim that Eq. (3.16) shows that AI resolves the the exploration-exploitation
dilemma. The reasoning behind this claim is that over time, the agent will become more
and more certain about the hidden state x and hence the effect of the information gain is
expected to vanish. Then, the only driving factor will be the extrinsic term, that causes
the agent to achieve its objectives.
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Combining the (approximated) EFE with the VFE yields a full control algorithm: In every
step, the agent first minimizes the VFE to obtain a variational approximation of the hidden
state posterior. Given this estimate of the hidden state, the agent then minimizes the EFE
to obtain a variational distribution over policies to follow for the next time step. Here, the
nature of the EFE ensures that the agent is both following extrinsic motives, as well as
gathering information about its environment efficiently.

3.3 Free Energy of the Expected Future

An issue of the EFE is that its formal origin is unclear. While its formulation (Eq. (3.12))
looks similar to the definition of the VFE (Eq. (3.9)), it cannot be directly derived from
it [43]. We discuss this issue in detail in Section 4.3.

In an attempt to find a more naturally grounded objective and thereby tackling this issue,
Millidge, Tschantz, and Buckley [43] propose a novel objective function: the Free Energy
of the Expected Future. They argue that an agent should always act to minimize the
difference between the outcomes it expects and the outcomes it desires. Mathematically,
they formulate this intuition as minimizing the KL divergence between the agent’s model of
the expected outcomes of a policy qφ(ot+1:T , xt+1:T |π) and a model of the agent’s desired
outcomes p(ot+1:T , xt+1:T ):

π∗ = argmin
π

FEEF (π)

FEEF (π) = DKL[qφ(ot+1:T , xt+1:T |π) ∥ p(ot+1:T , xt+1:T )]

One of the key properties of the FEEF is that it decomposes into an extrinsic and epistemic
term, similar to the EFE. However, in order for this decomposition to work, Approxima-
tion (3.14) has to be made here as well.

p(xt+1:T | ot+1:T ) ≈ qφ(xt+1:T | ot+1:T , π)

Using the above assumptions and writing õ = ot+1:T and x̃ = xt+1:T for simplicity, the
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FEEF can be decomposed as follows:

FEEF (π) = DKL[qφ(õ, x̃ |π) ∥ p(õ, x̃)]

= Eqφ(õ,x̃ |π)
[︃
ln
qφ(õ | x̃) qφ(x̃ |π)
p(x̃ | õ) p(õ)

]︃
= Eqφ(õ,x̃ |π)[ln qφ(õ | x̃)− ln p(õ)− ln p(x̃ | õ) + ln qφ(x̃ |π)]
≈ Eqφ(õ,x̃ |π)[ln qφ(õ | x̃)− ln p(õ)− ln qφ(x̃ | õ, π) + ln qφ(x̃ |π)]

= Eqφ(x̃ |π)
[︂
Eqφ(õ | x̃)[ln qφ(õ | x̃)− ln p(õ)]

]︂
− Eqφ(õ |π)

[︂
Eqφ(x̃ | õ,π)[ln qφ(x̃ | õ, π)− ln qφ(x̃ |π)]

]︂
= Eqφ(x̃ |π)[DKL[qφ(õ | x̃) ∥ p(õ)]]⏞ ⏟⏟ ⏞

extrinsic term

− Eqφ(õ |π)[DKL[qφ(x̃ | õ, π) ∥ qφ(x̃ |π)]]⏞ ⏟⏟ ⏞
expected information gain

(3.17)

=: ˜︁FEEF (π)

where ˜︁FEEF (π) is the approximated FEEF.

This decomposition is very similar to the decomposition of the EFE we obtained in
Eq. (3.16). Both share the expected information gain term1, but have a different ex-
trinsic term. The difference of the extrinsic terms is best highlighted by decomposing the
KL divergence of the FEEF as follows:

Eqφ(x̃ |π)[DKL[qφ(õ | x̃) ∥ p(õ)]] = Eqφ(x̃ |π)[H [qφ(õ | x̃)]] + Eqφ(õ |π)[ln p(õ)]

Hence, the FEEF uses the extrinsic term of the EFE plus the expected entropy of the
observation distribution.

1To see that the terms are similar, one has to use the symmetry of the mutual information w.r.t. ̇its variables
o and x. The difference between the two terms is that Eq. (3.16) is factorized into time steps (using the
mean-field assumption) while Eq. (3.17) is still defined over full series of o and x.
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4 Formal Analysis of Active Inference

One of the central claims behind Active Inference is that it resolves the exploration-
exploitation dilemma and explains curiosity mathematically [6]. In this chapter, we take
a critical look at both of these claims and outline three central issues of the EFE.

First, in Section 4.1 we argue that the EFE as defined in Eq. (3.16) does not fully resolve the
exploration-exploitation dilemma in practice. Second, we show that Approximation (3.14)
is not feasible and changes the semantics of the EFE significantly in Section 4.2. We
argue that the approximation alone causes the epistemic term to really be information
seeking and show that the EFE without this approximation does not explicitly encourage
exploration. Finally, in Section 4.3 we question the origin of the EFE and argue that
there is a more natural extension of the VFE into the future that does not result in the
information gain. To separate the arguments from Section 4.2 and Section 4.3, we assume
that the approximation discussed in the former section is valid in the latter section.

Additionally, we show that Approximation (3.14) is also used in the definition of the FEEF
and briefly investigate its impact.

4.1 Does the EFE resolve the exploration-exploitation dilemma?

While the EFE might provide an answer to the exploration-exploitation dilemma in theory,
in practice some challenges remain. One of these challenges is that the weighting of
exploration versus exploitation still has to be determined. Unlike in many RL approaches
where this weighting is configured by specifying the intensity of noise on the agent’s
actions [36, 44–46], in the AI framework the specification of the weighting is pushed into
the definition of the observation preference distribution p(o). As an example, a common
choice for p(o) is a Gaussian distribution N (µ, σ), which intuitively expresses that we
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would like our agent to make observation µ, but allow some degree of error specified by
σ. Thus, the extrinsic term becomes

−Eqφ(oτ |π)[ln p(oτ )] = Eqφ(oτ |π)
[︃
(oτ − µ)2

2σ2

]︃
+ const

=
1

2σ2
Eqφ(oτ |π)

[︁
(oτ − µ)2

]︁
+ const (4.1)

As visible in Eq. (4.1), the impact of the extrinsic term is directly controlled by the choice
of σ. On one hand, if we choose σ too small, the agent will ignore exploration and fully
focus on exploitation and, hence, might never find a good solution. On the other hand, if
we choose σ too high, the agent will continue exploring even if it is already able to solve
the task very well. In theory, the information gain should still eventually become zero and,
thus, the extrinsic term should dominate the agent’s policy selection. In practice, however,
due to approximation errors it is unlikely that the information gain becomes exactly
zero. Hence, choosing σ too high can cause the extrinsic term to remain insignificant
and thus prevent the agent from converging towards a good solution. To summarize,
the exploration-exploitation dilemma remains an issue in practice, but the EFE gives the
weighting between these two objectives an interpretation.

4.2 Feasibility of Approximation (3.14)

The emergence of the information gain from the basic EFE formulation in Eq. (3.12) is
often mentioned as one of its key properties [6, 42], as it offers a formal explanation for
curiosity. Admittedly, there is some beauty in the theory that an agent, in order to survive,
has to minimize its surprise, and, to do that, has to explore to understand the causes
of its observations. This property is also one of the key contributing factors that makes
AI interesting for the RL community, as it gives formal justification for using a sum of
extrinsic reward and information gain as a reward term for agents. Hence, much hinges
on the existence of the information gain as a direct consequence of the EFE formalism,
making it reasonable to take a closer look at its formal origin.

Starting from Eq. (3.12), to arrive at the formulation that contains the information
gain (Eq. (3.16)), Approximation (3.14) had to be made in Eq. (3.15). The argument
behind this approximation is that the variational distribution qφ approximates the original
distribution p and assuming it does so effectively, we can interchange the two distributions.
However, the devil lies in the detail, as the right side of the approximation (qφ(xτ | oτ , π))
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is conditioned on π while the right side (p(xτ | oτ )) is not. So intuitively, even if the agent
did a perfect job in approximating p with the variational distribution, the two should only
be (approximately) equal if the state xτ is (approximately) independent of the policy π
when oτ is given.

To gain an intuition about the assumptions behind Approximation (3.14), we will now pro-
ceed as follows: First, we show that there is a tight coupling between Approximation (3.14)
and the following approximation:

p(xτ ) ≈ qφ(xτ |π) (4.2)

Then, assuming that the variational distribution qφ approximates p well, we argue that
p(xτ ) and qφ(xτ |π) have substantially different intuitions and, hence, do not serve well
as approximators for each other. This insight finally leads us to the conclusion that
Approximation (3.14) is an infeasible approximation.

We start by applying Bayes’ rule to both p(x̃ | õ) and qφ(x̃ | õ, π).

p(x̃ | õ) = p(õ | x̃) p(x̃)∫︁
p(õ | x̃) p(x̃) dx̃

(4.3)

qφ(x̃ | õ, π) =
qφ(õ | x̃) qφ(x̃ |π)∫︁
qφ(õ | x̃) qφ(x̃ |π) dx̃

=
p(õ | x̃) qφ(x̃ |π)∫︁
p(õ | x̃) qφ(x̃ |π) dx̃

(4.4)

where we used that the variational distribution follows the same observation model as the
preference distribution: qφ(õ | x̃) = p(õ | x̃).

In Eq. (4.3), p(x̃) can be seen as the hidden state preferences of the agent. Usually, in
AI preferences are defined over observations, by specifying a target observation model
p(õ). Due to the factorization of p, specifying p(õ) implies the existence of a hidden state
distribution p(x̃) that fulfills

p(õ) =

∫︂
p(õ | x̃) p(x̃) dx̃ (4.5)

Note that, depending on the observation likelihood p(õ | x̃), there can be multiple or no
p(x̃) that fulfil the above constraint. Hence, specifying p(õ) does not fully determine the
joint preference distribution p(õ, x̃), while specifying p(x̃) does. In the following, we make
no further assumptions on whether the preferences were defined over observations or
hidden states and simply assume that p(õ) and p(x̃) are defined in a manner consistent
with Eq. (4.5).
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From Eqs. (4.3) and (4.4) we can immediately infer that if Approximation (4.2) is exact,
then Approximation (3.14) is exact:

(∀x̃ : p(xτ ) = qφ(xτ |π)) ⇒ (∀x̃, õ : p(xτ | oτ ) = qφ(xτ | oτ , π))

The other direction is not generally true, but holds under the condition that the preference
posterior is nonzero everywhere, that is

(∀x̃, õ : p(x̃ | õ) ̸= 0 ∧ p(xτ | oτ ) = qφ(xτ | oτ , π)) ⇒ (∀x̃ : p(xτ ) = qφ(xτ |π))

which we will prove in the following.

We start with the following equation that highlights the relation between the two distribu-
tions:

qφ(x̃ | õ, π) =
qφ(õ | x̃) qφ(x̃ |π)

qφ(õ |π)
=
p(õ | x̃) qφ(x̃ |π)

qφ(õ |π)

= p(x̃ | õ)
qφ(x̃ |π)
p(x̃)

p(õ)

qφ(õ |π)

(4.6)

where we again assumed that the variational distribution and the target distribution follow
the same observation model: qφ(õ | x̃) = p(õ | x̃).

Based on Eq. (4.6) we can now derive under which circumstances Approximation (3.14)
becomes exact. That is, for any pair (õ, x̃) Approximation (3.14) is exact iff one of two
conditions is fulfilled:

p(x̃ | õ) = 0 or
qφ(x̃ |π)
p(x̃)

p(õ)

qφ(õ |π)
= 1

or equivalently:

∀õ ∀x̃ p(x̃ | õ) ̸= 0 ⇒ qφ(x̃ |π) = α(õ) p(x̃) (4.7)

where we write α(õ) := qφ(õ |π)
p(õ) .

Intuitively, for a given observation, Eq. (4.7) can now be interpreted as follows:
Within the set of hidden states that have nonzero probability under the posterior, the
hidden state is independent of the policy. Or to phrase it differently: the hidden state is
independent of the policy, given that it has nonzero probability under the posterior.
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A common choice for variational distributions are Gaussians [23, 28, 47], which,
among other distributions, fulfill the condition p(x̃ | õ) ̸= 0 for all x̃ and õ. As a result,
for these kinds of distributions, Approximation (3.14) (p(x̃ | õ) ≈ qφ(x̃ | õ, π)) is exact iff
Approximation (4.2) is exact (p(x̃) ≈ qφ(x̃ |π)).

While this argument shows that there is a strong relation between the two approximations,
it makes no statement about how the approximation error of one affects the other. To
address this shortcoming, the following equation shows that the expected relative error of
Approximation (3.14) is equal to the relative error of Approximation (4.2):

Eqφ(õ |π)
[︃
qφ(x̃ | õ, π)
p(x̃ | õ)

]︃
= Eqφ(õ |π)

[︃
qφ(x̃ |π)
p(x̃)

p(õ)

qφ(õ |π)

]︃
=
qφ(x̃ |π)
p(x̃)

where x̃ is arbitrary.

To summarize, we have shown that there is a tight coupling between Approximations (3.14)
and (4.2). Any approximation error of Approximation (4.2) directly translates to approx-
imation error of Approximation (3.14). Hence, the infeasibility of the latter can be
directly concluded from the infeasibility of the former. It remains to show that Approx-
imation (4.2) is indeed an infeasible approximation, independent of the quality of the
variational posterior, which we will do in the following.

To separate the error stemming from Approximation (4.2) from the variational approx-
imation error, we assume that the agent did a perfect job in approximating p with the
variational distribution, transforming Approximation (4.2) into the following approxima-
tion:

p(xτ |π) ≈ p(xτ ) (4.8)

This approximation is exact iff the state is independent of the policy, which means that
the agent’s actions have no effect on the environment.

Intuitively, the two distributions of Approximation (4.8) have entirely different meanings.
To get an insight into these meanings, it is useful to first reiterate the semantics of the
generative distribution p. For a single time step, p factorizes as follows:

p(oτ , xτ , π) = p(oτ |xτ ) p(xτ |π) p(π)

where the dynamics p(xτ |π) and the observation distribution p(oτ |xτ ) are pre-defined
and fixed. Since all other distributions are fixed, it becomes apparent that p(π) is not a
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prior that we can freely choose, as it is restricted by our choice of p(oτ ):

p(oτ ) =

∫︂∫︂
p(oτ , xτ , π) dxτdπ (4.9)

=

∫︂∫︂
p(oτ |xτ ) p(xτ |π) p(π) dxτdπ

Hence, determining p(π) is equivalent to finding a policy distribution that generates our
target observation distribution exactly. Any p(π) that fulfills Eq. (4.9) could hence be seen
as the optimal distribution the agent should choose its policy from.

If we now write down the integral to compute p(xτ ),

p(xτ ) =

∫︂
p(xτ , π) dπ

=

∫︂
p(xτ |π) p(π) dπ

we can apply this insight to gain the following intuition: p(xτ ) is the marginal hidden
state distribution we obtain if the agent behaves optimally in a sense that its expected
observation distribution is exactly its preferred observation distribution.

The distribution we are using to approximate this marginal, however, is simply the dynam-
ics distribution: p(xτ |π) for some arbitrary policy π. This distribution has no notion of
optimal behavior, as it is already conditioned on the policy. Hence, Approximation (4.8)
can be precise for policies that have a very high probability in p(π), but not in the general
case.

Thus, we argue that Approximation (4.2) is not generally feasible. Due to their tight
coupling, we further conclude that Approximation (3.14), which was used to transform the
epistemic term into the information gain in Eq. (3.15), is also infeasible. Note that we did
not make any assumptions about the quality of the variational posterior qφ(x̃ | õ, π). Instead,
even if we assume a perfect variational posterior, the infeasibility of Approximation (3.14)
can be derived purely from the fact that one distribution is conditioned on the policy
while the other one is not. While the conditioning on the policy might appear to be a
minor detail at first glance, it eliminates the agent’s preferences and, hence, changes the
semantics of the distribution significantly.

The infeasibility of these approximations raises the question whether the epistemic term
is really information seeking or rather fulfills another function. Another way to look at
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this term is to directly write it as a difference of KL divergences:

− Eqφ(oτ ,xτ |π)[ln p(xτ | oτ )− ln qφ(xτ |π)]

= Eqφ(xτ |π)
[︂
ln qφ(xτ |π)− Eqφ(oτ |xτ ,π)[ln p(xτ | oτ )]

]︂
= Eqφ(xτ |π)

[︁
ln qφ(xτ |π)− Ep(oτ |xτ )[ln p(xτ | oτ )]

]︁
= Eqφ(xτ |π)

[︁
ln qφ(xτ |π)− Ep(oτ |xτ )[ln p(oτ |xτ )− ln p(oτ ) + ln p(xτ )]

]︁
= DKL[qφ(xτ |π) ∥ p(xτ )]− Eqφ(xτ |π)[DKL[p(oτ |xτ ) ∥ p(oτ )]] (4.10)

The first KL divergence ensures that the agent’s expected hidden state distribution under
its policy qφ(xτ |π) matches the target hidden state distribution p(xτ ). This is quite
interesting, as the epistemic term is driving the agent towards realizing its extrinsic
preferences, which is actually the purpose of the extrinsic term. The second (expected) KL
divergence is in fact an information gain term, but one that seeks out hidden states that
are informative about observations, not vice versa. Note that this term is not a mutual
information, as qφ(xτ |π) ̸= p(xτ ) and, thus, the order of xτ and oτ can not be switched.
Interestingly, if we add the extrinsic term to Eq. (4.10), some parts cancel out and we
obtain another decomposition of the EFE:

Gπ,τ (φ) = DKL[qφ(xτ |π) ∥ p(xτ )]− Eqφ(xτ |π)[DKL[p(oτ |xτ ) ∥ p(oτ )]]
− Eqφ(oτ ,xτ |π)[ln p(oτ )]

= DKL[qφ(xτ |π) ∥ p(xτ )]
− Eqφ(oτ ,xτ |π)[ln p(oτ |xτ )− ln p(oτ ) + ln p(oτ )]

= DKL[qφ(xτ |π) ∥ p(xτ )] + Eqφ(xτ |π)[H [p(oτ |xτ )]] (4.11)

While this decomposition cannot be computed as p(xτ ) is usually not explicitly defined, it
consists of parts that all have a clear meaning. The first term ensures the realization of
latent preferences and the second term ensures that the expected observation entropy is
as low as possible. Wanting a low observation entropy is reasonable as it allows the agent
to better predict observations and hence reduces surprise. Yet, none of these terms seem
to promote exploration, which gives reason to believe that the sole cause for the expected
information gain term in Eq. (3.16) to appear is Approximation (3.14).

In order to fully understand the impact of Approximation (3.14) on the EFE, we can follow
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Da Costa et al. [48] and rewrite its exact formulation (Eq. (3.12)) as

Gπ,τ (φ) = −Eqφ(oτ ,xτ |π)[ln p(oτ , xτ )− ln qφ(xτ |π)]
= −Eqφ(oτ ,xτ |π)[ln qφ(xτ | oτ , π)− ln qφ(xτ |π) + ln p(oτ )
− ln qφ(xτ | oτ , π) + ln p(xτ | oτ )]

= −Eqφ(oτ |π)[DKL[qφ(oτ |xτ , π) ∥ qφ(oτ |π)]]− Eqφ(oτ |π)[ln p(oτ )]
+ Eqφ(oτ |π)[DKL[qφ(xτ | oτ , π) ∥ p(xτ | oτ )]]
≥ −Eqφ(xτ |π)[DKL[qφ(oτ |xτ , π) ∥ qφ(oτ |π)]]− Eqφ(oτ |π)[ln p(oτ )] (4.12)

= G̃π,τ (φ)

where G̃π,τ (φ) is the approximated EFE as defined in Eq. (3.16).

From Eq. (4.12) we can immediately see that by minimizing G̃π,τ (φ) we are actually
minimizing a lower bound of the EFE. The difference between G̃π,τ (φ) and Gπ,τ (φ) is
given by the KL divergence between qφ(xτ | oτ , π) and p(xτ | oτ ). By our argument above,
this KL divergence could be arbitrarily high, especially if p(π) is low. Hence, it is not clear
whether minimizing G̃π,τ (φ) results in any minimization of the actual objective Gπ,τ (φ).

This insight leads us to conclude that the minimization of the information gain does
not generally contribute to the minimization of the exact EFE. Rather it seems as if
Approximation (3.14) is the sole reason for the EFE neatly decomposing into an extrinsic
term and an explicitly information seeking term. The question that naturally arises is
whether the EFE in its exact formulation even exhibits information seeking behavior at
all. Definitively answering this question is not easily possible, as it is hard to quantify
which behavior is explicitly information seeking and which is not. Instead, we provide a
comparison of the behaviors induced by the exact EFE and the approximated EFE on a
discrete example system in Fig. 4.1. Although no general statement is possible from this
singular example, it shows that it is straightforward to find cases in which the exact EFE
exhibits no information seeking behavior while the exact EFE does.

Comparison of exact versus approximated EFE on a discrete system

In the following we present a simple discrete environment in which the approximated
EFE induces substantially different behavior than the exact EFE. Specifically, we will see
that the agent following the approximated EFE exhibits curious behavior, while the agent
following the exact EFE does not.
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In this example, which is visualized in Fig. 4.1, the agent is a mouse that can visit two
possible locations, denoted s1 and s2. At the beginning, the mouse is situated on s1 and
can decide whether it wants to stay on s1 or move to s2. If the mouse decides to move to
s2, it might or might not encounter a mouse trap, which has a 20% probability of killing
it. Since the mouse is short-sighted, the only way of knowing whether there is a mouse
trap on s2 or not is by moving to s2 and checking while risking death in the process. To
simplify this example, we assume that the mouse can only take a single step and has
full knowledge of the system dynamics and observation distribution. The only extrinsic
objective the mouse has is to stay alive.

This example system is specifically designed to give the agent one option that has a high
extrinsic reward (staying on s1 ensures the survival of the mouse) and one option that is
informative (moving to s2 allows the mouse to reduce uncertainty about the presence of
the trap). Note that for an agent trying to maximize purely the extrinsic reward, there
is no reason to ever move to s2 as knowing about the trap does not facilitate a better
strategy. Simply staying on s1 is always the (extrinsically) optimal strategy regardless of
the presence of a trap. Hence, having this setup allows us to distinguish curious behavior
from non-curious behavior in a clear manner, as the only reason for following the move
policy is information gathering and the only reason for the stay policy is maximization of
extrinsic reward.

24



s1

s2

c1

s1

s2

c2

Figure 4.1: Visualization of the example system. The mouse is situated in one of two
contexts, denoted c1 and c2, but has no prior knowledgewhich one it is currently
in. Both contexts are equal with the exception of c1 having a trap on location
s2, while s2 in context c2 is empty. The mouse starts on location s1 and has to
make a decision whether to move to s2 or stay where it is. Staying on s1 is the
safer but less informative option, as it does not reveal any information about
the context. Moving to s2 allows the mouse to check for the trap and, hence,
determine the context but might result in its death.

For the formal modelling of this system, we require the following symbols:

Π := {stay,move}
X := XC ×XS , XC := {c1, c2} , XS := {s1, s2}
O := OT ×XA, OT := {see trap,no trap} , OA := {alive, dead}

where Π denotes the set of actions the agent can take, X is the set of latent states the
system can assume and O is the set of observations the agent can make. As shown in
Fig. 4.1, c1 denotes the context in which there is a trap in front of the mouse and c2 is the
context without a trap.

The generative model of this system is now given as

p((ot, oa), (xc, xs) |π) = p(ot |xc, xs) p(oa |xc, xs) p(xc) p(xs |π)
∀(ot, oa) ∈ O, (xc, xs) ∈ X,π ∈ Π

where we set the probability of a mouse trap being in front of the mouse to 50% and
define the individual distributions as
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p(xc) c1 c2
0.5 0.5

p(xs |π) s1 s2
stay 1 0
move 0 1

p(ot |xc, xs) see trap no trap
(c1, s1) 0.5 0.5
(c1, s2) 0.99 0.01
(c2, s1) 0.5 0.5
(c2, s2) 0.01 0.99

p(oa |xc, xs) alive dead
(c1, s1) 0.99 0.01
(c1, s2) 0.8 0.2
(c2, s1) 0.99 0.01
(c2, s2) 0.99 0.01

Finally, we define the extrinsic preferences of the mouse such that it avoids dying and is
indifferent to seeing a trap by setting

p(ot, oa) = p(ot) p(oa)

p(ot) see trap no trap
0.5 0.5

p(oa) alive dead
0.99 0.01

Two aspects of these definitions might appear curious on the first sight, but actually have a
very specific purpose. First, in the observation distributions we use 0.01 and 0.99 instead
of 0 and 1 in many places. The reason for this is that the information gain is only defined
if every possible observation has non-zero probability under every possible hidden state,
as otherwise we would have to compute the logarithm of 0. Hence, we give every possible
observation some probability under the observation distributions. Intuitively, this means
that the mouse has some probability of seeing the trap if it is not there and vice versa,
and there is also some probability that the mouse dies despite staying on s1.

Second, the probability of seeing a trap on s1 is 0.5, independent of the context. The
reason for setting this probability to 0.5 is again of a technical nature. In order to properly
compare the approximated EFE to the exact EFE, the environment must be defined in
such a way that a hidden preference distribution p(x) exists which is consistent with the
observation preference distribution p(o). Thus, the following constraint must be fulfilled
by the environment:

∃p(x) p(o) =
∑︂
x

p(o |x) p(x) (4.13)
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If we simply set p(ot = see trap |xc = ci, xs = s1) = 0.01, this constraint is not fulfilled,
meaning that there is no hidden preference distribution consistent with the observation
preference distribution. By setting p(ot = see trap |xc = ci, xs = s1) = 0.5 we ensure that
the hidden preference distribution exists. Note that although it might seem strange that
the mouse can sense a mouse trap at s1, it cannot gather any information from that
sensation as it is completely random.

Finally, we set the preference of staying alive to only 0.99 instead of 1. The reason for this
is a combination of the two points we discussed before. Since we set the probability of
surviving to 0.99 and not 1 in s1, there is no state in which the mouse is certain to survive.
Hence, if we set p(alive) = 1, then there would be no hidden preference distribution that
fulfills Constraint (4.13).

With the environment definition complete, we can now compute the unique solution
of the equation system induced by Constraint (4.13) to obtain the hidden preference
distribution:

p(xc, xs) s1 s2
c1 0.5 0.0
c2 0.5 0.0

Using Eq. (3.16) and Eq. (4.11) we can compute both the approximated EFE G̃π (φ) and
the exact EFE Gπ (φ) for each policy.

π = stay π = move
G̃π (φ) 1.50 1.29
Gπ (φ) 1.53 23.88

where we are again assuming that variational distributions are exact, to exclude this
source of approximation error.

Plugging the free energy values into Eq. (3.11) and assuming a uniform policy prior, we
obtain the following policy distributions:

q∗φ(π) stay move
approx. EFE 0.45 0.55

exact EFE 1.00 0.00
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We can see that the approximated EFE slightly prefers the more informative move policy,
which is reasonable as it is composed of both an extrinsic term and the information gain.
The exact EFE, on the other hand, almost1 exclusively chooses the stay option and does
not exhibit any information seeking behavior. Hence, in this example, the curious behavior
was not naturally induced by the EFE but rather arose from Approximation (3.14). Given
that the reason for the information gain to appear in the EFE formulation is Approxima-
tion (3.14), this observation is not surprising and further confirms our previous arguments
about the infeasibility of Approximation (3.14).

4.3 Origin of the EFE

Setting aside the arguments made in the previous section, the question about the origin of
the EFE as it is defined in Eq. (3.12) remains. At first glance it looks like Gπ was obtained
from the definition of Fπ (Eq. (3.9)) by simply taking the expectation over unknown
future observations,

Eqφ(ot+1:T |π)[Fπ (ot+1:T , φ)]

= −Eqφ(ot+1:T |π)qφ(xt+1:T |π)

[︄
ln p(ot+1:T , xt+1:T |π)−

T∑︂
τ=t

ln qφ(xτ |π)

]︄

However, there are some obvious differences between the above term and the definition of
Gπ. One difference is that we are taking the expectation w.r.t. qφ(ot+1:T |π) qφ(xt+1:T |π)
instead of qφ(ot+1:T , xt+1:T |π). Here one could argue as follows: during the minimization
of F (o1:t, φ) w.r.t. φ, the variational posterior qφ(x1:t |π) is actually trained to minimize
the KL divergence to the posterior p(x1:t | o1:t, π) (see Eq. (3.8)). While qφ(x1:t |π) is not
explicitly conditioned on o1:t, if we change o1:t, the optimization of F (o1:t, φ) w.r.t. φ
will yield different distributions qφ(x1:t |π) as result. Hence, although qφ(x1:t |π) is not
conditioned on o1:t, the optimal variational posterior q∗(x1:t | o1:t, π) is

q∗(x1:t | o1:t, π) := qφ∗(o1:t)(x1:t |π)
where φ∗ (o1:t) = argmin

φ
F (o1:t, φ) (4.14)

The crucial difference between past and future is that observations we made in the past
already happened and are thus fixed. So instead of finding a (conditional) variational
1Note that these numbers are rounded.
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posterior that approximates the real posterior for all possible observations, we can resort
to finding a (marginal) variational posterior that is a good approximation for just one
observation. In the future, however, we need a variational posterior for a variety of possible
observations we couldmake. Oneway to view this issue is as a nested optimization problem,
where we find the optimal variational parameters for each possible observation:

Eqφ(ot+1:T |π)

[︄
min
φ̂
Fπ

(︂
ot+1:T , φ̂

)︂]︄

This view neatly visualizes the idea that the agent, while planning ahead, not only thinks
about what observations it is going to encounter, but also how its belief is going to change.
Using Eq. (4.14), we obtain

Eqφ(ot+1:T |π)

[︄
min
φ̂
Fπ

(︂
ot+1:T , φ̂

)︂]︄
= Eqφ(ot+1:T |π)[Fπ (ot+1:T , φ

∗ (ot+1:T ))]

= −Eqφ(ot+1:T |π)q
φ∗

(︂
ot+1:T

)︂(xt+1:T |π)

[︄
ln p(ot+1:T , xt+1:T |π)−

T∑︂
τ=t

ln qφ∗(ot+1:T )(xτ |π)

]︄

Instead of finding the optimal variational parameters for each possible observation, we can
also view this problem as finding the optimal parameters φ̃ of a variational distribution
conditioned on ot+1:T :

qφ̃(xt+1:T | ot+1:T , π) := qφ∗(ot+1:T )(xt+1:T |π)

To avoid cluttering the notation, we assume that φ̃ is part of φ and write

Eqφ(ot+1:T |π)

[︄
min
φ̂
Fπ

(︂
ot+1:T , φ̂

)︂]︄

= −Eqφ(ot+1:T |π)qφ(xt+1:T | ot+1:T ,π)

[︄
ln p(ot+1:T , xt+1:T |π)−

T∑︂
τ=t

ln qφ(xτ | ot+1:T , π)

]︄

= −Eqφ(ot+1:T ,xt+1:T |π)

[︄
ln p(ot+1:T , xt+1:T |π)−

T∑︂
τ=t

ln qφ(xτ | oτ , π)

]︄
(4.15)

where we made use of the mean-field assumption in the last step.

29



While similar to Eq. (3.12), we are now taking the expectation over the variational joint
instead of two marginals, another difference arose: the final term in Eq. (4.15) is now
conditioned on the observations. We will get back to this issue once we discussed the
decomposition of Eq. (4.15) into individual time steps.

Taking the mean-field assumption we made about the variational distribution into account,
we can decompose Eq. (3.12) into individual time steps:

Ĝπ (φ) =
T∑︂
τ=1

Ĝπ,τ (φ)

Ĝπ,τ (φ) = −Eq̂(oτ ,xτ |π)q̂(xτ−1 |π)[ln p(oτ , xτ |xτ−1, π)− ln q̂(xτ | oτ , π)]

This decomposition shows that the difference between Ĝπ (φ) and Gπ (φ) is now twofold.
To get from Ĝπ (φ) to Gπ (φ), we first have to assume that each state is independent of
the previous state and the policy, that is p(xτ |xτ−1, π) = p(xτ ). With this assumption, we
obtain

Ĝπ,τ (φ) = −Eq̂(oτ ,xτ |π)[ln p(oτ , xτ )− ln q̂(xτ | oτ , π)] (4.16)

In order to get an intuition about the effect of this assumption, it is useful to take a close
look at the two distributions being interchanged with one another. The first distribution,
p(oτ , xτ |xτ−1, π), is simply the forward distribution of state and observation for a fixed
policy π. As the policy is fixed, there is no preference encoded in this distribution, and it
is fully defined by merely the dynamics and observation distribution:

p(oτ , xτ |xτ−1, π) = p(oτ |xτ ) p(xτ |xτ−1, π)

The second distribution, p(oτ , xτ ) is conditioned neither on the policy, nor on the previous
state and is hence fully defined by the agent’s observation preferences and the posterior:

p(oτ , xτ ) = p(xτ | oτ ) p(oτ )

It is important to note that this distribution is completely oblivious of the agent’s current
state. That means, it will give high probability to desired states that the agent might be
completely unable to reach from its current state. Contrary to that, if we took into account
the previous state (that is p(oτ , xτ |xτ−1)), the distribution would still encode the agent’s
preferences, but would only give high probability to states that can be reached from the
previous state xτ−1. To summarize, the first distribution is an unbiased model over future
observations and states given some policy, and the second distribution encodes the agent’s
preferences but has no concept of the dynamics.
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Apart from this independence assumption, the second difference between Ĝπ and Gπ is
that the right term of Eq. (4.16) is conditioned on oτ , while its equivalent in Eq. (3.12) is
not. This difference has been discussed by Millidge, Tschantz, and Buckley [43], where
they call Ĝπ the Free Energy of the Future (FEF). Instead of taking the path over the
expectation of the future free energy, they derive Ĝπ as a variational bound on the expected
surprise 2:

−Eq̂(oτ |π)[ln p(oτ )] = −Eq̂(oτ |π)
[︃
ln
∫︂
p(oτ , xτ ) dxτ

]︃
= −Eq̂(oτ |π)

[︃
ln
∫︂
p(oτ , xτ )

q̂(xτ | oτ , π)
q̂(xτ | oτ , π)

dxτ

]︃
≤ −Eq̂(oτ |π)

[︃
Eq̂(xτ | oτ ,π)

[︃
ln

p(oτ , xτ )

q̂(xτ | oτ , π)

]︃]︃
= −Eq̂(oτ ,xτ |π)

[︃
ln

p(oτ , xτ )

q̂(xτ | oτ , π)

]︃
= Ĝπ,τ (φ)

Millidge, Tschantz, and Buckley [43] show that the EFE is a lower bound on the expected
surprise if the variational posterior approximates the real posterior well:

Gπ (φ) = −Eqφ(oτ |π)[ln p(oτ )]⏞ ⏟⏟ ⏞
expected surprise

+Eqφ(oτ |π)[DKL[qφ(xτ | oτ , π) ∥ p(xτ | oτ )]]⏞ ⏟⏟ ⏞
posterior approximation error

− Eqφ(oτ |π)[DKL[qφ(xτ | oτ , π) ∥ qφ(xτ |π)]]⏞ ⏟⏟ ⏞
expected information gain

≈ −Eqφ(oτ |π)[ln p(oτ )]− Eqφ(oτ |π)[DKL[qφ(xτ | oτ , π) ∥ qφ(xτ |π)]]
≤ −Eqφ(oτ |π)[ln p(oτ )]

where we used Approximation (3.14) in the second step.

As a result, maximizing the expected information gain actually makes the EFE a looser
bound on the expected surprise.

2Note, that in their version, the variational posterior is not conditioned on the policy π, but they later assume
q̂(xτ | oτ , π) ≈ q̂(xτ | oτ ), which makes these formulations basically identical.
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Furthermore, they note that the Free Energy of the Future (FEF) can be rewritten as

Ĝπ (φ) = −Eq̂(oτ ,xτ |π)[ln p(oτ , xτ )− ln q̂(xτ | oτ , π)]
= −Eq̂(oτ ,xτ |π)[ln p(oτ , xτ )− ln q̂(xτ |π)]
+ Eqφ(oτ |π)[DKL[qφ(xτ | oτ , π) ∥ qφ(xτ |π)]]

= Gπ (φ) + Eqφ(oτ |π)[DKL[qφ(xτ | oτ , π) ∥ qφ(xτ |π)]]⏞ ⏟⏟ ⏞
expected information gain

Hence, the EFE is approximately the FEF plus expected information gain. It is worth
noting that the FEF has no information seeking term and instead is purely purely striving
to reduce expected surprise and expected variational approximation error.

To conclude, we have shown two ways in which the FEF, not the EFE, can be seen as an
extension of the VFE into the future. Following the example of the EFE, in both of these
derivations we consider each time step individually and ignore the system dynamics in
the preference distribution. Although the FEF (Ĝπ) is very similar to the EFE (Gπ) they
are not equal, as the following comparison highlights:

Ĝπ,τ (φ) = −Eq̂(oτ ,xτ |π)[ln p(oτ , xτ )− ln q̂(xτ | oτ , π)]
Gπ,τ (φ) = −Eq̂(oτ ,xτ |π)[ln p(oτ , xτ )− ln q̂(xτ |π)]

Hence, even though the EFE is often treated as a natural extension of the VFE into the
future [6, 39], its mathematical origins remain unclear. In fact, the EFE occurs when
we add the information gain to the FEF, an objective that we showed is a fairly natural
extension of the VFE into the future. This relation between EFE and FEF gives reason to
question the mathematical soundness of the EFE as a direct extension of the VFE [43].
Thus, it can be concluded that the EFE might not have been derived in a mathematically
principled manner, but rather specifically chosen to contain the information gain.

4.4 Conclusion

In this section, we provided three separate arguments against the claims that the EFE would
explain curiosity and resolve the exploration-exploitation dilemma. First, we showed that
the EFE, while arguably providing a meaning for the balancing factor between exploration
and exploitation, still requires this factor to be carefully calibrated in practice. We went
further by providing arguments that the information seeking term of the EFE might not
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arise in a mathematically principled way, but rather by the combination of an infeasible
approximation and the choice of the definition of the EFE. These results indicate that the
current definition of the EFE does not sufficiently justify how exploratory behavior can
be derived from the FEP. Finally, we argue that the EFE is not the only extension of the
VFE into the future, and that there exists another objective which arises more naturally.
Curiously, this objective is exactly the EFE without the expected information gain. We want
to emphasize that we are not questioning the FEP from a cognitive science perspective,
but rather contest the way the EFE explains intrinsic motivation from a mathematical
point of view.

4.5 Impact of Approximation (3.14) on the FEEF

While the origin of the FEEF could be perceived as more intuitive and natural than that of
the EFE, it is making use of Approximation (3.14) similar to the EFE. Since we argued in
Section 4.2 that this approximation is infeasible, it remains to analyze what impact it has
on the FEEF formulation. To gain an intuition on this impact, we start by rewriting the
approximated FEEF.

˜︁FEEF (π) = Eqφ(x̃ |π)[DKL[qφ(õ | x̃) ∥ p(õ)]]
− Eqφ(õ |π)[DKL[qφ(x̃ | õ, π) ∥ qφ(x̃ |π)]]

= Eqφ(õ,x̃ |π)[ln qφ(õ | x̃)− ln qφ(x̃ | õ, π) + ln qφ(x̃ |π)− ln p(õ)]
= Eqφ(õ |π)[ln qφ(õ |π)− ln p(õ)] (4.17)
= DKL[qφ(õ |π) ∥ p(õ)]

The above equation shows that Approximation (3.14) eliminates the hidden state x̃ from
the original objective. This insight begs the question why the FEEF was originally defined
as the KL divergence between both x̃ and õ if it could simply have been defined as in
Eq. (4.17) to avoid Approximation (3.14). Furthermore, Eq. (4.17) gives reason to believe
that the approximated FEEF might not be explicitly information seeking, but rather purely
extrinsic in its nature.
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5 Methodology: Reinforcement Learning via
Active Inference

In Chapter 3, we summarized the overall AI framework. However, the framework leaves
many questions open, including the choice of the generative model and the variational
distributions, as well as the methods used to optimize them. In this chapter, we propose
answers to these questions and show how classical Reinforcement Learning problems can
be tackled with Active Inference in practice.

This chapter is structured as follows: In Section 5.1, we show how classical RL problems
can be reformulated to fit into the AI framework and derive their perception and planning
objectives. We explain our choice of model and the learning procedure in Section 5.2.
In Section 5.3, we illustrate our choice of planning algorithm used to perform Model
Predictive Control. Crucial to the efficiency of our method is that the EFE can be evaluated
swiftly during planning. Since it does not have a closed-form solution, we describe how it
can be approximated efficiently in Section 5.4. Furthermore, we discuss the use of Lautum
Information as an alternative to the EFE’s information term in Section 5.5. Finally, we
provide a summary of the resulting AI algorithm in Section 5.6.

5.1 Setup

In this work, we assume that the generative model of the environment factorizes into a
MDP conditioned on some parameters θ. More specifically, we assume that the generative
model factorizes as

p(x0:T , a1:T , r1:T , θ) = p(x0) p(a1:T ) p(θ)

T∏︂
τ=1

p(rτ |xτ , aτ , θ) p(xτ |xτ−1, aτ , θ) (5.1)
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where xτ ∈ RNx is the environment state at time τ , rτ ∈ R is the reward the agent receives
at state xτ and aτ ∈ RNa is the action the agent took leading into step τ .

Formally, a couple of issues have to be addressed to ensure that the model definition in
Eq. (5.1) fits into the framework of AI, which assumes a POMDP as per Eq. (3.7). First, we
assume that the policy π is modelled as a static sequence of actions a1:T . Intuitively, this
choice of policy means that during planning the agent does not consider how information
it is gathering in the future will change the course of actions it will take. While there
is some recent work in the AI domain on taking future information into account during
planning [49], it makes planning substantially harder. Thus, it has only been shown to
work on very small discrete problems.

Second, there is no explict notion of static parameters in AI. This issue can be easily fixed
by assuming that θ is part of the hidden state with a transition function that keeps it
constant. Formally, we set θ0 := θ and define the state transition function such that

p(θτ | θτ−1) = δ(θτ − θτ−1) ∀τ ∈ {1, . . . , T}

where δ is the Dirac delta function.

Finally, the AI framework does not allow to maximize rewards directly, but rather expects
a target observation distribution. While it is possible to provide the agent with target
observations instead of rewards for each environment, it would break compatibility to
other RL algorithms that are typically designed to maximize a reward signal. Instead
we chose to make the rewards part of the observation and set the agent’s desire in such
a way that it prefers observing high rewards. Consequently, our observation model is
a combination of the reward model and a Dirac distribution to make the state fully
observable:

p(or, ox |x, a, θ) = p(r = or |x, a, θ) δ(ox − x)

where we denote the reward component of the observation vector by or and the state
component by ox. Additionally, we dropped the τ subscript as the observation preference
model is agnostic of the time step.

This observation model now allows us to define the target observation distribution such
that the agent is driven towards high rewards:

p(or, ox) = L (or | µ∗r , σ∗r )
Nx∏︂
i=1

U (oxi | lxi , uxi )
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where oxi is the i-th component of the state observation and U and L are the uniform and
Laplace distributions defined as

U (x | l, u) =

{︄
1
u−l x ∈ [l, u]

0 else

L (x | µ, σ) = 1

2σ
e−

|x−µ|
σ

By setting lxi = −a and uxi = a, where a is a very large but finite real number, we
ensure that the model has no a-priori preferences for states. µ∗r can be seen as the
target reward our agent is trying to achieve. If this value is set lower than the maximum
achievable reward, the agent will try to avoid rewards that lie significantly above µ∗r,
which is typically not wanted in RL tasks. However, we found that simply setting µ∗r to the
maximum achievable reward does not work well in practice, as learned reward models
might overestimate rewards and prevent the agent from visiting high reward regions. As
there is no disadvantage in setting µ∗r really high, we simply assume that it is a large real
number. σ∗r , on the other hand, has to be carefully calibrated as it directly controls the
influence of the extrinsic term on the overall objective.

5.1.1 Modelling the transition and reward distributions

With the definition of the general structure of the generative model out of the way, it
remains to specify the exact form of the transition model p(xτ |xτ−1, aτ , θ), the reward
model p(rτ |xτ , aτ , θ), as well as the variational posterior qφ(θ). To ensure that the
transition model and the reward model are powerful enough for complex RL tasks, we
model both as Gaussian distributions conditioned on the output of a neural network:

p(xτ |xτ−1, aτ , θ) := N (xτ | µxθ (xτ−1, aτ ) , σ
xI) (5.2)

p(rτ |xτ , aτ , θ) := N (rτ | µrθ (xτ , aτ ) , σrI) (5.3)

where µxθ : RNx × RNa → RNx and µrθ : RNx × RNa → R are neural networks computing
the means of the distributions and σx ∈ R and σr ∈ R are constant standard deviations.
While using neural networks to compute the standard deviations as well makes the model
more powerful, we found it to require too much data to converge during training in
practice.
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5.1.2 Perception objective

Having completed the definition of the generative model, we can now write down the
VFE, which will be minimized during perception. Let therefore ox0:t ∈ RNx and or1:t ∈ R be
the states and rewards the agent observed, and â1:t ∈ RNa the actions the agent took in
the past. We define the variational distribution as

qφ(x0:t, θ, π) = qφ(π) qφ(θ)

t∏︂
τ=1

qφ(x0:t)

where we refrain from conditioning the state on the policy and instead fix the policy to
the actual actions taken by setting

p(π) := p(a1:t | â1:t) :=
t∏︂

τ=1

δ(aτ − âτ )

The VFE is now given as

F (ox0:t, o
r
1:t, â1:t, φ) = Eqφ(x0:t,a1:t,θ)[ln qφ(x0:t, θ)− ln p(ox0:t, or1:t, x0:t, θ | a1:t)]

+DKL[qφ(a1:t) ∥ p(a1:t | â1:t)]
= Eqφ(x0:t,a1:t,θ)[ln qφ(θ)− ln p(or1:t, x0:t, θ | a1:t)]
+ Eqφ(x0:t)[ln qφ(x0:t)− p(o

x
0:t |x0:t)]

+DKL[qφ(a1:t) ∥ p(a1:t | â1:t)]
= Eqφ(x0:t,a1:t,θ)[ln qφ(θ)− ln p(or1:t, x0:t, θ | a1:t)]
+DKL[qφ(x0:t) ∥ p(x0:t | ox0:t)]
+DKL[qφ(a1:t) ∥ p(a1:t | â1:t)]

(5.4)

where we made use of

p(ox0:t |x0:t) = p(x0:t | ox0:t)
p(ox0:t)

p(x0:t)
= δ(ox0:t − x0:t)

p(ox0:t)

p(x0:t)

= δ(ox0:t − x0:t) = p(x0:t | ox0:t)

in the second step.

From Eq. (5.4) we can trivially derive that the optimal variational distributions for the
policy and the state are given by Dirac delta distributions around the observed values:

q∗φ(x0:t) = p(x0:t | ox0:t) = δ(x0:t − ox0:t)
q∗φ(a1:t) = p(a1:t | â1:t) = δ(a1:t − â1:t)
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Inserting the optimal distributions back into Eq. (5.4) gives

F (ox0:t, o
r
1:t, â1:t, φ) = Eqφ(θ)q∗φ(x0:t)q∗φ(a1:t)[ln qφ(θ)− ln p(or1:t, x0:t, θ | a1:t)]

= Eqφ(θ)q∗φ(x0:t)q∗φ(a1:t)[ln qφ(θ)− ln p(or1:t, x0:t, θ | a1:t)]

= Eqφ(θ)q∗φ(x0:t)q∗φ(a1:t)[ln qφ(θ)− ln p(θ)

− ln p(x0:t | a1:t, θ)− ln p(or1:t |x0:t)]

= −Eqφ(θ)q∗φ(x0:t)q∗φ(a1:t)

[︄
t∑︂

τ=1

ln p(xτ |xτ−1, aτ , θ) + ln p(orτ |xτ , θ)

]︄
+DKL[qφ(θ) ∥ p(θ)]

= −Eqφ(θ)

[︄
t∑︂

τ=1

ln p
(︁
oxτ
⃓⃓
oxτ−1, âτ , θ

)︁
+ ln p(orτ | oxτ , θ)

]︄
+DKL[qφ(θ) ∥ p(θ)]

Plugging in Definitions (5.2) and (5.3) and simplifying the notation by writing x0:t := ox0:t,
r1:t := or1:t, and a1:t := â1:t we arrive at the learning objective for the perception step:

min
φ

F (x0:t, r1:t, a1:t, φ)

where

F (x0:t, r1:t, a1:t, φ) :=
1

2
Eqφ(θ)

[︄
t∑︂

τ=1

(xτ − µxθ (xτ−1, aτ ))
2 + (rτ − µrθ (xτ , aτ ))

2

]︄
+DKL[qφ(θ) ∥ p(θ)] + lnσx + lnσr + ln 2π

Dropping constant terms, we obtain a regular expected Mean Squared Error (MSE) loss
with a KL regularization on the parameters. We discuss the optimization of this objective
in Section 5.2.

5.1.3 Planning objective

During planning, the parameters φ of the policy distribution q∗φ(at+1:T ) are optimized to
minimize the EFE1 G̃π (φ). A crucial component of the EFE is the predictive distribution
1By “EFE” we are referring to the approximated EFE that is commonly used in the AI literature.
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qφ(xt+1:T , θ | at+1:T ) that allows us to evaluate the expectation of both the intrinsic and
extrinsic terms. While the formal appearance of the predictive distribution suggests that
it is equal to the variational distribution used in the VFE, it is important to note that it
might not be possible to evaluate the latter for unseen states into the future. In our case,
the variational distribution over states qφ(x0:t) is a Dirac delta distribution around the
observed states. Hence, it holds no information about how deviation in one state affects
the following states. Thus, it cannot be used to generate predictions of future states.

One solution would be to train a separate model, that maps the current state xt and
a sequence of actions at+1:T to a distribution over expected states that factorizes in
accordance with the mean-field assumption:

q̃φ(xt+1:t | at+1:T ;xt) =

T∏︂
τ=t+1

q̃φ(xτ | at+1:T ;xt)

where T is the planning horizon.

However, learning such a distribution would cause significant training overhead as an
entire new model has to be trained in addition to the transition and reward models.
Additionally, especially in contact-rich scenarios as those that are considered in this work,
it is likely that the mean-field assumption is violated substantially in many cases.

Hence, we deviate from prior work [5, 23, 39] and refrain from making a mean-field
assumption over states. Dropping the mean-field assumption makes the evaluation of the
EFE more challenging but allows us to use the transition model directly to generate state
predictions:

qφ(xt+1:t | at+1:T , θ) := p(xt+1:T |xt, at+1:T , θ) =

T∏︂
τ=t+1

p(xτ |xτ−1, aτ , θ)

where xt is defined as the current observed state.

The EFE for a given action sequence is now given as

G̃ (φ, a) = −Eqφ(θ,x | a)[DKL[qφ(o
x, or |x, a, θ) ∥ qφ(ox, or | a)]]⏞ ⏟⏟ ⏞

intrinsic term

−Eqφ(ox,or | a)[ln p(o
x, or)]⏞ ⏟⏟ ⏞

extrinsic term

where we dropped subscripts for notational convenience.
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Since the preference distribution over states p(ox) is uniform and ox is guaranteed to lie
within its support, the extrinsic term can be rewritten as

−Eqφ(ox,or | a)[ln p(o
x, or)] = −Ep(ox,or |x,a,θ)qφ(x | a)[ln p(o

x) + ln p(or)]
= −Ep(ox |x)qφ(x | a)[ln p(o

x)]− Ep(or |x,a,θ)qφ(x | a)[ln p(o
r)]

∝ −Ep(or |x,a,θ)qφ(x | a)[ln p(o
r)]

Furthermore, we can rewrite the intrinsic term as

− Eqφ(θ,x | a)[DKL[qφ(o
x, or |x, a, θ) ∥ qφ(ox, or | a)]]

= −Eqφ(θ,x | a)[DKL[p(o
x, or |x, a, θ) ∥ qφ(ox, or | a)]]

= −Eqφ(θ,x | a)p(or |x,a,θ)
[︁
Ep(ox |x)[ln p(ox, or |x, a, θ)− ln qφ(ox, or | a)]

]︁
= −Eqφ(θ,x | a)p(or |x,a,θ)[ln p(o

r |x, a, θ)− ln qφ(x, or | a)]
= −Eqφ(θ)p(x | a,θ)p(or |x,a,θ)[ln p(x, o

r | a, θ)− ln qφ(x, or | a)− ln p(x | a, θ)]
= −Eqφ(θ)[DKL[p(x, o

r | a, θ) ∥ qφ(x, or | a)]]⏞ ⏟⏟ ⏞
information gain

+Eqφ(θ)[H [p(x | a, θ)]]⏞ ⏟⏟ ⏞
state entropy

where we used that the predictive distribution qφ follows the same observation model as
the generative model p in the first step.

Combining the intrinsic and extrinsic terms again, we arrive at the following joint term
for the action-conditioned EFE:

G̃ (φ, a) =− Eqφ(θ)[DKL[p(x, o
r | a, θ) ∥ qφ(x, or | a)]]

+ Eqφ(θ)[H [p(x | a, θ)]]− Ep(or |x,a,θ)qφ(x | a)qφ(θ)[ln p(o
r)]

(5.5)
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Plugging Definition (5.2) in, we see that the entropy term is constant w.r.t. φ:

Eqφ(θ)[H [p(xt+1:T | at+1:T , θ)]]

= −Eqφ(θ)p(xt+1:T | at+1:T ,θ)

[︄
T∑︂

τ=t+1

ln p(xτ |xτ−1, aτ , θ)

]︄

= −Eqφ(θ)

[︄
T∑︂

τ=t+1

Ep(xτ ,xτ−1 | at+1:T ,θ)[ln p(xτ |xτ−1, aτ , θ)]

]︄

= −Eqφ(θ)

[︄
T∑︂

τ=t+1

Ep(xτ−1 | at+1:T ,θ)[H [p(xτ |xτ−1, aτ , θ)]]

]︄

= −Eqφ(θ)

[︄
T∑︂

τ=t+1

Ep(xτ−1 | at+1:T ,θ)

[︃
Nx

2
ln
(︂
2πe (σx)2

)︂]︃]︄
(5.6)

= −Nx

2
ln
(︂
2πe (σx)2

)︂
Furthermore, using Definition (5.3), the extrinsic term can be rewritten as

− E
qφ(xt+1:T | at+1:T )p

(︂
ort+1:T

⃓⃓⃓
xt+1:T ,at+1:T ,θ

)︂
qφ(θ)

[︁
ln p
(︁
ort+1:T

)︁]︁
= −Eqφ(xt+1:T | at+1:T )qφ(θ)

[︄
T∑︂

τ=t+1

Ep(orτ |xτ ,aτ ,θ)[ln p(o
r
τ )]

]︄

= −Eqφ(xt+1:T | at+1:T )qφ(θ)

[︄
T∑︂

τ=t+1

Ep(orτ |xτ ,aτ ,θ)
[︃
−|o

r
τ − µ∗r |
σ∗r

+ ln 2σ∗r
]︃]︄

≈ −Eqφ(xt+1:T | at+1:T )qφ(θ)

[︄
T∑︂

τ=t+1

Ep(orτ |xτ ,aτ ,θ)
[︃
orτ − µ∗r
σ∗r

− ln 2σ∗r
]︃]︄

= − 1

σ∗r
Eqφ(xt+1:T | at+1:T )qφ(θ)

[︄
T∑︂

τ=t+1

µrθ (xτ , aτ )

]︄
+
µ∗r
σ∗r

+ ln 2σ∗r (5.7)

where we used in step three that orτ < µ∗r holds for all orτ with non-neglectable probability
density, since µ∗r was defined to be very large.

Plugging Eqs. (5.6) and (5.7) back into Eq. (5.5) and dropping constant terms, we obtain
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the optimization problem that must be solved during planning:

min
φ

G̃ (φ) := Eqφ(at+1:T )

[︂
G̃ (φ, at+1:T )

]︂
+DKL[qφ(at+1:T ) ∥ p(at+1:T )] (5.8)

where

G̃ (φ, at+1:T ) ∝− Eqφ(θ)
[︁
DKL[p

(︁
xt+1:T , o

r
t+1:T

⃓⃓
at+1:T , θ

)︁
∥ qφ

(︁
xt+1:T , o

r
t+1:T

⃓⃓
at+1:T

)︁
]
]︁⏞ ⏟⏟ ⏞

information gain

− 1

σ∗r
Eqφ(xt+1:T | at+1:T ,θ)qφ(θ)

[︄
T∑︂

τ=t+1

µrθ (xτ , aτ )

]︄
⏞ ⏟⏟ ⏞

expected mean reward

Hence, minimization of the EFE is equivalent to maximization of both the expected mean
reward and the expected information gain. Intuitively, this objective compels our agent to
not only try to solve some task, but also to explore the environment by making observations
that are informative w.r.t. the model parameters. The balance between these two objectives
is controlled by the hyperparameter σ∗r : Increasing it shifts the agent’s focus towards
exploration, while decreasing it causes the agent to collect task reward more greedily.

So far, we have not discussed the exact choice of the parametric form of the variational
distributions qφ(at+1:T ) and qφ(θ). Since the choice of qφ(at+1:T ) is tightly coupled with
the choice of the planning algorithm, we will discuss it in Section 5.3, where we describe
the planning algorithm we use in this work. Furthermore, qφ(θ) should be chosen in a way
that facilitates learning and an efficient approximation of the planning objective given in
Eq. (5.8). We will elaborate on our choice of qφ(θ) in Section 5.2.

5.2 Learning the model

As derived in Section 5.1.2, for observed states x0:t, actions a1:t, and rewards r1:t, the
learning objective is given as

min
φ

Eqφ(θ)[f (x0:t, a1:t, r1:t, θ)]
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where

f (x0:t, a1:t, r1:t) :=
1

2

t∑︂
τ=1

(xτ − µxθ (xτ−1, aτ ))
2 + (rτ − µrθ (xτ , aτ ))

2

and we set p(θ) := qφ(θ) and thereby expressed that we have no prior preferences over
parameters.

There are multiple options to represent the variational posterior qφ(θ). Common choices for
representing a distribution over model parameters are particle-based representations [23,
50], Gaussian distributions with diagonal covariance matrix [51] or a combination of
both [52]. As we further outline in Section 5.4, we approximate the EFE with a Nested
Monte Carlo (NMC) estimator during planning. Since particle based representations
are sufficient for Nested Monte Carlo (NMC) estimators, we choose the first option and
represent qφ(θ) by a set of P particles θ1, . . . , θP . This choice of representation is also
known as an ensemble model.

While one could train each particle individually with Stochastic Gradient Descent (SGD),
it would neglect the idea that they jointly represent a full distribution. For example, if
the training objective had only a single mode, all particles would collapse at the center of
that mode and, thus, no longer represent a meaningful posterior. To alleviate this issue,
we utilize Stein Variational Gradient Descent (SVGD) [53], which uses a Radial Basis
Function (RBF)-kernel term to ensure that the particles stay spread out and represent a
meaningful distribution. It is worth noting that due to our small particle size of P = 5
and the complexity of the problem we are learning, Stein Variational Gradient Descent
(SVGD) seems to have no notable influence on the performance of our method. Instead, it
was added in to give more formal justification to our learning method.

5.2.1 Multi-step prediction loss

As we further outline in Section 5.4, during planning model roll-outs have to be performed
to predict the results of different choices of action sequences at+1:T . Typically, we set the
planning horizon T = t+ 20, which means that the transition model has to be stacked 20
times to produce a full state sequence xt+1:T :

xτ ∼ N (µxθ (xτ−1, aτ ))

rτ ∼ N (µrθ (xτ , aτ ))

}︄
∀τ ∈ {t+ 1, . . . , T}
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One issue we faced in our experiments was that these model roll-outs would start to get
extremely inaccurate already after a few steps. The reason for this behavior is that the
models are trained on real states, but executed on predicted states during the roll-outs.
While this might not seem to be a huge source of error, it is important to keep in mind
that in most environments, there are areas of the state space that the agent cannot visit.
As an example, in the classical Mountain Car environment (see Section 6.1 for reference),
the car has no way of achieving maximum velocity on top of the hill. If due to model error,
one of the predicted states falls into such an area, then the model is evaluated on a state it
has never seen and also will never see in the dataset. Hence, the following prediction will
likely also be inaccurate, making it unlikely that the model will recover onto a reasonable
trajectory again. Since these erroneous trajectory predictions can result in large objective
values, already a few of them are sufficient to divert the planner away from a good plan.

Hence, we follow prior work [28] and tackle this issue by augmenting the training data of
the transition model with predicted states. Formally, we define a set of new generative
models, called m-step predictive models, which are defined as

pm(x0:t, r1:t | a1:t, θ) =

(︄
t∏︂

τ=m

p(xτ |xτ−m, aτ−m+1:τ , θ)

)︄(︄
m−1∏︂
τ=1

U (xτ , lx, ux)

)︄
(︄

t∏︂
τ=1

p(rτ |xτ , aτ , θ)

)︄ (5.9)

where the m-step transition model is given as

p(xτ |xτ−m, aτ−m+1:τ , θ) =

∫︂ τ∏︂
τ ′=τ−m+1

p(xτ ′ |xτ ′−1, aτ ′ , θ) dxτ−m+1:τ−1

and U is again the uniform distribution with very loose limits as defined in Section 5.1.

Under this distribution, the first m− 1 states are uniformly distributed and from the m-th
state on, the τ−m-th state is used to predict the τ -th state. Intuitively, when predicting the
next state xτ , the agent does not use information from the previousm−1 states, but rather
entirely relies on the action trajectory aτ−m:τ and the state xτ−m it observed m steps ago.
The advantage of such a generative model is that when we use it to train the transition
model p(xτ ′ |xτ ′−1, aτ ′ , θ), the agent learns to make accurate predictions m steps into the
future, while relying solely on its internal model to generate the intermediate states.

Replacing the generative model defined in Eq. (5.1) with pm yields the m-step VFE:

Fm (x0:t, r1:t, a1:t, φ) ∝ Eqφ(θ)[fm (x0:t, r1:t, a1:t, θ)]
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where

fm (x0:t, r1:t, a1:t, θ) :=
1

2

t∑︂
τ=m

Ep(x̂τ−1 |xτ−m,aτ−m+1:τ ,θ)

[︂
(xτ − µxθ (x̂τ−1, aτ ))

2
]︂

+ (rτ − µrθ (xτ , aτ ))
2

To obtain a stochastic gradient of this objective, we apply MC and obtain

fm (x0:t, r1:t, a1:t, θ) ≈
1

2

t∑︂
τ=m

(︁
xτ − µxθ

(︁
x̂mτ−1, aτ

)︁)︁2
+ (rτ − µrθ (xτ , aτ ))

2

where x̂mτ−1 is a result of sampling m steps from the transition model:

x̂1τ := xτ

x̂iτ ∼ N
(︁
µxθ
(︁
x̂i−1
τ−1, aτ

)︁
, σxI

)︁ (5.10)

Similar to Hafner et al. [28], we stop gradients from flowing through the transition model
more than once per sample, as we want model evaluations at later time steps to correct
errors made at earlier steps and not vice versa.

To ensure that the model is trained for all step distances it encounters during planning,
we define the final model loss function as a weighted mean over all step distances within
the planning horizon:

fH (x0:t, r1:t, a1:t, θ) =

H∑︂
m=1

βmfm (x0:t, r1:t, a1:t, θ)

where H is the relative planning horizon and β allows to weight the m-step VFEs. In our
implementation, we choose β1 := 0.5 and βi := 1

2(H−1) for all i ̸= 1.

5.2.2 Hardening the reward model via multi-step prediction loss

One issue of the multi-step prediction loss as proposed by Hafner et al. [28] is that it does
not allow the reward model to be trained on predicted data. While, unlike the transition
model, the accuracy of the reward model does not have a direct impact on the future
course of the predicted trajectory, a lack thereof can still cause the planner to misjudge
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trajectories. Hence, in this section, we take the idea one step further and extend the
multi-step prediction loss to the reward model.

We start by rewriting Eq. (5.9) to condition the reward model on predicted states instead
of observed states:

pm(x0:t, r1:t | a1:t, θ) =

(︄
t∏︂

τ=m

p(xτ |xτ−m, aτ−m+1:τ , θ)

)︄(︄
m−1∏︂
τ=1

U (xτ , lx, ux)

)︄
(︄

t∏︂
τ=m

p(rτ |xτ−m+1, aτ−m+1:τ , θ)

)︄(︄
m−1∏︂
τ=1

U (rτ , lr, ur)

)︄

where lr and ur are again set to be very loose bounds, such that we can neglect the impact
of the uniform distribution on the loss, and

p(rτ |xτ−m+1, aτ−m+1:τ , θ) =

∫︂
p(rτ |xτ , aτ , θ)

τ∏︂
τ ′=τ−m+2

p(xτ ′ |xτ ′−1, aτ ′ , θ) dxτ−m+2:τ−1

Analogously to Section 5.2.1, we arrive at the following m-step VFE:

fm (x0:t, r1:t, a1:t, θ) ≈
1

2

t∑︂
τ=m

(︁
xτ − µxθ

(︁
x̂mτ−1, aτ

)︁)︁2
+ (rτ − µrθ (x̂mτ , aτ ))

2

where x̂mτ−1 is again sampled according to Eq. (5.10).

We evaluate this choice of loss function against the one derived in Section 5.2.1 in
Chapter 6.

5.3 Model Predictive Control in the Active Inference setting

In Section 5.1.3, we derived the policy selection objective, but did not elaborate on how
it can be optimized. Noting that the objective function G̃ (φ) can be expressed as an
expectation w.r.t. the policy:

G̃ (φ) = Eqφ(at+1:T )[g (φ, at+1:T )]

g (φ, at+1:T ) = G̃ (φ, at+1:T ) + ln qφ(at+1:T )− ln p(at+1:T )
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we follow prior work [23, 28] and optimize it with the Cross Entropy Method (CEM) [54].

CEM is a method for optimizing problems of the form

min
φ

Eqφ(ν)[f (ν)]

where f : RNν → R is an objective function depending on some variable ν ∈ RNν .

The core idea behind CEM is to start with an initial guess of the parameters φ0 and then
iteratively shift qφ(ν) towards low-cost regions. Specifically, in each iteration i,M samples
ν1, . . . , νM are drawn from qφ(ν). Then, the cost cj := f (νj) of each sample is evaluated
to determine the ρ-quantile cp for some ρ ∈ (0, 1). Now, a new distribution qcpφi is defined,
which has zero probability at points where the cost is more than cp and is otherwise
proportional to qφi:

q
cp
φi
(ν) ∝

{︄
qφi(ν) if f (ν) ≤ cp
0 else

Intuitively, we would ideally carry this distribution into the next iteration, as it only
assigns non-zero probability to values of ν that have low cost under the objective function.
However, usually there exists no φ, such that qφ(ν) = q

cp
φi
(ν) ∀ν. Hence, in the final step

we minimize the cross entropy between qcpφi and qφi+1
to ensure that qφi+1

is as close to
q
cp
φi

as possible. As the cross entropy between those two distributions is usually intractable
to compute, the samples drawn at the beginning of the episode are reused to obtain a MC
approximation.

Similar to prior work [23, 28], we choose the parametric form of qφ (at+1:T ) to be Gaus-
sian with diagonal variance as it provides a closed-form solution for the cross entropy
minimization step:

argmin
µφ,σφ

−1

p

M∑︂
j=1
cj≤cp

lnN (νj | µφ, σφ) =
(︁
µ∗φ, σ

∗
φ

)︁
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where

µ∗φ,k =
1

p

M∑︂
j=1
cj≤cp

νj,k

σ∗φ =
1

p

M∑︂
j=1
cj≤cp

(︁
νj,k − µ∗φ,k

)︁2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
∀k ∈ Nν

and νj,k denotes the k-th component of sample νj .

The full CEM procedure for action selection is depicted in Algorithm 1.

Algorithm 1 Vanilla Cross Entropy Method for planning
Input: Variational parameters φ

1: Initialize µτ ← 0, στ ← 1 ∀τ ∈ {t+ 1, . . . , T}
2: for i = 1, . . . , n do
3: Sample action sequences a1,τ , . . . , 1M,τ ∼ N (µτ , στI) ∀τ
4: Evaluate costs gm ← g (φ, am) ∀m ∈ {1, . . . ,M}
5: Collect all samples below the ρ-quantile: J = {j : aj ≤ gp}
6: Compute new means and standard deviations for all τ :

µτ ← 1
p

∑︁
j∈J aj,τ

στ ←
√︂

1
p

∑︁
j∈J (µτ − aj,τ )

T (µτ − aj,τ )
7: end for
8: return µ, σ

5.3.1 Improving the initialization of the CEM planner

One issue we noticed during our experiments is that in environments with sparse rewards,
the agent’s performance would start to decay after the environment had been explored to
a certain degree. Interestingly, we found that with increasing accuracy of the model, the
planner’s ability to find good policies gradually diminished. The reason for this behavior
is rather intricate and best illustrated in an example.

Consider a sparse environment, like the classical Mountain Car environment (see Sec-
tion 6.1 for reference), where the agent only gets any reward if it reaches a specific,
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hard-to-reach target state. At the beginning, the agent does not have a good understand-
ing of its environment. Hence, the intrinsic reward will lead the planner away from its
initial state, and it will eventually find the target state. However, if at some point the state
space surrounding the initial state has been fully explored, the intrinsic term will become
close to zero and, thus, not guide the planner away from the initial state anymore. In that
case, the only driving factor will be the extrinsic reward, which is only obtained at the
target state. Due to the way CEM works, if none of the initialM action sequences lead
the agent to the target state, it will collapse onto some local minimum, as it has no way of
learning that there is any higher reward at all. In case of Mountain Car and many other
environments, this local minimum is usually not to move at all, as any action will lead
to some minor costs. Hence, it is crucial that under the initial action sequences, there
are some that lead CEM close enough to the target state, such that the resulting reward
causes it to search in the direction of the target state.

Unfortunately, in the vanilla CEM implementation we depict in Algorithm 1, the initial
action sequences often do not fulfill this requirement. Even if the target state is comfortably
reachable within the planning horizon, we found the probability of randomly drawing an
action sequence from the initial normal distribution that reaches that state often to be too
low. While simply increasingM and thereby drawing more action sequences per iteration
tackles this issue to some degree in simple environments, the curse of dimensionality
makes this attempt infeasible for complex, high-dimensional environments.

Instead, in this work, we propose to reuse optimized action sequences from previous
episodes to initialize CEM. Specifically, we modify Algorithm 1 such that it stores all
optimized action means µI and standard deviations σI together with the current state xt
in a buffer. Then, at the start of each optimization, we extract the means and standard
deviations belonging to the k nearest neighbors of the current state xt from the buffer.
From these means and standard deviations we create samples, which we use as initial
samples for CEM. To ensure that our planner is still capable of producing novel trajectories,
we still sample from the initial normal distribution and simply use the union of both sets
of samples in the first iteration. The resulting method is depicted in Algorithm 2.
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Algorithm 2 Cross Entropy Method with policy proposals
Input: Variational parameters φ, current state xt

1: Initialize µτ ← 0, στ ← 1 ∀τ ∈ {t+ 1, . . . , T}
2: for i = 1, . . . , n do
3: Sample action sequences a1,τ , . . . , 1M,τ ∼ N (µτ , στI) ∀τ
4: if i = 0 then
5: Fetch

(︁
x̂1, µ̂1, σ̂1

)︁
, . . . ,

(︁
x̂k, µ̂k, σ̂k

)︁
from the policy proposal buffer,

where x̂1, . . . , x̂k are the k nearest neighbors of xt in the buffer
6: Sample policy proposals aM+l,τ ∼ N

(︁
µ̂lτ , σ̂

l
τ

)︁
∀τ∀l ∈ {1, . . . , k}

7: end if
8: Evaluate EFE gm ← g (φ, am) ∀m ∈ {1, . . . ,M}
9: Collect all samples below the ρ-quantile: J = {j : aj ≤ gp}

10: Compute new means and standard deviations for all τ :
µτ ← 1

p

∑︁
j∈J aj,τ

στ ←
√︂

1
p

∑︁
j∈J (µτ − aj,τ )

T (µτ − aj,τ )
11: end for
12: Store (xt, µ, σ) in the policy proposal buffer
13: return µ, σ

5.4 Approximation of the EFE

In Section 5.3 we have illustrated how CEM can be used to find a policy distribution
qφ(at+1:T ) that minimizes the action-conditioned EFE g (φ, at+1:T ). However, we have
not touched upon how the EFE can be evaluated for given variational parameters φ and
actions at+1:T . Unfortunately, due to the complex nature of the transition and reward
model, it cannot be computed analytically. Hence, in this section, we discuss how the EFE
can be approximated. Our objective is not to obtain the most accurate approximation
possible, but rather one that can be evaluated efficiently while still leading to high overall
task performance.
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As derived in Section 5.1.3, the action-conditioned EFE decomposes into three parts:

g(φ, at+1:T ) ∝− Eqφ(θ)
[︁
DKL[p

(︁
xt+1:T , o

r
t+1:T

⃓⃓
at+1:T , θ

)︁
∥ qφ

(︁
xt+1:T , o

r
t+1:T

⃓⃓
at+1:T

)︁
]
]︁⏞ ⏟⏟ ⏞

information gain

− 1

σ∗r
Eqφ(xt+1:T | at+1:T ,θ)qφ(θ)

[︄
T∑︂

τ=t+1

µrθ (xτ , aτ )

]︄
⏞ ⏟⏟ ⏞

expected mean reward

+ ln qφ(at+1:T )− ln p(at+1:T )⏞ ⏟⏟ ⏞
log difference to prior

The logarithmic difference to the policy prior is trivial to compute as long as the prior
p(at+1:T ) is chosen to be a distribution that can be evaluated analytically. A reasonable
choice for p(at+1:T ) might be a zero-mean Gaussian distribution, which would express
that the agent prefers actions closer to zero. However, most environments already provide
the agent with an incentive to choose small actions by punishing the L2 norm of the
action vector in their reward functions. Consequently, we choose p(at+1:T ) := qφ(at+1:T )
to effectively eliminate the impact of the prior on the planner.

Since both the transition model and the reward model are nonlinear functions, neither
the expected mean reward, nor the information gain can be computed analytically. While
the former can be approximated with sufficient accuracy via MC, the latter is known to be
notoriously difficult to compute [55]. In the past, a variety of research has been dedicated
towards finding computationally tractable methods of maximizing expected information
gain, which is also known as Mutual Information (MI) in the literature. We elaborate on
those methods briefly in the following Section 5.4.1.

5.4.1 Variational approximations of Mutual Information

Instead of maximizing Mutual Information (MI) directly, many methods maximize a
variational lower bound of it [56–59].

A popular lower bound is the Barber-Agakov bound [56], which is given as

MI(o, θ) = DKL[P (o, θ) ∥ P (o)P (θ)] ≥ H [P (θ)] + EP (o,θ)[Q(θ | o)]

where P is a generative model over observations o and parameters θ, and Q is an arbitrary
variational distribution.
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An estimate of MI can then be obtained from this bound by maximizing it with an EM-style
algorithm at every evaluation [56] or via learning an amortized approximation [57]. The
issue with the first approach is that it is too expensive to be used in our scenario. During
one execution of our planner, which we require at every step our agent takes, the EFE is
evaluated n ·M times, where n are the CEM iterations andM are the number of samples
drawn per iteration. In our experiments we use n = 10 andM = 2000, which gives a total
of 20000 evaluations per time step. Consequently, for each step the agent takes, it has to
solve 20000 large-scale optimization problems, which is completely infeasible.

The second approach suffers from a different problem. Here, the issue of the large amount
of optimization problems is alleviated by training an amortized approximation (e.g. a
neural network), that outputs an estimate of the variational distribution Q (θ | o) given
the observations o. The issue here is that in our case, θ contains the parameters of two
neural networks and is, hence, very large. Due to the high-dimensionality of θ, training
such an amortized approximation would likely be challenging and require a huge amount
of data. Additionally, running 20000 forward passes through a general approximator
with such high output dimensions is also going to be very resource intensive. Hence, this
approach is also not feasible in our scenario.

Another popular approach of estimating a lower bound is Mutual Information Neural
Estimation (MINE) [58]. In this approach, a neural network is utilized to maximize the
Donsker-Varadhan [60] or f-divergence [61, 62] bound. The bounds are given as

MI(o, θ) ≥ DV(ψ) := EP (o)[Tψ(o, θ)]− lnEP (o)P (θ)

[︂
eTψ(o,θ)

]︂
MI(o, θ) ≥ f-div(ψ) := EP (o)[Tψ(o, θ)]− EP (o)P (θ)

[︂
eTψ(o,θ)−1

]︂
where Tψ : RNo × RNθ → R is an arbitrary function parameterized by ψ. The issue with
this approach is of a similar nature as the previous issue we discussed: The function Tψ,
which is implemented by a neural network, has to map from the huge parameter space of
θ to R. Thus, training it will likely be difficult and require a large amount of data, and its
execution will be expensive. Hence, in this work, we estimate the information term with
a Nested Monte Carlo (NMC) estimator, which we will elaborate on in the following.
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5.4.2 NMC approximation of MI

The NMC estimator of MI can be formulated as

MI(o, θ) = EP (o,θ)

[︁
lnP (o | θ)− lnEP (θ)[P (o | θ)]

]︁
≈ 1

n

n∑︂
i=1

lnP (oi | θi,0)− ln
1

m

m∑︂
k=1

P (oi | θi,k)⏞ ⏟⏟ ⏞
inner estimator⏞ ⏟⏟ ⏞

outer estimator

(5.11)

where each θi,k are drawn i.i.d. from P (θ) and oi is a sample drawn from the observation
model induced by θi,0:

θi,k ∼ P (θ)
oi ∼ P (o | θi,0)

}︄
∀i ∈ {1, . . . , n} , k ∈ {1, . . . ,m}

Due to the inner estimator which we require to approximate P (o), the overall estimator is
biased towards overestimating the exact MI:

EP (θ1:n,0:m,o1:n,1:no )

[︄
1

n

n∑︂
i=1

lnP (oi | θi,0)− ln
1

m

m∑︂
k=1

P (oi | θi,k)

]︄

=
1

n

n∑︂
i=1

EP (θ,o)[lnP (o | θ)]− EP (θi,1:m,oi)

[︄
ln

1

m

m∑︂
k=1

P (oi | θi,k)

]︄

≥ 1

n

n∑︂
i=1

EP (θ,o)[lnP (o | θ)]− EP (o)

[︄
ln

1

m

m∑︂
k=1

EP (θ)[P (o | θ)]

]︄
= EP (θ,o)[lnP (o | θ)− lnP (o)] = MI(o, θ)

where we used Jensen’s inequality and the independence of oi and θi,1:m in the second
step. Note that, assuming P (θ) is non-degenerate, the inequality is non-strict iff o is
independent of θ in P . Hence, except in this corner case, the estimator exhibits a non-zero
bias.

Yet, as shown by Rainforth et al. [63], this estimator will converge towards the real MI
at a rate of O

(︁
1
n + 1

m2

)︁
. Consequently, if the total number of samples is fixed, n ∝ m2

should be chosen for optimal convergence.
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Reusing samples

In our scenario, two separate factors are limiting the maximum number of samples we
can use in the NMC estimator. First, since we chose a particle-based representation of
the parameter distribution, for every additional sample drawn from P (θ), two full neural
networks have to be trained during the perception step. Second, when evaluating the
estimator, for every sample θi,k, the generative model P (o | θ) must be evaluated once if
k ̸= 0 and twice otherwise (once inside Eq. (5.11) and once to generate oi). To limit both
the number of θ samples and the number of evaluations of the generative model as much
as possible, we propose to reuse the samples from the outer estimator inside the inner
estimator.

Hence, we propose the approximation

MI(o, θ) ≈ 1

n

n∑︂
i=1

lnP (oi | θi)− ln
1

n

n∑︂
k=1
k ̸=i

P (oi | θk) (5.12)

where
θi ∼ P (θ)
oi ∼ P (o | θi)

}︄
∀i ∈ {1, . . . , n}

Note that we exclude the sample θi that generated oi from being used in the inner estimator.
The reason for this exclusion is twofold: First, using the generating sample in the inner
estimator introduces additional bias, as oi and θi are dependent:

− EP (θ1:n,oi)

[︄
ln

1

n

n∑︂
k=1

P (oi | θk)

]︄

≥ −EP (oi)

⎡⎢⎣ln 1

n

⎛⎜⎝EP (θi | oi)[P (oi | θi)] +
n∑︂
k=1
k ̸=i

EP (θk)[P (oi | θk)]

⎞⎟⎠
⎤⎥⎦

= −EP (oi)

[︃
ln
(︃
1

n

(︁
EP (θi | oi)[P (oi | θi)] + (n− 1)P (oi)

)︁)︃]︃
≥ −EP (oi)

[︃
ln
(︃
1

n
(P (oi) + (n− 1)P (oi))

)︃]︃
= −EP (oi)[lnP (oi)]

54



where we used the inequality EP (θi | oi)[P (oi | θi)] ≥ P (oi) in the third step. This inequality
is again a consequence of Jensen’s inequality and non-strict only if oi is independent of θi:

EP (θi | oi)[P (oi | θi)] =
∫︂
p(oi | θi) p(θi | oi) dθi =

∫︂
p(oi | θi)2

p(θi)

p(oi)
dθi

=
1

p(oi)
Ep(θi)

[︂
p(oi | θi)2

]︂
≥ 1

p(oi)
Ep(θi)[p(oi | θi)]

2 = p(oi)

The second reason we exclude the generating sample from the inner estimator is of a
practical nature, although it is related to the first reason. When evaluating the inner
estimator during our experiments, the generating sample θi usually assigns oi a far higher
probability than all other samples θk. This should not come as a surprise, as oi was
sampled from P (oi | θi) and is now evaluated against the distribution that it originated
from. The issue with this difference in scale of P (oi | θk) is that it makes the log-sum
operation of the inner estimator numerically unstable. Hence, due to rounding error,
we regularly observed

∑︁m
k=1 P (oi | θk) being evaluated to P (oi | θi), which results in an

overall MI estimate of lnm, which is not informative.

If the generating sample is excluded from the inner estimator, it is trivial to show that the
estimator in Eq. (5.12) has the same bias as the vanilla estimator in Eq. (5.11) if we set
m := n−1. However, by reusing samples, we violate the i.i.d. estimation which guarantees
us a convergence rate of O

(︁
1
n + 1

m2

)︁
. While a formal investigation into the convergence

rate of this estimator is beyond the scope of this thesis, we show some empirical results that
suggest a much higher sample efficiency than the vanilla estimator in Fig. 5.1, especially
if the number of samples is low.

5.4.3 Restraining the information term via likelihood clipping

A crucial hyperparameter of our method is the weight of the extrinsic term 1
σ∗
r
. If it is

set too high, the agent will ignore any intrinsic reward and greedily move towards the
closest local optimum. On the other hand, if it is set too low, the agent will not exhibit
any exploitative behavior and, hence, not converge towards an optimal strategy.

One factor that makes calibrating this weight particularly challenging is that both the
exact MI, as well as our estimator are unbounded above. In practice, using this unbounded
NMC estimator regularly results in large spikes of the intrinsic term that overrule any
influence of the extrinsic term and effectively prevent exploitative behavior. A common
technique in such situations is to clip values at a certain threshold. However, we found
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Figure 5.1: Empirical comparison of the approximation errors of the vanilla MI estimator
(Eq. (5.11)) and the sample-reusing MI estimator (Eq. (5.12)). Both estimators
were tested on 1000 randomly generated discrete distributions P (o | θ). The
parameter θ as well as the observation o can take 100 different values under
P . “Total number of samples” refers to the total number of samples drawn
from P (θ), which is T = nm in case of the vanilla estimator and T = n in case
of the sample-reusing estimator. Since in case of the vanilla estimator we do
not know how to choose n andm for a fixed T , we try all pairs of (n,m) such
that T = nm and report the best result. On the left, the accuracy, measured in
absolute error to the real MI, is plotted over the total number of samples of θ.
It is apparent, that reusing samples in the inner estimator yields a significant
advantage in sample efficiency, especially when the number of samples is
low. On the right, we compare the accuracy over the number of evaluations of
the likelihood model P (o | θ). Here, the vanilla estimator is in the advantage
as the number of evaluations rise, which is not surprising as it has a larger
and more diverse set of θ samples. However, the advantage seems to be
insignificant for a low number of evaluations.
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that simply clipping the estimated intrinsic term does not yield good exploratory behavior
in practice.

To understand why clipping of the intrinsic term does not yield good results, it is useful
to write down the NMC estimator for our generative model:

MI((xt+1:T , rt+1:T ), θ | at+1:T , xt)

≈ 1

n

n∑︂
i=1

ln p
(︁
xit+1:T , r

i
t+1:T

⃓⃓
θi
)︁
− ln

1

n

n∑︂
k=1
k ̸=i

p
(︁
xit+1:T , r

i
t+1:T

⃓⃓
θk
)︁

=
1

n

n∑︂
i=1

T∑︂
τ=t+1

ln p
(︁
xiτ , r

i
τ

⃓⃓
xiτ−1, aτ , θi

)︁
− ln

1

n

n∑︂
k=1
k ̸=i

T∏︂
τ=t+1

p
(︁
xiτ , r

i
τ

⃓⃓
xiτ−1, aτ , θk

)︁

=
1

n

n∑︂
i=1

T∑︂
τ=t+1

ln p
(︁
xiτ , r

i
τ

⃓⃓
xiτ−1, aτ , θi

)︁
− ln

1

n

n∑︂
k=1
k ̸=i

exp

(︄
T∑︂

τ=t+1

ln p
(︁
xiτ , r

i
τ

⃓⃓
xiτ−1, aτ , θk

)︁)︄ (5.13)

where
θi ∼ qφ(θ)

xit+1:T ∼ p
(︁
xit+1:T

⃓⃓
at+1:T , xt, θi

)︁
rit+1:T ∼ p

(︁
rit+1:T

⃓⃓
xit+1:T , at+1:T , θi

)︁
⎫⎪⎬⎪⎭ ∀i ∈ {1, . . . , n}

From Eq. (5.13), it becomes apparent that in order to maximize the estimated MI, the
first logarithmic term ln p

(︁
xiτ , r

i
τ

⃓⃓
xiτ−1, aτ , θi

)︁
has to be maximized and the second term

has to be minimized. Since (xiτ , r
i
τ ) is drawn from p

(︁
xiτ , r

i
τ

⃓⃓
xiτ−1, aτ , θi

)︁
and we fixed the

variances of the underlying Gaussian distributions, there is not much variance to expect
in the first term. In the second term, however, the generated states and rewards are
evaluated under distributions they were not sampled from. Practically, each state-reward
trajectory pair is generated by some neural network and then evaluated against all other
neural networks in the ensemble. Intuitively, our estimator computes the “informativeness”
of action trajectories at+1:T based on an estimate of how much the models disagree on
the trajectory the actions would produce.

Since the neural networks are not perfect, they will occasionally make substantially
different predictions, leading to very low likelihoods in the second term. As all likelihoods
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in the second term are multiplied, a single low likelihood per trajectory will cause the
total trajectory p

(︁
xiτ , r

i
τ

⃓⃓
xiτ−1, aτ , θk

)︁
likelihood to be close to zero. Consequently, if the

predictions of the generating model and the evaluating models each differ substantially in
just a single time step, the overall estimated MI becomes arbitrarily large.

While it is certainly reasonable to explore trajectories in which the models do not agree, it
is questionable whether it is worth doing so if the disagreement is limited on a single step
of the predicted trajectory only. We argue that it is better to explore trajectories for which
the disagreement is large in every step, instead of massive in a single step, as the models
will have more unseen data to train on. However, if we just clip the overall estimated MI,
the clipping limit might be already be reached by even such trajectories that cause large
disagreement in a singular step. Hence, there would be no way of differentiating those
trajectories that contain more than one interesting transition.

To tackle this issue, we propose to clip the per-step likelihoods below instead of the full
estimated MI above. That is, we define

pc
(︁
xiτ , r

i
τ

⃓⃓
xiτ−1, aτ , θi

)︁
= max

(︁
pc
(︁
xiτ , r

i
τ

⃓⃓
xiτ−1, aτ , θi

)︁
, c
)︁

where c ∈ R is the clipping limit and use pc in the NMC estimator instead of p.

By doing so, we essentially express that there is a limit after which we consider the
discrepancy between models to stop gaining “informativeness”. In other words, if for some
transition the evaluating model predicts a vastly different mean successor state than the
generating model, then we do not care how far away it is, as soon as the distance reached
a certain threshold. Practically, this change to the NMC estimator causes the planner to
prefer action sequences that result in many transitions with large model discrepancies,
instead of few transitions with huge discrepancy.

5.5 Lautum Information

Another idea we investigate in this thesis is to replace the KL-divergence inside MI with
the reverse KL-divergence. Hence, instead of DKL[P (o) ∥ P (o)P (θ)], we obtain

LI(o, θ) := DKL[P (o)P (θ) ∥ P (o, θ)]

where P is again a generative model over observations o and model parameters θ.
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The resulting information term is known as Lautum Information (LI) [7] and, similar to
MI, measures information between o and θ. However, contrary to MI, Lautum Information
(LI) has not seen much attention in the Bayesian Optimal Experimental Design (BOED)
literature so far. Hence, in this section, we highlight some of its properties and compare
it to MI. We will argue both theoretically and empirically that LI is a feasible alternative
to MI. Furthermore, we will present a sample-efficient NMC approximation of LI that
outperforms MI-NMC estimator in simple discrete test cases.

5.5.1 Sample efficient NMC estimation of LI

Analogously to MI, the vanilla NMC estimator is given as

LI(o, θ) = EP (o)P (θ)

[︁
lnEP (θ)[P (o | θ)]− lnP (o | θ)

]︁
(5.14)

≈ 1

n

n∑︂
i=1

ln

(︄
1

m

m∑︂
k=1

P (oi | θi,k)

)︄
⏞ ⏟⏟ ⏞

inner estimator

− lnP (oi | θi,0)

⏞ ⏟⏟ ⏞
outer estimator

(5.15)

where
θi,k, θ̂i ∼ P (θ)

oi ∼ P
(︂
o
⃓⃓⃓
θ̂i

)︂⎫⎬⎭ ∀i ∈ {1, . . . , n} , k ∈ {1, . . . ,m}

Note that in case of LI, the generating sample θ̂i of oi does not appear in the estimator
again. The reason for this is that the expectation is taken over the two independent
marginal distributions P (o) and P (θ) rather than the joint P (o, θ).

Analogously to the vanilla MI estimator, one can show that this estimator is also biased,
but underestimates the exact value instead of overestimating it. Since the bias of both
estimators stems from the same term only with the sign switched, they actually exhibit
the exact same bias for fixed P , only with different signs.

Similar to the sample-reusing estimator we derived for MI, we can also reuse samples in
this estimator. However, the fact that the variables o and θ in the outer expectation of
Eq. (5.14) are drawn independently allows us to take this idea one step further. Instead
of drawing samples θi ∼ P (θ), oi ∼ P (o) and only using them in a single pair (θi, oi), we
can form arbitrary combinations of samples (θi, oj). Hence, we receive quadratically many
samples at the cost of violating the i.i.d. assumption of the sample points.
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The resulting sample-reusing NMC estimator is given as

LI(o, θ) ≈ 1

n

n∑︂
i=1

ln

⎛⎜⎜⎝ 1

n

n∑︂
k=1
k ̸=i

P (oi | θk)

⎞⎟⎟⎠− 1

n

n∑︂
j=1
j ̸=i

lnP (oi | θj) (5.16)

where
θi ∼ P (θ)
oi ∼ P (o | θi)

}︄
∀i ∈ {1, . . . , n} ,

Note that we again explicitly avoid that any observation sample is evaluated against its
generating θ sample to prevent introducing additional bias. Although it is also worth men-
tioning that, in practice, we did not experience any numerical issues or other disadvantages
when not excluding the generating θ from the inner sums.

To evaluate the effect of reusing samples on the estimator’s accuracy, we conduct the same
empirical analysis we did for the MI estimator in Fig. 5.2. Although a thorough formal
investigation would be required to make a definitive statement, the empirical results
suggest that the advantage of reusing samples in the LI estimator is even more significant
than it was in the MI estimator. Note that due to the difference in scale, the error values of
the LI and MI estimators cannot be compared directly. However, we conduct an empirical
comparison of the information gathering efficiency of the MI and LI in Section 5.5.3.

5.5.2 Relation between LI and MI

In the context of this thesis, an interesting question is how the information seeking
behaviors induced by MI and LI differ. To answer this question, we consider a scenario in
which the agent has no extrinsic goal, but rather purely relies on the information term
for choosing policies. Hence, we want to gain an understanding of the characteristics of
policies that maximize MI versus LI.

In the following we will take a close look at the definitions of MI and LI and argue that
they induce fundamentally different exploration strategies. Let therefore

P (o, θ |π) = P (o | θ, π)P (θ)

be a generative model over observations o and model parameters θ, which is conditioned
on some policy π.
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Figure 5.2: Empirical comparison of the approximation errors of the vanilla LI estimator
(Eq. (5.15)) and the sample-reusing LI estimator (Eq. (5.16)). The test condi-
tions are exactly the same as described in Fig. 5.1. On the left, the accuracy,
measured in absolute error to the real MI, is plotted over the total number
of samples of θ. Since we reuse θ samples not only in the inner estimator
but also combine them with multiple o samples, the difference in sample
efficiency is even more significant than for the MI estimators. On the right,
we compare the accuracy over the number of evaluations of the likelihood
model P (o | θ). Here, the sample-reusing estimator also holds the advantage,
as it can reuse evaluations of P (o | θ) from the outer estimator in the inner
estimator.
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The definition of MI can be rewritten as

MI(o, θ |π) = EP (o |π)
[︁
EP (θ | o,π)[lnP (θ | o, π)− lnP (θ)]

]︁
(5.17)

Upon close inspection, it becomes apparent that for a given observation o, the inner
difference of logarithms becomes maximal for any θ that has a high probability under
the posterior and a low probability under the prior. Since the expectation under the
posterior P (θ | o, π) is taken over this difference, it is essentially reweighted in favor of θ
with high posterior probability. Roughly speaking, the inner difference of logarithms is
only considered for those θ that have a substantial probability under the posterior. Hence,
an agent maximizing MI is seeking to make observations that for some θ maximize their
posterior while minimizing their prior.

Intuitively, this behavior could be understood as follows. For simplicity, consider a discrete
set of model parameters θ1, . . . , θK . We can think of these parameters as different theories
the agent has over the causes of the observations it is making. In its prior P (θ), the
agent assigns each of these theories some probability, and in the posterior P (θ | o, π), the
theories get reweighted to incorporate the a new observation o. For example, the agent
could have theories of the weather being either rainy or sunny. Without checking, it might
assign both theories an a-priori probability of 50%. As soon as it goes outside, however, it
might observe dark clouds and subsequently increase the probability of its theory that the
weather is rainy.

In this setting, theories are proven by making observations that give them a high probability
under the posterior and disproven by observations that give them a low probability under
the posterior. Thus, the behavior of an agent maximizing MI could be understood as
trying to make observations that prove theories which were a-priori considered to be
unlikely. Of course this scenario is idealized, as the agent will rarely have the choice to
make observations that conclusively prove theories in the real world. However, it gives a
good impression of what an MI maximizing agent is striving to achieve.

An agent following LI is acting upon a different exploration strategy, which we see by
rewriting the definition of LI to

LI(o, θ |π) = EP (o |π)
[︁
EP (θ)[lnP (θ)− lnP (θ | o, π)]

]︁
The difference to Eq. (5.17) is that the difference of logarithms is negated and that
the expectation is now taken over the prior P (θ) and not the posterior. Hence, roughly
speaking, the inner approximation considers only those θ that have non-neglectable
probability under the prior. Consequently, LI can be maximized by making observations
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such that for some θ with high a-priori probability, their posterior becomes minimal. If we
apply the same thought process we applied to MI, we can conclude that LI drives agents
towards disproving theories they deemed a-priori likely.

Thus, the difference of behavior induced by MI and LI can be summarized as follows:
Mutual Information drives agents towards proving a-priori unlikely theories, while Lautum
Information drives agents towards disproving a-priori likely theories.

Exemplary comparison of behaviors induced by MI and LI

To see that these two strategies can lead to substantially different behavior, consider the
following discrete example: The agent has three theories about the hidden state of the
world θ1, θ2, and θ3, which a-priori it assumes to be equally likely:

P (θ) θ1 θ2 θ3
0.33 0.33 0.33

It can interact with the world by choosing one of two policies π1 and π2, and make one
of two observations o1 and o2. The corresponding likelihood models for each policy are
given as

P (o | θ, π1) θ1 θ2 θ3
o1 0.5 0.01 0.5
o2 0.5 0.99 0.5

P (o | θ, π2) θ1 θ2 θ3
o1 0.01 0.5 0.01
o2 0.99 0.5 0.99

To gain an in-depth understanding of the composition of the value of MI, we can analyze
the weighted values of the inner term before they are summed up in the expectation.
Hence, for

MI(o, θ |π) =
2∑︂
i=1

3∑︂
j=1

fMI (oi, θj , π)

fMI (oi, θj , π) = P (θj)P (oi | θi, π) (lnP (θj | oi, π)− lnP (θj))

we obtain
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fMI (o, θ, π1) θ1 θ2 θ3
o1 0.066 -0.012 0.066
o2 -0.047 0.132 -0.047∑︁

0.158

fMI (o, θ, π2) θ1 θ2 θ3
o1 -0.010 0.177 -0.010
o2 0.060 -0.084 0.060∑︁

0.193

We can see that MI prefers policy π2. Upon inspection of the values composing MI for
π2, it becomes apparent that the pair (o1, θ2) has the strongest positive influence on the
overall value. The strong influence of this pair tells us something about the reasoning
behind MI’s preference of π2: After choosing π2, MI is hoping to observe o1, because it
would allow the agent to nearly conclusively prove theory θ2, since it is very unlikely that
θ1 or θ3 produced o1. For π1 the strongest positive influence comes from (o2, θ2) with a
similar argument: Observing o2 makes θ2 more likely in the posterior. However, in case of
π1, θ1 and θ3 also each have a fairly high probability of producing o2, meaning that θ2 is
not proven after observing o2.

The same procedure can be applied to LI with

LI(o, θ |π) =
2∑︂
i=1

3∑︂
j=1

fLI (oi, θj , π)

fLI (oi, θj , π) = P (θj)P (oi |π) (lnP (θj)− lnP (θj | oi, π))

yielding

fLI (o, θ, π1) θ1 θ2 θ3
o1 -0.044 0.395 -0.044
o2 -0.063 -0.089 -0.063∑︁

0.342

fLI (o, θ, π2) θ1 θ2 θ3
o1 0.165 -0.061 0.165
o2 -0.050 0.139 -0.050∑︁

0.308

As we can see, unlike MI, LI prefers policy π1. The largest positive influence on the LI for
π1 is taken by the pair (o1, θ2). Hence, the reason why LI prefers π1 is that it hopes to make
observation o1, which would allow it to almost conclusively disprove θ2. In case of π2, the
strongest influence comes from (o2, θ2), because observing o2 reduces the probability of
θ2. Interestingly, if we compare the value compositions, we see that exactly those pairs
with a high positive influence in MI have a negative influence in LI and vice versa.

This example shows the fundamentally different approaches MI and LI take to define
which action is informative and which is not. Which of these approaches results in a more
effective exploration is hard analyze from a theoretical point of view, but we will conduct
empirical comparisons in Section 5.5.3 and throughout our experiments in Chapter 6.
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5.5.3 Empirical comparison of LI and MI

In this section, we conduct an empirical study on the exploration capabilities of the MI
and LI NMC approximations. The essential question we aim to answer is how effective
the approximations are in identifying informative policies. To answer this question, we
will conduct two experiments on randomly generated generative models P (o, θ). In the
first experiment, we test how well the relative “informativeness” of policies estimated by
the approximators match these of their exact counterparts. In the second experiment, we
investigate how well the approximated information measures are suited to optimize the
identification of model parameters.

For both experiments, we assume discrete sets of no = 100 different observations o,
nπ = 100 policies π and nθ = 50 model parameter realizations θ. The generative model
again factors as

P (o, θ |π) = P (o | θ, π)P (θ)

We set P (θ) = 1
nθ

for all θ, expressing that there is no prior knowledge about the model
parameters. The likelihood distribution P (o | θ, π) is created randomly for each repetition
of each experiment.

One approach to obtain random feasible likelihood distributions is by drawing random
values for the probabilities of each triple (o, θ, π) and normalizing the distribution after-
wards. However, we found this approach to yield distributions in which all policies are
equally informative, which defeats the purpose of using an information measure. Hence,
we purposefully make some policies more informative than others by defining for given θi
and πj:

P (ok | θi, πj) :=
eTijck∑︁no
l=1 e

Tijcl

where

ck ∼ U(0, 1)
Tij ∼ U(0, 15)

where U is a uniform distribution.

Here, the variable Tij can be understood as a temperature, which we draw individually
for each pair (θi, πj). The temperature controls how “spiky” the distribution P (ok | θi, πj)
is for θi and πj . If Tij has a low value, it will be more uniform and less informative, and if
the value is high will likely be more informative.
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Experiment 1: Relative deviation from the exact measure

In this work, we use the information term to make decisions over which policies to follow.
Hence, we are not interested in the exact absolute value of this term, but rather want to
know which policies are more informative than others. Thus, an interesting question is
how well the approximations resemble the policy preferences of their exact counterparts.
Ideally, we want every policy with a high exact information value also to have a high
approximated information value and vice versa.

Formally, we can think of the information term to produce a vector v of information values,
one for each policy it is evaluated for:

vIM :=

⎛⎜⎝ IM(o, θ |π1)
...

IM(o, θ |πnπ)

⎞⎟⎠
where IM is an information measure (LI, MI or their approximated counterparts).

As argued before, we are not interested in the scale of this vector, but rather its direction,
which tells us which policies to prefer. A standard method of comparing the directions of
vectors is the cosine similarity, which is defined as

cos-sim (v, w) =
v · w
∥v∥ ∥w∥

for vectors v, w ∈ Rn.

The cosine-similarity allows us to compare the approximations of both MI and LI with
their exact counterparts on the same scale. We do so in an experiment on 1000 randomly
generated generative models and report the results in Fig. 5.3. In this experiment, the LI
approximator exhibits a clear advantage in sample efficiency, especially for low numbers
of samples. Although we did not conduct a formal study of the convergence properties of
the LI approximator, this experiment suggests that the exhaustive combination of θ and o
samples we describe in Section 5.5.1 gives it an advantage over the MI approximator.
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Figure 5.3: Experiment 1: Comparison of the cosine similarity between the (sample-
reusing) NMC approximations of MI and LI to their respective exact coun-
terparts. For each number of samples, we conducted 1000 experiments on
different, randomly generated generative models. It is apparent that the LI
approximator has a clear advantage in sample efficiency compared to MI.
Note that the optimal value possible under cosine similarity is 1.
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Experiment 2: Parameter identification

The goal of the second experiment is to evaluate the exploratory capabilities of the
information measures and their approximations. In this experiment, we randomly draw a
model parameter realization θ∗ ∼ P (θ). The agent’s objective is to determine θ∗ based
on observations o. To obtain these observations, the agent can query the generative
model P (o | θ∗, π) three times with different policies π, obtaining a sample o each time.
We assume that the agent can perform exact inference to update its belief over model
parameters after each observation. After the third observation is obtained, we measure
whether the θ∗ is the parameter realization with the highest probability in the posterior.
That is, we check whether

θ∗ = argmax
θ

P (θ | o1:3, π1:3)

where oi is the observation the agent made in the i-th step and πi is the policy of the i-th
step.

We report the success probabilities for agents following the different information measures
in their policy selection in Fig. 5.4. It seems as if the agent following the approximated LI
for policy selection has a slight advantage over the agent following the approximated MI.
However, due to the fairly large standard deviations, the difference is not significant.
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Figure 5.4: Experiment 2: Comparison of the success probabilities in identifying the
correct model parameter realization θ∗ for different numbers of samples used
in the NMC approximations. For each number of samples we conducted
1000 experiments on different, randomly generated generative models. The
baselines exact MI, exact LI and random are sample independent and only
displayed for reference. We do not plot the standard deviations as they are
too large (∼ 0.45 for all estimators). Although the approximated LI seems
to be slightly ahead of the approximated MI, the advantage is not significant
due to the large standard deviations. However, both outperform the random
baseline significantly.
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5.5.4 Lautum Information in Bayesian Optimal Experimental Design

As mentioned before, unlike Mutual Information, Lautum Information has not seen much
attention in the BOED-literature so far. In this section, we conductedmultiple investigations
that suggest that LI is indeed a viable alternative to MI. We showed empirically that Lautum
Information allows a more sample efficient Monte Carlo approximation than MI and that
it can keep up with, if not outperform, the information seeking capabilities of Mutual
Information. Although preliminary, we believe that these results justify further research
into the usage of Lautum Information in BOED. To further strengthen this point, we
conduct experiments with LI on real RL problems in Chapter 6.

5.6 Complete learning algorithm

To conclude this chapter, we outline the resulting procedure in Algorithm 3. Note that for
performance reasons, we chose not to update the variational parameter distribution qφ(θ)
every step, but rather after every episode. To facilitate these delayed updates and also to
prevent catastrophic forgetting, we deploy a replay buffer.

Algorithm 3 Reinforcement Learning through Active Inference
1: Initialize replay buffer
2: Initialize ensemble parameters θ1, . . . , θP
3: for e = 1, . . . ,MAX_EPISODES do
4: Reset agent to initial state x0
5: for t = 1, . . . , Tmax do
6: Execute CEM planner (Algorithm 1) to obtain next action at
7: Execute action at on environment
8: Obtain new state xt and reward rt from environment
9: Store (xt, rt, at) in replay buffer

10: end for
11: Optimize variational parameters φ forM steps using the replay buffer
12: end for
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6 Experimental Evaluation

A central feature that sets our method apart from other purely model-based ap-
proaches [26–28, 64–68] is the intrinsic term, that explicitly drives the agent to explore its
environment. Hence, in the following four experiments, we put the exploration capabilities
of our method to test. In each experiment, the agent is faced with an environment that
is designed to be particularly sparse and, thus, hard to explore. We will show that our
method results in systematic, directed exploration, and manages to solve environments in
which state-of-the-art methods that do not explicitly encourage directed exploration fail.

In all of the following environments, the agent has to reach some goal state, that can only
be reached by precisely executing a sequence of actions. It does not receive any reward
signal until it has solved the respective task, except for a small quadratic penalty on all
actions. We terminate each episode after Tmax = 50 steps, independently of if or when
the agent reached the goal state. The planning horizon is set to T = t+20, where t is the
current time step, in all experiments, and the environments are designed in such a way
that the goal state is reachable within the planning horizon. Since all environments are
fully deterministic, we set σx = σr = 10−4, to reduce unwanted noise during planning as
much as possible.

In each experiment except for the first, we compare multiple versions of our method
to a Soft Actor Critic (SAC) [69] baseline. The reason we chose SAC as baseline is that
its entropy regularization should be advantageous for exploring sparse environments,
compared to other model-free algorithms like TD3 [45] or PPO [70]. To ensure proper
implementation and tuning of the SAC baseline, we use the Stable Baselines3 [71] imple-
mentation. Also, since the execution of SAC is computationally comparatively cheap, we
repeat each SAC experiment 5 times and report the best result.

Furthermore, we attempted to compare against MBPO [25]. However, we found that
neither the original implementation by Janner et al. [25], nor the newer implementation
of MBRL-Lib [72] were stable enough to endure longer experiments without crashing.
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Abbreviation Description

MI Standard configuration where we use Mutual Information as intrin-
sic term.

MI no RMSP
Similar to the MI configuration, with the exception that we do
not use the multi-step prediction loss for the reward model (see
Section 5.2.2).

LI In this configuration we use Lautum Information instead of Mutual
Information as intrinsic term.

LI no RMSP
Similar to the LI configuration, with the exception that we do not
use the multi-step prediction loss for the reward model (see Sec-
tion 5.2.2).

non-intrinsic In this configuration we remove the intrinsic term entirely and plan
purely based on the expected reward.

non-intrinsic AN

Similar to the non-intrinsic configuration, with the exception that
we apply Gaussian noise to the actions before we execute them.
Specifically, we take the action distribution produced by the CEM
planner and sample from it instead of taking the mean.

Table 6.1: Descriptions of different configurations of our method with abbreviations.

Hence, we were only able to obtain a MBPO baseline for the Ridge Ball environment (see
Section 6.2).

For notational convenience, we will use abbreviations for different configurations of our
method. A description of these abbreviations can be found in Table 6.1.

72



6.1 Mountain Car

Figure 6.1: Visualization of the Mountain Car
environment generated by Ope-
nAI gym [20].

In theMountain Car environment [20], the
agent’s objective is to reach the top of the
hill, marked with a yellow flag in Fig. 6.1.
To achieve this objective, the agent can con-
trol the force the car is exerting in either di-
rection. Apart from a small action penalty,
the agent receives a reward of 1 for every
time step in which the car is located at or
right of the flag.

There are two things that make this task
challenging. First, at the beginning, the
agent does not know that its objective is
to reach the top of the hill. The only way
it can find out that it will receive reward
when reaching the flag is by moving up
the hill and discovering it. Second, the
maximum force the car can exert is too small to move it up the hill from a stationary
condition. Hence, it has to move up the left hill first to gain enough momentum to reach
the hilltop. Both of these properties make Mountain Car a fairly challenging environment
to solve, despite its low dimensional state space.

As visible in Fig. 6.2, all of our configurations manage to solve the environment within 50
episodes. Although the intrinsic configurations (MI and LI) reach the hilltop earlier than
the non-intrinsic agents, their performance equalizes quickly after a couple of episodes.
From Fig. 6.3, it can be seen that the reason for the intrinsic configurations being faster is
a better coverage of the state space within the first 10 episodes.

We conclude that this environment is not challenging enough to require information
seeking behavior to be solved. A reason for the rather small challenge this environment
poses is most likely its low dimensional state space, that can rather quickly be searched
even by undirected exploratory behavior. Hence, in the next experiment, we test our
method on a higher-dimensional and harder-to-explore environment.
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Figure 6.2: Cumulative per-episode reward onMountain Car over the course of the training.
Displayed in this graph is the evaluation reward, which is obtained by rolling
out the learned model without considering the intrinsic reward. We apply
exponential moving average smoothing with a discount of 0.9 to make the
graph more readable. Each configuration was run once. For a description of
the configurations, refer to Table 6.1.
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Figure 6.3: Cumulative state visitation histograms for the Mountain Car environment.
Position of the car is on the X-axis and velocity on the Y-axis. The brightness
of each pixel indicates howoften the respective histogrambin has been visited.
Each configuration was run once. For a description of the configurations,
refer to Table 6.1.

6.2 Ridge Ball

The objective in this environment is to control the blue ball (see Fig. 6.4) in such a way that
it reaches the green target zone. Unless the agent has reached the target zone, the only
reward signal it is getting is a quadratic penalty on its actions. To achieve this objective,
the agent can exert horizontal force in an arbitrary direction on the ball. The ball’s 2D
position and velocity serve as input to the agent
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The main challenge in this environment is to control the ball in such a way that it stays on
top of the ridge. Since the control force that the agent can exert is limited, there exists a
point of no return on either side of the ridge, marked by red lines. As soon as the ball
leaves the area between the red lines, the agent has no way of recovering it and has to
wait for the episode to terminate before it can continue exploring.

(a) Top-down view (b) Side view

Figure 6.4: Visualization of the Ridge Ball environment.

Situations in which an agent cannot recover are a common occurrence in manipulation
tasks, since manipulated objects might be accidentally dropped or moved into positions
where they become unreachable. These dead-ends pose a significant challenge to RL, as
the agent first has to learn to avoid them before it can make progress on its task. This
challenge is only exponentiated if combined with a sparse reward, as it forces the agent to
learn to avoid dead-ends without getting any reward as guidance. Since this environment
provides both, sparse rewards and dead-ends, we believe it is a good intermediate step
towards complex manipulation tasks.

The results of this experiment can be seen in Fig. 6.5, where we visualize the cumulative
per-episode reward obtained by each configuration over the course of the training. As
visible in this graph, three out of four intrinsic configurations found the target zone within
the first 400 episodes. One out of five SAC agents we ran on this task managed to find
the target zone around the 2200th episode and converged towards a near optimal policy.
MBPO, both of the non-intrinsic configurations, as well as the LI configuration failed to
find the target and converged to a local optimum. Out of the three successful intrinsic
configurations, the MI no RMSP configuration outperformed the other two significantly.
From the state visitation histograms in Fig. 6.6 it seems that MI no RMSP managed to
better stabilize the ball on the target zone, compared to the other configurations.

One of the reasons for the performance discrepancy of the four intrinsic configurations is
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most likely the choice of the extrinsic weight parameter σ∗r . To achieve optimal perfor-
mance, σ∗r has to be carefully chosen for each configuration individually. Judging from
Fig. 6.6, it seems as if the LI configuration stopped exploring right at the start, which is a
sign for σ∗r being too low. While restarting this experiment with a different value of σ∗r
could yield better results, we decided that the benefit would be little, as the Ridge Ball
environment is merely a toy task.

In conclusion, this experiment has shown that our method is able to systematically explore
a challenging environment with sparse rewards and many dead-ends. The stark contrast
in exploration efficiency compared to the non-intrinsic configurations and the baselines
shows the importance of an information seeking term for environments of this kind.
However, due to the environment’s relatively simple dynamics and the low dimensional
state space, the question arises whether our method is able to scale to more complex,
higher dimensional tasks. We will approach this question in the following two experiments,
in which we apply our method to a robotic manipulation problem.
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Figure 6.5: Cumulative per-episode reward on Ridge Ball over the course of the training.
The shaded area around each line is a half a standard deviation. MBPO, both
non-intrinsic configurations, as well as the LI configuration failed to find the
objective and converged to local minima. Displayed in this graph is the
evaluation reward, which is obtained by rolling out the learned model with-
out considering the intrinsic reward. We apply exponential moving average
smoothing with a discount of 0.9 to make the graph more readable. Each
configuration was run once, except for SAC, where we show the only success-
ful run out of 5. For a description of the configurations, refer to Table 6.1.
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Figure 6.6: Cumulative state visitation histograms for the Ridge Ball environment. We
visualize the 2D position of the ball. Note that X and Y axes are scaled to
an aspect ratio of 1:1. The brightness of each pixel indicates how often the
respective histogram bin has been visited. Each configuration was run once.
For a description of the configurations, refer to Table 6.1.
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6.3 Tilted Pushing

While the previous experiment showed that our method is capable of efficiently exploring
sparse environments, we have yet to show that this property is maintained if we increase
the complexity of the environment. Hence, in this experiment, we apply our method to a
sparse and particularly hard to explore robotic manipulation task.

In this task, which we call Tilted Pushing and visualize in Fig. 6.7, the agent has to push a
ball into a target zone on a tilted table. Similarly to Ridge Ball, the agent does not receive
any reward except for a quadratic action penalty, as long as the ball is outside of the target
zone. The gripper always starts on the same Y coordinate (Y-axis being the axis that points
from the robot towards the goal) while the X coordinate is randomized. At the start of
each episode, the ball is placed directly in front of the gripper.

(a) Top-down view (b) Side view

Figure 6.7: Visualization of the Tilted Pushing environment. The target zone is marked in
red. For reference, in the top-down view, the X-axis points left, the Y-axis in
direction of the viewer and the Z-axis upwards.

The agent can move the gripper in a plane parallel to the table and rotate the black
end-effector around the Z-axis (Z-axis being the axis that is orthogonal to the brown table
and points up). Specifically, the agent controls the horizontal 2D linear acceleration of
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the gripper as well as the angular velocity of the end-effector. As input, the agent receives
the 2D positions and velocities of both the gripper and the ball, as well as the angular
position and velocity of the end-effector.

What makes this task particularly challenging is that due to the tilted table, the ball has to
be balanced constantly during exploration. If the ball drops, it cannot be recovered, since
the gripper cannot move close enough to the boundary to retrieve it again. Hence, similar
to Ridge Ball, the agent has to wait for the episode to terminate before it can continue
exploring. However, in contrast to Ridge Ball, the environment is much higher dimensional
and its complex, contact-rich dynamics make learning the model challenging.

In addition to the standard configuration, we run this experiment in another configuration,
where we decreased the friction of the ball by 40%. The results for both configurations are
shown in Fig. 6.8. Furthermore, we visualize the state coverage for both configurations in
Figs. 6.9 and 6.10, respectively.

From Fig. 6.8 we can see that only the intrinsic agents are able to solve this environment
within the given number of episodes. It seems that the configurations that utilize reward
multi-step prediction loss are faster to receive the first reward and also exhibit a better
asymptotic convergence. However, since we ran only a single repetition per agent and
environment configuration, no definitive statement can be made.

From the state coverage histograms in Figs. 6.9 and 6.10 it becomes apparent that
the intrinsic configurations achieve a much better state coverage than the non-intrinsic
configurations. With the exception of the No Intrinsic AN run in the standard configuration,
none of the non-intrinsic configurations managed to push the ball into the upper half of
the table in any of the episodes. Thus, the broad state coverage we observe for the intrinsic
agents must be a direct consequence of the information seeking behavior mandated by
the intrinsic term.

This experiment shows that our method is able to systematically explore a complex,
contact-rich environment with many dead-ends. Without any extrinsic feedback, our
agents learned to balance the ball on the end-effector and systematically move it around
the environment until the target zone was found. The sole reason for this behavior to
occur in the first place is that our agents understood they could only explore the full state
space if they kept balancing the ball and move it to unseen locations.
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Figure 6.8: Cumulative per-episode reward for both Tilted Pushing configurations over
the course of the training. The shaded area around each line is a half a
standard deviation. Both non-intrinsic configurations and all SAC agents
failed to find the objective and converged to local minima. Displayed in this
graph is the evaluation reward, which is obtained by rolling out the learned
model without considering the intrinsic reward. We apply exponential moving
average smoothing with a discount of 0.9 to make the graph more readable.
Each (agent-) configuration was run once, except for SAC, which we ran 5
times. For a description of the configurations, refer to Table 6.1.
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Figure 6.9: Cumulative state visitation histograms for the standard configuration of the
Tilted Pushing environment. We visualize only the 2D position of the ball on
the table. The coordinate origin is at the bottom of each image, meaning that
the images are rotated 180°compared to the top-down view in Fig. 6.7a. The
brightness of each pixel indicates how often the respective histogram bin
has been visited. Each configuration was run once. For a description of the
configurations, refer to Table 6.1.
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Figure 6.10: Cumulative state visitation histograms for the lower friction configuration
Tilted Pushing environment. For a further description of this figure, refer to
Fig. 6.9.
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6.4 Tilted Pushing Maze

In this experiment, we take the idea of Tilted Pushing one step further and test the limits
of our method. As shown in Fig. 6.11, we use the same setup as before, but remove parts
of the surface of the table. In doing so, we create a maze that the agent has to navigate
with the ball in order to reach the target zone. The resulting task poses a much greater
challenge than before, since the agent now has to perform multiple curves with the ball to
avoid the holes in the table.

(a) Top-down view (b) Side view

Figure 6.11: Visualization of the Tilted Pushing Maze environment.

The results of this experiment are shown in Fig. 6.12 and the corresponding state coverage
histograms in Fig. 6.13. As the graph shows, two out of four of our intrinsic configurations
found the target zone within 35,000 episodes. Judging from the state coverage histograms,
the other two configurations brought the ball close to the target zone multiple times, but
did not yet discover it when the training terminated. However, it is likely that with a
longer training time these configurations would have found the target as well.

We believe that there are two reasons that prevent the intrinsic agents from finding the
target earlier in this environment. The first reason is the limited ability of the CEM planner
to find globally optimal solutions. Since CEM is a local optimization procedure, it tends to
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converge to local minima. In case of sparse environments, those minima are often policies
that do not move at all to avoid the small action penalties. We mitigated this issue to some
degree by taking the initial sample partially from a buffer of previously optimized action
trajectories. Hence, once a good trajectory had been found, it could be reused in a later
episode. However, this technique does not help us in finding completely novel trajectories.
In fact, it might even discourage the planner from exploring new trajectories, as any new
trajectory it samples has to compete with fully optimized trajectories from the buffer in
order to make it into the next iteration.

The second and more fundamental reason is that the state space of this environment might
be too large to be exhaustively explored within the given number of episodes. Although
the state space of this environment is equal in dimensions to the state space of the Tilted
Pushing environment, its target state is much harder to reach. Thus, in Tilted Pushing the
agents were simply much more likely to randomly come across the target state during
exploration than they are in this environment. Consequently, the reason the agents found
the target state in the previous environment was not that they exhaustively explored
the entire state space, but rather that they explored enough to come across it with a
reasonable probability. Since the agents in this environment must first carefully navigate
around the holes to reach the target state, many action trajectories that would have been
successful in Tilted Pushing simply end up in holes in this environment. Hence, it can be
expected that the Tilted Pushing Maze must be explored to a much higher degree until
there is a reasonable probability of finding the target state.
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Figure 6.12: Cumulative per-episode reward on Tilted Pushing Maze over the course of
the training. The shaded area around each line is a half a standard deviation.
Only the MI and MI no RMSP configurations managed to find the target zone
with the ball. Displayed in this graph is the evaluation reward, which is
obtained by rolling out the learned model without considering the intrinsic
reward. We apply exponential moving average smoothing with a discount
of 0.9 to make the graph more readable. Each (agent-) configuration was
run once, except for SAC, which we ran 5 times. For a description of the
configurations, refer to Table 6.1.
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Figure 6.13: Cumulative state visitation histograms for the Tilted Pushing Maze envi-
ronment. We visualize only the 2D position of the ball on the table. The
coordinate origin is at the bottom of each image, meaning that the images
are rotated 180°compared to the top-down view in Fig. 6.7a. The brightness
of each pixel indicates how often the respective histogram bin has been
visited. Each configuration was run once. For a description of the configura-
tions, refer to Table 6.1.
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7 Discussion and Future Work

Our contributions in this work are as follows. First, we provided an in-depth formal analysis
of the Expected Free Energy functional. In that analysis, we took a close look at the origin
of the intrinsic term and at the claim that the EFE resolves the exploration-exploitation
dilemma. We argued that the EFE does not resolve the exploration-exploitation dilemma
in practice, as the weighting between the extrinsic and intrinsic terms remains a challenge.
Furthermore, we showed formally that the information gain only arises naturally from the
EFE if one makes the assumption that the agent’s hidden desire distribution is always equal
to its predictive distribution. Since this assumption is violated in most cases, we concluded
that the information gain does not arise naturally from the EFE. To support this argument,
we presented an example task in which only the agent following the approximated EFE
exhibited exploratory drive, while the one following the exact EFE did not. Finally, we
questioned the origin of the EFE and, like Millidge, Tschantz, and Buckley [43], arrived at
the conclusion that there is a more naturally arising objective that does not encourage
exploratory behavior.

Our second contribution is the development of a method that is capable of applying Active
Inference to complex Reinforcement Learning tasks. To achieve this, we first showed
how a classical reward-based RL task can be reformulated to fit into the framework of AI.
We then showed how to train a transition and reward model with multi-step predictions,
and proposed to extend the idea of multi-step predictions to the reward model. For the
planning step, we developed an adaptation of the Cross Entropy Method, that reuses
previous trajectories to obtain a better initialization and is thereby able to create more
promising trajectories.

The third contribution of this work lies in our approximation of the information term. We
argued that the only approximation that is efficient enough for our use case is a Nested
Monte Carlo approximation. As parameter samples are extremely expensive in our case,
we showed empirically how the reuse of samples, despite breaking the i.i.d. assumption,
can significantly improve the sample efficiency of the NMC approximator.
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Furthermore, we proposed to replace the Mutual Information term in the planning ob-
jective by Lautum Information. We argued that the NMC approximation of the Lautum
Information allows for a better reuse of samples, and showed empirically that the Lautum
Information estimator converges faster than the Mutual Information estimator. However,
we were not yet able to show that the faster convergence of this estimator yields any
advantage for the exploratory capabilities of the agent in practice. To our knowledge, Lau-
tum Information has not yet been used in the context of Bayesian Optimal Experimental
Design.

Finally, we thoroughly evaluated our method in four experiments, ranging from the
classical Mountain Car to two complex robotic manipulation tasks. All environments were
specifically designed to be challenging to explore, with three of them containing dead-ends
that can trap the agent in an irrecoverable state. Over the course of these experiments, we
showed that our method induces systematic exploration behavior and is capable of solving
even the most challenging of these environments. Neither the non-intrinsic configurations,
nor the maximum entropy method SAC managed to solve the robotic manipulation tasks.
Hence, we conclude that the information seeking behavior of our agents is beneficial for
solving hard exploration problems with sparse rewards.

Limitations and future work

As mentioned before, an issue of our method is the limited ability of the CEM planner
to find globally optimal policies. This issue could be tackled by replacing our planner
with a more sophisticated algorithm, like Monte Carlo Tree Search (MCTS). MCTS had
remarkable success in the application to board games [73, 74], and is also applicable on
continuous action spaces [75, 76]. In MCTS, one makes use of a policy to decide which
actions are worth pursuing and which are not. A challenge that would arise from using
MCTS for Active Inference is that the policy would have to be trained to predict interesting
actions. However, unlike in regular RL problems, where the optimal Q function is fixed,
our notion of an interesting action constantly changes due to the intrinsic term. Hence,
one would either have to ignore the intrinsic term during training of the policy or find a
way to track the changing values of the intrinsic term with the policy. Recently, the latter
method has been used on two pixel-based RL tasks [77].

Another issue of our method is the large number of episodes the agent requires to un-
derstand the environment and solve the task. Since our agents start their tasks with no
prior knowledge, they do not have any choice but to exhaustively search the entire state
space for reward. Hence, an interesting future research direction is to provide the agent
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with inductive biases that allow them to generalize more quickly and learn the model in
fewer episodes. In prior work inductive biases have been introduced to neural networks
modelling fluid systems [78] and robot dynamics [79].

A further potential future research direction is to extend our approach to work with
POMDPs instead of MDPs. The merit of such an extension is that it enables the method to
work on visual data, where typically the system state cannot be fully observed. In the
context of robotic manipulation, processing visual data is particularly interesting, as it
allows the incorporation of vision based tactile sensors [80, 81].
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