
Minimax and entropic
proximal policy optimization
Minimax und entropisch proximal Policy-Optimierung

Master-Thesis von Yunlong Song aus Jiangxi

August 2018

Minimax and entropic proximal policy optimization

Minimax und entropisch proximal Policy-Optimierung

Vorgelegte Master-Thesis von Yunlong Song aus Jiangxi

1. Gutachten: Prof. Dr. Jan Peters

2. Gutachten: Prof. Dr. Heinz Koeppl

3. Gutachten: Boris Belousov

Tag der Einreichung:

Bitte zitieren Sie dieses Dokument als:

URN: urn:nbn:de:tuda-tuprints-12345

URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/1234

Dieses Dokument wird bereitgestellt von tuprints,

E-Publishing-Service der TU Darmstadt

http://tuprints.ulb.tu-darmstadt.de

tuprints@ulb.tu-darmstadt.de

Die Verö�entlichung steht unter folgender Creative Commons Lizenz:

Namensnennung � Keine kommerzielle Nutzung � Keine Bearbeitung 2.0 Deutschland

http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Erklärung zur Abschlussarbeit gemäß § 23 Abs. 7 APB

der TU Darmstadt

Hiermit versichere ich, Yunlong Song, die vorliegende Master-Thesis ohne Hilfe Dritter und nur mit

den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die Quellen entnommen

wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form

noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Fall eines Plagiats (§ 38 Abs. 2 APB) ein Täuschungsversuch vorliegt,

der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht wird.

Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte

elektronische Fassung überein.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische Fassung dem

vorgestellten Modell und den vorgelegten Plänen.

Datum / Date: Unterschrift / Signature:

Abstract

First-order gradient descent is to date the most commonly used optimization method for training deep neural networks,

especially for networks with shared parameters, or recurrent neural networks (RNNs). Policy gradient methods provide

several advantages over other reinforcement learning algorithms; for example, they can naturally handle continuous

state and action spaces. In this thesis, we contribute two different policy gradient algorithms that are straightforward

to implement and effective for solving challenging environments, both methods being compatible with large nonlinear

function approximations and optimized using stochastic gradient descent.

First, we propose a new family of policy gradient algorithms, which we callminimax entropic policy optimization (MMPO).

The new method combines the trust region policy optimization and the idea of minimax training, in which stable policy

improvement is achieved by formulating the KL-divergence constraint in the trust region policy optimization (TRPO)

as a loss function with a ramp function transformation, and then, carrying out a minimax optimization between two

stochastic gradient optimizers, one optimizing the �surrogate� objective and another maximizing the ramp-transformed

KL-divergence loss function. Our experiments on several challenging continuous control tasks demonstrate that MMPO

method achieves comparable performance as TRPO and proximal policy optimization (PPO), however, is much easier to

implement compared to TRPO and guarantees that the KL-divergence bound to be satis�ed.

Second, we investigate the use of the f -divergence as a regularization to the policy improvement, where the f -divergence
is a general class of functional measuring the divergence between two probability distributions with the KL-divergence

being a special case. The f -divergence can be either treated as a hard constraint or added as a soft constraint to the

objective. We propose to treat the f -divergence as a soft constraint by penalizing the policy update step via a penalty

term on the f -divergence between successive policy distributions. We term such an unconstrained policy optimization

method as f -divergence penalized policy optimization (f -PPO). We focus on a one-parameter family of α-divergences,
a special case of f -divergences, and study in�uences of the choice of divergence functions on policy optimization. The

empirical results on a series of MuJoCo environments show that f -PPO with a proper choice of α-divergence is effective
for solving challenging continuous control tasks, where α-divergences act differently on the policy entropy, and hence,

on the policy improvement.

Zusammenfassung

Gradientenabstieg erster Ordnung ist heutzutage die am meisten genutzte Methode, um Neuronale Netze mit mehreren

Schichten trainieren. Vor allem Netze, die ihre Parameter teilen, oder Rekurrente Neuronale Netze (RNNs), werden mit

dem Gradientenabstieg erster Ordnung trainiert. Policy-Gradient-Methoden haben im Vergleich zu anderen Reinforce-

ment Learning Algorithmen viele Vorteile. Sie können z.B. mit kontinuierlichen Zustands- und Aktionsräumen umgehen.

In dieser Thesis stellen wir zwei verschiedene Policy-Gradienten-Methoden vor, die unkompliziert zu implementieren

sind und, die anspruchsvolle Probleme effektiv lösen. Beide Methoden sind mit nichtlinearen Funktionsapproximationen

kompatibel und sie werden mit der Methode des stochastischen Gradientenabstiegs optimiert.

Als Erstes stellen wir eine neue Famile der Policy-Gradient-Methoden vor, welche als minimax entropisch Policy-

Optimierung (MMPO) Methode genannt wird. Die neue Methode kombiniert die Vertrauensbereich-Policy-Optimierung

und die Idee des minimax Trainings. Beim minimax Training wird eine stabile Policy-Verbesserung durch das Formulieren

der KL-Divergenz Nebenbedingung in TRPO als eine Kostenfunktion mit einer Rampenfunktion erreicht, was dann als

eine minimax Optimierung zwischen zwei stochastischen Gradientenabstieg-Optimierern optimiert wird. Einer der Opti-

mierer maximiert das Kostenfunktionssurrogat, während der andere Optimierer die Rampentransformierte KL-Divergenz

Kostenfunktion minimiert. Unsere anspruchsvollen Experimente mit mehreren kontinuierlichen Regelproblemen zeigen,

dass die MMPO Methode vergleichbare Performanz wie das TRPO und das PPO erreicht. Dennoch ist es im Vergleich zu

TRPO viel einfacher zu implementieren und garantiert das Einhalten der KL-Divergenz Beschränkung.

Als Zweites, untersuchen wir die f -Divergenz als eine Regularisierung für die Policy Verbesserung, wobei die f -Divergenz
eine allgemeine Klasse zur Divergenzuntersuchung zwischen zwei Wahrscheinlichkeitsdichtefunktionen ist. Die KL-

Divergenz ist ein Sonderfall der f -Divergenz. Die f -Divergenz kann sowohl als harte Nebenbedingung, als auch eine

i

weiche Nebenbedingung behandelt werden. Wir beabsichtigen, sie als eine weiche Nebenbedingung zu nutzen, in dem

wir den Policy Update zwischen Policy Distributionen mit einem Bestrafungsterm der f -Divergenz sukzessive bestrafen.
Wir nennen solch eine Policy-Optimierung ohne Nebenbedingungen als die f -Divergenz bestrafte Policy-Optimierung (f -
PPO) Methode. Wir fokussieren uns hierbei auf eine Famile mit einem Parameter der α-Divergenzen, einem Sonderfall

der f -Divergenzen und untersuchen den Ein�uss der Wahl der Divergenzfunktionen auf die Policy-Optimierung. Die

empirischen Ergebnisse auf eine Reihe von MuJoCo Umgebungen zeigen, dass die f -PPO mit einer passenden Wahl der

α-Divergenz, anspruchsvolle kontinuierliche Regelungsaufgaben effektive löst, wobei die α-Divergenz unterschiedlich

auf die Policy Entropie und somit auf die Policy-Verbesserung wirkt.

ii

Acknowledgments
I would like to �rst express my sincere appreciation to my thesis advisor Boris Belousov for the interesting topic, his

patient introduction at the early stage, and his insightful comments and careful examination of this thesis. He consis-

tently encouraged me to try out new ideas but steered me in the right direction whenever he thought I needed it. I

would also like to acknowledge Prof. Dr. Jan Peters and Prof. Dr. Heinz Koeppl, who provided me the great opportunity

to work in their excellent research groups: �Intelligent Autonomous Systems� and �Bioinspired Communication Systems�.

I must express my very great gratitude to my parents for giving me with unfailing support and continuous encouragement

throughout my years of study and through the process of researching and writing this thesis. This accomplishment would

not have been possible without them. Thank you.

Many thanks to Rong Zhi, Simone Parisi, Adrian Sosic and Onur Celik for helpful advice and discussions.

iii

Contents

1. Introduction 2

1.1. Contributions . 3

1.2. Outline . 3

2. Background 5

2.1. Reinforcement learning . 5

2.1.1. Markov decision process . 5

2.1.2. Value functions and policy . 6

2.1.3. Reinforcement learning algorithms . 7

2.2. Deep learning . 9

2.2.1. Feedforward neural networks . 10

2.2.2. Generative adversarial network . 11

2.2.3. Stochastic gradient descent algorithms . 12

2.3. Policy search algorithms . 13

2.3.1. Natural policy gradient . 13

2.3.2. Relative entropy policy search . 13

2.3.3. Trust region policy optimization . 14

2.3.4. Proximal policy optimization . 14

3. Minimax entropic policy optimization 16

3.1. Introduction . 16

3.2. MMPO . 16

3.2.1. Preliminaries . 16

3.2.2. The objectives . 18

3.2.3. The algorithm . 20

3.3. Connections with prior work . 20

3.4. Experiments . 21

3.4.1. Policy and value function . 21

3.4.2. MuJoCo environment . 21

3.4.3. Results . 23

3.5. Conclusion . 27

4. f -divergence penalized policy optimization 28

4.1. Introduction . 28

4.2. f -PPO . 28

4.2.1. f -divergence and α-divergence . 28

4.2.2. f -divergence constrained policy optimization . 30

4.2.3. f -divergence penalized policy optimization . 30

4.3. Connections with prior work . 31

4.4. Experiments . 32

4.4.1. Policy and value function . 32

4.4.2. MuJoCo environment . 32

4.4.3. Empirical results . 33

4.5. Conclusion . 33

5. Conclusion and discussion 36

Bibliography 37

A. Hyperparameters 41

B. All twice di�erentiable f -divergences are locally the same 42

iv

Figures and tables

List of Figures

2.1. Typical agent-environment interaction in a Markov decision process. [1] 6

2.2. A generic feedforward arti�cial neural networks (ANN) . 10

2.3. A framwork of the generative adversarial network (GAN) . 11

3.1. The ramp function and a sketch of the minimax optimization procedure 19

3.2. Snapshots of several MuJoCo environments . 22

3.3. Comparisons of policy performance between MMPO and MMPO+Ent methods 24

3.4. Comparisions of policy entropy between MMPO and MMPO+Ent methods 24

3.5. Comparisions of KL-divergence between MMPO and MMPO+Ent . 25

3.6. Comparisons of policy performance among MMPO, TRPO and PPO . 26

3.7. Comparisons of the policy entropy among MMPO, TRPO, and PPO . 26

3.8. Comparisons of the KL-divergence among MMPO, TRPO and PPO . 27

4.1. Generator functions of the α-divergence . 29

4.2. Comparisons of the policy performance on MuJoCo environments among a set of α-divergences 34

4.3. Comparisons of the policy entropy on MuJoCo environments among a set of α-divergences 35

List of Tables

3.1. Architecture of the policy network and value function network . 21

3.2. Details of several OpenAI MuJoCo emvironments . 22

3.3. Comparison of normalized scores of MMPO experiments on 7 MuJoCo environments. 23

3.4. Comparison of the averaged policy performance between MMPO and MMPO+Ent 25

4.1. Several common f -divergences with corresponding generator functions f(u). 29

A.1. Hyperparameters of running MMPO method on MuJoCo environments 41

A.2. Hyperparameters of running f -PPO method on MuJoCo environments 41

v

Abbreviations, symbols and operators

List of abbreviations

Notation Description

AC Actor-critic

ACKTR Actor-critic using Kronecker-Factored trust region

CNN Convolutional neural network

DL Deep learning

DP Dynamic programming

f -PPO f -divergence penalized policy optimization

GAN Generative adversarial network

KL-divergence Kullback-Leibler divergence

MDP Markov decision process

MLP Multilayer perceptron

MMPO Minimax entropic policy optimization

MSE Mean squared error

POMDP Partially observable Markov decision process

PPO Proximal policy optimization

REPS Relative entropy policy search

RL Reinforcement learning

RNN Recurrent neural network

SARSA State-action-reward-state-action

SGD Stochastic gradient descent

TD learning Temporal-difference learning

TRPO Trust region policy optimization

vi

List of symbols

Notation Description

θ Parameter vector of target policy

J(πθ) Performance measure for policy πθ

A Advantage function

δ TD-error

F Fisher information matrix

H Hessian matrix

DKL Kullback�Leibler divergence

Df f -Divergence

Dα α-Divergence

πθ Parametric policy corresponding to parameter vector θ

π(a|s) Probability of taking action a in state s under policy π

S State space

A Action space

γ Discount factor

V Estimation of state-value function

Q Estimation of action-value function

G Long-term expected discounted return

List of operators

Notation Description Operator

∇θ Derivative with respect to paramterer vector θ ∇θ (•)

E Expectation of samples E (•)

argmaxθ Parameter vector θ at which the function values are maximized argmaxθ (•)

argminθ Parameter vector θ at which the function values are minimized argminθ (•)

T Transpose of a matrix (•)T

log Natural logarithm log (•)

‖‖ Absolute value ‖ • ‖

max The ramp function max(•, 0)

maxθ Maximize an objective with respect to the parameter vector θ maxθ(•)

minθ Minimize a loss function with respect to the parameter vector θ minθ(•)

1

1 Introduction

For the past decade, there has been a rapid rise in the development of arti�cial intelligence (AI). For example, in 2012

the Google Brain team made it possible for the computer to recognize over 22,000 object categories from a large visual

database (ImageNet) that contains around 14 million natural images [2]. Facebook created a face recognition system that

learns to identify human faces with 97.35% of accuracy that rivals human performance in 2014 [3]. The development

of deep learning algorithms and increasing computer performance are the catalysts for the progress of AI boom. Deep

learning (DL) is the study of how to generalize underlying features using deep neural networks that provides powerful

nonlinear function approximation and generalization. However, the training of deep neural networks, such as supervised

learning for image classi�cations, requires a large number of data and human labels, which is intractable in the most

real-world scenario. In addition, for arti�cial agents to reach their full potential, enabling the agent to observe the world

by generalizing the underlying features of observed objects is far from enough. Instead, learning how to behave in and

interact with the environment like human does is crucial for general AI. For example, to develop robots that can be used

in automotive manufacturing would potentially increase the productivity and decrease the need for human labor.

Reinforcement learning (RL) is a branch of AI that is concerned with how to make optimal sequential decisions in an

environment through trial-and-error learning scheme. RL algorithms are often used to solve problems in a stochastic

environment where human supervision is not possible. The performance of RL heavily dependent on the state repre-

sentation (or state features) of the environment. However, in reality, the state space needed to represent the solutions

becomes so large that using traditional RL methods, e.g. tabular methods, becomes infeasible. It was in the past fewer

years during which RL gained more importance and interest due to recent breakthroughs in deep reinforcement learn-

ing (deep RL), where RL algorithms and deep neural networks training are combined together. The powerful function

approximation properties and features representation of deep neural networks can deal ef�ciently with the curse of di-

mensionality, unlike tabular and traditional non-parametric methods. For example, in 2015, DeepMind presented a deep

RL system known as a deep Q-network (DQN) [4] that combines deep neural networks and reinforcement learning at

scale for the �rst time and is capable of achieving human-level gameplay on a diverse range of Atari 2600 games just

using raw images as inputs. A year later, DeepMind's AlphaGo [5], an AI program developed using RL methods, defeats

18-time world champion Lee Sedol in a �ve-game Go match. Furthermore, OpenAI made a big splash in June 2018 by

beating amateur human teams using an AI team of pre-trained neural networks in 5v5 match-ups at Dota 2 [6], and in

July 2018 DeepMind's AI agents exceed human-level gameplay at a game of capture a �ag (Quake III) [7], both matches

require combined efforts and long-term planning of AI agents.

Learning how to play video games might be an interesting challenge for research purpose, but solving complex real-

world problems, such as autonomous driving, is an ultimate goal of deep RL. However, despite recent breakthroughs

and rising popularity in deep RL, many challenging problems need to be addressed in the quest for general AI. One of

the long-standing challenges in deep RL is that the training for deep neural network policies is rather unstable and data

inef�cient, since the policy gradient is calculated using sampled trajectories and Monte Carlo approximation which is

known to be biased and data-heavy and the training procedure requires the agent to repeatedly interact with the envi-

ronment. Experience replay [8] turned out to be essential for the success of deep Q-learning, which was followed by

further improvements in sample ef�ciency. However, �nding the optimal action with respect to the Q-function is gener-

ally infeasible in continuous domains.

More advanced optimization methods that use (quasi-) second-order gradient information to update parameters along

the steepest descent direction represent an alternative way of alleviating the sample ef�ciency problem, e.g., natural

policy gradients [9]. However, the Fisher information matrix and its inverse, required by the natural policy gradient

method, are expensive to compute and therefore impractical in deep RL. Trust region policy optimization (TRPO) [10]

and Actor-critic using Kronecker-Factored trust region (ACKTR) [11] avoid explicitly computing the inverse Fisher matrix

by using Fisher-vector products [12] or the Kronecker-factored approximated curvature (K-FAC) method [13]. However,

TRPO requires a large number of samples in each batch for accurately estimating the curvature and several conjugate

gradient steps for a single parameter update, and ACKTR is not straightforward to implement with Recurrent neural

networks (RNNs) [14] or architectures with shared parameters.

First-order gradient methods play an important role in diverse applications of deep learning such as image recognition,

natural language processing, deep RL, etc. With many advanced optimizers [15], gradient descent is by far the most

2

common way to optimize neural networks. For example, in deep RL, proximal policy optimization (PPO) [16] achieved

state-of-the-art results on several deep RL benchmark tasks by optimizing a clipped �surrogate� objective and a mean

square error loss (MSE) function of the state-value function with the stochastic gradient descent (SGD) optimizer and

multiple epochs of optimization using the same sampled trajectory.

1.1 Contributions

In this thesis, we contribute two different policy gradient algorithms, the minimax entropic policy optimization (MMPO)

and the f -divergence penalized policy optimization (f -PPO) that are straightforward to implement and effective for

solving challenging environments with high-dimensional state and action spaces. Both methods represent the policy

with function approximation methods, e.g., nonlinear function approximations, and optimize the policy with SGD. In

addition, we investigate the use of f -divergences as hard constraints for policy optimization, where the constrained

problem can be solved using the linear and quadratic approximation scheme that comes from TRPO [10] and yields the

same approximated solution as TRPO.

1. Minimax entropic policy optimization (MMPO): We propose a new family of the policy gradient method for RL,

in which we combine the idea of minimax optimization [17] and trust region policy optimization [10]. The new

method, which we called minimax entropic policy optimization (MMPO), tries to maximize an objective whose

gradients with respect to the policy parameters indicate the direction of �nding an optimal policy, and simultane-

ously minimize a secondary objective (a ramp-transformed KL-divergence constraint) to ful�ll the KL-divergence

bound. Thus, the optimization process can be viewed as a minimax game between two stochastic gradient optimiz-

ers, similar with generative adversarial training [17] [18] [19] where a minimax game is conducted between two

models (a generator and a discriminator). The optimization of MMPO method only requires �rst-order gradient

information, it is straightforward to combine with other neural network structure such as RNNs or apply advanced

regularization techniques such as dropout, which has been an issue in other second-order policy optimization

methods such as TRPO [10] or ACKTR [11].

2. f -divergence constrained policy optimization: We investigate to use a more general class of f -divergence as the
similarity measure that quanti�es the similarity between successive policy distributions during policy improvement,

and then, ensure stable policy updates by restricting the update step inside a trust region that is determined by the

f -divergence. We formulate a constrained policy optimization problem by considering the f -divergence bound as

a hard constraint and solve the constrained problem approximately using the linear and quadratic approximation

to the objective and constraint respectively, like the TRPO method [10] where a Kullback-Leibler (KL) divergence is

used for the constraint. However, both constraints (f -divergence and KL-divergence) are generally set to be a small

number and for vanishingly small policy update steps, any twice differentiable f-divergence can be replaced by the

Fisher information metric that is the quadratic approximation of the KL-divergence, f -divergence constrained

policy optimization yield the same update rule as the TRPO solution.

3. f -divergence penalized policy optimization (f -PPO): We propose to treat the f -divergence as a soft constraint
by penalizing the policy update step via a penalty term that is proportional to the f -divergence between policy

distributions. We term such an unconstrained policy optimization method as the f -divergence penalized policy op-

timization (f -PPO) method. We focus on a one-parameter family of α-divergences, a special case of f -divergences,
and study in�uences of the choice of divergence functions on policy optimization. The empirical results on a series

of MuJoCo environments show that f -PPO with a proper choice of α-divergence is effective for solving challeng-

ing continuous control tasks, where α-divergences act differently on the policy entropy, and hence, on the policy

improvement.

1.2 Outline

The thesis is organized as follows:

� In chapter 2, we introduce the general setting of reinforcement learning problems, including the Markov decision

process (MDP), value functions, policy representations, etc. Afterward, we discuss important elements in deep

learning, such as feedforward neural works, and advanced stochastic gradient descent optimization methods. In

the end, we talk about several popular and related policy search methods, e.g., REPS [20], PPO [16].

� In chapter 3, we introduce the minimax entropic policy optimization (MMPO) method that has close connections

with TRPO and the idea of minimax optimization, where the policy is represented using large nonlinear function

approximations. We evaluated the MMPO method via a series of comparisons of the learning curves, the entropy

performance, and the KL-divergence dynamics on several MuJoCo environments.

3

� In chapter 4, we provide background on the f -divergence, and its special case the α-divergence, for measuring the

difference between two probability distributions. We discussed the idea of constraining policy update steps using

the f -divergence and solving the constrained policy optimization problem approximately, like the TRPO [10].

Furthermore, we introduce the f -divergence penalized policy optimization (f -PPO) method and study the effects

of the divergence type on policy optimization via experiments on several MuJoCo environments.

� In chapter 5, we highlight the advantages and disadvantages of our proposed methods. We discuss future work

that would bene�t from our proposed methods or might be interesting to the reinforcement learning community.

4

2 Background
In this chapter, we �rst study the mathematical framework of formulating classical sequential decision-making problems,

Markov decision processes (MDPs), which serve as a basis for solving a wide range of optimization problems via rein-

forcement learning (RL) methods. Unlike dynamic programming (DP) where a perfect model of the environment is given,

RL does not assume complete knowledge of the environment and requires only samples�trajectories of states, actions,

and rewards by interacting with the environment. For the discrete environment where the dimension of state and action

spaces are relatively small, it is ef�cient to solve the problem with tabular methods that use tables to represent the value

functions. However, in reality, RL problems usually have high-dimensional state and action spaces that are intractable for

tabular methods to �nd an optimal solution and can be only solved approximately using function approximations to the

policy or (and) value functions. Additionally, we will discuss three main RL algorithms with function approximations:

value-based methods, policy gradient methods, and actor-critic methods.

Function approximations are long-standing problems in machine learning and have been well-studied. Function approxi-

mations have two special cases: linear methods that use a linear combination of the weight vector and hand-crafted state

features to approximate the function, and nonlinear methods that the approximants come from nonlinear manifolds. For

many real-world problems, the dimension of state spaces become so large that the linear function approximation often

leads to the curse of dimensionality, such as an exponential increase in samples for parameter updates. Deep neural net-

works, e.g. feedforward neural networks or convolutional neural networks (CNNs), are powerful function approximation

methods that are useful for alleviating the curse of dimensionality. Therefore, we use deep neural networks as function

approximators to the value functions and policies to solve challenging tasks. The second section will provide background

information about deep learning, such as forward and backward propagations, advanced stochastic gradient descent al-

gorithms. Additionally, we will also talk about the generative adversarial networks (GANs), as GANs are closely related to

many RL algorithms, such as actor-critic algorithms, and more importantly, to our minimax entropic policy optimization

(MMPO) method.

RL with deep neural networks involves a number of new issues that do not normally arise in conventional deep learning,

such as nonstationarity, unstable training, and delayed targets (rewards). Many advanced policy gradient methods have

been proposed to address these issues in deep RL, such as TRPO and PPO. At the end of this chapter, we will introduce

several advanced policy gradient algorithms by which our f -divergence penalized policy optimization (f -PPO) method

in Chapter 3 and minimax entropic policy optimization (MMPO) method in Chapter 4 are highly inspired.

2.1 Reinforcement learning

This section introduces the formal problem of an in�nite-horizon discounted Markov decision process, which is used

to formally describe an environment for reinforcement learning, and show a typical agent-environment interaction in

an MDP. The formal mathematical structure of the RL problem contains several key elements, such as value functions,

the policy, etc. Several challenges in RL are discussed in this chapter, including the exploration-exploitation trade-off,

sample complexity, etc. Afterward, we talk about three main categories of the RL algorithm: value-based methods, policy

gradient methods, and actor-critic methods, where value-based methods attempt to learn an optimal policy indirectly via

value functions, policy gradient methods directly �nd an optimal policy, and actor-critic optimize both a policy function

and a value function.

2.1.1 Markov decision process

An in�nite-horizon discounted Markov decision process is de�ned as a tuple (S,A,P, r, ρ0, γ), in which

� s ∈ S is the state space that contains all possible states in an environment,

� a ∈ A is the action space that includes all possible actions that can be executed by an agent,

� P(st+1|st,at) ∈ P : S × A × S → [0, 1] is the transition probability that an action at in state st at time step t
will lead to next state st+1 at next time step t+ 1,

� r(st,at) ∈ r: S ×A× S → R is the immediate reward by performing action at in state st,

5

� ρ0 is the probability distribution of the initial state s0 de�ned as ρ0: S → [0, 1],

� γ ∈ (0, 1) is the discount factor.

The trainsition probability of a MDP must always satis�es the Markov property P(st+1|st,at, st−1,at−1, · · ·) =
P(st+1|st,at), where the next state st+1 at time step t depends exclusively on current state st and current action

at, or the result of an action does not depend on previous actions and states.

MDPs are usually described via an agent-environment interaction procedure as Figure 2.1, where an agent repeatedly

acting on the environment and the environment responses to the agent's action with new states and rewards, where new

states are determined by the conditional probability P(st+1|st,at) given st,at and rewards are values that the agent

seeks to maximize in the long run through its choice of actions. The goal of solving the MDP problems is to �nd an

optimal strategy that maximize the long-term expected discounted return

Gt = rt+1 + γrt+2 + γ2r+3 + · · · =
∞∑
k=0

γkrt+k+1, (2.1)

where γ is the discount factor that trades off immediate and future rewards.

Agent

Environment

action at

st+1

state st

rt+1

reward rt

Figure 2.1.: Typical agent-environment interaction in a Markov decision process. [1]

2.1.2 Value functions and policy

Almost all reinforcement learning algorithms involve estimating value functions�functions of states (or of state-action

pairs) that estimate how good it is for the agent to be in a given state (or how good it is to perform an action in a given

state) [1]. In other words, the state-value function Vπ(s) or the action-value function Qπ(s,a) is an estimation of the

future rewards that can be expected from the given state by following a policy π, which is de�ned as a mapping from

states to actions (deterministic policy a = π(s)) or a mapping from states to probabilities of selecting each possible

actions (stochastic policy a ∼ π(a|s)). Standard de�nitions of the state-value function Vπ, and the action-value function

Qπ are

Vπ(st) = Eπ [Gt|St = s] = Eπ

[∞∑
k=0

γkRt+k+1|St = s

]
, ∀s ∈ S

Qπ(st,at) = Eπ [Gt|St = s, At = a] = Eπ

[∞∑
k=0

γkRt+k+1|St = s, At = a

]
∀s ∈ S, ∀a ∈ A

where the action at is determined by the policy π, and Gt is the long-term expected discounted return de�ned in Equa-

tion (2.1).

A policy π is de�ned as the agent's behavior in the environment, for example, the control torque of a bipedal walking

robot. A deterministic policy π is a function that de�ned as a = π(s), which is a unique mapping from state s to action a.
On the other hand, a stochastic policy is de�ned as a conditional probability distribution π(a|s), which is the likelihood

of taking action a given state s. The application of a policy to MDPs is done in the following way. First, an agent starts

from a state s0 drew from the initial state distribution ρ(s0). Then, a trajectory is generated (s0,a0, r0, s1,a1, r1, · · ·)
by following the policy π and the environment's transition model P(st+1|st,at).

In real-world scenarios, where the environment is stochastic and states are sometimes partially observable, we represent

the policy using the stochastic policy. For the agent with discrete actions, the policy is a parameterized softmax policy:

6

πθ(a|s) = exp (fθ(s,a))/
∑

a′∈A exp (fθ(s,a
′)), where fθ is a neural network with trainable weights θ, and action

probability is proportional to exponentiated weight. For the agent with continuous actions, the policy is a parameterized

Gaussian policy: πθ(a|s) ∼ N (a|fω(s),σ2), where the mean is the output of a deep neural network fω(s) with trainable

weights ω, and a separate set of trainable parameters σ2 speci�es the standard deviation of each action, and hence,

θ = [ω,σ2] is the parameter vector of the policy.

2.1.3 Reinforcement learning algorithms

Several well-known model-free RL algorithms are discussed in this subsection, including temporal-difference learning

(TD learning) methods, such as Q-learning and state-action-reward-state-action (SARSA), policy gradient methods, and

actor-critic methods. TD-learning is a kind of value-based methods that optimize the value function and �nd an optimal

policy implicitly. Policy gradient methods are policy-based and optimize the policy directly. Actor-critic methods learn

both the optimal value functions and the optimal policy.

Temporal-di�erence learning

If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be temporal-

difference learning [1]. TD learning is a combination of dynamic programming (DP) methods that are used to compute

optimal policies given a perfect model of the environment as a MDP, and Monte Carlo (MC) methods that are ways of

solving the RL problem without complete knowledge of the environment, but based on averaging sample returns. Solving

RL tasks using TD learning consists of two steps: estimate the model of the environment's dynamics by �nding optimal

value functions (prediction problem), and compute an optimal policy by solving the Bellman optimality equations with

the optimal value functions (control problem).

First, let's consider the TD learning methods for learning the optimal state-value function for a given policy. TD learning

methods use experience (samples) to address the prediction problem. For simplicity purpose, we use the one-step TD

learning, a special case of n-step TD learning, whose update rule of the state-value function is

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)]

where δt = rt+1 + γV (st+1) − V (st) is called the TD error, which is a measure of the difference between the current

approximated value of st and the next approximation rt+1 + γV (st+1). TD learning updates the value function without

waiting for the end of an episode like in MC, instead by using bootstrapping in that the value function is updated im-

mediately after each step of an episode. However, without the complete knowledge of a model, learning the state-value

function alone is not suf�cient. Thus, an approximation of the action-value function Q(s,a) is required to determine the

optimal action could be taken from states.

Now, we discuss an on-policy method, which is called state-action-reward-state-action (SARSA), for learning an optimal

action-value function, denoted as Q∗(s,a). Thus, the corresponding optimal policy is derived by making the policy

greedy with respect to the optimal action-value function, π(s) = argmaxaQ
∗(s,a). The on-policy method means that

SARSA estimates the action-value function Qπ(s,a) for all states s and actions a from current behavior policy π. The

update rule for learning the values of state-action pairs is

Q(st,at)← Q(st,at) + α [rt+1 + γQ(st+1,at+1)−Q(st,at)]

where α is the learning rate, γ is the discount factor that determines the importance of future rewards. The action-value

functionQ(s,a) is updated after every transition from a nonterminal state st, where the transition (st,at, rt, st+1,at+1)
is from one state-action pair to the next state-action pair. SARSA converges with probability 1 to an optimal policy and

action-value function as long as all state�action pairs are visited an in�nite number of times and the policy converges in

the limit to the greedy policy [1].

Another popular model-free RL algorithm that uses TD prediction methods for �nding the optimal policy of a MDP is

Q-learning. Q-learning is an off-policy learning algorithm, in which a Q-learning agent improves the value of the optimal

policy independently of the policy being followed. By de�nition, the update rule of learning an optimal action-value

function is

Q(st,at)← Q(st,at) + α
[
rt+1γmax

a
Q(st+1,a)−Q(st,at)

]
.

Unlike Sarsa, where the action-value function is updated using state-action value Q(st,at) sampled by current policy,

Q-learning learns the value of the optimal policy using maxaQ(st,a) that is sampled by a second behavior policy, e.g.,

ε-greed of the action-value function.

7

Policy gradient methods

Both Sarsa and Q-learning are trying to estimate the model of the environment's dynamics by learning the optimal vaule

function of the policy. Policy gradient methods, on the other hand, do not require the approximation of the dynamics

model. Policy gradient methods are a class of model-free policy search algorithms, in which policy parameters are up-

dated in the direction of the policy gradient that is estimated using Monte Carlo methods.

Policy gradient methods seek to directly optimize a parameterized policy based on the objective that is the performance

measure of the policy

J(θ) = Eτ∼πθ(τ)[r(τ)] =

∫
πθ(τ)r(τ)dτ (2.2)

where πθ is usually a parameterized stochastic policy distribution, e.g., Gaussian policy πθ(a|s) ∼ N (a|s, θ), and
r(τ) =

∑T
t=0 r(st,at) is the cumulative reward of a sampled trajectory τ = (s1,a1, r1, · · · , sT ,aT , rT) by following

the policy πθ. The goal is to �nd an optimal policy π∗θ that maximizes the objective in Equation (2.2) via policy gradient

ascent. The policy gradient with respect to the parameter vector θ can be estimated from sampled trajectories using MC

estimation

∇θJ(θ) =
∫
∇θπθ(τ)r(τ)dτ

=

∫
πθ∇θ log πθ(τ)r(τ)dτ log-trick

= Eτ∼πθ(τ)[∇θ log πθ(τ)r(τ)]

= Eτ∼πθ(τ)

[(
T∑
t=1

∇θ log πθ(at|st)

)(
T∑
t=1

r(st,at)

)]

≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ait|sit)r(sit,ait).

(2.3)

This gradient update rule is well-knwon as the REINFORCE algorithm [21] (or the Monte Carlo policy gradient

method [1]), which is one of the �rst policy gradient algorithm. Thus, the estimation of the gradient does not re-

quire the dynamics of the MDP, as the initial state distribution ρ0 and state transition probabilities P(st+1|st,at) are
cancelled out in the end. However, such a Monte Carlo estimated policy gradient may suffer from a high variance prob-

lem and slow convergence.

In order to reduce the variance of the gradient estimator, the simplest solution is to subtract a baseline from the gradient,

∇θJ(θ) ≈
1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(ait|sit)

)(
T∑
t=1

r(sit,a
i
t)− b

)
(2.4)

where the baseline b can be chosen arbitrarily [21] or optimally like in [22]. The baseline does not change the estimated

gradient of the objective, but has a large impact on the variance.

Actor-critic methods

We talked about two different reinforcement learning algorithms that are classi�ed into value-based and policy-based

methods, where TD-learning are value-based methods as the objective is to �nd an optimal value function (critic), and

policy gradient methods try to optimize the policy (actor) exclusively. Actor-critic methods combine the advantages of

value-based and policy-based methods via a parameterized policy that brings the advantage of continuous actions, and

a value function that allows for the actor to update with gradients that have lower variance, and thus, speeds up the

learning process.

The aim of actor-critic methods is to simultaneously learn an action-value function Qω(s,a) ,or a state-value function

Vω(s), and learn a policy πθ, where value functions are parameterized by the parameter vector ω and the policy is param-

8

eterized by the parameter vector θ. According to the policy gradient theorem [23], the policy gradient in Equation (2.3)

can be rewrote as

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ait|sit)r(sit,ait)

=
1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ait|sit)Qω(sit,ait)

where Qω(s
i
t,a

i
t) is the action-value function that estimates the goodness or badness of current state-action pair (st,at).

However, the Q-values estimated using Monte-Carlo method also suffer from high variance. Similarly, we subtract a

baseline from the gradient

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ait|sit)
(
Qω(s

i
t,a

i
t)− b

)
where b can be an arbitrary real number. The resulted gradient has lower variance and unbiased estimation [24].

Additionally, it is also useful to subtract a state-dependent baseline, e.g., the value function V (s), without changing the

expection. This results in a new policy gradient

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ait|sit)Aω(sit,ait)

where A(st,at) = Q(st,at)−V (st) is the advantage function that de�ned as the estimation of the goodness or badness

of an action over the average performance of all actions in the current state. The advantage function is also interpreted

as the estimated expectation of the TD-error δ(s,a). In this paper, we use the generalized advantage estimation [25]

scheme to get Aπ(st,at)

ÂGAE(γ,λ)
π (st,at) =

∞∑
l=0

(γλ)lδ
Vφ
t+l(st,at)

δV (st,at) = r(st,at, s
′
t) + γV (s′t)− V (st)

where λ ∈ [0, 1], γ ∈ [0, 1] and V is the state-vaule function approximation. The two parameters λ and γ contribute

to the bias-variance tradeoff when using an approximate value function: γ ≤ 1 introduces bias into the policy gradient

estimate regardless of the value function's accuracy; on the other hand, λ ≤ 1 inctroduces bias only when the value

function is inaccurate [25].

The update rule of policy parameters regardless of the chosen objective J(πθ) is

θk+1 = θk + α∇θJ(πθ)

where α is the learning rate. Thus, the update steps of policy parameters are constrained using the Euclidean distance in

parameter space, ‖θk+1 − θk‖ ≤ α‖∇θJ(πθ)‖. This upate rule is well-known as the stochastic gradient ascent.

2.2 Deep learning

We talked about reinforcement learning in previous section. The performance of RL algorithms highly depend on the

generalization of the function approximator of value functions and policies, or in other words, the representation of state

features plays a key role in RL. In the literature [26], investigation have shown the differences in performance when

comparing different function approximation methods, such as radial basis functions (RBFs), linear methods, neural

networks. Deep learning has been experiencing dramatic growth in attention and interest due to promising results in

areas like computer vision, natural language processing, speech recognition. This section will focus the discussion on

deep learning which is well-known for its powerful features representation of high-dimensional data and end-to-end

training procedures. Additionally, we discuss the generative adversarial networks (GANs) and several advanced SGD

optimization algorithms.

9

2.2.1 Feedforward neural networks

One of the key features of deep learning is that the computational models, called deep neural networks are composed of

multiple processing layers and are able to learn representations of data with multiple levels of abstraction. The learning

of a deep neural network is made by using the backpropagation method to indicate how the internal parameters should

be changed. On the other hand, the prediction of the output is calculated by using forward propagation method: the data

is fed to the input layer, the neurons do a linear transformation on the input by the weights and biases, the activation

function transforms the linear function into a nonlinear function, the information moves from layer to layer, and �nally

output the result.

s1

s2

s3

s4

h1

h2

h3

h4

h5

o1

o2

hidden

layer
outputsinputs

Figure 2.2.: A generic feedforward arti�cial neural networks (ANN). The network in the �gure has three layers, an input

layer with four input units, a hidden layer, and an output layer consisting of two output units. The number

of circles in each layer indicates the dimensions of corresponding layers. The circles represent neurons of the

network, and arrows represent the connections and data �ow between the neurons of the network. The

activation layer is omitted for clarity purpose.

The deep neural network is a kind of nonlinear function that usually contains a large number of parameters. Formally,

the feedfoward neural netork can be expressed as a function

ŷ = fθ(x)

where x is the input vector, θ is the parameter vector of the network, and ŷ are the output values. For example, in Figure

2.2, the arrows are parameters θ of the feedforward neural network. The goal of training a deep neural network is to

�nd the optimal parameters by minimizing a de�ned loss function whose gradients with respect to the parameters are

calculated with forward and backward propagations.

A good way to understand how does the forward and backward propagation work is to use the supervised learning

example. Imagine that we build a feedforward neural network that can classify the data into different classes, e.g., image

classi�cation. We use x to represent the input data, y as true class labels, and ŷ as predicted labels. Thus, we can de�ne

a mean squared error (MSE) loss function

Lθ =
1

M

M∑
i=1

‖yi − ŷi‖
2

for the training with a collection of dataset, D = {(x1,y1), · · · , (xN ,yN)}, where N is the size of the training dataset

and M is the mini-batch size, M ≤ N . During training, a number of randomly shuf�ed data {· · · , (xi,yi), · · · } of
sizeM are fed into the neural network, and then, the nework computes a batch of predictions ŷ of sizeM via forward

propagation. The backward propagation procedure starts from the output layer by computing the gradient directly with

respect to the weights in the last layer, e.g., the gradient with respect to parameters in the last layer is ∂Lθ/∂y. Then,
the gradients are propagated backward to the second last layer, where the gradients are computed using chain rule,

e.g., the gradient with respect to parameters in the second last layer is ∂Lθ/∂x = (∂Lθ/∂y)(∂y/∂x). Following the

same procedure, the gradients are propagated from the output layer all the way to input layer, through all layers in the

network. After training, given an unseen data, the network is capable of predicting the class of the data via forward

10

propagation with high probability.

Apart from feedforward neural networks, many other networks, such as convolutional neural networks (CNNs), recurrent

neural networks (RNNs), and long short-term memory (LSTM) are also essential parts in deep learning. For example,

CNNs have been widely used in the area where input data are high-dimensional, such as object recognition from images,

and RNNs are particularly useful in sequential data, e.g., natural language processing. However, these networks will not

be studied in this thesis, as they are not used.

2.2.2 Generative adversarial network

The generative adversarial network (GAN) is a framework for estimating generative models via an adversarial process,

in which two models are trained simultaneously: a generative model G that captures the data distribution, and a dis-

criminative model D that estimates the probability that a sample came from the training data rather than G [17]. The

generator is simply a differentiable function Gθ(z), that is used to generate samples x̂ = Gθ(z) from a prior input noise

variables p(z), and to capture the distribution of the traning data p(x). The discriminator is second function Dω(x) that
outputs a single scalar, which represents the probabilty that x came from the traning data rather than generated data x̂.
A sketch of the GAN framework is presented in Figure 2.3.

s1

s2

s3

s4

s5

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

o1

o2

o3

o4

o5

s1

s2

s3

s4

s5

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

o1

o2

o3

o4

o5

Generator

Discriminator

0
/
1

θ

ω

z

x

Gθ(z)

Figure 2.3.: The GAN framework consists of two adversarial models that are trained to against each other. Each model

is represented by a di�erentiable function that has its own parameters. There are two di�erent training sce-

narios. In one scenario, the generator ramdomly sample data z and generate fake sample Gθ(z). Then, the
discriminator takes the fake sample Gθ(z) as input and strives to make Dω(Gθ(z)) approach 0. Simultane-

ously, the generator is trying to makeDω(Gθ(z)) approach 1. In the second scenario, training samples x are

randomly sampled from the training dataset. The discriminator takes the real sample x as input and make

Dω(x) approach 1.

The objective of the generator G is to minimize the maximum likelihood estimation loss function

min
θ

JG(θ) = Ez [log(1−Dω(Gθ(z)))] ,

and the objective of the discriminator D is to minimize the cross-entropy loss function

min
ω

JD(ω) = −1

2
Ex∼px [logDω(x)]−

1

2
Ez [log(1−Dω(Gθ(z)))] .

Simply put, the discriminator Dω tries to optimize its parameter vector ω such that Dω(x) → 1 and Dω(Gθ(z)) → 0,
however, the generator Gθ tries to confuse Dω by optimizing the parameter vector θ such that Dω(Gθ(z))→ 1.

GANs have strong connections with RL in several ways. First, both GANs and AC can be viewed as a class of multilevel

optimization problems which have close parallels. Secondly, GANs can be used for imitation learning, e.g., generative ad-

versarial imitation learning [27]. Thirdly, the idea of training two models with different loss functions simutaneously has

heavily inspired us to propose the minimax entropic policy optimization method, which will be introduced in Chapter 4.

11

2.2.3 Stochastic gradient descent algorithms

The overview [15] discussed three variants of the �rst-order gradient descent method: batch gradient descent, stochastic

gradient descent, mini-batch gradient descent, which differ in the amount of data used for computing the gradient of the

objective function. Mini-batch gradient descent is commonly the algorithm of choice for traning neural networks because

of its low-variance estimates of the gradients and the property of data ef�ciency. Mini-batch gradient descent, which is

also called �Vanilla� mini-batch gradient descent, performs an update for every mini-batch of n traning samples

θk+1 = θk − α∇θJ(θ;xi:i+n, yi:i+n)

where α is the learning rate, xi:i+n and yi:i+n are sampled data and labels. However, vanilla mini-batch gradient descent

has several drawbacks:

� First, tuning the learning rate α can be dif�cult, as small learning rate leads to slow convergence and large learning

rate can overshoot the optimum.

� Secondly, a single learning rate is applied to update all parameters. Thus, it might be dif�cult for optimizing

networks with sparse gradients.

� Thirdly, it is dif�cult for mini-batch gradient descent to escape from saddle points, as the gradient is close to zero

in all dimensions.

Mini-batch gradient descent with momentum is a method that accelerates the learning process of the �Vanilla� method

by storing the update vt at each iteration, and computes the next update as a linear combination of the gradient∇θ and
the previous update vt−1

vt = γvt−1 + α∇θJ(θ)
θt+1 = θt − vt

where γ is called the momentum term, usually set to 0.9 or a similar value [15]. The momentum term increases for

dimensions whose gradients point in the same directions and reduces updates for dimensions whose gradients change

directions. As a result, we gain faster convergence and reduced oscillation [15].

Adaptive moment estimation (Adam) is another method that computes adaptive learning rate for each parameter.

Adam requires a small amount of memory space for stroing an exponentially decreasing average of past squared gradients

(∇θJ(θt))2 and an exponentially decreasing average of past gradients ∇θJ(θt)

mt = β1mt−1 + (1− β1)∇θJ(θt)
vt = β2vt−1 + (1− β2)(∇θJ(θt))2

where mt and vt are estimates of the �rst moment and the second moment of the gradients respectively, β1 and β2 are

open parameters. Afterwards, bias-corrected �rst moment m̂t and second moment v̂t are estimated using

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

Finally, the update rule of the Adam optimization algorithm is

θt+1 = θt −
α√

v̂t + ε
m̂t

where ε is a hyperparameter, usually set to be 10−8. Adam is to date among the most popular optimization methods for

deep neural network training, and hence, is the default SGD optimizer of both our the MMPO method in Chapter 3 and

f -PPO method in Chapter 4.

12

2.3 Policy search algorithms

The bene�t of policy gradient methods with a parameterized policy is that the function approximation can be used to

generalize continuous states and actions. Nevertheless, the optimization with stochastic gradient descent methods is data

inef�cient, and the learning rate of the SGD method is dif�cult to choose. Several advanced methods are discussed in this

section that has better data ef�cient and better convergence properties compared to the �Vanilla� method. For example,

unlike SGD that uses the Euclidean distance, the natural policy gradient method [28] uses the Fisher information metric,

which is invariant to linear transformations in the parameter space, to capture the update steps of policy parameters,

and hence, converge faster. Relative entropy policy search (REPS) [20] treats the MDP problem as a constrained policy

optimization problem and yields a closed-form solution, in which no learning rates are required. Trust region policy

optimization (TRPO) [10] and proximal policy optimization (PPO) [16] are effective for solving MDP problems with

high-dimensional states and actions, e.g., playing Atari games, by optimizing a �surrogate� objective and simultaneously

restricting the policy improvement inside a trust region.

2.3.1 Natural policy gradient

The natural policy gradient [28] is a method that updates the parameters along steepest ascent directions based on the

underlying structure of the parameter space. The main disadvantage of using the Euclidean metric of ‖θk+1 − θk‖
as the measure of the closeness between the current policy and the updated policy is that the gradient is different for

every parameterization θ of the policy πθ. Instead, the "distance" between two policy distributions can be measured

using the Kullback-Leibler divergence (KL-divergence), which is a measure of how one probability distribution diverges

from another distribution, where the divergence indicates that KL-divergence is not a real distance metric because KL-

divergence is not symmetric. The KL-divergence can be approximated by its second-order Taylor expansion

DKL(πθk+1
||πθk) =

∫
πθk+1

(τ) log

(
πθk+1

(τ)

πθk(τ)

)
dτ

≈ ‖θk+1 − θk‖TFθ‖θk+1 − θk‖

where F is known as the Fisher-information matrix de�ned as

Fθ = Eπθ
[
∇θ log πθ(a|s)∇θ log πθ(a|s)T

]
The natural policy gradient uses the Fisher-information matrix as metric, thus has the following optimization problem

∇NG
θ J(πθ) = argmax

θ
δθT∇θJ(πθ)

s.t.: DKL ≈ δθTFθδθ ≤ ε

where δθ = θk+1 − θk indicates the update steps of parameters, and ε ∈ [0,+∞] is the KL bound used to prevent the

policy from greedy updates and is usually a small positive number, e.g., ε = 0.01. Here, ∇θJ(πθ) is the policy gradient
of any chosen objective J(πθ), for example, the objective in Equation (2.2). The solution to this optimization problem is

given as

∇NG
θ J(πθ) ∝ F−1

θ ∇θJ(πθ).

As every parameters has the same in�uence under metric Fθ, the natural gradient is invariant to linear transformation

in parameter space [9].

2.3.2 Relative entropy policy search

Relative entropy policy search is a constrained optimization algorithm that bound the relative entropy to the old pol-

icy distribution during policy updates using the KL divergence, and hence, achieve a stable learning progress. The

constrained optimization problem for episode-based REPS is

max
θ

J(πθ) =

∫
πθRθdθ

s.t. ε ≥
∫
πθk+1

log
πθk+1

πθk
dθ

1 =

∫
πθdθ

13

which can be solved ef�ciently by the Lagrangian multipliers method, and hence, obtain a closed-form solution for the

new policy

πθk+1
∝ πθk exp

(
Rθ
η

)
where η is the Lagrangian multiplier connected to the KL constraint ε. The optimal parameter η is obtained by minimizing

the dual function g(η) of the original optimization probelm

min
η

g(η) = ηε+ η log

∫
πθk exp

(
Rθ
η

)
dθ.

The Rθ is the episode reward of following the policy πθ. The ε can be chosen freely where larger values lead to bigger

steps while excessively large values can destroy the policy. Its size depends on the problem as well as on the amount

of available samples [20]. However, REPS is only effective for solving problems with linear function approximations of

handcrafted state features, or with the tabular representation as the policy. REPS is not well suited for optimizing large

nonlinear functions, e.g., deep neural networks.

2.3.3 Trust region policy optimization

Trust region policy optimization (TRPO) [10] is a constrained policy optimization algorithm that is similar to REPS and

natural policy gradient, however, is more effective for optimizing large nonlinear policies such as neural networks. TRPO

uses a so-called �surrogate� objective that has the beni�ts of importance sampling [29], and a KL constraint for the trust

region update of policy parameters. Similar to REPS, TRPO is also a constrained problem de�ned as

max
θ

J(πθ) = Êt
[
πθk+1

(at|st)
πθk(at|st)

Â(st,at)

]
s.t.: Êt

[
DKL[πθk+1

(·|st)||πθk(·|st)]
]
≤ ε

(2.5)

where Êt indicates that the �surrogate� objective is to maximize the expectation of sampled advantages weighted by the

policy ratio. Instead of solving the constrained optimization problem analytically by computing the Lagrangian primal-

dual function, TRPO computes the solution approximately by using a linear approximation to the objective J(πθ) and a

quadratic approximation to KL constraint DKL, and hence, has the following approximated problem

max
θ

J(πθ) ≈ ∇θJ(πθ)(θk+1 − θk)

s.t.: Ê [DKL] ≈ δθTFθδθ ≤ ε

which is solved by carrying out a line search in the found direction

∇TRPO
θ ∝ F−1

θ ∇θJ(πθ)

where the F−1
θ is the inverse Fisher information matrix and the∇θJ(πθ) is the gradient of the �surrogate� objective with

respect to policy parameters. TRPO has demonstrated robust performance on a wide variety of tasks, such as continuous

control of simulated robots, and playing Atari games, via deep neural networks as function approximations.

2.3.4 Proximal policy optimization

Proximal policy optimization is a �rst-order gradient method that optimizes a clipped �surrogate� objective using multiple

epochs of SGD, where the clipped �surrogate� objective has the bene�t of trust region policy optimization and using

multiple epochs of SGD has better sample complexity. The clipped �surrogate� objective is de�ned as

max
θ

JClip(πθ) = Ê
[
min

(
rt(θ)Â, clip[rt(θ), 1− β, 1 + β]Â

)]
where the rt(θ) = πθk+1

(at|st)/πθk(at|st) is the policy ratio between the new updated policy πθk+1
(at|st) and the

old policy πθk(at|st) that was used to sample trajectories, and the β ∈ (0, 1) is the clip parameter, e.g. β = 0.2. The
update rule for the parameter vector is simply obtained using stochastic gradient ascent

θk+1 = θk + α∇θJClip(πθ)

14

where α is the learning rate.

A second version of PPO is to formulate the constrained problem in Equation (2.5) as an unconstrained optimization

problem by using KL divergence as a penalty (a soft constraint) instead of a hard constraint

max
θ

JKLPen(πθ) = Êt
[
πθk+1

(at|st)
πθk(at|st)

Â(st,at)− βDKL[πθk+1
(·|st)||πθk(·|st)]

]
(2.6)

where β is an adaptive hyperparameter that is adjusted according to the value of the mean KL-divergence. The update

procedure can be described as

� Update policy parameters using stochastic gradient ascent,

θk+1 = θk + α∇θJKLPen(πθ)

� Compute mean KL-divergence d = Ê
[
DKL[πθk+1

(·|st)||πθk(·|st)]
]

� If d < ε/1.5, β ← β/2

� If d ≥ ε× 1.5, β ← β × 2

where ε is the KL target, e.g. ε = 0.1, α is the learning rate. Compared to TRPO, PPO is straightforward to imple-

ment and has better overall performance on a series of experiments on the MuJoCo environment [30], the Roboschool

environment [16], and the Atari domain [31].

15

3 Minimax entropic policy optimization

3.1 Introduction

Many methods in reinforcement learning are trying to optimize a single objective. For example, policy-based meth-

ods [1] [21] try to optimize the policy directly by maximizing an objective and value-based methods [23] [32] seek to

optimize a value function such that the optimal policy is found indirectly. The actor-critic (AC) [11] [33] is a class of

multilevel optimization problem that optimizes both a value-objective and a policy-objective, and thus, an optimal value

function and an optimal policy are found simultaneously. Similarly, generative adversarial networks (GANs) [17] can

be seen as a multilevel (bilevel) optimization problem where a generator is optimized with respect to the optimum of a

second model, a discriminator. GANs can also be interpreted as a minimax game between the generator and the discrim-

inator, both players are typically represented as deep neural networks.

In this chapter, we propose a new family of policy gradient methods for RL, which combines the idea of multilevel op-

timization and trust region policy optimization, and is termed as minimax entropic policy optimization (MMPO). The

�minimax� indicates that MMPO maximizes an objective for the policy improvement and minimizes a loss function of the

ramp-transformed KL-divergence to meet the KL bound. Additionally, to reduce the variance of the estimated policy gra-

dient, we also learn an optimal state-value function by minimizing a mean squared error loss function. With the proposed

MMPO, we are able to solve a wide variety of challenging continuous control tasks from MuJoCo simulator [30], such as

InvertedPendulum-v2, Walker2d-v2, and achieve state-of-the-art performance as TRPO [10] and PPO [16]. MMPO only

requires �rst-order gradient information, and thus, is straightforward to implement and to combine with other neural

network structure such as RNNs.

3.2 MMPO

We �rst introduce the commonly used objective, whose gradient has the same form as the �Vanilla� policy gradient in

Equation (2.3), as a loss function in automatic differentiation framework and highlight the objective's relationship with

the �surrogate� objective that comes from TRPO [10]. Afterward, we discuss how the KL-divergence loss function is

formulated by transforming the KL constraint, a soft inequality constraint (inequality constraints that are recommended

but not compulsory) in a constrained policy optimization problem, with a ramp function. Both the objective and the

KL-divergence loss function are optimized using advanced stochastic gradient descent algorithms, which require small

amounts of memory space for storing parameters that are used to adapt the learning rate.

3.2.1 Preliminaries

Let us �rst recall the �Vanilla� policy gradient method that tries to optimize a parameterized policy πθ using stochastic

gradient ascent, where the gradient is estimated using sampled trajectories τ

max
θ

J(θ) = Eτ∼πθ(τ)[r(τ)] =
∫
πθ(τ)r(τ)dτ Objective

∇θJ(θ; τ) ≈
1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(ait|sit)

)(
T∑
t=1

r(sit,a
i
t)

)
Gradient

θ = θ + α∇θJ(θ; τ) Update rule.

There are two main drawbacks in the �Vanilla� gradient method: 1) the variance of estimated policy gradients is high, 2)

the sampling ef�ciency is poor as each sampled trajectory is used just for one gradient step.

To reduce the variance, we adopt the causality idea that policy at a later timestep t′ cannot affect the reward at an earlier

timestep t, where t′ > t. Thus we can replace
∑T
t′=1 r(s

i
t′ ,a

i
t′) with

∑T
t′=t r(s

i
t′ ,a

i
t′), which is also known as the

�reward to go�, or the action-value function Q(st,at). Thus, the gradient that has lower variance can be written as

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ait|sit)Q(st,at).

16

Furthermore, one can reduce the variance further by substracting a baseline from the gradient, a good baseline is calcu-

lated by taking the expectation V (st) = Eat∼πθ(at|st) [Q(st,at)]. Thus, the gradient and the update rule is rewritten as

∇θJ(θ; τ) ≈
1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ait|sit) (Q(st,at)− V (st))

=
1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ait|sit)A(st,at)

θ = θ + α∇θJ(θ; τ)

(3.1)

where A(st,at) is the advantage function that measures how much better of an action at over the average performance

of all actions in state st, in which the average performance is estimated using the state-value function V (st).

The update rule in Equation (3.1) is well-known as batch gradient ascent, which computes the gradient of the objective

with respect to the parameter vector θ for the entire sampled trajectories for just one update, and thus, batch gradient

ascent is very slow and is intractable for high-dimensional state and action spaces that do not �t in memory. Training

a deep neural network can be demanding as the parameters update only a small step with each iteration. To perform

multiple steps of updating the parameters, we estimate the policy gradient ∇θJ(θ) using mini-batch gradient

∇θĴ(θ; τ (i:i+N)) = Êt[∇θ log πθ(at|st)Â(st,at)]

θ = θ + α∇θĴ(θ; τ (i:i+N))
(3.2)

where the expectation Êt[· · ·] indicates that the empirical average over a batch of samples of size N , commonly range

between 32 and 512. Here, α is the learning rate that determines the update step of parameters. How can we de�ne the

loss function which is the essential part in most automatic differentiation software, e.g., TensorFlow, such that its gradient

is the policy gradient ∇θĴ(θ; τ (i:i+N))? The idea is to use the weighted maximum likelihood (MLE) expression, and

thus,

max
θ

Ĵ(θ) = Êt[log πθ(at|st)Â(st,at)]. (3.3)

Alternatively, TRPO proposed to use a �surrogate� objective whose gradient with respect to the policy parameters is the

same as in Equation (3.3). More importantly, the �surrogate� objective has importance sampling interpolation, a method

for reducing the variance of the estimate of an expectation by carefully choosing a sampling distribution [34]. The

�surrogate� objective is de�ned as

max
θ

Ĵ surr(θ) = Ê(st,at)∼πθk

[
Â(st,at)

]
= Ê(st,at)∼πθk

[
πθk+1

(at|st)
πθk(at|st)

Â(st,at)

] (3.4)

which has the same policy gradient as the objective of the averaged advantage weighted by log probability

∇θĴ surr(θ) = Êt
[
∇θ
(
πθk+1

πθk

)∣∣∣
θk

Â(st,at)

]
= Êt

[(∇θπθk+1
|θk

πθk

)
Â(st,at)

]
= Êt[∇θ log πθ(at|st)|θkÂ(st,at)]

= ∇θĴ(θ).

Apart from using the mini-batch gradient, most supervised learning also performs multiple epochs of optimization using

the same dataset. Thus, it is appealing to reuse the same sampled trajectory for updating the parameters, which however

often leads to destructively large policy updates when optimizing the Equation (3.3) or Equation (3.4) directly. To achieve

stable multiple epochs of optimization, PPO optimizes a KL-divergence penalized �surrogate� objective, or a clipped

�surrogate� objective using SGD. Similarly, our proposed method also employs the KL-divergence as a regularization to

achieve stable policy improvement.

17

3.2.2 The objectives

Consider the following constrained policy optimization problem from TRPO

max
θ

J(πθ) = Êt
[
πθk+1

(at|st)
πθk(at|st)

Â(at|st)
]

s.t. Êt
[
DKL[πθk+1

(·|st)||πθk(·|st)]
]
≤ ε

(3.5)

where πθ represents a parameterized stochastic policy to be optimized and Â(st,at) is the advantage esti-

mate calculated from trajectories (a0, s0, r0, · · ·) that are sampled using the policy πθk . The KL-divergence

Êt
[
DKL[πθk+1

(·|st)||πθk(·|st)]
]
measures the difference between the distribution of new updated policy πθk+1

and

the policy distribution πθk before update over the sampled states at time step t. Here, the hyperparameter ε ∈ R is

the maximum KL bound that usually set to be a small number, e.g., ε = 0.01. The standard method of solving such

constrained optimization problems is by optimizing the Lagrangian dual, which is known to be convex and smoothly dif-

ferentiable [35], for example, by using the Broyden-Fletcher-Goldfarb-Shannon (BFGS) method [36]. For this particular

probelm, even a closed-form solution for the optimal policy can be found [20, 37] without tuning the learning rate like in

stochastic gradient ascent method. On the other hand, such an algorithm is dif�cult to optimize for problems with high

dimensional state and action spaces because the dual optimization becomes prohibitively slow, and is not straightforward

to implement.

Instead of solving the constrained optimization problem by introducing Lagrangian multipliers and minimizing the La-

grangian dual functions like in REPS, or by using approximations to the objective and the constraint as in TRPO, we

propose to use a so-called minimax entropic policy optimization (MMPO) method, in which we maximize the objective

directly and minimize a second loss function that is de�ned by mapping the relative entropy constraint with a ramp

function f(x) = max(x, 0), whose graph is shaped like a ramp as illustrated in Figure 3.1. Therefore, we obtain the

following optimization problem that has two objectives for updating the parameters of the policy function approximator

max
θ

J(πθ) = Êt
[
πθk+1

(at|st)
πθk(at|st)

Â(at|st)
]

(3.6)

min
θ

LKL(πθ) = max
(
Êt
[
DKL[πθk+1

(·|st)||πθk(·|st)]
]
− ε, 0

)
(3.7)

where maximizing the �rst objective J(πθ) could improve the performance of the policy, and simultaneously minimizing

the second objective LKL prevents the policy update from going into an untrusted region and greedy policy improvement.

Maximizing J(πθ) without minimizing the second objective in Equation (3.7) would lead to a catastrophically greedy

update of the policy and premature convergence.

The main property of the MMPO method is that the KL-divergence constraint in Equation (3.5) can be formulated as a

secondary loss function using a ramp function transformation, which is f(x) = max(x, 0). By minimizing the KL loss

function, the policy update step can be effectively constrained inside a trust region. There are two different cases of the

KL-divergence: �rst, the KL-divergence violates the KL bound ε, second, the KL-divergence meets the KL bound. Thus,

� when Êt
[
DKL[πθk+1

(·|st)||πθk(·|st)]
]
≤ ε, the update steps of policy parameters are not penalized as the gradient

of the KL loss function is equal to 0

∂

∂θ
LKL(πθ) =

∂

∂θ
0

= 0,

� when Êt
[
DKL[πθk+1

(·|st)||πθk(·|st)]
]
> ε, the update steps of policy parameters are penalized following the

gradient direction of the KL loss function

∂

∂θ
LKL(πθ) =

∂

∂θ

(
Ê
[
DKL[πθk+1

(·|st)||πθk(·|st)]
]
− ε
)

=
∂

∂θ

(
Ê
[
DKL[πθk+1

(·|st)||πθk(·|st)]
])
− 0

=
∂

∂θ

(
Ê
[
DKL[πθk+1

(·|st)||πθk(·|st)]
])
.

18

0.0 1 [DKL]

1

LKL

max([DKL] , 0)

k

k + 1

J

[DKL]

k

k + 1

J

LKL

[DKL] >

Figure 3.1.: Middle: The ramp function f(x) = max (x, 0) that is used to transform the KL-divergence constraint. Left:

When the expection of the KL-divergence satis�es Et[DKL] ≤ ε, the gradient of LKL(πθ) equals 0, hence no

information loss penalty for the policy update step. Right: When Et[DKL] > ε, the larger the divergence

Et[DKL] is, the steeper is the gradient ∇θLKL(πθ), and hence, the greater is the information loss penalty for

the policy update step.

Figure 3.1 illustrates how an averaged KL-divergence being mapped to the loss function LKL using the ramp function,

and how the policy updates look like when the KL-divergence is in different scenarios.

The estimated advantage function Â(st,at) in Equation (3.6) is computed using the generalized advantage estimation

(GAE) [25] scheme, where a state-value function V̂ (s) is required and can be estimated using function approximation

methods, e.g. non-linear function approximation. The optimization of the value function is usually treated as a supervised

learning problem and can be solved ef�ciently using stochastic gradient descent methods by minimizing a mean-square-

error (MSE) loss function. The MSE loss function for the state-value function V̂ (s) is de�ned as

min
φ

L(Vφ) = Et

[
‖V̂φ(st)−

∞∑
l=0

γrt+l‖2
]

(3.8)

where
∑∞
l=0 γ

lrl+t is the discounted cumulative reward from state st over all time steps in batch of trajectories and

serves as the ground truth state value in state st, and V̂φ(st) is the predicted state value in state st. The parameter vector

of the value function approximator is denoted as φ.

Entropy regularization

Exploration and exploitation, which are usually determined by the policy entropy, play an essential role in almost all RL

algorithms. Maximizing the objective in Equation (3.6) repeatedly using several epochs of SGD optimization with same

sampled trajectories inevitably violates the KL-bound, and thus, results in a large penalty on the policy update step. With

an increasing number of policy updates, the KL divergence between newly updated policy and old policy keep increasing,

hence, violates the KL bound and triggers a minimization process of the KL loss function. Minimizing the KL loss function

not only keeps policy update inside a trust region but also prevents the policy entropy from decreasing. Therefore, we

suggest adding an additional entropy regularization (constraint) to encourage exploitation

subject to Êt
[
H(πθk+1

(·|st))−H(πθk(·|st))
]
≤ β

where β ∈ R is commonly set to be a small positive value, e.g. 0.002, or a large negative value, e.g. β = −0.002.
The hyperparameter β is a trade-off between exploration and exploitation, when β > 0, it encourages exploration, and
when β < 0, it encourages exploitation. Again, the entropy constraint is a soft inequality constraint, and hence can be

formulated as a loss function using the ramp function transformation as in Equation (3.7). The entropy regularization

loss function is de�ned as

min
θ

LEnt(πθ) = max
(
Êt
[
H(πθk+1

(·|st))−H(πθk(·|st))
]
− β, 0

)
which is optimized using SGD that is computationally ef�cient. For example, for a normal distribution N (µ, σ), the en-
tropy of the normal distribution is de�ned asH = ln (σ

√
2πe), which only depends on the variance σ. The minimization

of the entropy regularization loss function affects exclusively the variance of the policy distribution.

19

3.2.3 The algorithm

Now, we present the optimization algorithm (Algorithm 1) of our MMPO method. MMPO has four objectives to satisfy:

maximize expected advantage, minimize KL-divergence loss function, minimize entropy loss function, minimize MSE loss

function of the value function. We use function approximation methods, such as deep neural networks, to represent both

the policy and the value function, whose parameters are updated using stochastic gradient descent/ascent methods. To

improve sample ef�ciency, MMPO optimizes parameters of function approximators with multiple epochs of mini-batch

stochastic gradient optimization using the same sampled trajectory.

The stochastic gradient optimizer is a crucial factor in our MMPO method, as all objectives are updated using the �rst-

order gradient optimization method. Traditional SGD maintains a single learning rate for all parameters and does not

adopt the learning rate during training. Many advanced optimizers have been discussed in Chapter 2, such as the Adam

optimizer that computes adaptive learning rates for each parameter. Many of the advanced optimizers require a small

amount of memory for storing parameters that indicate the gradient properties of the objective is optimized. Thus,

we suggest using four advanced SGD optimizers for optimizing the four objectives, respectively, in order to maintain

individual learning rates for the gradients of each objective.

Algorithm 1 Minimax entropic policy optimization (MMPO)

Initialize policy parameters θ0 = [ω,Σ], where ω and Σ are parameters of the function approximator and the variance

of the policy distribution respectively

Initialize value function parameters φ0, KL bound ε, entropy regularization parameter β
for iteration updates: k = 0, 1, 2, · · · do

Run current policy πθk and collect a set of trajectories D = (a0, s0, r0,a1, s1, r1, · · ·) of length T
Estimate the advantages Ât
for epoch updates n = 0, 1, 2, · · · , N do

for mini-batch updatesm = 0, 1, 2, · · · ,M do

Optimize the policy via a minimax game between two SGD optimizers

θnew ← argmax
θ

Êt
[
πθk+1

(at|st)
πθk(at|st)

Â(at|st)
]

θnew ← argmin
θ

max
(
Êt
[
DKL[πθk+1

(·|st)||πθk(·|st)]
]
− ε, 0

)
Entropy regularization

Σnew ← argmin
Σ

max
(
Êt
[
H(πθk+1

(·|st))−H(πθk(·|st))
]
− β, 0

)
Optimize the value function

φnew ← argmin
φ

Et

[
‖V̂φ(st)−

∞∑
l=0

γrt+l‖2
]

end for

end for

end for

3.3 Connections with prior work

TRPO [10]: TRPO is a constrained policy optimization algorithm that is closely related to the natural policy gradient

method and relative entropy policy search (REPS), all of which impose a KL-divergence constraint to ensure the policy

improvement inside a trust region, however, are not straightforward to implement. The MMPO method, on the other

hand, is an unconstrained policy optimization problem which can be solved ef�ciently using mini-batch gradient descent

algorithms and is much easier to implement. At the same time, MMPO enjoys the bene�ts of trust region policy optimiza-

tion by minimizing a secondary loss function of the KL-divergence.

20

PPO [16]: There are two different versions of the proximal policy optimization (PPO) algorithm, one has a �surrogate�

objective being penalized by the KL-divergence, another one has a clipped �surrogate� objective, both objectives can

be optimized using the SGD method. PPO achieves trust region policy optimization indirectly by either penalizing the

objective using the KL-divergence or forming a pessimistic bound on the unclipped objective. Both MMPO and PPO have

better sample complexity and are straightforward to implement compare to other policy search method, e.g. TRPO [10],

REPS [20], ACKTR [11].

GANs [17]: There is a close relationship between GANs and MMPO, as both methods conduct a minimax game between

two players. Speci�cally, GANs train a generator in opposition to a discriminator via optimizing two different loss func-

tions simultaneously, and MMPO seeks to optimize the policy within a trust region through an adversarial optimization

procedure of maximizing a �surrogate� objective and minimizing the KL-divergence loss function simultaneously by two

SGD optimizers.

3.4 Experiments

We ran MMPO on a collection of standard simulated robotic locomotion benchmark tasks from the OpenAI MuJoCo task

suite. Since MMPO is closely related to TRPO and PPO, we compared MMPO to those algorithms to answer the following

two questions:

1. MMPO introduces several modi�cations to TRPO�most notably, it proposes a novel objective that can be optimized

using the �rst-order information only�which makes implementation much more straightforward, but how does

this affect the performance of the algorithm?

2. Both MMPO and PPO use SGD method for the optimization and have few open parameters. However, PPO opti-

mizes a clipped �surrogate� objective directly, and MMPO optimizes multiple objectives simultaneously. Can we

observe a difference in the performance of the two algorithms?

3.4.1 Policy and value function

The stochastic policy, which is de�ned as a conditional probability distribution πθ(a|s), is parameterized with a multi-

layer perceptron (MLP). For continuous control tasks, we de�ne the stochastic policy as a Gaussian probability distribution

πθ(a|s) = N (a|fω(s),Σ) with state-dependent mean, a function fω(s) represented by a MLP, and the state-independent

standard deviation that is calculated from a separate set of parameters Σ that specify the log standard deviation of each

action. Here, the output of the MLP is the mean of the Gaussian probability distribution corresponding to the input states.

Thus, the parameters of the policy is θ = [ω,Σ]. For discrete actions, the policy can be de�ned by a softmax distribution

with probabilities of actions propotional to exponentiated weights πθ(a|s) ∝ exp (fθ(s)), where the function fθ(s) can
be any function approximator with trainable weights θ.

The value function is also represented using a MLP, denoted as Vφ(s), where φ is the parameter vector of the MLP. The

output of the value function is a single scale, which indicates the goodness or badness of a state s. Table 3.1 presents

architecture details of both the policy network and the value network.

Policy network Value network

Input layer Ns Ns

Hidden layers
FC-64 + ReLu FC-64 + ReLu

FC-64 + ReLu FC-64 + ReLu

Output layer Na 1

Table 3.1.: Architecture of the policy network and value function network. Both networks are multilayer perceptrons

(MLPs). Ns is the dimension of the state space. Na is the dimension of the action space. �FC-64� represents

the fully connected layer of 64 units. ReLu is the activation function.

3.4.2 MuJoCo environment

The MuJoCo environment [30], which stands for Multi-Joint dynamics with Contact environment, contains several

challenging continuous control tasks that run in a physics simulator. The MuJoCo environment is a benchmark task that

21

has used for testing RL algorithms by many well-known methods, such as PPO, ACKTR, etc. In this paper, we conducted

experiments on 7 different 2D environments, as shown in Figure 3.2, to compare the results of our MMPO method to

the results of TRPO and PPO methods. The environments have different goals and reward functions. Additionally, we

provide environments' details in Table 3.2, including dimensions of the state space and the action space.

x

y

HalfCheetah-v2

x

y

Hopper-v2

x

y

InvertedDoublePendulum-v2

x

y

InvertedPendulum-v2

x

y

Reacher-v2

x

y

Swimmer-v2

x

y

Walker2d-v2

Figure 3.2.: Snapshots of 7 di�erent 2D continuous control tasks that run in the MuJoCo physics engine with 3D scenes.

Environment ID Dimension of state space Dimension of action space

HalfCheetah-v2 17 6

Hopper-v2 11 3

InvertedDoublePendulum-v2 11 1

InvertedPendulum-v2 4 1

Reacher-v2 11 2

Swimmer-v2 8 2

Walker2d-v2 17 6

Table 3.2.: Details of several OpenAI MuJoCo emvironments

HalfCheetah-v2: The goal is to make a 2D cheetah robot with two legs run as fast as possible. The reward function is

de�ned to encourage a high-speed running in the x direction, and simultaneously to punish large torques u that could

potentially damage the robot in reality. The reward function for learning is de�ned as

r(xt,ut) =
(xt+1 − xt)

dt
− 0.1×

∑
u∈ut

u2.

Hopper-v2: The goal is to make a 2D robot with one leg hop as fast as possible. The reward function is de�ned to

encourage a high-speed hopping in the x direction, and simultaneously to punish large torques u. Additionally, a bonus
reward of 1 is added to the reward function to keep the robot stay an upright posture without falling on the ground. The

reward function for learning is de�ned as

r(xt,ut) = 1 +
(xt+1 − xt)

dt
− 0.001×

∑
u∈ut

u2.

InvertedDoublePendulum-v2: To balance a two-joint pole on a cart using the reward function in which 10 is the alive

bonus reward for keeping the pole on the cart, a penalty term of punishing the position of the pole, and a second penalty

term of punishing the velocity of the pole. The reward function for learning is de�ned as

r(xt, yt,ut) = 10− (0.01x2t + (yt − 2)2)− (10−3v 2
x + 5× 10−5v 2

y).

22

InvertedPendulum-v2: To balance a one-joint pole on a cart using the reward function where 1 is the alive bonus reward

for keeping the pole on the cart. No additional penalty terms are added. The reward function for learning is de�ned as

r(xt,ut) = 1.

Reacher-v2: The robot is trying to reach a randomly located target using its end-effector, where the target position is

(x̂, ŷ), the end-effector position is (xt, yt), and the torques of the robot is ut. The reward function for learning is de�ned

as

r(xt, yt,ut) = −
√

(xt − x̂t)2 + (yt − ŷt)2 −
∑
u∈ut

u2.

Swimmer-v2: The goal is to make the robot swim as fast as possible. The reward function is de�ned to encourage a

high-speed swimming in the x direction, and simultaneously to punish large torques u. The reward function for learning

is de�ned as

r(xt,ut) =
(xt+1 − xt)

dt
− 0.0001×

∑
u∈ut

u2.

Walker2d-v2: The goal is to make the robot with two legs walk as fast as possible without falling down. The reward

function is de�ned to encourage a high-speed walking in the x direction, and simultaneously to punish large torques u.
Additionally, a bonus reward of 1 is added to the reward function to keep the robot stay an upright posture. The reward

function for learning is de�ned as

r(xt,ut) = 1 +
(xt+1 − xt)

dt
− 0.001×

∑
u∈ut

u2.

3.4.3 Results

First, we conduct a series of experiments on several OpenAI MuJoCo environments in search of hyperparameters, most

importantly, of KL-divergence bound ε and entropy regularization β. For each hyperparameter pair (ε, β), we train the

policy for 6 random seeds, and with a total number of 1,000,000 timesteps for each seed. We compute an averaged

normalized score by averaging the cumulative reward from running the last updated policy on the environment for 20

episodes, and then, shifting and scaling the scores for each environment such that a random policy has a score of 0 and

the best result was set to 1. Apart from the KL bound ε and the parameter used for entropy regularization β, the other

hyperparameters are given in Table A.1.

ε β score

0.01

N/A 0.904

-0.002 0.890

-0.004 0.849

-0.01 0.861

0.015

N/A 0.913

-0.002 0.901

-0.005 0.898

-0.01 0.874

0.02

N/A 0.87

-0.003 0.916

-0.004 0.866

-0.01 0.873

Table 3.3.: Comparison of normalized scores of MMPO experiments on 7 MuJoCo environments. Averaged normalized

scores for each hyperparameter setting, where each setting has experimented with 6 random seeds. Scores

are based on the average performance of last updated policies over di�erent environments and random seeds.

The �N/A� indicates that entropy regularization was not used. Negative values β specify the decreasing rate

of the policy entropy that should be achieved by minimizing the entropy regularization loss function.

23

Comparisons between MMPO and MMPO+Ent

Secondly, we compare the MMPO without using the entropy regularization with the MMPO with an entropy regulariza-

tion term (MMPO+Ent), by running experiments on the 7 MuJoCo environments and showing the learning curve of the

averaged cumulative reward, the entropy, and the KL-divergence. The results in Figure 3.3 indicates that the entropy de-

creasing rate trades off between the exploration and the exploitation, and then, in�uence the policy performance shown

in Figure 3.3. For example, on the simple InvertedDoublePendulum-v2 environment where the exploitation is more

important than the exploration, MMPO+Ent convergences faster than the MMPO method. However, in the more com-

plicated environment of the Walker2d-v2 where the agent should keep exploring, MMPO outperforms the MMPO+Ent

method in the end. Additionally, we also run the �nal updated policies of 6 random seeds on the 7 environments and

show the averaged cumulative reward over 20 episodes, where the results are shown in Table 3.4.

0 1 × 106

0

1000

2000

HalfCheetah-v2

0 1 × 106

0

500

1000

1500

2000

2500

Hopper-v2

0 1 × 106

0

2000

4000

6000

8000

InvertedDoublePendulum-v2

0 1 × 106

0

200

400

600

800

1000

InvertedPendulum-v2

0 1 × 106

60

40

20

Reacher-v2

0 1 × 106

0

25

50

75

100

Swimmer-v2

0 1 × 106

0

1000

2000

3000

Walker2d-v2

method
MMPO+Ent
MMPO

Figure 3.3.: Comparisons of policy performance on 7 MuJoCo environments between MMPO and MMPO+Ent, where

MMPO+Ent represents MMPO with entropy regularization. The shaded region indicates the standard devia-

tion over 6 random seeds. The total number of sampled timesteps is 1× 106 for each experiment.

0 1 × 106

5

6

7

8

HalfCheetah-v2

0 1 × 106

2.0

2.5

3.0

3.5

4.0

Hopper-v2

0 1 × 106

1.0

0.5

0.0

0.5

1.0

1.5
InvertedDoublePendulum-v2

0 1 × 106

0.5

0.0

0.5

1.0

1.5
InvertedPendulum-v2

0 1 × 106

2

1

0

1

2

3
Reacher-v2

0 1 × 106

0.5

1.0

1.5

2.0

2.5

Swimmer-v2

0 1 × 106

5

6

7

8

Walker2d-v2

method
MMPO+Ent
MMPO

Figure 3.4.: Comparisions of policy entropy dynamics between MMPO and MMPO+Ent. The entropy regularization hy-

perparameter is β = −0.002, which speci�es the minimum decreasing rate of the policy entropy that has to

be satis�ed. The shaded region indicates the standard deviation over 6 random seeds.

24

0 1 × 106
0.000

0.015

0.020

HalfCheetah-v2

0 1 × 106
0.000

0.015

0.020

Hopper-v2

0 1 × 106
0.000

0.015

0.020

InvertedDoublePendulum-v2

0 1 × 106
0.000

0.015

0.020

InvertedPendulum-v2

0 1 × 106
0.000

0.015

0.020

Reacher-v2

0 1 × 106
0.000

0.015

0.020

Swimmer-v2

0 1 × 106
0.000

0.015

0.020

Walker2d-v2

method
MMPO+Ent
MMPO

Figure 3.5.: Comparisions of the KL-divergence dynamics between MMPO and MMPO+Ent methods, where the KL-

divergence bounds are ε = 0.015 and ε = 0.02 respectively.

Task
MMPO

(ε = 0.015)
MMPO+Ent

(ε = 0.02, β = −0.003)

InvertedPendulum-v2 1000.00 ± 0.00 1000.00 ± 0.00

InvertedDoublePendulum-v2 9128.91 ± 505.38 8156.99 ± 1915.10

Reacher-v2 -8.05 ± 1.45 -7.66 ± 1.62

Hopper-v2 3143.46 ± 710.90 2163.49 ± 868.79

Swimmer-v2 83.7 ± 24.33 93.7 ± 18.28

HalfCheetah-v2 1238.43 ± 64.87 1769.00 ± 770.39

Walker2d-v2 3441.81 ± 548.96 3130.32 ± 985.00

Table 3.4.: Comparison of the averaged culmulative reward from running the �nal obtained policies on 7 MuJoCo envi-

ronments over 6 random seeds and 20 episodes for each seed.

Comparisons among MMPO, TRPO and PPO

Finally, we compare MMPO (with entropy regularization) to TRPO and PPO (with clipped �surrogate� objective), both of

which have achieved state-of-the-art results on the MuJoCo environments. For running the TRPO and PPO experiments,

we use open-source code from the OpenAI baseline [38] and the default hyperparameters. For our MMPO method, we

use the hyperparameters shown in Table A.1 in Appendix A, additionally with the KL-divergence bound ε = 0.02 and

an entropy regularization of the minimum decreasing rate β = −0.003. We focus our comparisons on three different

aspects: the reward, the entropy, and the KL-divergence, where the reward curve indicates how the policy is being im-

proved, the entropy shows the information loss of the policy probability distribution and the KL-divergence shows how

stable is the policy improvement.

Figure 3.6 demonstrates a series of comparisons of the learning curve on MuJoCo environments among MMPO, TRPO,

and PPO. The results show that MMPO achieves comparable performance to PPO and TRPO on almost all MuJoCo

environments. For example, on the easiest InvertedPendulum-v2 or the high-dimensional Walker2d-v2 environment,

MMPO outperforms both TRPO and PPO methods slightly. On both HalfCheetah-v2 and Hopper-v2 environments, all

methods demonstrate similar performances. On the InvertedDoublePendulum-v2 and Reacher-v2 environments, MMPO

method converges slightly slower than the other two methods, however, all methods arrive at a similar point in the end.

Moreover, on the Swimmer-v2, MMPO and TRPO perform much better than PPO.

Figure 3.7 shows comparisons of the entropy performance during training, where PPO and TRPO do not use any en-

tropy regularization and do not determine the entropy decreasing rate explicitly. MMPO, however, minimizes a ramp-

transformed entropy loss function, similar with the KL-divergence loss function, and is capable of control the entropy

decreasing rate directly. For example, on the simple InvertedPendulum-v2 environment in which the dimension of action

25

0 1 × 106

0

1000

2000

HalfCheetah-v2

0 1 × 106

0

500

1000

1500

2000

2500

Hopper-v2

0 1 × 106

0

2000

4000

6000

8000

InvertedDoublePendulum-v2

0 1 × 106

0

200

400

600

800

1000

InvertedPendulum-v2

0 1 × 106

60

40

20

Reacher-v2

0 1 × 106

0

50

100

Swimmer-v2

0 1 × 106

0

1000

2000

3000

Walker2d-v2

method
MMPO
PPO
TRPO

Figure 3.6.: Comparisons of averaged culmulative reward among MMPO, TRPO, and PPO methods, during learning on

7 MuJoCo environments trained for 1 million timesteps. The shaded region indicates the standard deviation

over 6 random seeds.

space is only 1, the agent does not need to explore much but should focus more on exploitation. MMPO has better perfor-

mance in this environment due to its lowest policy entropy in the end. However, on the more complicated Walker2d-v2

environment that has a high-dimensional action space of 6, explorations are encouraged. Hence, MMPO achieved the

best �nal performance because of a relatively slow entropy decreasing rate.

0 1 × 106

2

4

6

8

HalfCheetah-v2

0 1 × 106

2

3

4

Hopper-v2

0 1 × 106

1.0

0.5

0.0

0.5

1.0

1.5
InvertedDoublePendulum-v2

0 1 × 106

0.5

0.0

0.5

1.0

1.5

InvertedPendulum-v2

0 1 × 106

4

2

0

2

Reacher-v2

0 1 × 106

0

1

2

3
Swimmer-v2

0 1 × 106

5

6

7

8

Walker2d-v2

method
MMPO
PPO
TRPO

Figure 3.7.: Comparisons of the policy entropy performance among MMPO, TRPO, and PPO methods, during learning on

7 MuJoCo environments trained for 1 million timesteps. The shaded region indicates the standard deviation

over 6 random seeds.

Figure 3.8 presents the change of the KL-divergence during the policy optimization, where our MMPO method in most

cases restricts the KL-divergence under the KL bound ε = 0.02 during the whole training procedure. As the MMPO

method treats the KL-divergence bound as a soft constraint, it is inevitable for MMPO to occasionally violate the KL-

divergence bound. The KL bound for TRPO method is 0.01, which is not always satis�ed as well due to a quadratic

approximation to the KL-divergence constraint. PPO can only have an indirect in�uence on the KL-divergence by clipping

the �surrogate� objective, which can be not straightforward to implement in some cases, e.g. for policy gradient methods

that do not use the �surrogate� objective, instead, an averaged log action probability weighted advantages. The decreas-

ing curve of the KL-divergence of PPO is caused by a �linear� schedule of the clipping hyperparameter ε = 0.2 × m,

26

wherem is initialized to 1 and linearly decreased to 0 through the training.

0 1 × 106
0.00

0.01

0.02

HalfCheetah-v2

0 1 × 106
0.00

0.01

0.02

Hopper-v2

0 1 × 106
0.00

0.01

0.02

InvertedDoublePendulum-v2

0 1 × 106
0.00

0.01

0.02

InvertedPendulum-v2

0 1 × 106
0.00

0.01

0.02

Reacher-v2

0 1 × 106
0.00

0.01

0.02

Swimmer-v2

0 1 × 106
0.00

0.01

0.02

Walker2d-v2

method
MMPO
PPO
TRPO

Figure 3.8.: Comparisons of the KL-divergence amongMMPO, TRPO and PPO, during training on 7 MuJoCo environments

trained for 1 million timesteps. The shaded region indicates the standard deviation over 6 random seeds.

3.5 Conclusion

We have proposed a practical policy gradient method for deep RL, where the policy network is optimized by simultane-

ously maximizing a �surrogate� objective and minimizing a ramp-transformed KL-divergence loss function, and a state

value function is found by minimizing the commonly used MSE loss function. The empirical results on 7 MuJoCo en-

vironments indicate that the MMPO method is capable of solving a series of challenging continuous control tasks and

achieving state-of-the-art results on MuJoCo environments like TRPO and PPO methods. However, the MMPO method is

more straightforward to implement and is computationally ef�cient compared with the TRPO method. Additionally, the

MMPO method is compatible with optimizing the objective of averaged logarithm-weighted advantages, however, PPO

method is limited to maximizing the �surrogate� objective. Moreover, with the idea of transforming a soft constraint via a

ramp function into an objective that can be optimized using SGD methods, it is likely that many constrained optimization

problems with soft constraints can be effectively solved using �rst-order gradient descent methods, instead of using the

Lagrangian mechanics which is intractable in most deep neural networks.

27

4 f -divergence penalized policy optimization

4.1 Introduction

In statistics, a diversity of functions that are used for measuring the difference between one probability distribution and

the other have been proposed, e.g., the Kullback-Leibler divergence, the f -divergence, the Wasserstein distance and

more. Many of these divergences are well-studied in machine learning or deep learning area. For example, the max-

imum likelihood estimation is equivalent to minimizing KL divergence, generative adversarial networks (GANs) [17]

and f -GANs [18] estimate sample distributions by approximate minimization of the Jensen-Shannon divergence and the

f -divergence respectively.

Furthermore, distance measures for probability distributions play a key role in many reinforcement learning algorithms,

including REPS[20], TRPO[10], ACKTR[11], where all methods use a KL divergence constraint between successive poli-

cies during policy updates to avoid greedy policy updates. The f -divergence constrained policy improvement method

[37] is known to be the �rst method in RL that uses the f -divergence to constrain the policy improvement. This method

yields a closed-form solution like REPS, however, with the limitations of high implementation costs and being compu-

tationally expensive, and thus, both this method [37] and REPS are not suitable for solving challenging problems with

high-dimensional states.

In this chapter, we �rst employ the approximation idea that comes from TRPO to approximately solve a f -divergence con-
strained trust region policy optimization problem, where the f -divergence constraint is approximated using its second-

order Taylor expansion, and a linear approximation to the objective. We demonstrate that the TRPO method is a special

case of the f -divergence constrained policy optimization approach. We further focus on a one-parameter family of α-
divergences, a special case of the f -divergence, to study effects of the choice of divergence on policy improvement.

We show that all twice differentiable f -divergences have the same second-order Talyor expansion, for example, all α-
divergences are locally the same. Thus, solving the twice differentiable f -divergence constrained policy optimization

approximately with linear and quadratic approximations yield the same update rule as the original KL-divergence con-

strained TRPO method.

Additionally, we propose a novel objective that uses the f -divergence as a penalty term to the policy gradient, the method

termed as f -divergence penalized policy optimization (f -PPO). This method is similar to the PPO with KL-divergence

as penalty method [16] and is effective for optimizing large nonlinear policies, e.g. feedforward neural networks. We

compare the experimental results of using different α-divergences as a penalty term to the objective to study the effects

of α-divergence on policy improvement.

4.2 f -PPO

This section introduces the Csiszár f -divergence [39] as a general divergence measure between two probability distribu-

tions. Furthermore, we study a one-parameter family divergence, termed as α-divergence [40] [41], that is generated

by the α-function fα with α ∈ R. We demonstrate that a f -divergence constrained policy optimization problem, where

the f -divergence should be twice differentiable, can be solved approximately using second-order Taylor expansion of the

f -divergence and yields the same update solution as the TRPO method. Additionally, the f -divergence can be treated as

a penalty term, and hence, a novel f -divergence penalized policy optimization (f -PPO) method is proposed.

4.2.1 f -divergence and α-divergence

Given two distributions P andQ that possess, respectively, an absolutely continuous density function p and q with respect
to a base measure dx de�ned on the domain X , we de�ne the f -divergence,

Df (P ||Q) =

∫
X
q(x)f

(
p(x)

q(x)

)
dx

=
∑
xi∈X

q(xi)f

(
p(xi)

q(xi)

)

28

where the generator function f is a convex, lower-semicontinuous function on (0,+∞), satisfying f(1) = 0. Many well-

known divergences, such as KL-divergence, reverse KL-divergence, Pearson χ2, are special cases of the f -divergence,
correspond to a particular choice of the generator function f .

The α-divergence is a one-parameter family of f -divergences generated by the α-function fα(x) with α ∈ R. The

α-function is de�ned as

fα(u) =

u log(u)− (u− 1) for α = 1

− log(u) + (u− 1) for α = 0
(uα−1)−α(u−1)

α(α−1) otherwise

(4.1)

Choosing different α yields a large number of divergences, including the well-known KL-divergence when α = 1. The
α-divergence smoothly connects the I-divergenceDKL(P ||Q) with the reverse I-divergenceDRKL(Q||P) and pass through

the Hellinger distance [41]. Table 4.1 summarizes the generator functions of several well-known divergences, and its

divergence function. For example, the generator function of the KL-divergence is f(u) = u log(u)−(u−1), corresponding
to α = 1.

Divergence Name α generator f(u) Df (P ||Q)

Squared Hellinger 1/2 (
√
u− 1)2

∫
(
√
p(x)−

√
q(x))2dx

KL 1 u log u
∫
p(x) log p(x)q(x)dx

Reverse KL 0 − log u
∫
q(x) log q(x)p(x)dx

Pearson χ2 2 (u− 1)2
∫ (q(x)−p(x))2

p(x) dx

Neyman χ2 −1 (u−1)2

u

∫ (p(x)−q(x))2
q(x) dx

Total variation N/A 1
2 |u− 1| 1

2

∫
|p(x)− q(x)|dx

Table 4.1.: Several common f -divergences with corresponding generator functions f(u).

Additionally, Figure 4.1 visualizes several generator functions of the α-divergence. The α-function fα is convex over

(0,+∞) and satis�es f(1) = 0, which ensures that Df (P ||Q) = 0 only when P = Q. We highlight the Hellinger

distance (when α = 1/2) with a dash line in Figure 4.1, as for every α-divergence there is a reverse divergence symmetric

with respect to the α = 1/2. For example, KL-divergence and reverse KL-divergence are symmetric regarding to α = 1/2.

0 1 2 3 4 5 6 7 8 x0

1

2

3

4

5

6

7
f (x)

= 1/2 Hellinger
= 1 KL
= 0 Reverse_KL
= 2 Pearson 2

= 1 Neyman 2

= 10
= 9

Figure 4.1.: Several α-functions for choosing di�erent α. The x-axis represents the probability ratio of two di�erent prob-

ability samples, e.g. x = p
q . The plots show that the α-function behaves di�erently for di�erent α. For

example, the function is more sensitive to large positive x when α ≥ 0.5, e.g. α = 10, and is more sensitive

to small positive x when α ≤ 0.5, e.g. α = −9.

29

4.2.2 f -divergence constrained policy optimization

Consider the following constrained policy optimization problem

max
θ

J(πθ) = Êt
[
πθk+1

(at|st)
πθk(at|st)

Â(at|st)
]

s.t.: Ê
[
Df [πθk(·|st)||πθk+1

(·|st)]
]
≤ ε

(4.2)

where Â is the estimated advantage function, the ε ∈ R is the maximum information loss measured by using averaged

f -divergence, usually set to be a small number, e.g., ε = 0.01, and Df [πθk(·|st)||q(·|st)] is the averaged f -divergence
between new policy distribution πθ(·|st) and old policy distribution q(·|st) in state st, e.g., for discrete action space A,
the f -divergence is

Df [πθk(·|st)||πθk+1
(·|st)] =

∑
a∈A

πθk+1
(a|st)f

(
πθk(a|st)
πθk+1

(a|st)

)
.

Using the f -divergence as a constraint to the policy update has two advantages: �rst, it prevents policy update towards

untrusted region, and secondly, it avoids greedy updates which would decrease exploration and lead to premature con-

vergence, similar to the KL-divergence constraint.

Similar to TRPO, which has a similar constrained optimization problem in Equation (2.5), with the KL bound instead, our

f -divergence constrained policy optimization problem can be also solved approximately by using a linear approximation

to the objective J(θ) and a quadratic approximation to the f -divergence constraint Df [πθ(·|st)||q(·|st)],

max
θ

J(θ) ≈ δθT∇θĴ(θ)

s.t.: Ê
[
Df [πθk(·|st)||πθk+1

(·|st)]
]
≈ 1

2
f ′′(1)δθTHθδθ ≤ ε

(4.3)

where δθ = (θk+1 − θk) is the update steps of policy parameters, the Hessian matrix Hθ is the coef�cient of the

quadratic term of the local Taylor expansion of the f -divergence, which can be calculated by taking the second-order

partial derivatives of the f -divergence

Hij =
∂

∂θi

∂

∂θj
Et
[
Df [πθk(·|st)||πθk+1

(·|st)]
]
.

Here, the f ′′(1) is the second-order derivative of the generator function f(x) with respect to x = 1, which indicates that

f(x) is twice differentiable at point x = 1. The optimal policy parameter update is then found using conjugate gradient

algorithm with line search in the direction θnew ∝ Hθ
−1∇θJ(θ).

For all α-divergences, where the α-functions de�ned in Equation (4.1) have f ′′α(1) = 1, ∀α ∈ R, the local approximations

of the divergences are all the same (see the Appendix B for the derivative). Thus, the TRPO method [10] is a special

case of the f -divergence constrained policy optimization approach, both methods yield the same policy update result

when optimizing the same objective, either the �surrogate� objective or the logarithm weighted objective, and using

the quadratic approximation to the constraints. However, f -divergence makes the implementation more complex as

there is no general closed-form expression for calculating the f -divergence between two distributions. For example,

there is an expression for the KL-divergence between two univariate Gaussians, but not for the f -divergence. Thus, in
reality, there is no need to solve the f -divergence, instead of the KL-divergence, constrained policy optimization using

the approximation scheme that comes from TRPO. Also, it is impractical to solve the constrained problem as REPS, where

Lagrangian multipliers are introduced, for large nonlinear function representations of the policy.

4.2.3 f -divergence penalized policy optimization

Similar to PPO that uses the KL-divergence as a penalty term to the �surrogate� objective in Equation (2.6), we propose

to use a f -divergence as the penalty, and hence, following unconstrained policy optimization problem

max
θ

Ĵ(θ) = Êt
[
πθk+1

(at|st)
πθk(at|st)

Â(st,at)

]
− βÊt

[
D̂f (πθk ||πθk+1

)
]

(4.4)

30

and β is a penalty coef�cient. The estimation of the f -divergence D̂f is calculated using samples, e.g. Monte Carlo

estimation, and has relative high variance. Strictly speaking, the f -divergence approximation measures the differ-

ence between a subset of sampled old action probabilities πθk(at|st) and the corresponding new action probabilities

πθk+1
(at|st), unlike using a closed-form expression for measursing the difference between two policy divergences,

πθk(·|st) and πθk+1
(·|st). Nevertheless, such a �surrogate� f -divergence forms a lower bound on the performance of

the policy π.

The estimated advantage function Â(st,at) in Equation 4.4 is similar to the action-value function Q̂(st,at), both func-

tions are used to measure the performance of state-action pairs (st,at). However, the advantage function has lower

variance, as it required subtracting a baseline from the action-value function,

Â(s,a) = Q̂(s,a)− V̂ (s) (4.5)

where state-value function V̂ (s) is the baseline and can be estimated using function approximation methods, e.g., non-

linear function approximation, which is usually treated as supervised learning problem and can be solved ef�ciently using

stochastic gradient descent methods by minimizing a mean squared error (MSE) loss function. The MSE loss function for

the state-value function is de�ned as

min
φ

L(Vφ) = Et

[
‖V̂φ(st)−

∞∑
l=0

γrt+l‖2
]

(4.6)

where
∑∞
l=0 γ

lrl+t is the discounted cumulative reward from state st over all time steps in batch of trajectories and

serves as the ground truth state value in state st, and V̂φ(st) is the predicted state value in state st. Parameter vec-

tor φ of the value function approximator, e.g., weights of the neural network, are updated using sampled trajectories

(a0, s0, r0, · · ·) and mini-batch SGD.

Therefore, we present our f -divergence penalized policy optimization (f -PPO) algortihm [2].

Algorithm 2 f -divergence penalized policy optimization (f -PPO)

Initialize policy parameters θ0, penalty coef�cient β0, divergence function f
for Iteration updates: k = 0, 1, 2, · · · do

Run current policy πθk and collect a set of trajectories D = (a0, s0, r0,a1, s1, r1, · · ·) of length T
Estimate the advantages Ât, e.g., using generalized advantage estimation (GAE) algorithm [25]

for Epoch updates n = 0, 1, 2, · · · , N do

for Batch updatesm = 0, 1, 2, · · · , T/M do

Update policy parameters usingM steps of minibatch SGD for n epoch (e.g., Adam)

θnew = argmax
θ

Êt
[
πθk+1

(at|st)
πθk(at|st)

Â(st,at)

]
− βÊt

[
D̂f (πθk ||πθk+1

)
]

Update value function parameters usingM steps of minibatch SGD for n epoch (e.g., Adam)

φnew = argmin
φ

Et

[
‖V̂φ(st)−

∞∑
l=0

γrt+l‖2
]

end for

end for

end for

4.3 Connections with prior work

f -Divergence constrained policy improvement [37]: Our approach was highly inspired by this constrained policy op-

timization method that uses a general class of f -divergences in place of the KL-divergence for restricting policy updates.

Similar to REPS, where the KL-divergence is used as a constraint, the f -divergence constrained policy improvement

method also solves Lagrangian primal-dual functions and yield a closed-form solution for the policy update, in which,

however, the optimization is computationally expensive and not straightforward to implement. However, the f -PPO

31

method uses the approximated f -divergence as a penalty term and solves the problem as an unconstrained policy op-

timization problem with stochastic gradient ascent, which makes f -PPO easier to implement and desired for solving

challenging problems such as deep RL problems with high-dimensional state or action spaces.

TRPO [10]: TRPO is well-known to be a constrained policy optimization problem that is solved approximately and

guarantee to give monotonic improvement by optimizing the �surrogate� objective. Combining the approximation with

conjugate gradient and line search methods do not yield a closed-form solution, however, is effective for optimizing large

nonlinear policies, e.g. neural networks. We show that TRPO is a special case of the f -divergence constrained policy

optimization method. More importantly, when choosing a twice differentiable generator function f for the f -divergence
and using the approximation scheme like TRPO, the f -divergence constrained policy optimization has the same solution

as TRPO.

PPO with adaptive KL-divergence penalty [16]: This method reformulates the constrained objective in TRPO as an

unconstrained objective by treating the KL-divergence constraint as a penalty term (or soft constraint) multiplied by

an adaptive penalty coef�cient. Both f -PPO and this method are optimized using SGD optimizer, e.g., Adam, without

second-order gradient information. Differing from our method in that the f -divergence is used as the penalty and approx-
imated using samples when dealing with continuous policy distributions, the KL-divergence for continuous probability

distributions, e.g. Gaussian distribution, can be computed using closed-form expression.

PPO with clipped �surrogate� objective [16]: TRPO and f -PPO discourage greedy policy updates explicitly by con-

ducting a particular choice of f -divergence, e.g. KL-divergence, between the updated policy and its prior as a constraint

or a penalty to the objective. The PPO method with a clipped �surrogate� objective, on the other hand, achieves policy

updates inside some trust regions by clipping the policy ratio within a trusted range, where the policy ratio measures how

an updated action probability diverges from the previous one. The f -PPO method provides a connection between the

PPO or TRPO method and the method of using f -divergence in RL as a divergence measurement of policy distributions.

4.4 Experiments

We ran f -PPO on a collection of standard simulated robotic locomotion benchmark tasks from the OpenAI MuJoCo task

suite. Since the f -divergence is notably for generalizing many common divergences, especially one of its special case,

the α-divergence that is further used for representing many well-known divergences, including the KL-divergence, the

Squared Hellinger distance, and more, we focus on the α-divergence to study the in�uences of choosing different di-

vergence functions on policy optimization. Furthermore, for every divergence in the α-divergence, there is a reverse

divergence symmetric with respect to the point α = 0.5 (corresponding to the Hellinger distance) [37], such as the

KL-divergence and its reverse, the reverse KL-divergence. Thus, we compare the experimental results from a set of α-
divergence pairs to answer the following two questions:

1. Does the f -divergence penalized policy optimization method of any chosen f -divergence learns an optimal policy

for solving challenging environments at all?

2. How does a particular α-divergence differs from its reverse divergence on policy improvement? What about the

Hellinger distance that lies in the middle point?

4.4.1 Policy and value function

We use multilayer perceptrons (MLPs) to represent both the policy network and the value function, both networks have

2 hidden layers of size 64 each, an input layer of size that equals to the dimension of the state space, and an output layer

of size that has the same dimension as the action space and one respectively. More network details can be found in the

previous chapter (Chapter 3).

4.4.2 MuJoCo environment

We tested our f -PPO method on 6 MuJoCo environments, including InvertedPendulum-v2, InvertedDoublePendulum-v2,

Reacher-v2, Hopper-v2, HalfCheetah-v2, andWalker2d-v2, all of which have different state and action space, and different

goals. Environments' details and reward functions can be found in the previous chapter (Chapter 3).

32

4.4.3 Empirical results

Figure 4.2 shows a series of comparisons of the learning curve on 6 different MuJoCo environments for various choices

of the divergence type, where tasks range from the easiest InvertedPendulum-v2 environment to the high-dimensional

HalfCheeta-v2 or Walker2d-v2 environment. In summary, all tasks can be effectively solved using the f -PPO method

with a proper choice of the f -divergence function. Let us focus on the �rst column, where we observe that on almost

all environments, the small negative value (α = −4) tends to converge faster and has lower variance in the end, com-

pared to the performance of the large positive value (α = 5), in which the performance converges slower and has high

variance. On the second column, where the selected values α are closer to α = 0.5, the negative value (α = −1) again
outperforms the positive value (α = 2) in most tasks. In general, the moderate values α ∈ {0, 0.5, 1} on the third

column achieve the most stable and promising results.

Figure 4.3 presents comparisons of the policy entropy corresponding to the learning curve shown in Figure 4.2. The

choice of the divergence function signi�cantly affects the entropy performance regardless of tasks. For example, on all

environments, large positive values α ∈ {5, 2} prevents the policy entropy from rapidly decreasing, or even occasion-

ally increase the entropy on some environments, however, small negative values α ∈ {−4,−1} on all occasions cause

a greedy update of the policy. For example, on the Walker2d-v2 environment, the α-divergence of α = 5 causes the

entropy to increase from around 8 to greater than 11, on the contrary, the divergence of a negative value α = −4 results

in a declined entropy of less than 6.

In summary, according to the empirical results on MuJoCo environments, α-divergences corresponding to negative values
α < 0 are more effective in policy improvement comparing to large positive values α > 1. The alpha values in the range

α ∈ [−1, 1] result in most stable and reliable policy improvement. For all tested divergences, the Neyman χ2 (α = −1)
divergence outperforms all other values α on almost all environments.

4.5 Conclusion

We considered the Csiszár f -divergence [39] and its special case the α-divergence [40] [41], both of which general-

ize many well-known divergences, such as the KL-divergence and reverse KL-divergence. We proposed to use the f -
divergence for regularizing the objective of the policy gradient method, in which the f -divergence can be either treated

as a hard constraint or a penalty term to the policy gradient. First, we have shown that an f -divergence constrained policy
optimization problem can be solved approximately, like the TRPO method, using a linear and quadratic approximation

to the �surrogate� objective and a twice differentiable f -divergence respectively. The approximated solution for updating

policy parameters is the same as the TRPO method, as all twice differentiable f -divergences have the same second-order

Taylor expansion. Thus, instead of solving a constrained policy optimization problem, we proposed a novel objective,

where the f -divergence is treated as a penalty term, that is optimized using a stochastic gradient ascent method. We term

this unconstrained policy optimization as the f -divergence penalized policy optimization (f -PPO) method. Furthermore,

we studied the effects of f -divergences, precisely α-divergences, on policy improvement via a series of experiments

on MuJoCo environments. Our experiments suggest that the f -PPO method is effective for solving high-dimensional

continuous control tasks by using a non-linear function approximation to the policy and the SGD for updating policy

parameters. Additionally, we demonstrated that the choice of divergence type trades off between exploration and ex-

ploitation during policy update, and hence, affects the policy performance in the end. For example, the α-divergence of
a negative value α < 0 exploits greedier than its reverse divergence of a positive value α > 1 (symmetric with respect

to the point α = 0.5), and results in better performance on tested environments in general. Moreover, moderate values

α ∈ [−1, 1] achieve more stable and valid policy optimization, compared to extreme values, e.g., α = 5.

33

0

250

500

750

1000

method
= 4.0
= 0.5
= 5.0

InvertedPendulum-v2

method
= 1.0
= 0.5
= 2.0

method
= 0.5
= 1.0
= 0.0

0

2000

4000

6000

8000 method
= 4.0
= 0.5
= 5.0

InvertedDoublePendulum-v2

method
= 1.0
= 0.5
= 2.0

method
= 0.5
= 1.0
= 0.0

0 1 × 106

60

40

20

0

method
= 4.0
= 0.5
= 5.0

0 1 × 106

Reacher-v2

method
= 1.0
= 0.5
= 2.0

0 1 × 106

method
= 0.5
= 1.0
= 0.0

0

1000

2000

method
= 4.0
= 0.5
= 5.0

Hopper-v2

method
= 1.0
= 0.5
= 2.0

method
= 0.5
= 1.0
= 0.0

0

1000

2000 method
= 4.0
= 0.5
= 5.0

HalfCheetah-v2

method
= 1.0
= 0.5
= 2.0

method
= 0.5
= 1.0
= 0.0

0 1 × 106
0

1000

2000

3000 method
= 4.0
= 0.5
= 5.0

0 1 × 106

Walker2d-v2

method
= 1.0
= 0.5
= 2.0

0 1 × 106

method
= 0.5
= 1.0
= 0.0

Figure 4.2.: Results of the average reward from f -PPO on 6 MuJoCo environments trained for 1 × 106 timesteps. The

shaded region indicates the standard deviation over 6 random seeds. Here each row corresponds to a speci�c

continuous control task. The di�culty of the tasks (according to the dimension of the state and action space)

increases from top to bottom across the column. For each particular task, results of chosen α-divergences
corresponding to di�erent α values are divided into three subplots, from the more extreme α values on the

left to the more re�ned values on the right. For each particular subplot, a pair of symmetric α-divergences,
with respect to the point α = 0.5, is compared to the center α-divergence (α = 0.5, corresponding to the

Hellinger distance).

34

0.75

1.00

1.25

1.50 method
= 4.0
= 0.5
= 5.0

InvertedPendulum-v2

method
= 1.0
= 0.5
= 2.0

method
= 0.5
= 1.0
= 0.0

0.5

0.0

0.5

1.0

1.5
method

= 4.0
= 0.5
= 5.0

InvertedDoublePendulum-v2

method
= 1.0
= 0.5
= 2.0

method
= 0.5
= 1.0
= 0.0

0 1 × 106

2

0

2 method
= 4.0
= 0.5
= 5.0

0 1 × 106

Reacher-v2

method
= 1.0
= 0.5
= 2.0

0 1 × 106

method
= 0.5
= 1.0
= 0.0

2

3

4

5

6

method
= 4.0
= 0.5
= 5.0

Hopper-v2

method
= 1.0
= 0.5
= 2.0

method
= 0.5
= 1.0
= 0.0

4

6

8

10

method
= 4.0
= 0.5
= 5.0

HalfCheetah-v2

method
= 1.0
= 0.5
= 2.0

method
= 0.5
= 1.0
= 0.0

0 1 × 106

6

8

10

12

method
= 4.0
= 0.5
= 5.0

0 1 × 106

Walker2d-v2

method
= 1.0
= 0.5
= 2.0

0 1 × 106

method
= 0.5
= 1.0
= 0.0

Figure 4.3.: Results of the policy entropy corresponding to the experiments above, where the x-axis shows the sampled

time steps and the y-axis indicates the policy entropy. Overall, negative values α < 0 (blue) tend to decrease

the entropy faster than positive values α > 0 (green)�in other words, large positive α's focus more on

exploration in contrast to small negative α's being more on exploitation.

35

5 Conclusion and discussion
In this thesis, we �rst shown a brief summary of recent breakthroughs in deep reinforcement learning, followed by a

introduction of basic concepts in reinforcement learning and deep learning. We reviewed several state-of-the-art deep

RL algorithms and highlighted a number of computational problems that they present. Namely, REPS is computationally

expensive, TRPO is intractable for large RNNs, and PPO is only able to optimize the �surrogate� objective.

One of our main contributions is to propose a practical policy gradient method, termed minimax entropic policy optimiza-

tion (MMPO), which has several advantages compared to other deep RL methods. First, it is computationally ef�cient

as we only need �rst-order gradient information. Second, it is straightforward to implement, as it does not require com-

plicated parameter manipulations to make it work. Third, it is sample ef�cient because we can optimize the parameters

with multiple epochs of stochastic gradient optimization using the same trajectory, which is possible due to enforcing the

KL constraint explicitly and not as a by-product of clipping or approximate quadratic. As a result, MMPO shows compa-

rable performance on several MuJoCo continuous control tasks. However, comparisons on MuJoCo environments among

MMPO, PPO and TRPO methods do not show pronounced differences. Moreover, PPO has achieved great successes on

not only MuJoCo environments, but also on high-dimensional continuous control problems involving 3D humanoid and

the Atari domain where states are represented using images, and TRPO demonstrated strong theoretical foundations.

Thus, it is dif�cult to conclude that MMPO is an algorithm that has better or equivalent optimization ability as PPO or

TRPO methods. Applying MMPO to domains with high-dimensional state inputs, e.g., robot simulation in a 3D domain,

playing video games, or real robots, and then, comparing the results to the other two methods should be done in future.

In addition, the empirical results on MuJoCo environments show that MMPO decreases the entropy of the policy quite

slowly and keeps exploring the environment continuously. Such properties are expected to give MMPO an advantage in

partially observable Markov decision problems (POMDPs), in which agents generally have to keep exploring for a long

period of time in order to prevent premature convergence.

Apart from the MMPO method, we provided new insights in achieving stable policy updates via a more general class

of f -divergences. The proposed method is called f -divergence penalized policy optimization (f -PPO) and it has shown

promising results in optimizing continuous control MuJoCo tasks, such as the Walker2d-v2 environment. The empirical

results on MuJoCo environments demonstrated that the choice of f -divergences have a great effect on the policy entropy,

and hence, on the policy improvement. For example, as shown in Figure 4.3 on the Hopper-v2 environment, the α-
divergence with a value α < 0 leads the entropy to rapid decreasing in contrast to an increasing entropy performance

caused by the α-divergence of large positive value α > 1. In the future, it would be interesting to carry out more

theoretical research and investigate the reason behind such a phenomenon. Thus, it is likely that by just choosing

another f -divergence, f -PPO will still yield more new policy optimization methods.

36

Bibliography
[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, vol. 1. MIT press Cambridge, 1998.

[2] Q. V. Le, �Building high-level features using large scale unsupervised learning,� in Acoustics, Speech and Signal

Processing (ICASSP), 2013 IEEE International Conference on, pp. 8595�8598, IEEE, 2013.

[3] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, �Deepface: Closing the gap to human-level performance in face

veri�cation,� in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1701�1708, 2014.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,

G. Ostrovski, et al., �Human-level control through deep reinforcement learning,� Nature, vol. 518, no. 7540, p. 529,

2015.

[5] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton,

et al., �Mastering the game of go without human knowledge,� Nature, vol. 550, no. 7676, p. 354, 2017.

[6] OpenAI, �OpenAI Five,� 2018.

[7] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. Garcia Castaneda, C. Beattie, N. C. Rabinowitz,

A. S. Morcos, A. Ruderman, N. Sonnerat, T. Green, L. Deason, J. Z. Leibo, D. Silver, D. Hassabis, K. Kavukcuoglu, and

T. Graepel, �Human-level performance in �rst-person multiplayer games with population-based deep reinforcement

learning,� ArXiv e-prints, July 2018.

[8] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin, O. P. Abbeel, and

W. Zaremba, �Hindsight experience replay,� in Advances in Neural Information Processing Systems, pp. 5048�5058,

2017.

[9] S.-I. Amari, �Natural gradient works ef�ciently in learning,� Neural computation, vol. 10, no. 2, pp. 251�276, 1998.

[10] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, �Trust region policy optimization,� in International

Conference on Machine Learning, pp. 1889�1897, 2015.

[11] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba, �Scalable trust-region method for deep reinforcement learning

using kronecker-factored approximation,� in Advances in neural information processing systems, pp. 5285�5294,

2017.

[12] N. N. Schraudolph, �Fast curvature matrix-vector products for second-order gradient descent,� Neural computation,

vol. 14, no. 7, pp. 1723�1738, 2002.

[13] J. Martens and R. Grosse, �Optimizing neural networks with kronecker-factored approximate curvature,� in Inter-

national conference on machine learning, pp. 2408�2417, 2015.

[14] L. Medsker and L. Jain, �Recurrent neural networks,� Design and Applications, vol. 5, 2001.

[15] S. Ruder, �An overview of gradient descent optimization algorithms,� arXiv preprint arXiv:1609.04747, 2016.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, �Proximal policy optimization algorithms,� arXiv

preprint arXiv:1707.06347, 2017.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, �Generative

adversarial nets,� in Advances in neural information processing systems, pp. 2672�2680, 2014.

[18] S. Nowozin, B. Cseke, and R. Tomioka, �f-gan: Training generative neural samplers using variational divergence

minimization,� in Advances in Neural Information Processing Systems, pp. 271�279, 2016.

[19] M. Arjovsky, S. Chintala, and L. Bottou, �Wasserstein gan,� arXiv preprint arXiv:1701.07875, 2017.

[20] J. Peters, K. Mülling, and Y. Altun, �Relative entropy policy search.,� in AAAI, pp. 1607�1612, Atlanta, 2010.

37

[21] R. J. Williams, �Simple statistical gradient-following algorithms for connectionist reinforcement learning,� in Rein-

forcement Learning, pp. 5�32, Springer, 1992.

[22] J. Peters and S. Schaal, �Reinforcement learning of motor skills with policy gradients,� Neural networks, vol. 21,

no. 4, pp. 682�697, 2008.

[23] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, �Policy gradient methods for reinforcement learning with

function approximation,� in Advances in neural information processing systems, pp. 1057�1063, 2000.

[24] R. J. Williams, �Simple statistical gradient-following algorithms for connectionist reinforcement learning,� in Rein-

forcement Learning, pp. 5�32, Springer, 1992.

[25] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, �High-dimensional continuous control using generalized

advantage estimation,� arXiv preprint arXiv:1506.02438, 2015.

[26] A. Rajeswaran, K. Lowrey, E. V. Todorov, and S. M. Kakade, �Towards generalization and simplicity in continuous

control,� in Advances in Neural Information Processing Systems, pp. 6553�6564, 2017.

[27] J. Ho and S. Ermon, �Generative adversarial imitation learning,� in Advances in Neural Information Processing

Systems, pp. 4565�4573, 2016.

[28] S. M. Kakade, �A natural policy gradient,� in Advances in neural information processing systems, pp. 1531�1538,

2002.

[29] B. Arouna, �Adaptative monte carlo method, a variance reduction technique,�Monte Carlo Methods and Applications

mcma, vol. 10, no. 1, pp. 1�24, 2004.

[30] E. Todorov, T. Erez, and Y. Tassa, �Mujoco: A physics engine for model-based control,� in Intelligent Robots and

Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026�5033, IEEE, 2012.

[31] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. J. Hausknecht, and M. Bowling, �Revisiting the arcade

learning environment: Evaluation protocols and open problems for general agents,� CoRR, vol. abs/1709.06009,

2017.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, �Playing atari with

deep reinforcement learning,� arXiv preprint arXiv:1312.5602, 2013.

[33] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, �Asynchronous

methods for deep reinforcement learning,� in International conference on machine learning, pp. 1928�1937, 2016.

[34] R. Y. Rubinstein, Simulation and the Monte Carlo Method. New York, NY, USA: John Wiley & Sons, Inc., 1st ed.,

1981.

[35] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[36] R. Fletcher, Practical methods of optimization. John Wiley & Sons, 2013.

[37] B. Belousov and J. Peters, �f-divergence constrained policy improvement,� arXiv preprint arXiv:1801.00056, 2017.

[38] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu, �Openai

baselines.� https://github.com/openai/baselines, 2017.

[39] I. Csiszár, �Eine informationstheoretische ungleichung und ihre anwendung auf beweis der ergodizitaet von

markoffschen ketten,� Magyer Tud. Akad. Mat. Kutato Int. Koezl., vol. 8, pp. 85�108, 1964.

[40] H. Chernoff et al., �A measure of asymptotic ef�ciency for tests of a hypothesis based on the sum of observations,�

The Annals of Mathematical Statistics, vol. 23, no. 4, pp. 493�507, 1952.

[41] A. Cichocki and S.-i. Amari, �Families of alpha-beta-and gamma-divergences: Flexible and robust measures of

similarities,� Entropy, vol. 12, no. 6, pp. 1532�1568, 2010.

[42] A. Kupcsik, M. Deisenroth, J. Peters, L. Ai Poh, V. Vadakkepat, and G. Neumann, �Model-based contextual policy

search for data-ef�cient generalization of robot skills,� conditionally accepted.

38

https://github.com/openai/baselines

[43] K. Muelling, A. Boularias, B. Mohler, B. Schoelkopf, and J. Peters, �Learning strategies in table tennis using inverse

reinforcement learning,� accepted.

[44] C. Dann, G. Neumann, and J. Peters, �Policy evaluation with temporal differences: A survey and comparison,�

no. March, pp. 809�883, 2014.

[45] T. Meyer, J. Peters, T. Zander, B. Schoelkopf, and M. Grosse-Wentrup, �Predicting motor learning performance from

electroencephalographic data,� no. 1, 2014.

[46] B. Bocsi, L. Csato, and J. Peters, �Indirect robot model learning for tracking control,� 2014.

[47] H. Ben Amor, A. Saxena, N. Hudson, and J. Peters, �Special issue on autonomous grasping and manipulation,�

2014.

[48] N. Heess, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang, A. Eslami, M. Riedmiller, et al.,

�Emergence of locomotion behaviours in rich environments,� arXiv preprint arXiv:1707.02286, 2017.

[49] J. Kober and J. R. Peters, �Policy search for motor primitives in robotics,� in Advances in neural information processing

systems, pp. 849�856, 2009.

[50] D. P. Kingma and J. Ba, �Adam: A method for stochastic optimization,� arXiv preprint arXiv:1412.6980, 2014.

[51] L.-J. Lin, �Self-improving reactive agents based on reinforcement learning, planning and teaching,� Machine learn-

ing, vol. 8, no. 3-4, pp. 293�321, 1992.

[52] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, �Prioritized experience replay,� arXiv preprint arXiv:1511.05952,

2015.

[53] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas, �Dueling network architectures for

deep reinforcement learning,� arXiv preprint arXiv:1511.06581, 2015.

[54] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, �Openai gym,� arXiv

preprint arXiv:1606.01540, 2016.

[55] E. Todorov, T. Erez, and Y. Tassa, �Mujoco: A physics engine for model-based control,� in 2012 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pp. 5026�5033, Oct 2012.

[56] D. Pfau and O. Vinyals, �Connecting generative adversarial networks and actor-critic methods,� arXiv preprint

arXiv:1610.01945, 2016.

39

A Hyperparameters
In all experiments of both the MMPO (in Chapter 3) method and the f -PPO (in Chapter 4) method, the neural network

structures of both the policy function and the value function are the same. Hyperparameters of running both methods on

MuJoCo environments are list in Table A.1 and Table A.2 separately.

Table A.1.: Hyperparameters of running MMPO method on MuJoCo environments

Parameter Value

Sampled timesteps per iteration (T) 2048

Adam learning rate 3× 10−4

Number of epochs (M) per iteration 10

Minibatch size (K) 64

Discount (γ) 0.99

GAE [25] parameter (λ) 0.95

Total sampled timesteps 1× 106

Table A.2.: Hyperparameters of running f -PPO method on MuJoCo environments

Parameter Value

Sampled timesteps per iteration (T) 2048

Adam learning rate 3× 10−4

Number of epochs (M) per iteration 10

Minibatch size (K) 128

Discount (γ) 0.99

GAE [25] parameter (λ) 0.95

Total sampled timesteps 1× 106

Coef�cient of the penalty term (β) 2.0

Tested f -divergence, or α-divergence (α) [-4, 5, -1, 2, 0, 1, 0.5]

41

B All twice di�erentiable f -divergences are locally the
same

In Chapter 4, we have discussed that a f -divergence constrained policy optimization problem, where the f -divergence
constraint can be approximated using its second-order Taylor polynomial, yields a same update rule for the policy pa-

rameter vector as the TRPO solution when solving the constrained optimization problem approximately. However, not

all f -divergences are twice differentiable, e.g. the total variation distance whose generator function is f(x) = 1
2 |x − 1|.

The α-divergence, which can be generalized using a α function fα, is a special case of the f -divergence and is twice dif-

ferentiable. Here, we show a short derivation of the second-order Taylor expansion of the α-divergence and demonstrate

that its has the same form as the Fisher information metric.

Df (q + dq||q) =
∑
i

qif(1 +
dqi
qi

)

≈
∑
i

qi

[
f(1) + f ′(1)

dqi
qi

+
1

2
f ′′(1)

(
dqi
qi

)2
]

=
∑
i

[
0 + 0

dqi
qi

+
1

2
f ′′(1)

(
dqi
qi

)2
]

=
1

2
f ′′(1)

∑
i

dqi
1

qi
dqi

=
1

2

∑
i

dqi
1

qi
dqi

where f ′′α(x) = xα−2 ⇒ f ′′(1) = 1

42

	Introduction
	Contributions
	Outline

	Background
	Reinforcement learning
	Markov decision process
	Value functions and policy
	Reinforcement learning algorithms

	Deep learning
	Feedforward neural networks
	Generative adversarial network
	Stochastic gradient descent algorithms

	Policy search algorithms
	Natural policy gradient
	Relative entropy policy search
	Trust region policy optimization
	Proximal policy optimization

	Minimax entropic policy optimization
	Introduction
	MMPO
	Preliminaries
	The objectives
	The algorithm

	Connections with prior work
	Experiments
	Policy and value function
	MuJoCo environment
	Results

	Conclusion

	f-divergence penalized policy optimization
	Introduction
	f-PPO
	f-divergence and -divergence
	f-divergence constrained policy optimization
	f-divergence penalized policy optimization

	Connections with prior work
	Experiments
	Policy and value function
	MuJoCo environment
	Empirical results

	Conclusion

	Conclusion and discussion
	Bibliography
	Hyperparameters
	All twice differentiable f-divergences are locally the same

