
Learning Tactile
Representations from
Vision-Based Tactile Sensors
for Robotic Architectural
Assembly
Lernen taktiler Repräsentationen von kamerabasierten taktilen Sensoren für robotische
architektonische Montage
Master thesis by Frederik Wegner
Date of submission: September 4, 2021

1. Review: Boris Belousov
2. Review: Niklas Funk
3. Review: Dr. Roberto Calandra
4. Review: Prof. Jan Peters, Ph.D.
Darmstadt

Abstract

The tactile feedback from our human sense of touch enables us to do precise contact-rich
manipulation that outperforms the capabilities of state-of-the-art robotics. Advancement
in the development of tactile sensors yielded visual tactile sensors that provide high-
resolution tactile feedback. While other areas of robot learning can use simulations to
progress rapidly, this is not the case for tactile manipulation as correct and fast modeling
of contact physics remains a challenge. We present Assembly Gym, a framework that
enables quick development of tactile contact-rich assembly tasks for a physical robotic
setup involving a robotic manipulator with visual tactile sensors and object tracking. With
Assembly Gym, a challenging assembly task is set up and a large dataset of assembly
episodes is sampled. Using autoencoders we learn an unsupervised representation of the
tactile sensor images of our dataset. We show that such representations are task-relevant
and can be used to learn the transition function of a complex multi-modal environment.
By carrying out numerous experiments, we provide insights into the key aspects and
parameters that can make representation and model learning successful. Finally, the
learned transition model of the environment is combined with a trajectory planner for
model predictive control.

Zusammenfassung

Die taktile Rückmeldung unseres menschlichen Tastsinns ermöglicht uns präzise, berüh-
rungsintensive Manipulationen, die die Möglichkeiten der modernen Robotik übersteigen.
Fortschritte in der Entwicklung von Tastsensoren haben zu visuellen Tastsensoren geführt,
die hochauflösendes taktiles Feedback liefern. Während die Simulationen in anderen
Bereichen des Roboterlernens rasch voranschreiten, ist dies bei der taktilen Manipula-
tion nicht der Fall, wo die korrekte und schnelle Modellierung der Kontaktphysik eine
Herausforderung bleibt. Wir entwickeln Assembly Gym, ein Framework, das die schnelle
Entwicklung von taktilen, kontaktbasierten Montageaufgaben für einen physischen Ro-
boteraufbau, bestehend aus einem Manipulator mit visuellen Berührungssensoren und
Objektverfolgung, ermöglicht. Assembly Gym wird verwendet, um eine anspruchsvolle
Montageaufgabe zu implementieren und einen großen Datensatz von Montageepisoden
zu erfassen. Mit Hilfe von Autoencodern lernen wir unüberwacht eine Repräsentation
der taktilen Sensorbilder in unserem Datensatz. Diese Repräsentation wird anschließend
für Experimente verwendet, um die Zustandsübergangsfunktion unserer multimodalen
Umgebung im latenten Raum zu approximieren. Durch die Durchführung zahlreicher
Experimente gewinnen wir Einblicke in die Schlüsselaspekte und Parameter, die eine un-
überwachte Repräsentation und das Modelllernen erfolgreich machen können. Schließlich
wird das gelernte Modell unserer Umgebung mit einem Trajektorienplaner kombiniert,
um die Steuerung durchzuführen.

Erklärung zur Abschlussarbeit
gemäß §22 Abs. 7 und §23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Frederik Wegner, die vorliegende Masterarbeit ohne Hilfe Dritter
und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen,
die Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit
hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
Mir ist bekannt, dass im Fall eines Plagiats (§38 Abs. 2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.
Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung gemäß §23 Abs. 7 APB überein.
Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Darmstadt, 4. September 2021
F. Wegner

Contents

1. Introduction 2
1.1. Related Work . 4
1.2. Outline . 6

2. Assembly Gym 7
2.1. Hardware Components . 8
2.2. Software Architecture . 12

3. Learning Tactile Representations 15
3.1. Tactile Robotic Assembly Task . 15
3.2. Deep Model Predictive Control . 18
3.3. Learning the Transition Function . 19
3.4. Data Sampling . 24
3.5. Cross Entropy Method . 26

4. Experiments 28
4.1. Dataset . 28
4.2. Autoencoder . 32
4.3. Transition Model . 40
4.4. Control on Real System . 45

5. Conclusion 52

6. Outlook 54
6.1. Towards Robust Representations . 54
6.2. Sampling-Based Trajectory Planning . 55
6.3. Model Free Learning . 56

A. Appendix 60
A.1. Autoencoder Experiments . 60
A.2. Transition Model Experiments . 66

1

1. Introduction

Humans are remarkable at manipulating objects with their hands and robotics is still far
away from catching up. One essential property that enables our precise manipulation
skills that are also robust to variation and imperfect information is our human sense of
touch [1, 2]. With our skin we are able to sense the surface structure of an object, if
something is slipping through our fingers, how much force we are applying with our hands
or the precise location of a small object between our fingertips.
Essentially tactile sensing is a requirement for a variety of robotic tasks such as mani-
pulation, exploration, grasping or human-robot interaction [3]. In consequence, tactile
sensors were developed that equip a robot with a sense of touch. Such sensor designs
vary in resolution and complexity, ranging from a one dimensional force sensors, to 6D
force-torque sensors, to high resolution vision based sensors.
Vision-based tactile sensors are not a new concept but recent development has produced
sensors with higher resolution, precision and in some cases even lower manufacturing costs
when compared to other tactile sensors [4, 5]. These advancements provide additional
possibilities of sensing touch that can be used to develop improved control policies for
contact-rich manipulation.
Basic tactile sensing has been successfully used to improve control for multiple manipu-
lation tasks [3]. But while control solutions with non-vision-based tactile sensors show
a high degree of generalization for complex tasks [6, 7, 8], vision-based tactile sensor
applications often still require some task-specific hand-designed features to process the
raw sensor images [9].
Although the use of tactile sensor images without hand-crafted features has been demon-
strated in principle [10], we argue that evaluation on more complex tasks is needed to
further the widespread use of vision-based tactile sensors for manipulation. Another
aspect of high resolution vision-based tactile sensors is that they are very hard to model

2

and to simulate. Thus, experiments on a physical systems are required where the amount
of sampled data is usually highly restricted.

Figure 1.1.: Our contact rich tactile robotic as-
sembly task of joining SL-Blocks.
The robot is pictured during data
sampling.

Assembly: A Complex Contact-Rich Mani-
pulation Task Assembly is by its very na-
ture a contact-rich task in an unstructured
environment, as tracking of objects is im-
paired by occlusions, calibration errors and
manufacturing tolerances.
In these scenarios tactile sensors are most
relevant [11], whereas in structured envi-
ronments contactless sensing may be suf-
ficient. When assembling two components
together, we need to stably grasp objects,
estimate the precise relative positions be-
tween the parts and the manipulator, de-
tect collisions between parts and detect
when the part is slipping between the fin-
gers of our gripper. Tactile sensors can
provide the capabilities needed to perform
such state estimation tasks [3].
Therefore, we consider tactile robotic as-
sembly as one of the major current chal-
lenges of robotics and tactile sensors as a
catalyst for advancements in this field of
research [12, 13].

1.0.1. Contributions

This thesis investigates unsupervised representation learning from vision-based tactile
sensors for control in a complex multi-modal assembly task. We believe that the availability
of ready-to-use physical learning environments and data from physical systems is a key
driver of research for tactile control. Therefore, we develop a framework that allows
quick implementation of gym-style reinforcement learning environments on a UR10 robot
with Robotis gripper and DIGIT tactile sensors combined with OptiTrack and/or AprilTag

3

tracking. The architecture and design principles of this framework are presented and a
challenging contact-rich tactile robotic assembly tasks is implemented.
With a large dataset collected from our setup, we learn to extract tactile representations
in an unsupervised manner by training a convolutional autoencoder to encode the sensor
images. Through numerous learning experiments, we provide insights into the key
aspects of successful tactile representation learning such as network architecture and
hyperparameters. These representations are then used to learn the transition model of
our multi-model environment. We compare different approaches to sequence prediction
models for planning regarding single- and multi-step forward prediction. Finally, we
combine our learned model with a CEM planner to perform model predictive control.

1.1. Related Work

We structure our review of related work by the type of tactile sensor that was employed:
non-vision-based tactile sensors and vision-based tactile sensors.

1.1.1. Non-Vision-Based Tactile Control

As tactile manipulation is a large field of research, we only present research that is relevant
for our range of assembly tasks. Reinforcement learning has been used to learn policies
for contact-rich manipulation tasks with tactile feedback from force-torque sensors and
low-resolution force sensor arrays. [6, 8, 7].
The solved tasks range from opening a door to simple peg-in-hole-assembly to plugging
real-world power plugs into power sockets. The tactile sensor used for the door opening
task is designed as a grid of simple one-dimensional force sensors on the fingertips of the
gripper. Therefore it can be modeled reliably and a policy can be optimized in simulation
with deep reinforcement learning [8].
By using self-supervision to learn a latent representation of the observations of the en-
vironment, sample efficiency can be improved, thereby enabling reinforcement learning
on the real setup [6]. The learned latent representation fuses input of an RGB camera
capturing the whole scene and a force-torque sensor mounted in the wrist of the gripper
to solve the peg insertion tasks.

4

Using heavy data augmentation and reformulating the problem as simple regression,
instead of using the arguably more complex reinforcement learning framework, more
difficult insertion tasks have been solved with a high degree of generalization [7]. Two
wrist mounted cameras and a force-torque sensor are used as feedback to the control
policy.

1.1.2. Vision-Based Tactile Control

Methods of using high resolution vision-based tactile sensors for control differ in the
processing of the sensor images. Markers can be embedded into the gel which can be
tracked [14, 15] to estimate the deformation and forces on the surface of the sensor. By
extracting contact points and contact forces from the image of the deformation of the
tactile sensors gel pad, control laws for manipulation can be designed [16, 14, 9]. Contact
points and forces between the robot and the object are computed from colored shading or
tracked markers measuring the deformation of the sensor surface. These contact points
are then used to obtain the precise location of the object under manipulation. While
approaches using handcrafted tactile representations yield working control policies that
accomplished their respective task, they do not involve any form of learning and are
therefore only applicable to a specific setup.
Improving on this, convolutional neural networks can be used to directly process the raw
sensor image without the need of hand-crafted task-specific feature extractors [10, 5].
A ConvLSTM could be trained to predict sequences of tactile sensor images from a ball
manipulation task [10]. An end effector with an attached vision-based tactile sensor rolls
a ball or dice over a surface towards a target location. The learned predictive model can
then be used for deep model predictive control to correctly roll the objects on the table to
a desired goal state.
A more complex task of manipulating a ball between two fingers of an Allegro robotic hand
equipped with DIGIT tactile sensors was solved with a similar but slightly less general
approach [5]. Instead of using a ConvLSTM a variational autoencoder is trained encode
the image into multiple key points from which a decoder can reconstruct the image. An
RNN is then trained to predict future key points according to an applied sequence of
actions such that the task can again be solved with deep model predictive control. We view
this approach as less general as key points are local, spacial features and may struggle
to properly encode global features. While the position of a ball on the sensor gel can be
represented by a set of points, the ultimately much more complex full tactile state of the
DIGIT sensor, including forces, torques and texture continuously over a surface, can hardly

5

be mapped to a set of key points. We based our work on this general setup [5] but instead
of extracting key points we use a fully unsupervised autoencoder that compress the tactile
sensor images into a global unconstrained representation of the image.
We also choose deep model predictive control because it is more sample efficient while
staying competitive in performance compared to model-free reinforcement learning [17].
The choice for a sample efficient method is particularly important as it is not yet possible
to fully simulate vision-based tactile sensors. Although recently a new simulator for
visual tactile sensors [18] has been developed which simulates the tactile sensor images
realistically, it is limited in the mechanical simulation of the deformable gel on the surface
on the sensors. Its usage is therefore restricted to low-contact tasks such as grasp stability
prediction and can not sufficiently simulate our contact-rich assembly scenarios.

1.2. Outline

Chapter 2 introduces our Assembly Gym task and learning framework together with the
physical lab setup. Chapter 3 presents our methods. Firstly, the assembly task that we
implemented in our framework is introduced as a reinforcement learning environment,
together with our data sampling methods. Secondly, we explain how we learned the
transition of that environment, and how it can be used for control. Then chapter 4 presents
the important findings of our experiments. The full details of our experiments result in
the appendix. After summarizing our findings in chapter 5, we give an outlook on future
research opportunities that our work enables in chapter 6.

6

2. Assembly Gym

Setting up the lab environment for robot learning experiments is a tedious task. A physical
environment with a real robot is interfacing with multiple hardware components that
each need individual drivers and setup. As a result, researchers tend to stay in simulation
or only set up a minimal task that can be hard coded quickly. To overcome this issue and
to enable further research in robotic assembly, we set up Assembly Gym. Assembly gym
is a learning interface for robotic tactile assembly that provides a simple framework to
implement complex tasks involving 6DoF manipulation with object tracking and tactile
sensing. The physical setup consists of a robotic manipulator, tactile sensors and a tracking
system. Assembly involves the manipulation of multiple objects to assemble them into a
structure which usually requires a form of object localization. For this, our setup provides
two tracking systems: an RGB camera combined with AprilTag fiducial markers as well as
OptiTrack—a precise motion capturing system based on infrared cameras and reflector
markers.
The Assembly Gym framework allows us to quickly define new gym-style reinforcement
learning environments that we can subsequently start experimenting on for develop-
ing control solutions. To make an adoption of this setup possible we will present the
architecture and key design concepts.

Interchangeable Simulation And Real Robot Interfaces When evaluating controllers
that were developed in simulation on a physical robot setup, reimplementing or adapting
the environment to the real robot interfaces is time consuming and tedious. We designed
a generic environment interface that is implemented by both the simulation engine and
the drivers for the physical setup.
This architecture makes it possible to develop the core functionality of a reinforcement
learning environment such as reward function, action and observation spaces and focus
solely on the design of the task. When transferring results from simulation to reality and

7

vice versa, only the back-end of the environment has to be replaced. As simulation of
DIGITs is currently not possible we dropped support of the simulation environment for
our experiments but this feature remains relevant when used with tactile sensors that can
be simulated.

2.1. Hardware Components

Our setup, pictured in Figure 2.1, has three important hardware components. A six
degrees of freedom (6DoF) manipulator with a gripper, tactile sensors and a precise
tracking system. All of the specific hardware components are actually interchangeable,
but during setup of the environment we noticed a few key features that are needed for
robotic tactile assembly.

Manipulator Our manipulator is a 6DoF UR10 robotic arm with a Robotis RH-P12-RN-A
gripper attach to its end-effector. Being a collaborative robot the UR10 is particularly
suited for our contact rich assembly setup as it provides safety features that make safe
exploration in the environment easier. We use the Robotis RH-P12-RN-A because it has a
low level control API that allows actuating the gripper by current which is needed when
mounting tactile sensors to it. The gripping strength needs to be set accordingly so that
the silicon gripping surface of the tactile sensor is not damaged.

Tactile Sensor Many different visual tactile sensors have been developed, each of them
having their own advantages and disadvantages [11]. We chose the DIGIT design [5] as
it is open source and could be produced in house at moderate cost. The fact that it is
manufactured by us gave us the possibility to improve and adapt it to our needs. The DIGIT
tactile sensors replace the finger tips of our gripper. Figure 2.3 explains how vision-based
tactile sensors work and provides example images captured by our DIGIT sensors.

Tracking system As previous work on robotic assembly used AprilTags as an object
tracking system [6], we initially employed them too in our setup. However, during devel-
opment, we faced multiple issues regarding precision, noise and calibration difficulties.
Research using AprilTags regards noise as a key challenge that can be tackled with RL
policies able to derive precise control from noisy observations. Because this challenge is

8

Figure 2.1.: Overview of the lab setup showing all hardware components. Four of the six
used OptiTrack cameras surrounding the scene can be seen in the image
(red). In the center is the UR10 with Robotis Gripper and DIGIT tactile sensors
joining an SL-Block into a structure of SL-Blocks fixed to the table. In front of
the table stands an RGB camera that, in combination with AprilTags, can be
used alternatively to OptiTrack.

9

 Driver System, Py2.7 Gym System, Py3.8

Optitrack
System

Windows

joint states
Robot Arm Driver

Gripper Driver

tracked object
transforms

Apriltag Driver
Camera Driver

Optitrack Bridge

image frames
DIGIT Driver DIGIT Sensor

Gripper
(RH P12 RN A)

Camera / Lidar
(Intel Realsense)

6 DoF
Manipulator

(UR 10)

Real Environment

Optitrack Cameras

target joint angles,
tcp pose, protective stop

 unlock ...ASYNC
Arm Daemon

position, currentASYNC
Gripper Daemon

ASYNC
Part Daemon

ASYNC
DIGIT Daemon

Arm

Gripper

Part

DIGIT

Gym Env

Figure 2.2.: Implementation of the RealEnvironment for our physical setup also seen in
Figure 2.4. Green boxes are ROS nodes. Orange boxes are asynchronously
running threads. Grey boxes are operating systems. The implementation
runs in two different environments on separate machines. On the left is
the machine that runs the user code in the assembly-gym framework. Each
component of the Environment is implemented pairedwith an asynchronously
running daemon that handles the communication with the drivers over ROS.
These daemons subscribe and publish ROS topics while asynchronously
reading and writing state from and to the component. This state is then
accessed by the user through the generic component API.

10

(a) (b)

Figure 2.3.: (a) Schematic cross-section of a DIGIT sensor. A ring of differently colored
LEDs mounted around the plexiglas base of the gripping surface illuminates
the silicone laterally to its surface. This illumination is visualized by the green
light ray coming from a green LED located at the bottom of the schematic.
Because light coming from different directions is also differently colored,
the deformation of the surface can be perceived. A camera in the back of
the sensor captures a view of the inside of the illuminated gel. Various gel
pads can be used that differ in surface texture or opacity. We primarily use
smooth textured gels with a thin coat of white paint. (b) Two example images
captured by the cameras of two DIGIT sensors. The sensors are used as
the fingertips of a gripper and are seen grasping an SL-Block. Because the
coating of the gel is not fully opaque the layers of the MDF wood the block is
made of are visible in the image. The orange blob in the bottom is the edge
of the block strongly deforming the gel.

11

core

MyController

MySensor

MyReward

MyTask

PyBullerEnvironment /
RealEnvironment

BaseEnv

__init__

initialize(Environment, ...

environement

Controller

initialize(Environment, ...

Sensor

initialize(Task, ...)

Reward

initialize(Task, ...)

Task

initialize(Environment, ...

calls

«abstract»
Environment

«abstract»
Robot

«abstract»
RobotComponent

«abstract»
Object

simulation pybullet realgeneric

«abstract»
SimulationEnvironment

PybulletEnvironment

RealEnvironment

RealEnvironmentConfig

RealRobotConfig

RealDIGITConfig

...

Figure 2.4.: Core components of the Assembly Gym framework. White boxes are objects
instantiated in user code. These components are then composed by the
BaseEnv which is the actual Gym-style Env. The orange boxes sketch out the
structure of the Environment. A generic interfaces is implemented by both
simulation and real Environment ensuring Interchangeability. This can be
extended arbitrarily for example to additional simulations. Not all generic
components are listed, visualized by the white dotted box.

not the scope of our work we prefer a tracking system as precise and reliable as possible
and therefore also set up OptiTrack.

2.2. Software Architecture

This section motivates and describes important software design concepts that we consid-
ered during development.
For technical reasons, our implementation is split into two code bases that in our case also
run on different machines (Figure 2.2). One code base for all Python code implementing
our user interfaces and a second for all back-end, driver level code in the ROS framework.

12

2.2.1. Gym Env Framework

The Gym-Env Framework is the user facing part of Assembly Gym that can be used by
researchers to quickly implement a new OpenAI-Gym-style environment. Gym-style means
we do not strictly match the OpenAI Gym API but stick with the common step: action →
(obs, rew, done, info) and reset: → obs interface. Because our framework is based on a
physical setup there is no use case as a benchmark environment.

Terminology We use the terms (Gym-)Env and Environment which name the front-end
and back-end of the environment. The Env provides the interfaces and behavior of a
typical reinforcement learning environment while the Environment is the back-end this
environment is based on. Such a back-end could be a simulator (e.g. PyBullet or Mujoco)
or interfaces to an actual physical lab setup.

Composition Our software design is guided by the composition pattern. The environment
is instantiated as a hierarchy of components such that the structure of components is
visible on the highest level.
Using composition allows researches to define multiple components that can be exchanged
with minimal effort enabling quick and agile experimentation with the environment setup.
This design decision reflects the uncertainty of research projects. A researcher may be
undecided whether to use position or velocity control and therefore implements two
interchangeable components.
In this regard, we decompose our BaseEnv into the abstract components Controller, Sensor,
Reward , Task and Environment as visualized in Figure 2.4. Controller, Sensor, Reward and
Task are called from the BaseEnv and are given the Environment on which they operate.
The Controller receives an action and the Environment executes that action by calling
the Environment. The Sensors and the Reward receive the Task and extract and return
observations and a reward. The Task is the most complex component as it defines the
task-specific behavior, such as ending the current episode or keeping a state needed to
compute the reward function, by implementing a step and reset function.
The Environment is decomposed into typical components of a robotic setup. In our case
of tactile robotic assembly these are a Robot composed of RobotComponents such as an
arm and a gripper as well as tracked Parts and DIGIT tactile sensors. These components
are designed as generic interfaces that are then implemented by a concrete Environment.

13

Serializable Global Top-Level Configuration All important configuration parameters are
defined on the highest level in the user code and then passed down through the component
hierarchy. The concept of global centralized configuration is particular important in the
domain of research. Often the code is a part of the experiment and parameters need to be
tweaked to achieve results.
We want to ensure that the user can overview all of the parameters that have an effect on
the behavior of the environment in one place. By preventing unintended misconfiguration,
the parameter tweaking process can be speed up. While experimenting, one wants to
log the parameters of the environment together with the experiment results to provide
context and reproducibility. Our global top level configuration is therefore serializable.

Real and Simulation Environment Designed as an abstract component the Environment
can have multiple implementations that can be used interchangeably. In our case we
implemented a RealEnvironment based on to the real physical setup in the lab and a
SimulationEnvironment based on PyBullet. Due to the simulation difficulties with the
DIGIT sensors (see chapter 1) we dropped support of the SimulationEnvironment but
the concept still remains relevant. While the SimulationEnvironment interfaces with the
PyBullet physics engine, the RealEnvironment interfaces with the drivers of the different
hardware components over ROS.

14

3. Learning Tactile Representations

This section describes our approach to learning tactile representations. First we give an
overview of the pipeline and then proceed by describing each component in detail.
The general idea is to learn a controller that solves a task that can only be completed with
tactile feedback. If we can learn such a controller, we imply that it has learned to form a
tactile representation from the DIGIT images that it is using internally.
The first component that we need to learn a tactile representation is a challenging tactile
task. Secondly we need a method for learning a controller and thirdly some way of
validating that the control model actually extracts a representation from the tactile sensor
images and does not use some other simplified heuristic.

3.1. Tactile Robotic Assembly Task

Using the Assembly Gym framework, we implement a challenging assembly task with
an architectural application domain. SL-Blocks Figure 3.1a were designed by architects
as universal building blocks which can be combined into arbitrary shapes. Their highly
non-convex shape makes it possible to interlock the blocks such that they cannot be
pulled apart easily anymore. While this property gives the possibility to build bridges or
overhanging structures, as seen in Figure 3.1b, it also makes assembling them particularly
difficult. When putting SL-Blocks together high friction can be created and there are
several contact points.
We consider a simplified setup of the SL assembly task depicted in Figure 1.1. An already
assembled structure is fixed to the table and a new SL-Block is joined into the structure by
the robot. The environment provides the tracked position of the SL-Block. All poses in the
environment, the pose of the gripper as well as the pose of the SL-Block, are given relative
to the target, assembled pose of the SL-Block such that the task is framed as moving the

15

(a) Close up view of the SL-Blocks that is joined in our sim-
plified setup. The QR-codes on the block are AprilTag
fiducial markers. The grey balls are OptiTrack markers.
Because the AprilTag marker tracking is not very pre-
cise and robust to changes in lighting and occlusions
OptiTrack was used. But as the tracking balls make
the assembly of multiple parts impossible AprilTags or
even markerless object-based tracking stays relevant.

(b) Large scale structure as-
sembled from SL-Blocks
by architects. The struc-
ture is around two meters
tall. Other elements that fit
the joining mechanism of
SL-Blocks have also been
added.

16

SL-Block to the origin. We therefore design the reward function naturally as the pose
distance of the SL-Block to the origin.

Reward The reward r is the negative distance d between the pose of the moving block
p and the target pose p̂. Because everything is transformed into the target pose frame
the target is the origin p̂ = (t0, r0). The distance between poses is a weighted sum of
translation and rotation distance d(p, p̂) = α · d(p, p̂) + (1 − α) · d(p, p̂) combining two
values with different units. As translation distances are in the range of centimeters and
rotations in radiants, we set alpha = 0.9.

Action Space A 6DoF robotic manipulator provides multiple control modes. We choose
Cartesian space control over joint space control. Controlling in Cartesian space makes
constraining and sampling the action space easier for us as it is easier to visualize and
comprehend then joint control. We initially aimed for Cartesian force or velocity control
but were unable to achieve real-time control performance with our setup and therefore
had to fall back to position control making the task time-discrete. Intuitively, Cartesian
force control or wrench control is the desired control mode as it seems most suited for
the task. The torques and forces in Cartesian space that are applied by the manipulator
directly correlate with the tactile feedback. We leave comparison of control modes to
future work.
An action in the environment is therefore the next pose of the gripper in the transform of
the target pose of the SL-Block given as a position and quaternion.

Observation Space The observation space is multi-modal as it consists of images of the
DIGITs and poses of the gripper and SL-Block. All poses coming from the environment
are 7-dimensional vectors px, py, pz, ωx, ωy, ωz, ωw The images from the DIGIT sensor are
three channel RGB with resolution of a resolution of (w: 240,h: 320).

Reset A fully autonomous reset of the environment is desirable when sampling a large
dataset. The reset procedure of our task involves picking up the SL-Block, either pulling
it out of the structure if the last episode joined successfully or picking it from the table.
As we do not have an implementation of regrasping, the human overseeing the sampling
process is notified if the SL-Block rolled into an unreachable position such that it can be

17

w
in
d
o
w

h
o
ri
zo
n

action

Figure 3.2.: The general architecture of the model learning setup. We have encoder and
decoder networks that compress the images of the DIGIT sensors into a
latent space. To this we also add the poses of the gripper and SL-Block to
obtain one state as seen by the transition model. The gray shades visualize
that the model takes a window of multiple past states as input and then
predicts multiple steps into the future. The DIGIT state is predicted in latent
space and then decoded to an image.

reoriented manually. Most of the replayed trajectories result in a successful joining of the
block such that human interaction is minimal.

3.2. Deep Model Predictive Control

While model free reinforcement learning has been successfully applied to solve tactile
assembly tasks [7], it has not yet been used with high resolution visual tactile sensors. On
the other hand, it has been shown that model based reinforcement learning with deep
model predictive control can successfully learn tactile control policies with high resolution
visual tactile sensor input [5, 10]. For this reason, we choose to pursue with deep model
predictive control as control method.
Model predictive control is a classical control approach. With the state transition or
dynamics function of a system a trajectory of future action can be optimized according
to a cost function. Deep model predictive control applies this concept to Reinforcement
Learning by learning an approximation of the state transition function from data tuples
(st, at, st+1) sampled from the environment. Then, using this transition model and as-
suming the reward function is known, the reward or cost of a trajectory of future actions
(at, ..., at+h) can be estimated and optimized for, resulting in optimal control. In case the
reward function is unknown it can also be learned from data from the environment.

18

As the learned transition model is approximate and highly non-linear, a stochastic opti-
mization technique is used to find optimal actions. We employ the Cross Entropy Method
(CEM) for planning as it was used by previous work and is easy to implement.

3.3. Learning the Transition Function

From data tuples (on, an, on+1), composed of the n-th observation on, action an and the
observation of the next time step on+1 sampled from the system, the transition function
t : (on, an) → on+1 is approximated by a neural network. As feeding a full image into
a fully connected network is infeasible, the images have to be compressed to a lower
dimensionality by an encoder network for which we use a convolutional neural network.
The resulting network architecture and training setup is depicted in Figure 3.2.
To give a good initialization the encoder and decoder networks are pretrained with a
simple reconstruction loss. During training of the whole transition function a reduced
learning rate is used for the autoencoder parameters and the reconstruction loss is added
as a component of the combined loss function.

Window and Horizon The most standard way of learning the transition function would
be a simple supervised learning setup where the network gets the last observation and
action as input and should predict the next observation. on+1 = f(on, an) This setup
corresponds to a window of formerly seen observations of 1 and a prediction horizon of 1.
As the observation space neither includes forces nor velocities, one single observation does
not give sufficient information on the state of the system.
By feeding a sequence of past observations into the system we give it the possibility to
differentiate and use this additional information for better predictions. For example,
suppose the gripper is holding a block in his hands and moves it towards the floor. At
some point the block will collide with the floor and will therefor not move further down
but the gripper will keep moving for a few time steps until it collides too. Recognizing
this is only possible with knowledge of the velocities of the block and the gripper.
Considering the example above, we hypothesize that a window of multiple past observa-
tions as input can make the model more robust to noise and offsets in the observations.
A similar principle also holds for the output of the model. By training to correctly predict
multiple steps into the future it has to internally predict a derivative of the future state.

19

Trajectory prediction instead of state prediction improves accuracy for long term predictions
as well as sample efficiency during training [19].
We treat the window w and horizon h as two important hyperparameters of our model.

3.3.1. Parallel and Recursive Multi-Step Prediction

Predicting a trajectory can be achieved by either recursively calling a single step prediction
model on its own output:

(on+1) = f(on−w, an−w, . . . , on, an)

...
(on+h) = f(on+h−w, an+h−w, . . . , on+h−1, an+h−1)

Or by simply learning a multi-step model directly as one forward pass:

(on+1, . . . , on+h) = f(on−w, an−w, . . . , on, an, . . . , an+h−1)

During our experiments we consider both training approaches. The transition function f is
approximated by a standard multi layer feed forward neural network with ELU activation.

Predicting Deltas The observation space is continuous and future states are therefore
close to previous states. Letting the model predict a delta on the previous state instead of
the absolute value increases the speed of learning.

on+1 = on + f(on, an)

As we are using Xavier Initialization,which is a commonly used, the network activations
are initially mean zero. Thus, training the model to predict deltas is best suited to this
initialization.

20

3.3.2. Multi-Part Loss Function

A system observation consists of image measurements as well as object poses which
themselves are composed of a position and a rotation. Thus the function that defines the
loss between a predicted observation ô and the true observation o, L(o, ô) has multiple
parts L = LI + LL + LP + LR for images, latent images, positions and rotations.
Using a multi-part loss function the question arises how to correctly aggregate the losses.
If one component is substantially larger than the others it will be minimized dispropor-
tionately. In our case, we are dealing with a loss on positions and quaternions which are
in different ranges of values. By simply summing the components of the loss as they are,
the model would mostly optimize for predicting correct orientations.
The question of how to optimally weight the components of a multi-part loss is quite
difficult to answer. Our solution to the problem comes from a different direction. Inputs,
targets and predictions are normalized component wise to a standard normal distribution.
This way, the losses are already in a more similar range. Some additional hand-tuned
weights are then added but this is rarely necessary.
As image reconstruction loss the Structural Similarity Index Measure (SSIM) is used which
outperforms the more widely used l1 and l2 loss functions. [20]

LI = 1− SSIM(I, Î) (3.1)

The transition model predicts images in latent space. We have to assume that the latent
space is well-formed to some extent and therefore also use the Euclidean distance in that
space. Since a multi-part loss function is used we need to assure that the individual losses
are in a normalized range. Distances increase with the dimensionality of the space such
that we would have differently scaled losses for different latent space dimensionality. This
increase from dimensionality is counteracted by normalizing the distance with the square
root of the dimensionality m of the latent space:

LL =

√︂∑︁m
i=1 (Li − Lî)2

√
m

21

The positions are defined in 3D Euclidean space thus we naturally define LP as the
Euclidean distance:

LP =

⌜⃓⃓⎷ 3∑︂
i=1

(Pi − P̂ i)2

Because we represent orientations with quaternions it would be natural to use the angle
of the difference rotation between prediction and target. However, this led to issues
during training, which we attribute to the use of arccos and the fact that we are predicting
deltas and therefore also comparing very small delta rotations. We therefore pivoted to
simply using the mean squared error which works because quaternions are a continuous
representation of orientation.

Evaluation Metrics To compare models trained under different conditions evaluation
metrics are needed. Evaluation metrics are applied to unnormalized values. For positions
and latent space images the Euclidean distance is used. The standard unit for positions is
meters. Orientations are compared by the angle of the difference rotation in radiants.

dθ = cos−1(2⟨q1, q2⟩2 − 1.0)

where ⟨·, ·⟩ is the scalar product.

3.3.3. Pretraining DIGIT Autoencoder CNN

The left and right DIGIT images are encoded into a latent representation with an autoen-
coder trained on SSIM-loss Equation 3.1. The encoder is composed of multiple convolution
blocks and an MLP that aggregates and compresses the features of the last convolution
block into the latent dimension. The decoder is constructed as a mirror to the encoder
using transpose convolutions in place of convolutions. A convolution block is a convolution
followed by a batch normalization and an activation function.
Since the two DIGIT sensor images actually represent one measurement at one point in
time, it intuitively makes sense to encode them jointly. However, due to manufacturing
imperfections, the images of the DIGITs look different even when measuring the same state.
Therefore, learning specific parameters for left and right DIGITs is also reasonable. We
consider multiple modes of separately and jointly autoencoding DIGIT images, visualized
in Figure 3.3 that vary in the amount of shared parameters. We hypothesize that encoding

22

no share

I1 I2

CNN CNN

MLP MLP

concat

l

share CNN

I1 I2

CNN CNN

MLP MLP

concat

l

share mlp

I1 I2

CNN CNN

MLP MLP

concat

l

share MLP
and CNN
I1 I2

CNN CNN

MLP MLP

concat

l
concat CNN
features
I1 I2

CNN CNN

concat

MLP

l

concat
shared CNN
features
I1 I2

CNN CNN

concat

MLP

l

concat inputs

I1 I2

concat

CNN

MLP

l

Figure 3.3.: The different architectures for the autoencoder that encodes the left and
right DIGIT images. Equal color and shade mean shared parameters. share
MLP and CNN is usually referred to as share-all and no share is referred to
as default.

23

the images jointly results in a more cost efficient encoding that is also shaped more suitable
to the task.

Variational Autoencoder Variational autoencoders are trained with an additional loss
term that regularizes the latent space towards a gaussian normal distribution. [21] As the
transition model will predict in the latent space of the autoencoder, a more well formed
representation can be advantageous. Variational autoencoders have been effectively used
to encode images for transition model learning by previous work [22, 23].
Similar to [24] we introduce a weighting term β balancing the reconstruction and KL-
Divergence loss. Instead of finding a suitable fix β, we gradually increase beta during
training such that the variational autoencoder learns to encode the variance of the data
before normalizing the representation (see subsection A.1.3).

3.4. Data Sampling

Figure 3.4.: A human performing the task repeatedly while the trajectory of the block is
recorded by the tracking system. The state space is sampled close to the
goal state.

In order to learn the transition function of the system we need to sample a large dataset
(>10k samples) for offline learning. This data should cover as much of the relevant state
space as possible. In our case such a dataset cannot be sampled from random actuations
to the system because we would not get any data from the states during joining, when
the block is beginning to slide into its slot. We sample the data from a set of recorded
hand demonstrations (see Figure 3.4 that are then replayed by the robot. To increase
the variance of the data without the need of recording additional demonstrations the
recordings are noised and also interpolated to obtain new trajectories.
A hand-recorded trajectory is a sequence of SL-Block pose measurements.

24

3.4.1. Trajectory replay

Figure 3.5.: Hand recorded trajectories of the block position, rotations are not visualized.
As they are in the coordinate frame of the target position for the block they
converge to zero. The blue arrows point to the next position in the trajectory.
The black line is an interpolated trajectory.

Based on Cartesian pose control and simple linear transformations, we implement a
controller that moves the SL-Block along one of the recorded trajectories. The output
of the controller is the next pose of the gripper. The controller traces the points of the
trajectory one by one. If the next SL-Block pose in the trajectory is not reached by the
last executed action the controller tries to move the gripper again such that the SL-Block
reaches its next pose. This means that all poses in the trajectory have to be reached at
least once. If the SL-Block is not reaching its desired next pose after executing an action
then the grasp pose has changed due to some collision. If the grasp pose changes too
much from its initial value the replay is aborted to prevent damage to the gels pads of the
DIGITs.
Noise is applied to the next action issued by the trajetory trace controller, before it is
executed by the robot, but not to the trajectory itself. That means that even with larger
noise the controller will reach all points in the trajectory, if it does not lose grip of the part
along the way. This sampling technique allows us to sample new states close to the the
already recorded states while it does not enable us to sample entirely new trajectories.
To also sample entirely new trajectories the hand demonstrations are interpolated in

25

trajectory space with a k-means algorithm Figure 3.5. Starting from pose s0 = (p, ω), k
nearest neighbouring states according to l2 distance n1, ..., nk are taken. Then for each of
these known state we obtain the vector to the next state in the same trajectory. These
vectors v1, ..., vk are then weighted by the distance of the state it belongs to the current
state. wi =

∥s0−ni∥2∑︁k
j=1 ∥s0−ni∥2

This weighted average is then added to the current state to
obtain the next state. s1 = s0 +

1
k

∑︁k
i=1 vi · wi

Intuitively this can be described as creating a vectorfield from the recordings and subse-
quently integrating it.

3.5. Cross Entropy Method

Finally, we want to use the learned transition model to perform assembly by combining
it with a trajectory planner. As the learned transition model is only approximate a
probabilistic planning algorithm is needed. For simplicity, we use the Cross Entropy
Method (CEM) to optimize for an optimal trajectory by iteratively sampling trajectories of
actions and estimating their reward.
For a planning horizon h at each iteration n trajectories a1, . . . ,an each a ∈ Rd×h, where
d is the dimensionality of the action space, are sampled from a normal distribution
parameterized by µ, σ ∈ Rd×h. Propagating these with the transition model f results in
observation trajectories oi = f(ai) which we can score according to the observation based
reward function si =

∑︁h
j=1 reward(oij).

Then µ, σ are updated with the mean and standard deviation of the best e trajectories
according to the scores. These are called the elite. Iterating until an iteration limit or
convergence is reached results in a final µ̂, σ̂ as output of the optimization. The first action
of µ̂ is then executed on in the environment.

Sampling Action Deltas The performance of CEM is very sensitive to its initialization µ
and σ. A bad initialization will result in trajectories far away from the data the model was
trained on resulting in larger errors in the prediction which propagate into the trajectory
scores and therefore into the selection of the elites. Such a bad selection of elites can lead
to an iteratively exploding variance.

26

As the actions in our environment are absolute positions it is really hard to find a good
initialization for the variance to sample from as later actions near the horizon would need
a larger variance that leads to the aforementioned instability. For this reason, we optimize
a trajectory of deltas on actions instead of absolute actions. We initialize CEM with the
mean and variance from the training data.

27

4. Experiments

This chapter presents the performed experiments and their results. We start off by
describing the data that our experiments are based on, continue with stating the questions
that we want to answer with our experiments and finally presenting each experiment
with its result. Our experiments are grouped into autoencoder learning, transition model
learning and control experiments.

4.1. Dataset

Using the methods presented in section 3.4, two datasets were created by sampling
multiple episodes autonomously. One time step of an episode is regarded as a sample. One
is sampled with smooth gels and the other with fingerprinted gels as seen in Figure 4.1.
The smooth DIGIT dataset consists of 25,609 samples while the fingerprinted DIGIT
dataset contains only 9,979, as the fingerprinted gels broke and we did not have any more
replacements.
As seen in Figure 4.1, most of the contact happens at the end of the episode. Therefore,
we filter our dataset and remove all data points for which the position of the SL-Block
is more than 4cm away from its target, such that contact is unlikely to happen. After
filtering, the datasets are reduced to 20,216 and 8,217 samples.

Breaking Gels As our data sampling procedure is explorative (see section 3.4), it happens
that the robot drives the block into the structure. Even though a collaborative robot with
built-in safety features that can sense collisions and trigger a safety stop is used, it happens
that the gel tears. We could sample at most 10,000 time steps before a gel broke and had
to be replaced. Even though the gels were produced in one batch and appear similar to
the eye, there is still a significant amount of gel-specific noise, visualized in Figure 4.2.

28

(a) Episode with fingerprint gels. Only every fourth image is shown.

29

(b) Episode with smooth gels. Only every tenth image is shown.

Figure 4.1.: Two episodes sampled from our environment. During insertion the forces
acting on the gripper distort the gel and consequently the fingerprint on the
surface of it. The same distortion is visible on the smooth gel as the border
between the sharp and the blurred. The action and observation of the gripper
pose are very similar (note that the orientation part of the pose, the quaternion,
is negated, but due to quaternion duality they represent a similar orientation)
but not the same measurement. As jamming can occur during joining of
blocks, the target pose that the robot receives as action might not always be
reached.

30

Figure 4.2.: Sensor images taken during sampling with different gel pads from the same
manufacturing batch. The top row shows the right, the bottom row the left
sensor images. Each column contains a different pair of images taken at
different times during data sampling. On close inspection, there is quite a
lot of fine-grained structure in the image that is not specific to the captured
underlying tactile state, but instead to the gel pad used. This noise comes
from manufacturing tolerances such as bubbles in the gel or bumps in the
surface, and from abrasion and dirt on the surface of the sensor.

31

The models that we train on the two datasets therefore need to be able to generalize over
different types of gels.

Recalibration The dataset is recorded in multiple sessions over multiple days. In between
sessions it happens that external disturbances cause the OptiTrack to decalibrate. After
recalibrating OptiTrack, the hand-eye calibration has to be renewed aswell. A calibration
always has a calibration error that is a small unknown random deviation in rotation and
translation, measured by the tracking system. The dataset is divided into chunks that
each have a different calibration error on the measured poses.

4.2. Autoencoder

The questions that our experiments should answer go into two directions. Firstly, how do
the parameters of the training process take effect: How large does the dimensionality of
the latent space have to be? Does encoding jointly utilize the latent space more effectively?
How do we scale β for the variational autoencoder? Is it even necessary to regularize the
latent space with the variational autoencoder framework?
Secondly, we are interested in the meaning the learned latent representation has regarding
our task. A "good" latent space is continuous and places images that represent similar
measurements close to each other in latent space while spreading apart images that
represent very different measurements. Ideally, identical measurements that were recorded
multiple times, even with different gels, are encoded into the same representation.
To answer the questions regarding the training, we perform learning experiments with
varying parameters.
We then select a subset of the models that are of interest and analyze their latent space.
This is done by latent space interpolation and plotting the latent space over time.

4.2.1. Jointly Encoding

To evaluate the effectiveness of the architectures presented in Figure 3.2, we perform a
grid search across the parameters latent space dimensionality (2, 4, 8, 16) and model
architecture modes (Figure 4.3). When talking about the latent space dimensionality we

32

Figure 4.3.: Performance measured by validation loss of different architecture modes
when compressing into differently sized latent spaces. Architectures that
jointly encode (prefixed concat_) take less advantage of a larger latent space.
With a smaller latent dimension the default architecture with vastly more
parameters has only a diminishing performance advantage.

mean the dimensions per image in the input, thus the actual total latent space dimension-
ality is the double of what we usually write. It appears that having separate parameters
in the MLP that can learn individual features for the left and right images is important,
since share-mlp and share-all perform the worst. The default architecture learns two
fully separate models for the left and right image and therefore has the largest number of
parameters. Thus it is no surprise that it performs the best regarding our reconstruction
metric. However, architectures that produce a joint latent representation (concat-input,
concat-cnn-features, concat-shared-cnn-features) use their parameters much more effi-
ciently. The concat-input architecture has almost half as many parameters as the default
architecture, but nevertheless performs comparably. This joint encoding advantage be-
comes more visible when evaluating at different latent dimensions. As we reduce the size
of the latent space the performance advantage of default over concat- shrinks (Figure 4.4).

4.2.2. Latent Space Analysis

Simply evaluating our autoencoders by their performance on image reconstruction is not
sufficient for our case, as this gives no insights about continuity and shape. In order to be
able to use such a representation for control, it should be well formed to some extent and
encode features that are actually relevant for our task.

33

Figure 4.4.: Performance relative to the best model (default, latent 16, yellow) and worst
model (share-all, latent 4, dark purple). The horizontal axis shows the log2 of
the latent dimension. The size of the points is proportional to the number
of parameters. The vertical axis is sorted by the model size. Two outliers,
share-mlp and share-all, can be identified. It can also be seen that concat-
input is the most efficient regarding performance-size trade off.

Figure A.4 shows the features of our latent representation over the progress of an episode
for all trained models. Figure 4.7 gives two examples.

Latent Space Interpolation A common evaluation method is latent space interpolation
as it reveals the continuity of our representation. Four images, displayed in Figure 4.5, are
encoded, and then values in between them are interpolated on a square grid by taking
a weighted average of the latent representation of the corners. The weights for each
gridpoint are calculated from the ℓmax distance to the corners of the grid. Results of these
interpolations, for all models that we trained, are seen in Figure A.3. Figure 4.6 highlights
two of these.
To visually evaluate the quality of the latent space interpolations, one has to define some
quality measures. The ideal interpolation that we regard as good is one that interpolates
the images in a smooth linear motion, so that each image looks like a sensor state which
could have come from an actual measurement. Here "a smooth motion" means that when
looking at the images in one row or one column, there is an incremental change from
image to image. These changes should ideally be perceived as equidistant. Some examples
of bad interpolations or artifacts are given in Figure 4.8.
Looking through the interpolations in Figure A.3, it can be observed that the best per-
forming model, according to our training loss, is not the best performing model regarding
the interpolations. The share-all architecture interpolates far better than its validation

34

Figure 4.5.: The four sensor images of the test data between which we interpolate for
latent space analysis. Images in a row come from the same episode. Images
in a column come from the same time step, relative to the end of the episodes.
The images in the right column are from the third last time step of their
episode.

loss suggests, as it has to generalize across images from the left and the right sensor. We
attribute this effect to our dataset being unbalanced, containing more images where the
edge of the block (edge appears as orange blob in the images) is tilted to one side rather
than the other. In fact, share-all is the only architecture that is able to generate images
where edges are tilted in both directions. Data augmentation can compensate these issues,
but we did not make use of this method.
Jointly encoding the images (architectures named concat-...) indeed produces interpola-
tions with valid, matching left and right images, as explained by Figure 4.8b. This issue is
less present for models with more parameters such as default. It seems that a very good
interpolation between individual images is likely to also produce valid combinations of
images. When interpolating from an image A to another image B linearly, the abstract
image features of A should change in linear increments towards B. Such an interpolation
result indicates that our encoders latent space is large enough to encode individual fea-
tures on individual dimensions. However, if the latent space is too small, multiple features
in our image are compressed onto a line in space, resulting in disproportionally large
changes in the interpolation. From observations of all latent sizes that were tried out, 8
seems sufficiently large while 4 already seem like being too small.

Latent Space Across Time Simply visualizing the latent space over the course of an
episode, see Figure A.4, can reveal whether the learned encoding is related to what
happens physically in our environment. For this analysis we define good by looking at the

35

(a)

36

(b)

Figure 4.6.: A good (a) and a bad (b) interpolation result from two models with different
parameters.

37

every image from DIGIT sensors

0 10 20 30 40

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

latent features

0 10 20 30 40
timestep

0

2

4

6

8

norm of delta of latent features

timesteps: 50, arc : Modes.SHARE_ALL, latent dim: 8

(a) Example for a good looking latent space.

every image from DIGIT se sors

0 10 20 30 40

0

5

10

15

20

25

late t features

0 10 20 30 40
timestep

0

2

4

6

8

10
 orm of delta of late t features

timesteps: 50, arch: Modes.DEFAULT, late t dim: 2

(b) Example for a not so good looking latent space.

Figure 4.7.: Latent space of two differentmodels visualized over the course of an episode.
Only the last 50 time steps of the episode are visualized. The tactile sensor
images are given as difference to the first image in the episode, to emphasize
small changes. The bottommost plot in each subfigure shows themagnitude
of change in the latent representation according to Euclidean distance. The
models are the same that were also used in Figure 4.6. We call the latent
space of (b) "bad" because there change in the latent representation does
not correlate with what is going on with the sensor images. The large change
in tactile state at time step ten is not clearly recognizable in the change in
the representation.

38

magnitude of change in the latent space. If there is little or a lot of visual change in the
sensor image we expect a small or large change in the latent representation. When there
is large movement in the latent representation while there is little change in the image
the latent representation must have encoded noise or irrelevant properties of the image
which is not desirable. At this point, we want to highlight that such a simple encoder
when combined with a threshold value can already be an effective collision detection
mechanism and thus be regarded as task-relevant.
A common pattern that we observe is that some features make up most of the magnitude
of change in the representation. From these visualizations one might conclude that all of
the learned latent spaces are rather unsmooth as there is a large variance in the magnitude
of change. But considering the underlying contact-rich environment with discrete time
steps the data is coming from, it might be natural that the tactile representation does not
change smoothly over time.

4.2.3. Variational Autoencoder

The motivation to learn a latent representation in the variational autoencoder frame-
work is that it can produce a smoother more continuous latent space. This increase in
smoothness and continuity should be observable in the produced latent space interpola-
tions. However, the more well formed latent space comes at a cost of less good looking
reconstructions by our decoder as it has to deal with the noise added to out latent space.
subsection A.1.3 provides the full details of our training setup. Figure 4.9 compares latent
space interpolations of a variational and a standard autoencoder. All parameters except
an added regulization term in the loss function are equal. Comparing the interpolations
side-by-side, we cannot conclude that the latent space of the variational autoencoder
is more continuous. Though, looking at Figure 4.9d one could asses a smoother latent
space, but compared to the standard interpolation it may actually be too smooth. Overall
there seems to be no advantage of using a variational autoencoder regard the latent space
interpolation.
Figure 4.10 compares the latent spaces of both standard and variational directly over the
course of an episode. Except that the latent features of the variational autoencoder are in
a standard normal range there are no significant advantages or differences to observe.

Competing Reconstruction and KL-Divergence Loss During training of the variational
autoencoder we noticed that reconstruction loss and KL-divergence loss are directly

39

competing each other as seen in Figure 4.11. While β is still small the model predicts
variances close to zero and there is no noise in the latent representation. As β increases
the output distribution of the encoder normalizes and therefore more noise will be added
to the latent representation making it more difficult to correctly decode the features to
the target image. The maximum value 0.05 and scaling speed for β were selected by
hand as the values from [24] cannot be used here because our reconstruction loss is at a
different scale. We acknowledge that some early stopping based on the KL-loss can result
in a better trade-off between reconstruction loss and KL-divergence loss.

4.2.4. Generalization Across Sensor Gel Pads

As the gel pads of our tactile sensor wear out frequently, it is important that our repre-
sentation is robust to images coming from sensor with different pads. To check whether
this is the case, we repeated the same motion with different gels so that we obtained
multiple images from different gel pads that all measured the same underlying tactile
state. Figure Figure A.6 visualizes this experiment. We chose a model with architecture
share-all and latent dimensionality 8, as it gave good latent interpolations (Figure 4.6),
and its latent representation looked task relevant (Figure 4.7). None of the gels that we
use during comparison were used during training, but one uses the same type of gel pad,
smooth with white coating on the surface, while the other two are entirely different, one
translucent, the other one with a fingerprint.

4.3. Transition Model

As our final goal is to solve the control task with model predictive control, the transition
model of the environment has to be learned from the data. subsection 3.3.1 introduced
multiple parameters that can potentially affect the performance of our approximation.
The hyperparameters of the autoencoder that is used add up to the hyperparameters
of the transition learning To find out how to configure these and what their effect on
performance is, we explore them combinatorially.
Our experiments compare the variants of learning the transition function that were
presented in subsection 3.3.1. We hypothesize that there is a significant difference in
performance between the various architecture of autoencoders that we experimented with.
Therefore, different autoencoder architectures are used. The standard formulation of the

40

autoencoder is used, as we could not find disadvantages over the variational autoencoders
(see subsection 4.2.3). Additionally, we have more pretrained standard autoencoders
available because they are much easier to train.
This section highlights different findings from experimenting with learning a transition
model, showing only partial results, while a fully detailed presentation of all relevant
experiments resides in section A.2.

Predicting Deltas Improves Learning Predicting deltas instead of absolute values in-
creases the learning performance significantly, as seen in Figure A.10. As a consequence
of this finding we use delta prediction for all other presented experiments.
The deltas are normalized to the distribution of deltas in our data. This means that our
pipeline has two normalization steps. Firstly, the absolute values are normalized, and
secondly, the deltas in the normalized space of absolutes.

4.3.1. Effect Of Tactile Feedback

Comparing the mean forward prediction error on poses of transition models trained with
(Figure 4.12) and without (Figure 4.13) tactile feedback, it can be seen that the model
uses the additional information from the tactile representation to make better predictions
for the poses of the SL-Block and TCP. However, this is only observable in the positions
and orientation of the SL-Block, not in the prediction of the TCP orientation. Section 4.3.8
addresses this issue in detail.
For the predicted positions, the mean predictions without tactile state are about as bad
as the worst predictions with tactile state (dotted lines in Figure 4.12). Regarding the
orientation predictions, adding the tactile representation to the state can actually worsen
the prediction performance. An explanation could be, that translational movements of the
block between the fingers of the gripper are much more visible in the tactile image than
rotations.

4.3.2. Effect Of Increased Prediction Horizon

Predicting multiple steps into the future improves the performance, as already found by
previous work [19]. Looking at the full forward predictions, of all the differet models
that were trained, in Figure 4.12, the advantage of a larger prediction horizon becomes

41

apparent. The runs underlying this plot vary in several other hyperparameters, such as
learning rate and network size, and are grouped by prediction horizon. From this is
can be concluded that an increased prediction horizon directly improves the learning
performance.

4.3.3. Effect Of Input Window

Analogous to the previous experiment on horizon, we group the test errors of all runs
that were performed by the window size used (see Figure 4.12). Only a small increase
of performance with larger window size can be observed. However, this is not what we
intuitively expected as described in section 3.3, paragraphWindow and Horizon. Either the
task could be too easy, such that the effect of a larger window cannot be measured, in the
sense that a single observation already contains all necessary information, or we just need
much large window sizes. In case of the task being to easy one can increase the difficulty
by artificially noising and offsetting the inputs such that looking at a window of past
states is required to make a good prediction. In case of large window sizes, flattening and
feeding through a MLP model becomes infeasible. Instead the window can be processed
with temporal convolutions or recurrent models with hidden state.

4.3.4. Parallel Vs Sequential Prediction

Parallel forward prediction of the horizon performs better (see Figure 4.12). This can
be attributed to the fact that even though the sequential model is trained on a forward
propagation of its own predictions, it has no hidden state that is kept across time. On the
other hand, the parallel prediction network can form some hidden state, from which it
predicts the horizon, similar to a recurrent model.

4.3.5. Effect Of Autoencoder Architecture

Of the seven different architectures introduced in chapter 3, sare-cnn, default, concat-
input and concat-cnn-features were selected for transition model experiments, so that
we have two architectures that encode a joint representation and two that encode per
sensor representations. It would have been reasonable to also use share-all, due to its
remarkable performance on latent space interpolation, but at that time we relied solely
on the reconstruction loss as a performance metric.

42

The top row of Figure 4.12 compares the different architectures. Surprisingly, the default
architecture remains the best performer in opposition to our intuition and analysis of the
latent space.
It seems that jointly encoding the sensor images produces a latent space that makes it
more difficult for the transition model to predict ahead. But as the differences between
the groups are not very large we do not draw a final conclusion.
A possible explanation for this result is that when encoding jointly, data from two dis-
tributions, the left and the right sensor, is mixed. This mixed dataset contains many
samples from each distribution, but as they might be arbitrarily far away from each other,
and there are no samples in between them in the dataset, it could negatively affect the
latent representation when the left and right images are treated as coming from a joint
distribution.

4.3.6. Dimensionality Of The Representation

The second row of Figure 4.12 compares an 8 and a 16 dimensional latent space. As
already suggested in subsection 4.2.2, a certain minimum dimensionality is required to
separate the different abstract features of our data well. This assumption is reinforced by
the observed decrease of predictive performance with a larger latent dimensionality of 16
compared to 8.
What may not be expected at first is that a larger latent space also affects the performance
of the other predictions. A higher dimensional latent space is therefore not only harder
to predict, but also harder to read, for the model. We have a theory on why this is the
case. The larger the latent dimensionality, the more components of it are actually not
necessary or meaningful - to some extent they are just noise. But during training the
model computes a loss over all outputs, even these meaningless ones. It could be the case,
that this loss on noisy outputs effectively adds noise to the gradients, and in this way also
reduces the learning performance. This particular issue, that arises with multi-modal state
spaces, could be thoroughly investigated by future work.

4.3.7. Fingerprint Gel

The latent representations that are produced by our fingerprint model (see Figure A.8b)
look different to what we obtained from the smooth gels (see Figure A.9c). The represen-

43

tation from fingerprints is smoother and has less large spikes in features that are frequent
in the representation from smooth gels.
When closely looking at the images produced by the different gels we can see that the forces
that are acting on the gel can be clearly perceived by the deformation of the fingerprint
structure. On the other hand, these forces are not directly visible on the smooth images.
The visual cues in the smooth images are the edge of the block pressing into the gel, the
stripes of the block as they are shining through the coating of the gel and the boundary
between the blurry and sharp parts of the image. The shape of this boundary relates to
the forces acting on the gel, similar to the fingerprint deformation on fingerprint gels.
However, this boundary is much harder to perceive and contains less information than
a deformed fingerprint structure. In this sense we regard the fingerprint measurements
as more continuous, as very small changes in the forces acting on the surface are clearly
received in the deformation of the fingerprint pattern. We actually intended to use more
fingerprint gels but were limited in supply.

4.3.8. Bad Prediction Of Robot End Effector Pose (TCP)

Looking at the forward prediction errors in Figure 4.12 one observes that the error in the
TCP pose prediction is much larger than the error in the predicted pose of the SL-Block.
This observation is the opposite of what one would expect, as the future TCP poses are
simply given by the trajectory of actions and are therefore the simplest thing to predict.
On the other hand the pose of the SL-Block is under the influence of contact and therefore
very hard to predict.
One explanation for this could be the hand-eye calibration error of the system. As the
environment uses the target SL-Block pose, which is measured by the tracking system, as
reference frame, the calibration error exists in the TCP poses and not in the SL1-Block
poses. As a consequence the target actions do not perfectly match what is actually executed
on the system and observed as TCP pose.
It suggests that learning to infer the calibration transform from the window of past
observations is difficult. The hand-eye calibration of our setup is usually computed from
50 sampled poses. In relation to this a window size of 4 is indeed very small. Experiments
with very large window sizes were not carried out as part of this work.

44

4.4. Control on Real System

Finding suitable parameters for CEM was difficult. One particular issue was the balance
of the variance between position and orientation actions. We used the variances from the
dataset, but still needed to reduce orientations. The problem is that the CEM optimizer
outputted trajectories that would drive the state far away from the dataset. For example
in our data, at the beginning of joining motions, the actions usually have small rotations
and large translations. Contrastingly, at the end of the episode the changes in rotations
are usually larger. Therefore using the data variance is not a good initialization because
we end up with rotations that are too large in the beginning.
When designing the cost function on trajectories, a trajectory that ends the episode
without reaching the goal should be penalized. However, our implementation simply used
the summed reward of the whole trajectory, as defined by our environment, even if the
trajectory could only be executed half way in reality. This way trajectories that go out of
that state space that can be sampled can make it into the elite such that they are kept.
The controller did not seem sensitive to the number of samples used, but the ratio to the
number of elites is important.
Because we did not achieve reasonable control results with the model without feedback,
no additional experiment with DIGIT feedback is presented.

45

(a) fading, instead of graduallymorphing the
abstract features of the image themodel
overlays two images from the dataset.

(b) invalid combination, left and right image
do not match in the sense that such a
state cannot occur in reality.

(c) nonlinear changes, instead of gradually
morphing just the features that change
from image A to B the interpolations con-
tain new features or change features in
a way that cannot be regarded as ïn be-
tweenÄ and B.

(d) discrete change, most of the change hap-
pens in one step instead of a smooth
transformation.

Figure 4.8.: For visual evaluation of the latent space we particularly look for four different
types of artifacts in the interpolations.

46

(a) standard, architecture: concat-input, latent
dim: 8

(b) variaional, architecture: concat-input, latent
dim: 8

(c) standard, architecture: share-cnn, latent dim:
8

(d) variational, architecture: share-cnn, latent
dim: 8

Figure 4.9.: Latent space interpolations with four different models. Left column was
produced by a standard autoencoder and the right column by a variational
one. The top row uses architecture mode concat-cnn while the bottom row
uses sharLatent space of two different mointerpolations with four different
models. Left column was produced by a standard autoencoder and the right
column by a variational one. The top row uses architecturemode concat-input
while the bottom row uses share-all.

47

every mage from DIGIT sensors

0 10 20 30 40

−15

−10

−5

0

5

10

15

latent features

0 10 20 30 40
t mestep

0.0

2.5

5.0

7.5

10.0

12.5
norm of delta of latent features

t mesteps: 50, arch: Modes.CONCAT_INPUT, latent d m: 8

(a) standard, architecture: concat-input

every mage from DIGIT sensors

0 10 20 30 40

−1.5

−1.0

−0.5

0.0

0.5

1.0

latent features

0 10 20 30 40
t mestep

0.00

0.25

0.50

0.75

1.00

1.25

norm of delta of latent features

t mesteps: 50, arch: Modes.CONCAT_INPUT, latent d m: 8

(b) variational, architecture: concat-input
every image from DIGIT sensors

0 10 20 30 40

−10

−5

0

5

10

latent features

0 10 20 30 40
timestep

0

2

4

6

8

norm of delta of latent features

timesteps: 50, arc : Modes.SHARE_CNN, latent dim: 8

(c) standard, architecture: share-cnn

every image from DIGIT sensors

0 10 20 30 40

−0.5

0.0

0.5

1.0

1.5

latent features

0 10 20 30 40
timestep

0.0

0.2

0.4

0.6

0.8

1.0
norm of delta of latent features

timesteps: 50, arc : Modes.SHARE_CNN, latent dim: 8

(d) variational, architecture: share-cnn

Figure 4.10.: Comparison of the latent representation of standard and variational autoen-
coders with latent dimensionality 8 over the course of an episode. Left
and right column compare standard and variational while top and bottom
compare concat-input architecture with share-cnn.

48

(a) Weight of the KL-
Divergence loss β

(b) Overall training loss: re-
construction loss plus KL-
Divergence loss weighted
by β.

(c) Unweighted KL-
Divergence of the
output of the model
to a standard normal
distribution.

Figure 4.11.: Normality of the latent space and reconstruction performance seem to
be a trade-off. The plots visualize the competing reconstruction and
KL-Divergence loss during training. As β is increased gradually the KL-
Divergence reduces but the reconstruction loss increases such that the
overall performance is worse. Multiple runs with different hyperparameters
are visualized.

49

Figure 4.12.: Visualizes the error in the individual components that the transition model is
predicting. Each row groups the learning runs by a different hyperparameter.
The solid line and the area around it are the mean and 3 standard deviation
of the group for each time step. The dashed and dotted line are the forward
prediction error of the best and worst run in the group according to the
accumulated total error of each run. The full details of this experiment are
given in subsection A.1.2

50

Figure 4.13.: Error in the individual components the transition model without tactile feed-
back predicted on the test data. The prediction is a full forward prediction
of the last 20 time steps. The full details of this experiment are given in
subsection A.2.3.

Figure 4.14.: Trajectory produced by our controller. The first 10 executed actions are
taken from the reference trajectory. From time step 10, the controller takes
much larger actions than the reference.

51

5. Conclusion

With Assembly Gym, a physical contact-rich tactile manipulation environment for assembly
challenges was set up. To our knowledge, such a complex multi-modal setup, involving
vision-based tactile sensors, a 6-DoF manipulator and object tracking, is unprecedented.
From this environment, many episodes of tactile assembly data were sampled autonomously
and compiled into a large dataset. Using autoencoders, a representation of tactile sensor
images was learned in a fully unsupervised manner. We showed that these representa-
tions can generalize to some extent across different tactile sensors and encode relevant
information for tactile control. Our contribution paves the way for further research into
highly generalizable tactile representations that can overcome the barriers to widespread
application of vision-based tactile sensors.
Our experiments on learning to autoencode tactile sensor images resulted in several key
discoveries concerning the quality of the learned representation.

• The dimensionality of the latent space has a large impact on the quality of the
representation. A larger dimensionality tended to produce less usable latent rep-
resentations for latent space interpolation and for approximation of the transition
function.

• Against our intuition, separately encoding the images resulted in better performance
than encoding a latent representation jointly. When dealing with images from
multiple tactile sensors, the architecture of the autoencoder network has to be
designed with care. But this may not always be the case. As the generalization of
tactile representations progresses, and more varied datasets become available, this
conclusion needs reevaluation.

• Variational autoencoders cannot be regarded as superior over a standard autoencoder.
We experienced that they are more difficult to train, as the regularization needs to
be tuned carefully.

52

• The learned representation showed a certain generalizability to different gels used.
By training a transition model of our environment, we showed that a fully unsupervisedly
learned representation can be task-relevant. As we added the encoded tactile state to
the state space of our transition model, its predictive performance improved. However,
making predictions for future tactile states in latent space was difficult for the trained
models.
During experimentation with transition model learning we found that:

• Predicting multiple time steps ahead with a single network pass significantly im-
proved learning.

• Passing a window of past observations into the model did not show large improve-
ments in performance, but the used window size of four could have been too small.
We suggest that either very large input windows, or alternatively recurrent models
trained on whole trajectories, are needed to observe notable effects of an observation
window over the past.

• A significant challenge of learning the transition function came from our multi-
modal state space with different types of sensors. It seemed that simply defining
the state as a concatenation of all sensors of the environment did not result in a
good environment state for transition model learning. For example, using a tactile
representation of larger dimension decreased the predictive performance over all
sensors in the environment even though this larger dimensional space, in theory,
should include at least the same amount of information as a smaller one. As already
suggested by related research, using a model that fuses the different sensors modes
into a joint distribution can be beneficial [6].

Lastly, we attempted to solve our assembly task by combining the learned transition model
with a CEM trajectory planner. Model predictive control with the basic formulation of
CEM does not perform well in our high-dimension long horizon scenario. Even after
including several minor task-specific improvements to the algorithm and parameter tuning
the controller did not solve the task. CEM is one of the simplest methods for probabilistic
trajectory planning. Using a more sophisticated planner will likely yield much better
control performance.

53

6. Outlook

Attempting to solve a challenging tactile manipulation task, we uncover multiple op-
portunities for future research. These opportunities range from small but significant
improvements to our method to entirely different approaches.

6.1. Towards Robust Representations

The regular replacement of gel pads of visual tactile sensors due to wear and tear is
an obstacle for experimenting with on-policy reinforcement learning methods. A gel
exchange is a large discrete change in the environment that would likely disturb on-policy
learning. Current tactile representations are not yet robust enough to the variations
between different gel pads. We propose some directions that could lead to the needed
robust tactile representations.

Data Augmentation During our analysis in subsection 4.2.2, we suggested that data
augmentation can highly improve representation learning. This suggestion is also backed
up by related work [7]. While a readily available toolbox of data augmentation methods
for natural RGB images exists, it makes sense to review their applicability and suitability
to the more restricted domain of tactile sensor images.

Sampling Larger More Varied Datasets We think that data augmentation alone might
not suffice to overcome this barrier and the creation of larger more varied datasets of
tactile images is needed. As the DIGIT sensor is relatively cheap in production, it is feasible
to produce a larger batch of varied designs including many different types of gels. This
variation in the hardware, combined with multiple tasks that are designed to cover up
as much of the measurement space of the sensor as possible, can make learning highly

54

generalizable representations of tactile sensor images possible. Representations that are
robust to variations in gel could make an otherwise non-stationary tactile manipulation
environment stationary.

Learning To Separate Semantics Directly Methods from the field of image generation
that are able to separate image semantics from style could be applied to tactile represen-
tation learning. Regarding the specific gel and sensor used as style and the underlying
tactile measurements as semantics, these methods appear promising to produce more
robust representations.
The pose estimations coming from our tracking system are subject to non-stationary
calibration errors and therefore augmenting them with random decalibrations would
make sense too.

6.2. Sampling-Based Trajectory Planning

We envision multiple improvements on the usage of sampling-based trajectory optimiza-
tion methods with an approximate transition model. One improvement would be to
initialize the planning with an interpolation obtained with our method introduced in
subsection 3.4.1 or with a collision-aware motion planner in simulation.
A very important component of a sampling base optimizer is the design of the cost function
used to rank the samples. If invalid trajectories are correctly penalized, sampling steps will
converge into regions of the state space that yield trajectories close to our data that our
model can also correctly model. In contrast, if this is not the case and invalid trajectories,
far away from where the model is able to make good predictions, are not penalized
correctly, the variance in the elite can explode.
A common regularization method is using a probabilistic transition model that outputs
an uncertainty for its predictions, which can be incorporated in the cost function. An
alternative approach, that also works with a deterministic model, could be to compute the
likelihood of a trajectory under the data distribution. In a more generalized way this could
be the KL-divergence of the distribution the planner is sampling from to the distribution
of the training data.

55

6.3. Model Free Learning

As our results suggested, learning tactile representations that generalize, over the variance
introduced by the specific gel pads used, is possible. By engineering more durable gel
pads and constraining the environment to be more gentle, sampling data in another order
of magnitude becomes possible. We envision that with a highly automated environment,
where the only human intervention is a gel pad replacement, application of less sample
efficient on-policy learning methods become feasible. Scaling up, policies that are able to
assemble complete SL-Block structures could be learned.

56

Bibliography

[1] R. S. Johansson and J. R. Flanagan, “Coding and use of tactile signals from the
fingertips in object manipulation tasks,” Nature Reviews Neuroscience, vol. 10, pp. 345–
359, May 2009. Bandiera_abtest: a Cg_type: Nature Research Journals Number: 5
Primary_atype: Reviews Publisher: Nature Publishing Group.

[2] R. Calandra, A. Owens, M. Upadhyaya, W. Yuan, J. Lin, E. H. Adelson, and S. Levine,
“The Feeling of Success: Does Touch Sensing Help Predict Grasp Outcomes?,”
arXiv:1710.05512 [cs, stat], Oct. 2017. arXiv: 1710.05512.

[3] Q. Li, O. Kroemer, Z. Su, F. F. Veiga, M. Kaboli, and H. J. Ritter, “A Review of
Tactile Information: Perception and Action Through Touch,” IEEE Transactions on
Robotics, vol. 36, pp. 1619–1634, Dec. 2020. Conference Name: IEEE Transactions
on Robotics.

[4] A. Yamaguchi and C. G. Atkeson, “Recent progress in tactile sensing and sensors for
robotic manipulation: can we turn tactile sensing into vision?,” Advanced Robotics,
vol. 33, pp. 661–673, July 2019.

[5] M. Lambeta, P. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most, D. Stroud, R. Santos,
A. Byagowi, G. Kammerer, D. Jayaraman, and R. Calandra, “DIGIT: A Novel Design
for a Low-Cost Compact High-Resolution Tactile Sensor With Application to In-Hand
Manipulation,” IEEE Robotics and Automation Letters, vol. 5, pp. 3838–3845, July
2020. Conference Name: IEEE Robotics and Automation Letters.

[6] M. A. Lee, Y. Zhu, P. Zachares, M. Tan, K. Srinivasan, S. Savarese, L. Fei-Fei, A. Garg,
and J. Bohg, “Making Sense of Vision and Touch: Learning Multimodal Representa-
tions for Contact-Rich Tasks,” arXiv:1907.13098 [cs], July 2019. arXiv: 1907.13098.

[7] O. Spector and D. Di Castro, “InsertionNet – A Scalable Solution for Insertion,”
arXiv:2104.14223 [cs], Apr. 2021. arXiv: 2104.14223.

57

[8] Z. Ding, Y.-Y. Tsai, W. W. Lee, and B. Huang, “Sim-to-Real Transfer for Robotic Mani-
pulation with Tactile Sensory,” arXiv:2103.00410 [cs], Feb. 2021. arXiv: 2103.00410.

[9] Y. She, S. Wang, S. Dong, N. Sunil, A. Rodriguez, and E. Adelson, “Cable Manipulation
with a Tactile-Reactive Gripper,” arXiv:1910.02860 [cs, eess], June 2020. arXiv:
1910.02860.

[10] S. Tian, F. Ebert, D. Jayaraman, M. Mudigonda, C. Finn, R. Calandra, and
S. Levine, “Manipulation by Feel: Touch-Based Control with Deep Predictive Models,”
arXiv:1903.04128 [cs], Mar. 2019. arXiv: 1903.04128.

[11] M. I. Tiwana, S. J. Redmond, and N. H. Lovell, “A Review of Tactile Sensing Tech-
nologies with Applications in Biomedical Engineering,” June 2012.

[12] O. Kroemer, S. Niekum, and G. Konidaris, A Review of Robot Learning for Manipulation:
Challenges, Representations, and Algorithms. July 2019.

[13] K. Nottensteiner, A. Sachtler, and A. Albu-Schäffer, “Towards Autonomous Robotic
Assembly: Using Combined Visual and Tactile Sensing for Adaptive Task Execution,”
Journal of Intelligent & Robotic Systems, vol. 101, p. 49, Mar. 2021.

[14] L. Cramphorn, B. Ward-Cherrier, and N. F. Lepora, “Tactile manipulation with
biomimetic active touch,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 123–129, May 2016.

[15] W. Yuan, S. Dong, and E. H. Adelson, “GelSight: High-Resolution Robot Tactile
Sensors for Estimating Geometry and Force,” Sensors, vol. 17, p. 2762, Dec. 2017.
Number: 12 Publisher: Multidisciplinary Digital Publishing Institute.

[16] F. R. Hogan, J. Ballester, S. Dong, and A. Rodriguez, “Tactile Dexterity: Manipulation
Primitives with Tactile Feedback,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA), pp. 8863–8869, May 2020. ISSN: 2577-087X.

[17] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep Reinforcement Learning
in a Handful of Trials using Probabilistic Dynamics Models,” arXiv:1805.12114 [cs,
stat], Nov. 2018. arXiv: 1805.12114.

[18] S. Wang, M. Lambeta, P.-W. Chou, and R. Calandra, “TACTO: A Fast, Flexible
and Open-source Simulator for High-Resolution Vision-based Tactile Sensors,”
arXiv:2012.08456 [cs, stat], Dec. 2020. arXiv: 2012.08456.

58

[19] N. O. Lambert, A. Wilcox, H. Zhang, K. S. J. Pister, and R. Calandra, “Learn-
ing Accurate Long-term Dynamics for Model-based Reinforcement Learning,”
arXiv:2012.09156 [cs], Dec. 2020. arXiv: 2012.09156.

[20] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss Functions for Neural Networks for
Image Processing,” arXiv:1511.08861 [cs], Apr. 2018. arXiv: 1511.08861.

[21] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” arXiv:1312.6114
[cs, stat], May 2014. arXiv: 1312.6114.

[22] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson, “Learning
Latent Dynamics for Planning from Pixels,” arXiv:1811.04551 [cs, stat], June 2019.
arXiv: 1811.04551.

[23] D. Ha and J. Schmidhuber, “World Models,” arXiv:1803.10122 [cs, stat], Mar. 2018.
arXiv: 1803.10122.

[24] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed,
and A. Lerchner, “beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework,” Nov. 2016.

59

A. Appendix

All the parameters and details of carried our experiments are documented in this chapter. It
is structured into two section one for autoencoder experiments and one for transition model
learning experiments. We provide a description, the hyperparameters and visualizations
of the result for each experiment.
For all learning experiments the optimizer Adam is used.

A.1. Autoencoder Experiments

When strided convolutions are used for up or down sampling, they are grouped by the
number of channels to reduce the amount of parameters. Experiments, that are not
documented here, showed that this grouping does not have a strong negative effect on
the learning performance. We always use SSIM loss as described in subsection 3.3.2.
The experiments in this section are grouped by the used dataset.

A.1.1. Fingerprint Dataset

Many experiments were carried out to find suitable parameters for most of the hyperpa-
rameters. The size of latent dimension was kept fixed at 16. At that time only the default
architecture mode was used training for left and right DIGITs separately.

60

Hyperparameters The hyperparameters were mostly identical for the left and right DIGIT
model. If different then they are shown separated by a forward slash: left model/right
model. During this experiment, the batch size equals the number of images a loss is
computed for, as the training for the left and right DIGIT model is separated completely.

latent dimension 16
kernel size 5/3
input image size [320,240]
up-/downsampling grouped conv
activation ELU
batch norm True
cnn block channels [[32],[32,64],[64,128],[128,256],[256,512],[512,8]]
mlp hidden channels []
variational false
learning rate 0.004643/0.00495
batch size 64
epochs 20

Performance Figure Figure A.1 shows the learning performance of the autoencoders
during training and validation.

A.1.2. Smooth Dataset

A series of experiments was carried out, to determine good values for the hyperparameters
on this dataset, that is not documented here. Then, with these hyperparameters, a model
for each architecture as defined in Figure 3.3 and different latent dimensions is trained.

Hyperparameters The hyperparameters that vary for each training run are given in
brackets as a set (variation 1, variation 2, . . .). The reduced input image size means that
the image is sampled down before being passed to the model, and later the output is

61

(a) Left DIGIT model training loss (b) Left DIGIT model validation loss

(c) Right DIGIT model training loss (d) Right DIGIT model validation loss

Figure A.1.: Learning performance of autoencoders on fingerprint dataset. Training and
validation loss converge. As the images of the left and right DIGITs are slightly
different and are subject to very different tactile influences during sampling,
the model for the right DIGIT images is more difficult to learn.

62

sampled up again. The number of images that is passed through the model is actually the
double of the batch size, as we are passing a left and a right image simultaneously, even
for the default architecture. The parameter filter block height filters that dataset down to
data points for which the SL-Block is at least 4cm close to its target location on the z-axis
(pointing upwards in our case).

latent dimension (2,4,8,16)
arch (default, share-cnn, share-mlp, share-all, concat-input

concat-shared-cnn-features, concat-cnn-features)
kernel size 5
input image size [160,120]
up-/downsampling grouped conv
activation LeakyReLU
batch norm True
cnn block channels [[16, 32],[32,64],[64,128],[128,256],[256,8]]
mlp hidden channels [128]
variational false
learning rate 0.005
batch size 64
epochs 100
filter block height 0.04

Performance We evaluate three performance measures: training and validation loss
grouped by varied parameter (Figure A.2), latent space interpolation (Figure A.3) and
latent space over time (Figure A.4).

63

A.1.3. Variational

Training variationally introduces a few additional hyperparameters. As described in section
3.3.3, paragraph Variational Autoencoder, the parameter β is scaled up during training.
This scaling is implemented as a function of the epoch that is parameterized by α and δ

β(x) =
δ

(1 + e−(αx−10))

which is just a scaled and shifted sigmoid function.
The variaional autoencoder learned slower than the standard autoencoder. The learning
speed was increased by scheduling the learning rate with an exponential learning rate
scheduler f(x) = cdx where c is the initial learning rate and d the decay factor.

64

Hyperparameters
latent dimension (2,4,8,16)
h arch (share-cnn, concat-input)
kernel size 5
input image size [160,120]
up-/downsampling grouped conv
activation LeakyReLU
batch norm True
cnn block channels [[16, 32],[32,64],[64,128],[128,256],[256,16]]
mlp hidden channels [256]
variational false
initial learning rate 0.02
batch size 90
epochs 150
filter block height 0.04
kl lossweightmax 0.05
γ 0.98

Performance We did not evaluate all the variational autoencoders on the testdata.
Figure 4.9 shows that it does not perform as well as the standard autoencoders that we
learned.

A.1.4. Different Gels

The same sequence of actions is executed on the environment, but three different gel pads
are used in the DIGIT sensor: one with a fingerprint patter and surface coating (gel 0),
one with smooth surface but without coating (gel 1) and one with smooth surface and
coating (gel 2). Non of the gel pad was used during collection of the datasets described in

65

section 4.1, but the gel with smooth surface and coating was manufatured in the same
batch as our training gels.
Then the model from section A.2.2, paragraph Hyperparameters with latent dimension
8 and architecture share-all is used to encode all three trajectories into latent space.
Figure A.6a, A.6b, Figure A.6c visualize the encoded latent space together with the rest of
the observations of the episode.

A.2. Transition Model Experiments

The transition model experiments use pretrained autoencoders to learn the full transition
model on one of the datasets.
Important hyperparameters are usually window, horizon, parallel prediction, autoencoder
latent dimension and architecture, delta, layers, features per layer.

A.2.1. Fingerprint Dataset

The left and right autoencoder models documented in subsection A.1.1 are used to encode
the images and being fine-tuned during training of the transition model.

Hyperparameters One learning experiment with following hyperparameters was carried
out:

66

autoencoder architecture default
autoencoder latent dimension 16
batch size 16
filter block height 0.04
delta true
horizon 3
window 7
activation ReLU
batch norm true
hidden channels 6x500
learning rate 0.00085
autoencoder learning rate 0.0002

Performance We evaluate performance by looking at the validation, training losses and
test forward predction error.

A.2.2. Smooth Dataset

An additional parameter, latent space loss weight, was added to increase the learning on
the pose predictions. Sets of values in parantheses mean that one experiment was carried
out for each of them.

Hyperparameters Sets of values in braces mean that we tried all combinations of these
values. The hyperparameter configuration given below, when expanded combinatorially,
results in 64 training runs.

67

autoencoder architecture (concat-cnn-features, default, share-cnn, concat-input)
autoencoder latent dimension (8, 16)
batch size 64
filter block height 0.04
delta true
horizon (1, 4)
window (4, 8)
activation ELU
batch norm false
hidden channels 6x500
learning rate 0.001
autoencoder learning rate 0.0001
latent space loss weight 0.2
predict parallel (true, false)
epochs 100

Forward Prediction Performance For each training run the last 20 time steps of all
episodes in the test set are forward predicted. Figure 4.12 visualized the effect of the
varied hyperparameters.
For each predicted component, we select the best model and visualize its prediction.
Best Models:

68

best in component mode latent dim window horizon parallel
sl1 pose target position share-cnn 8 4 4 true
sl1 pose target orientation share-cnn 8 4 4 true
tcp pose target position default 8 4 8 true
tcp pose target orientation default 8 4 8 true
image latent default 8 4 4 true

A.2.3. w/o Tactile Sensor

Comparison of delta and absolute prediction. When predicting absolute values the loss
on the predicted quaternions has two summed components l = c1 + c2. The quaterion
distance defined as c1(q, q̂) = 1− ⟨q1, q2⟩2 and a normalization loss c2(q) = (1− ∥q∥)2

batch size 128
delta (true, false)
horizon 8
window 4
activation ELU
batch norm false
hidden channels 5x300
learning rate 0.001
predict parallel true
epochs 100

69

(a) grouped by architecture, line: group mean (b) grouped by architecture, line: group mean,
area: group min/max

(c) grouped by architecture, line: group mean (d) grouped by architecture, line: group mean,
area: group min/max

Figure A.2.: Learning performance of autoencoderswith different architectures and latent
space dimensions on smooth dataset. The training loss is the average of
the SSIM loss for both images. The validation loss sums the SSIM-losses
of both images. A strong correlation between the latent space size and
performance can be observed, while the effects of the model architecture is
less significant.

70

(a)

71

(b)

Figure A.3.: Grid of latent space interpolations, between the four images presented in
Figure 4.5, for models trained under different parameters on the smooth
dataset. The corners of each interpolation grid are the original images. Each
row shows interpolations from models with the same architecture mode and
each column uses the same latent dimension. One can see how a larger
latent space helps the model to disentangle the variances in the dataset
into individual components of the representation. Only very few models are
able to represent the image in the top right corner well. This is due to an
imbalance of the dataset. Some tactile states occur only rarely at the end of
an episode.

72

every ima e from DIGIT sensors

0 10 20 30 40
−20

−15

−10

−5

0

5

10

15

20

latent features

0 10 20 30 40
timestep

0

5

10

norm of delta of latent features

timesteps: 50, arch: Modes.CONCAT_CNN_FEATURES, latent dim: 8

every mage from DIGIT sensors

0 10 20 30 40

−15

−10

−5

0

5

10

15

latent features

0 10 20 30 40
t mestep

0.0

2.5

5.0

7.5

10.0

12.5
norm of delta of latent features

t mesteps: 50, arch: Modes.CONCAT_INPUT, latent d m: 8

every image rom DIGIT sensors

0 10 20 30 40
−10

−5

0

5

10

15
latent eatures

0 10 20 30 40
timestep

0

5

10

15
norm o delta o latent eatures

timesteps: 50, arch: Modes.CONCAT_SHARED_CNN_FEATURES, latent dim: 8

every image from DIGIT se sors

0 10 20 30 40

−10

−5

0

5

10

late t features

0 10 20 30 40
timestep

0

5

10

 orm of delta of late t features

timesteps: 50, arch: Modes.DEFAULT, late t dim: 8

every image from DIGIT sensors

0 10 20 30 40

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

latent features

0 10 20 30 40
timestep

0

2

4

6

8

norm of delta of latent features

timesteps: 50, arc : Modes.SHARE_ALL, latent dim: 8

every image from DIGIT sensors

0 10 20 30 40

−10

−5

0

5

10

latent features

0 10 20 30 40
timestep

0

2

4

6

8

norm of delta of latent features

timesteps: 50, arc : Modes.SHARE_CNN, latent dim: 8

every image from DIGIT sensors

0 10 20 30 40
−15

−10

−5

0

5

10

15

latent features

0 10 20 30 40
timestep

0.0

2.5

5.0

7.5

10.0

norm of delta of latent features

timesteps: 50, arc : Modes.SHARE_MLP, latent dim: 8

every image rom DIGIT sensors

0 10 20 30 40
−10

−5

0

5

10

15

latent eatures

0 10 20 30 40
timestep

0

2

4

6

8

norm o delta o latent eatures

timesteps: 50, arch: Modes.CONCAT_CNN_FEATURES, latent dim: 4

every i age fro DIGIT sensors

0 10 20 30 40

−5

0

5

10

latent features

0 10 20 30 40
ti estep

0

1

2

3

4

5

nor of delta of latent features

ti esteps: 50, arch: Modes.CONCAT_INPUT, latent di : 4

every imag from DIGIT s nsors

0 10 20 30 40

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5
lat nt f at−r s

0 10 20 30 40
tim st p

0

2

4

6

norm of d lta of lat nt f at−r s

tim st ps: 50, arch: Mod s.CONCAT_SHARED_CNN_FEATURES, la, n, dim: 4

every i age fro DIGIT sensors

0 10 20 30 40

−10

−5

0

5

10

latent features

0 10 20 30 40
ti estep

0

2

4

6

8
nor of delta of latent features

ti esteps: 50, arch: Modes.DEFAULT, latent di : 4

every image from DIGIT sensors

0 10 20 30 40

−6

−4

−2

0

2

4

6

 atent features

0 10 20 30 40
timestep

0

1

2

3

norm of de ta of atent features

timesteps: 50, arch: Modes.SHARE_ALL, atent dim: 4

73

every mage from DIGIT sensors

0 10 20 30 40
−10

−5

0

5

10

latent features

0 10 20 30 40
t mestep

0

2

4

6
norm of delta of latent features

t mesteps: 50, arch: Modes.SHARE_CNN, latent d m: 4

every image from DIGIT sensors

0 10 20 30 40

−5

0

5

10

15

20

latent features

0 10 20 30 40
timestep

0

2

4

6

8

norm of delta of latent features

timesteps: 50, arc : Modes.SHARE_MLP, latent dim: 4

every ima e from DIGIT sensors

0 10 20 30 40

−15

−10

−5

0

5

10

15

latent features

0 10 20 30 40
timestep

0

5

10

15

norm of delta of latent features

timesteps: 50, arch: Modes.CONCAT_CNN_FEATURES, latent dim: 16

every image from DIGIT sensors

0 10 20 30 40
−15

−10

−5

0

5

10

15

20
 atent features

0 10 20 30 40
timestep

0

5

10

15

norm of de ta of atent features

timesteps: 50, arch: Modes.CONCAT_INPUT, atent dim: 16

every imag from DIGIT s nsors

0 10 20 30 40

−15

−10

−5

0

5

10

lat nt f at−r s

0 10 20 30 40
tim st p

0.0

2.5

5.0

7.5

10.0

norm of d lta of lat nt f at−r s

tim st ps: 50, arch: Mod s.CONCAT_SHARED_CNN_FEATURES, la, n, dim: 16

every image from DIGIT se sors

0 10 20 30 40

−10

−5

0

5

10

late t features

0 10 20 30 40
timestep

0

5

10

15

20

 orm of delta of late t features

timesteps: 50, arch: Modes.DEFAULT, late t dim: 16

every mage from DIGIT sensors

0 10 20 30 40
−10

−5

0

5

10

latent features

0 10 20 30 40
t mestep

0.0

2.5

5.0

7.5

10.0

12.5

norm of delta of latent features

t mesteps: 50, arch: Modes.SHARE_ALL, latent d m: 16

every mage from DIGIT sensors

0 10 20 30 40
−15

−10

−5

0

5

10

15

latent features

0 10 20 30 40
t mestep

0

5

10

15
norm of delta of latent features

t mesteps: 50, arch: Modes.SHARE_CNN, latent d m: 16

every mage from DIGIT sensors

0 10 20 30 40
−15

−10

−5

0

5

10

15

20

25
latent features

0 10 20 30 40
t mestep

0

5

10

15

norm of delta of latent features

t mesteps: 50, arch: Modes.SHARE_MLP, latent d m: 16

every ima e from DIGIT sensors

0 10 20 30 40
−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

latent features

0 10 20 30 40
timestep

0

1

2

3

4

5

norm of delta of latent features

timesteps: 50, arch: Modes.CONCAT_CNN_FEATURES, latent dim: 2

every image from DIGIT sensors

0 10 20 30 40
−15

−10

−5

0

5

10
 atent features

0 10 20 30 40
timestep

0

2

4

6
norm of de ta of atent features

timesteps: 50, arch: Modes.CONCAT_INPUT, atent dim: 2

every ima e from DIGIT sensors

0 10 20 30 40

−10

−5

0

5

10

latent features

0 10 20 30 40
timestep

0

1

2

3

4

5

norm of delta of latent features

timesteps: 50, arch: Modes.CONCAT_SHARED_CNN_FEATURES, latent dim: 2

74

every image from DIGIT se sors

0 10 20 30 40

0

5

10

15

20

25

late t features

0 10 20 30 40
timestep

0

2

4

6

8

10
 orm of delta of late t features

timesteps: 50, arch: Modes.DEFAULT, late t dim: 2

every image from DIGIT sensors

0 10 20 30 40

0

1

2

3

4

5

6

7
 atent features

0 10 20 30 40
timestep

0.0

0.5

1.0

1.5

2.0
norm of de ta of atent features

timesteps: 50, arch: Modes.SHARE_ALL, atent dim: 2

every mage from DIGIT sensors

0 10 20 30 40

−2

0

2

4

6

latent features

0 10 20 30 40
t mestep

0.0

0.5

1.0

1.5

2.0

norm of delta of latent features

t mesteps: 50, arch: Modes.SHARE_CNN, latent d m: 2

every image from DIGIT sensors

0 10 20 30 40

−10

−5

0

5

10

15

20
latent features

0 10 20 30 40
timestep

0

2

4

6

8

10
norm of delta of latent features

timesteps: 50, arc : Modes.SHARE_MLP, latent dim: 2

every image rom DIGIT sensors

0 10 20 30 40

−8

−6

−4

−2

0

latent eatures

0 10 20 30 40
timestep

0

1

2

3

4

5
norm o delta o latent eatures

timesteps: 50, arch: Modes.CONCAT_CNN_FEATURES, latent dim: 1

every mage from DIGIT sensors

0 10 20 30 40
−4

−2

0

2

4

6

8

10

12

latent features

0 10 20 30 40
t mestep

0

2

4

norm of delta of latent features

t mesteps: 50, arch: Modes.CONCAT_INPUT, latent d m: 1

Figure A.4.: Latent space of an episode for all models of the experiment described in this
section. Each figure shows the difference of the sensor image to the first
image of the episode, the individual components of the representation and
the change in the vector of the representation measured by the Euclidean
distance. Some patterns can be observed. There are often a few components
in the latent representation that cause most of the delta in whole representa-
tion. Observing the delta images closely it can be seen that the magnitude
of change in the latent representation roughly correlates with the change in
tactile measurement seen in the images.

75

(a) Weight of the KL-Divergence-loss β (b) Overall training loss: reconstruction loss
plus kl-loss weighted by β

(c) Unweighted KL-Divergence of the output of
out model to a standard normal distribution.

(d) Learning rate

Figure A.5.: Logs of training variational autoencoders.

76

every ima e from DIGIT sensors with el 0

every ima e from DIGIT sensors with el 1

every ima e from DIGIT sensors with el 2

0 5 10 15 20 25 30
timestep

−2

0

2

4

6

8

latent features 0
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

3

4

5

6

7

8
latent features 1

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−4

−2

0

2

4

latent features 2
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−2

0

2

4

6

8

latent features 3
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−14

−12

−10

−8

−6

−4

−2

0

2
latent features 4

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−1

0

1

2

3

4

5

6

7
latent features 5

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

2

4

6

8

10

12

14

16
latent features 6

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−2

0

2

4

6

8

latent features 7
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−4

−2

0

2

4

latent features 8
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−2

0

2

4

6

8
latent features 9

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

0.5

1.0

1.5

2.0

2.5

3.0

latent features 10

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−6

−4

−2

0

2

4

latent features 11
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−6

−4

−2

0

2

latent features 12
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0
latent features 13

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−10

−8

−6

−4

−2

latent features 14

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−4

−3

−2

−1

0

1

2
latent features 15

 el_0
 el_1
 el_2

timesteps: 30, arch: Modes.SHARE_ALL, latent dim: 8

(a) Motion 1

77

every ima e from DIGIT sensors with el 0

every ima e from DIGIT sensors with el 1

every ima e from DIGIT sensors with el 2

0 5 10 15 20 25 30
timestep

0

2

4

6

8

10
latent features 0

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

1

2

3

4

5

6

7

8
latent features 1

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−4

−3

−2

−1

0

1

2

latent features 2
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

0

2

4

6

8

10

latent features 3
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−10

−8

−6

−4

−2

0

2

latent features 4
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−2

0

2

4

6

latent features 5
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

0.0

2.5

5.0

7.5

10.0

12.5

15.0

latent features 6
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−4

−2

0

2

4

6

8

10
latent features 7

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−6

−4

−2

0

2

4

latent features 8
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−4

−2

0

2

4

6

8

10

latent features 9
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−1

0

1

2

3

4
latent features 10

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−8

−6

−4

−2

0

2

latent features 11
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−12

−10

−8

−6

−4

−2

0

2

latent features 12
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−5

−4

−3

−2

−1

latent features 13
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−14

−12

−10

−8

−6

−4
latent features 14

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−1.5

−1.0

−0.5

0.0

0.5

1.0

latent features 15
 el_0
 el_1
 el_2

timesteps: 30, arch: Modes.SHARE_ALL, latent dim: 8

(b) Motion 2

78

every ima e from DIGIT sensors with el 0

every ima e from DIGIT sensors with el 1

every ima e from DIGIT sensors with el 2

0 5 10 15 20 25 30
timestep

0

2

4

6

8

10

12

latent features 0
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−2

0

2

4

6

latent features 1
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−4

−2

0

2

4

6

8

latent features 2
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−2

0

2

4

6

8

10

12
latent features 3

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−14

−12

−10

−8

−6

−4

−2

0

2
latent features 4

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−4

−2

0

2

4

6
latent features 5

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

latent features 6
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−4

−2

0

2

4

6

8

10
latent features 7

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−8

−6

−4

−2

0

2

4
latent features 8

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

0

2

4

6

8

10

latent features 9
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−2

−1

0

1

2

3

latent features 10

 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

latent features 11
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

latent features 12
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−7

−6

−5

−4

−3

−2

−1

0

latent features 13
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

latent features 14
 el_0
 el_1
 el_2

0 5 10 15 20 25 30
timestep

−8

−6

−4

−2

0

2

latent features 15
 el_0
 el_1
 el_2

timesteps: 30, arch: Modes.SHARE_ALL, latent dim: 8

(c) Motion 3

Figure A.6.: Three different motions are executed three times with a different type of gel
pads mounted in the DIGIT sensors. Each component of the latent space is
plotted in an individual plot together with the representations coming from
different gels. The sensor images are visualized as difference to the first
image of the episode.

79

(a) (b) (c)

(d) (e) (f)

Figure A.7.: Losses logged during the training of a transition model on the fingerprint
dataset. All losses converge except the image reconstruction. The additional
information of the other sensors could not be utilized to forward predict
images well.

80

(a) Predicting last 12 time steps of an episode.
81

(b) Predicting last 20 time steps of an episode.
82

(c) Predicting last 30 time steps of an episode.
83

Figure A.8.: Forward prediction on test data with fingerprint sensor images. The 3rd
and 4th row of images show the images decoded from latent space. For
the last n time steps of the episode, the latent space is forward predicted
by the transition model. While the predictions on the poses are just linear
extrapolations and not very good, the prediction in the latent space is okay,
when compared to the smooth dataset models. This should not be attributed
to a better transition model, but to the more well-formed latent space of the
fingerprint images.

84

(a) best in sl1 pose prediction
85

(b) best in tcp pose prediction
86

(c) best in latent space prediction
87

Figure A.9.: Visualization of predictions of best models on an episode from test data.
DIGIT images are visualized as is and as difference to the first image of
episode.

(a) position error (b) orientation error

Figure A.10.: Comparison of training with delta predictions and training with absolute
predictions. Position and orientation error on validation data computed with
one pass forward prediction. The model prediction "horizon" steps ahead
for each time step but does not predict recursively on its own output. Tactile
sensor images were ignored in this experiment.

88

	Introduction
	Related Work
	Outline

	Assembly Gym
	Hardware Components
	Software Architecture

	Learning Tactile Representations
	Tactile Robotic Assembly Task
	Deep Model Predictive Control
	Learning the Transition Function
	Data Sampling
	Cross Entropy Method

	Experiments
	Dataset
	Autoencoder
	Transition Model
	Control on Real System

	Conclusion
	Outlook
	Towards Robust Representations
	Sampling-Based Trajectory Planning
	Model Free Learning

	Appendix
	Autoencoder Experiments
	Transition Model Experiments

