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Abstract. This research explores how autonomous agents learn and
interact in shared environments, emphasizing the understanding of
others as explicit agents rather than simple dynamic obstacles. When
deploying robots in human-inhabited environments in the future, it
will be unlikely that all interactions fit a predefined model of collab-
oration, where collaborative behavior is still expected from the robot.
Utilizing the "theory of mind" concept, the research aims to infer the
beliefs, policies, intentions, and goals of other agents, enabling the
evaluation of our agent’s impact on them. The study aims to create a
multi-agent system capable of promoting inherent cooperation even
with mixed objectives and adapting to various applications. Using
Reinforcement Learning we develop a modular system that is capa-
ble to adapt to changing team sizes and motives for different agents.
The developed method is trialed in a real-world assistant robot setup,
testing cooperative actions without explicit initiation. Further evalua-
tions occur in simulated environments, i.e. a cooking environment, to
manage the policies of other agents and action recognition issues. We
can measure the success of our method through the increased utility
of either the population or single agents. Additionally, user studies
can be conducted in which we can directly measure the satisfaction
of humans when working alongside our agents and compare those to
other methods.

1 Exploring the Potential for Inherent Cooperation
in Multi-Agent Systems

Robotics research has focused on advancing the functional capabili-
ties of robots but interacting with humans and other agents remains
a hard challenge, especially in non-cooperative environments. In a
shared environment, one or more additional agents may be present
and change the environment drastically. All entities have some inter-
nal hidden state, that underlies their actions. To allow a robot to gen-
erate meaningful behavior in interactive environments, especially for
interactions with humans, it is necessary to formally integrate mod-
els for these hidden states into the robots’ planning methods. Earlier
research focused on cooperative settings when an agent dealt with
unknown teammates. This scenario is also widely known as ad-hoc
teamwork [2]. The scope of this PhD is to research the learning and
interaction of autonomous agents in environments, which are shared
with others. In contrast to most state-of-the-art approaches, we want
to treat others as explicit agents instead of simplified “dynamic ob-
stacles” to enable cooperative and social behaviors. We want to ap-
proach this by inferring the beliefs, policies, intentions, or goals of
the other agents and use this to evaluate the interaction impact of
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our agent’s behaviors. To be able to do this, we need a model of
the other agent, which we can feed with one of the inferred hidden
parameters and then simulate the impact of different actions of the
ego agent. Our approach is based on using the agent’s own behav-
ior/observation/world models and mapping them to the perspective
of the interaction partner following the “theory of mind” concept [3].
Using such models, we can then evaluate the impact of our potential
actions on the other agent’s outcomes by running them on hypotheti-
cal future environments that incorporate the expected results of each
of those actions. A related approach was used in a previous project
[6] to learn the physical human-robot collaboration task of box turn-
ing. The robot predicted the future poses of the human given his own
actions and evaluated the ergonomic quality of it to preferably select
those with a high score. If the agent’s reward depends, directly or
indirectly, on the future rewards of others, this would allow choosing
an interaction strategy that minimizes the potential losses of a partner
while still leading to the achievement of its own target. We want to
extend the agent’s capability to use a theory of mind of others to play
through hypothetical scenarios in his head and use the information
about others to learn faster about previously unseen states. The re-
sulting behavior should lead to a socially aware multi-agent system
with inherent cooperation even in the case of non-overlapping tar-
gets or mixed objectives. As this approach uses decentralized agents,
unlike many of the related works, it also allows one to interact with
novel agents that are not part of the learning, in particular with hu-
mans. We target to develop a method and system design that gener-
alizes for different applications, given the assumption that the agent
learned/knows how to solve certain tasks that might be performed by
a human. We aim at working in situations, where a human performs
various tasks, and the robot should be able to incorporate the out-
come of his own actions with respect to the human task performance.
In such a way, the robot detects opportunities for cooperative actions
without having an explicit task assignment. So far similar applica-
tions were limited to planning execution orders in joint tasks [5]. For
example, in work by [1] a robot was evaluating a joint task state and
either initiated its own action whenever a task-relevant was available
(i.e., not performed by the human already) or only when detecting a
lack of progress at the human side and showed that the former leads
to better objective and subjective results. However, in all those cases
the robot’s target is resolving the task rather than helping the human
resolve a task, which has implications for the generalization of tasks.

2 Contribution outline
First, the agent needs a general learning scheme for solving a given
task, where the agent weighs its own goals with the other agent’s



needs. This is approached using methods of Reinforcement Learning
and specifically maximum entropy methods. We employ state-of-the-
art approaches, e.g. using agent self-play or combining model-based
with model-free aspects. Second, the methods used by our agent must
allow us to model other agents’ policies or Value functions which
should be used as a modulator for the reward function. Third, to be
able to use the learned model for other agents, there needs to be a
means to infer the goals (and possibly other things like capabilities)
of the interaction partners. Recognizing goals or intentions is a ma-
jor research field. We rely on fixed assumptions or, when possible,
existing algorithms. Nevertheless, our method is able to incorporate
uncertainties of the goal estimates. Forth, our system needs a knowl-
edge representation of the domain he is in, including knowledge
about tasks, the environment, and the capabilities of other agents. In
our first work, we assume the same capabilities of all agents, knowl-
edge of possible tasks, and a fully observable environment. A target
application to test the developed method in the real world is an assis-
tant robot in an apartment setup. In a possible realization, the robot
knows for a number of tasks, which objects are used and in which
order or places. When interacting with objects, the system is able to
integrate the potential impact of certain object (dis-)placements on
current or potential human tasks in its decision-making. This should
lead to a robot that performs cooperative actions without the need
for an explicit initiation or even an explicit joint task. An example
could be joint meal preparation, where the socially aware robot un-
derstands the the current state of the human in the task (e.g. put pot
with water on the stove) and performs an action that brings the hu-
man to an even better state (e.g. hand him salt). This is supported
by the development of the overcooked environment and implemen-
tation of various learning algorithms. We also plan to compile a set
of multi-agent environments where we can evaluate the framework
in diverse settings and propose means to measure the performance
of both robots and humans. We will incorporate settings where other
agents follow a common goal (cooperation), or independent goals
(coexist), or might have conflicting goals (game/competition). First
analyses and evaluations are done in simulated environments (e.g.
Overcooked Environment, explicit simulation of robots) in order to
be able to control the policies of the other agents and to abstract from
the issues of sensor noise and action recognition.

3 Existing Contributions

Towards the mentioned goals two major contributions have been
made, that will be published at ECAI 2023 [4]. First, a new cooking
simulation environment is published 1, inspired by the game Over-
cooked as well as previous work using another cooking environment
[7]. The previous work was limited to a single joint goal, model-
ing only strictly cooperative tasks, whereas our environment allows
each agent to have separate recipes, modeling the complex space of
mixed-motive environments. We offer a fixed vector length input rep-
resentation of the state space between different layouts of the envi-
ronment. Our environment supports the latest versions of the gym-
nasium 2 and pettingzoo 3 libraries, enabling easy usage of common
RL frameworks. We support a reward scheme with rewards for sub-
goals and only for complete dishes as well as a configurable time
penalty. By offering this simulation environment future research can
be compared in more complex scenarios.

1 https://github.com/DavidRother/cooking_zoo
2 https://gymnasium.farama.org/
3 https://pettingzoo.farama.org/

Second, we developed a new way to make decisions, when there is
an unknown number of agents in a mixed-motive scenario. Follow-
ing, the novelty of the framework is briefly described. Our frame-
work trains task and interaction policies. Task policies can be trained
alone, whereas interaction policies are trained with another agent by
estimating the impact one has on its expected reward. We compute
the Q-values of the given task and the interactions for each action.
We obtain the weighting of Q-values using the entropy of the task
distribution and the Jensen-Shannon-Distance between the task ac-
tion distribution and the impact action distributions. We were able
to show that the entropy-based blending mechanism is within a cer-
tain error bound of the optimal policy combination w.r.t. the equal-
weighted sum of rewards of the agents and that this bound is minimal
for maximum entropy policies.

Our methods show an improvement in the overall utility of groups
of agents as well as retaining high individual scores for socially ca-
pable agents, indicating that they are able to strike a compromise in
trading off their own reward and others while retaining their goal-
reaching capabilities.

4 Impact and Future Work
In future work, we plan to test our setup directly with human users
and evaluate their sentiment toward new socially capable agents
through questionnaires in a simulator and on a real demonstration
with a robot. Furthermore, we develop an algorithm to approximate
and learn the best combination of policies on the fly to be able to
reflect the wishes and preferences of users. There the agent does not
need to solve a task given beforehand but instead optimizes the group
reward of users as the primary optimization objective.

We believe our research will be crucial to scaling multi-agent ap-
plications to real decision-making with arbitrary tasks with an un-
known number of agents. Currently, the work has limitations in that
learning interaction policies is still hard as the credit of one’s own
action towards others’ success is not trivial to compute and we are
currently limited to cooperation in tasks that our agent has previously
seen and trained on.
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