
Safe and Efficient Path Planning under Uncertainty via
Deep Collision Probability Fields

Felix Herrmann†,1, Sebastian Zach†,1, Jacopo Banfi, Jan Peters1,3,4, Georgia Chalvatzaki‡,1,3 and Davide Tateo‡,1

Dataset generation Training DCPF Planner with DCPF threshold

MC-SamplingConfiguration Heuristic Ensemble CI

µ, σ

Probability field Combined threshold

Fig. 1. Proposed pipeline for learning and planning with Deep Collision Probability Fields (DCPF): (Left) we start by generating a dataset with Monte
Carlo sampling, balanced by selecting the configurations with a heuristic based on Minkowski Sums; (Centre) an ensemble of DCPF networks is trained
on this dataset. The upper bound of the Confidence Interval (CI) of this ensemble is then used to approximate collision probability fields for an obstacle.
(Right) In a scenario with multiple obstacles, we can threshold the combined collision probability estimate to exclude unsafe states when planning.

Abstract— Estimating collision probabilities between robots
and environmental obstacles or other moving agents is cru-
cial to ensure safety during path planning. This is an im-
portant building block of modern planning algorithms in
many application scenarios such as autonomous driving, where
noisy sensors perceive obstacles. While many approaches exist,
they either provide too conservative estimates of the collision
probabilities or are computationally intensive due to their
sampling-based nature. To deal with these issues, we introduce
Deep Collision Probability Fields, a neural-based approach
for computing collision probabilities of arbitrary objects with
arbitrary unimodal uncertainty distributions. Our approach
relegates the computationally intensive estimation of collision
probabilities via sampling at the training step, allowing for fast
neural network inference of the constraints during planning. In
extensive experiments, we show that Deep Collision Probability
Fields can produce reasonably accurate collision probabilities
(up to 10−3) for planning and that our approach can be easily
plugged into standard path planning approaches to plan safe
paths on 2-D maps containing uncertain static and dynamic
obstacles. Additional material, code, and videos are available
at https://sites.google.com/view/ral-dcpf.

I. INTRODUCTION

Safety is one of the most critical issues that needs to
be solved to deploy autonomous agents in the real world.
This is particularly important for autonomous robots and
cars, as the perception of the world is subject to different
sources of uncertainty such as noisy sensor measurements,
approximate target tracking models, sensor malfunctioning,
or adversarial attacks [1]. To deal with uncertainty, path
planning and control approaches could incorporate some
form of probabilistic constraints [2]. Using such constraints,
we can force the Collision Probability (CP) to take very
small values while preventing the planner from generating

† Equal contribution, ‡ Equal supervision
1 Computer Science department, TU Darmstadt
3 Hessian.AI
4 German Research Center for AI (DFKI), Research Department: Systems

AI for Robot Learning

overly conservative paths, leveraging the accurate uncertainty
estimate coming from modern perception systems.

However, even for 2D cases, with robots and obstacles
of simple shapes (cf. Fig. 1), whose pose is described by
a Gaussian distribution, it is impossible to calculate the
CP in closed form. To incorporate CP constraints in path
planning, researchers explored two main directions: approx-
imate methods, such as [3], [4], [5], [6], and sampling-based
methods [7], [8], [1]. Both approaches have some key issues.
To ensure the satisfaction of the CP constraints, approximate
methods are prone to be over-conservative, preventing the
robot from maneuvering in tight gaps. Conversely, sampling-
based methods are often computationally intensive and do
not scale well when reducing the CP constraint. This issue
is critical in autonomous driving since it requires real-time
decisions and, at the same time, very low CP values.

To tackle these issues, we introduce Deep Collision Proba-
bility Fields (DCPF), a neural-based approach for computing
collision probabilities. The key idea of DCPF is to relegate
a time-consuming Monte-Carlo estimate of the CP to the
dataset generation phase while allowing for fast neural net-
work evaluation of the constraints during planning. Our net-
work design is inspired by Signed Distance Function (SDF),
a technique extensively used to quickly compute distances
between objects of arbitrary shapes. We reformulate the SDF
approach in the setting of collision probabilities and, based
on the ideas presented in [9], we introduce a novel inductive
bias that enforces reasonable predictions even where the
training data is sparse or non-existent, by gradually reducing
the CP to zero as the distance between the two objects
increases and forcing the CP to approach one if the distance
is small. DCPF has three significant advantages. First, we
can learn the CP from data under arbitrary probability
densities. Second, we can create smooth and differentiable
distance fields, a particularly desirable property for trajectory
optimization. Finally, using deep neural networks allows for

fast and parallel querying of data points, combining the
strengths and avoiding the weaknesses of the approaches
presented in the literature.

In extensive experiments, we show that Deep Collision
Probability Fields can produce reasonably accurate collision
probabilities (up to 10−3) for planning, and we demonstrate
the effectiveness of our approach in many different simulated
path planning tasks under uncertainty, in terms of computa-
tional time and CP accuracy. We conclude the paper with
validation in the real world in a navigation scenario with
two TIAGo mobile robots.

A. Related Work

Prior works that studied CP constraints in the context
of path planning can be classified along several orthogonal
dimensions. The most important are (1) the method used to
compute the CP, namely, sampling-based or approximated,
(2) the type of uncertainty (Gaussian or more complex), (3)
where uncertainty is assumed to be present (robot, obstacles,
or both), and (4) whether the CP constraint is enforced on
a single trajectory step, or along the full trajectory. Due to
abundant literature on the subject, only a few approaches are
discussed below. We refer to [6] for a more comprehensive
overview.

Lambert et al. [7] assume Gaussian uncertainty on both
the robot’s and obstacles’ pose, and use Monte Carlo sam-
pling to compute step-wise collision probabilities which, in
turn, allow to compute a safe speed profile. More recently,
Schmerling and Pavone [8] considered uncertainty in the
robot’s execution of its nominal trajectory, and use Monte
Carlo with importance sampling to compute the trajectory
CP. Banfi et al. [1] consider complex, potentially multi-
modal obstacles’ uncertainties that might arise in adversarial
contexts, and propose a method based on the Sequential
Ratio Probability Test (SPRT) to compute CPs for partial
trajectories obtained during planning. A common advantage
of these sampling-based methods is that they naturally come
with theoretical guarantees, as it is easy to identify precise
standard errors, confidence intervals, etc., of the computed
CPs. However, a common downside of these methods is
that they are computationally intensive, and might require
thousands of samples to give reasonably precise estimates of
small CPs. While in this paper we leave the investigations
of theoretical guarantees for future work, we remark that our
approach could already be used to identify promising regions
of the planning space on which such guarantees could be
derived via sampling.

Other approaches for CP estimation consider different
types of approximations to reduce the computation time. Bry
and Roy [3] assume the uncertainty on the robot’s pose to be
Gaussian and use the approximation of checking the ellipse
defined by the covariance matrix and a desired chance bound
for enforcing step-wise CP constraints. A similar approach
is used by Kamel et al. in [5]. Hardy and Campbell [2]
consider Gaussian uncertainty on the obstacles’ positions and
use rectangular bounding boxes for both the robot and the
obstacles to obtain a CP upper bound. Thomas et al. [6]

consider Gaussian uncertainty on both the robot’s pose and
obstacles and approximate their shapes as ellipsoids. This
allows us to formulate the collision condition as a distance
between ellipsoids. These methods are very fast, but their
conservative nature might prevent the robot from finding
feasible paths that are both safe and low-cost.

B. Problem Formulation

We consider a mobile robot operating in a n-dimensional
environment specified by a bounded region X ⊂ Rn. We
assume X is composed of a static untraversable region
Xobs ⊂ X —known without uncertainty— and free space
Xfree ⊆ X , with Xfree∩Xobs = ∅. Let O = {ok} be a set of k
independent obstacles. Each obstacle is completely described
by the tuple o = ⟨Co, po(qo),Vo(qo)⟩ where Co ⊂ Rn is
the space of all possible object configurations —such as
position, orientation, and lengths— describing the properties
of the obstacle, po(qo), is a probability distribution of each
obstacle configuration qo ∈ Co, representing the uncertainty
of the perceived obstacle, and Vo(qo) is the set of points
occupied by the obstacle assuming that the true obstacle
configuration is qo. We assume that the robot’s position
is known without uncertainty. Therefore, the robot can be
defined as the tuple r = ⟨Cr,Vr(qr)⟩, where Cr denotes the
configuration space of the robot and Vr(qr) denotes the set
of points occupied by the robot at configuration qr ∈ Cr. In
this paper, we focus on the special case where the robots and
the obstacles are 2D rectangles with sides l1, and l2, with
isotropic Gaussian uncertainty. Under these assumptions, the
obstacles can be described by the following parameter vector
qo = [x, y, ϕ, l1, l2]

T with qo ∼ N (µ,Σ).
The collision probability pcoll(r, o) between robot r and

obstacle o is defined as

pcoll(r, o) =

∫
D
po(qo)dqo, (1)

where D = {qo | qo ∈ Co,Vr(qr) ∩ Vo(qo) ̸= ∅}. Our goal
is to compute an approximated version of pcoll(r, o) with a
neural network, which we denote p̂coll(r, o), and show that
it can be used in several planning settings. To this aim, we
define the following family of planning problems.

Let qr(0) be the initial robot configuration and QG ⊂
Xfree is the set of admissible goals states. Let P be the
space of all possible paths. We assume that every path
π = [a0, . . . , aT] ∈ P is composed by a set of T motion
primitives a(t). Each motion primitive moves the robot from
a configuration qr(t) to a new configuration qr(t + ∆t).
Finally, let r(t) and o(t) denote the tuples describing robot
and obstacle at step t.

We consider planning problems of the following form

argmin
π

c(π) =
∑
at∈π

c(at)

s.t. 1−
∏
i

(1− pcoll(r(t), oi(t))) ≤ pmax ∀t,

qr(t) ∈ Xfree ∀t, qr(T) ∈ QG,

where pmax ∈ [0, 1] is the maximum CP allowed for the
planned trajectory and c(π) is a cost function, like path

length, computed by summing the cost of each motion
primitive composing the path.

Notice that in this formulation we assume that the robot
will be able to perfectly track the computed trajectory, but
we do not make any assumption regarding the number
of obstacles, their nature— static or dynamic —and the
magnitude of their future uncertainty. For dynamic obstacles
tracked with a Kalman filter, this could simply be obtained
by applying the filter prediction step [2].

II. DEEP COLLISION PROBABILITY FIELDS

Our goal is to approximate the collision probability be-
tween a robot and an arbitrary object efficiently by means
of a neural network, hence, we introduce DCPF that ex-
ploit neural approximations to obtain rapidly accurate CP
estimates. We make two modeling assumptions: first, we
consider the coordinate frame defined in the obstacle’s center
of mass, instead of the world coordinate frame. Second, we
assume a parametric form for the obstacle’s probability dis-
tribution, po(qo;ωo) where ωo represents the distribution’s
parameters. For example, assuming Gaussian uncertainty, the
distribution parameters are the covariance matrix entries,
ωo = Σo. Notice that, given that the coordinate system is
obstacle-centric, the obstacle distribution mean for position
and rotation is zero. We assume that the distribution family
is known and that the distribution parameters are estimated
from a perception system. Thanks to these assumptions
we can easily impose an inductive bias in the network’s
structure, forcing the probability of collision to smoothly
decrease to zero, when the distance between the object and
the robot increases, while making it close to one when the
two objects overlap. This inductive bias, inspired by the one
presented in [9], exploits the fact that sufficiently far from
the object, both the shape and the object uncertainty are
irrelevant, as the collision probability will drop to zero. This
bias allows us to efficiently learn the probability field for any
configuration while keeping the probability approximation
smooth.

A. Network structure

Using the above-mentioned assumptions and implement-
ing the distance-based inductive bias, we obtain the following
network structure

p̂coll(qr,ωo) =(1− σ1
θ(qr,ωo))

(
(1− σ2

θ(qr,ωo))fθ(qr,ωo)
)

+σ1
θ(qr,ωo), (2)

with the current robot configuration qr, the parameters of the
obstacle density ωo, and the vector of learnable parameters
of the neural network θ. Furthermore, for i ∈ {1, 2}, we
define two functions as

σi
θ(qr,ωo) = sigmoid

(
siαi

θ(qr,ωo) ·
(
ρiθ(qr,ωo)− ||x||2

))
,

(3)
where ρiθ(qr,ωo) defines a soft threshold for switching
from a local approximated collision probability to the one
predicted by the inductive bias (zero or one), αi

θ(qr,ωo)
regulates the sharpness of the change between the two modes,

-

ϕr

µo

Σo

x1

x2

xc

|| · ||2

atan2

fθ(qr, ωo)

pcoll

5
1
2

5
1
2

5
1
2

1
0
2
4

1
0
2
4

1
0
2
4

1
0
2
4

1
0
2
4

α2
θ

ρ2θ

F

F

F

F σ2
θ

σ1
θ

ρ1θ

α1
θ

Fig. 2. The network structure of DCPF: input data is processed using
Fourier features. The processed features are fed to a deep neural network
with 5 fully connected 1024-dimensional hidden layers. An additional set
of 3 fully connected 512-dimensional hidden layers compute the input for
the shaping functions α and ρ, which influence the mode switching of the
two regularizers σ1

θ and σ2
θ , that implement the euclidean distance bias.

and si is a sign multiplier, with s1 = 1 and s2 = −1. The
first regularizer σ1

θ biases the output towards one when the
query point is close to the obstacle. The second regularizer
σ2
θ moves the value of pcoll closer to 0 when the robot is

close to the obstacle.
The architecture of DCPF, depicted in Fig. 2, is composed

of two neural networks. The larger network consists of 5
fully connected hidden layers, each 1024-dimensional. This
network takes the robot’s position and configuration, and
the obstacle’s configuration and variance, each individually
encoded with random Fourier features to compute fθ. In
addition, the smaller network uses 3 fully connected 512-
dimensional hidden layers to compute αi

θ and ρiθ, the shaping
parameters for the two regularizers. As input of this network,
we exchange the positional information of the robot with
just the angle from the position in polar coordinates, as the
distance to the center ||x||2 is directly used in the regularizer.

We use GeLU activations for all layers except for the
output layers of the small network, which have their specific
activation functions. In particular, we limit the range of α1

θ

and α2
θ to the interval [1, 21] by applying a sigmoid function

and a bias on the output unit. ρ1θ is bounded to the interval
[0, 12] and ρ

(2)
θ is constrained to be positive, as the last layer

is a softplus. The ranges discussed above are selected to
give reasonable output values and ensure the stability of the
training process in the autonomous driving setting. We also
constrain the collision probability output fθ in the interval
[0, 1], using a sigmoid function.

Conservative CP estimates: Approximating a function
with a neural network may lead to approximation errors,
especially in areas far from the original dataset distribution.
To reduce the chances of significant approximation errors,
we learn an ensemble of DCPFs. Using this approach, we
are able not only to provide a more accurate value of the
collision probability but also to obtain a measure of the
model prediction uncertainty. In the rest of our work, on top
of the vanilla approach using a single neural network, we
will exploit the ensemble technique in three different ways.
The first option is to take the mean, where we average the
prediction of multiple ensembles, reducing the error due to
overfitting. Alternatively, we can take the maximum collision
probability value, ensuring that the estimate we select is
always conservative. This is particularly useful in case the

collision probability constraint bound is critical. Finally, we
can exploit the measure of the prediction uncertainty by
computing the 95% confidence interval of our prediction to
build an upper confidence bound around the mean.

B. Data generation

We resort to a sampling-based method to generate an
accurate dataset that does not leverage approximations to
compute CPs. Specifically, since we are not bound by
time constraints at this stage, we resort to Simple Monte
Carlo sampling. Another key observation is that the desired
accuracy of the CP estimate directly depends on the CP itself.
For example, suppose that after having drawn 10k samples,
our current CP estimate is .5; in this case, we would accept
an error of .01, especially if our planning constraint pmax
is .01 or .1. Following from this observation, we define the
following probability intervals: [0, .01), [.01, .1), [.1, 1]. Each
interval is then associated with a different desired accuracy
for a Central Limit Theorem (CLT) based 95% confidence
interval estimate1: ±.01, ±.001, ±10−4. Therefore, we can
stop drawing samples as soon as the current CLT-based 95%
confidence interval falls below the accuracy associated with
the current CP estimate. To speed up this procedure, we only
recompute the CP estimate and associated confidence interval
after having drawn a batch of samples. We use batches of
4·104 samples, and 4·106 maximum total samples, computed
as the worst-case number of samples needed for the smallest
probability interval.

Another issue to consider during the training is to sample
properly the robot configurations to be evaluated. Indeed,
if the dataset size is a concern, sampling uniformly may
require a prohibitively large amount of samples to properly
cover the areas where the estimation of collision probability
is particularly sensible. We propose a sampling method based
on the Minkowski Sum (MS) between the robot and the
obstacle. The MS is the shape obtained by sliding the robot
shape around the obstacle [11]. Our key idea is to compute a
shape that resembles the isolines of the CP landscape, partic-
ularly close to the constraint budget level, and subsequently
sample points from it. In a scenario without uncertainty,
this shape can be trivially obtained by computing the MS
between the robot and the obstacle. To take the uncertainties
Σo = (σx, σy, σϕ, σl1 , σl2) into account we apply various
strategies. For positional and shape variance we construct an
inflated shape sinflated by computing a MS between the shape
of the obstacle so and an ellipse se ∼ N(σx + σl1 , σy +
σl2 | (σx + σl1 , σy + σl2)). The effects of rotational variance
are approximated by constructing the shape srotational, by
computing the union of multiple sinflated for rotated obstacles
so. On top of that, we smooth the obtained shape by growing
and shrinking srotational. The rotations are a discretization of
the interval [−ϕm, ϕm] with ϕm ∼ U(σθ, 3.1 · σθ). In our
experiment, we found that three rotations are sufficient, for
this heuristic to result in sample configurations for a well-
balanced dataset.

1See [10], Eq. (2.20), and the following paragraph for the special case
of estimated CP = 0 or 1.

[0,0.01) [0.01,0.1) [0.1,1] [0,1]

10−7

10−5

10−3

10−1

A
bs

ol
ut

e
E

rr
or

Single (Best) Ensemble Mean Single (Worst)

Fig. 3. Box plot of absolute error evaluated on test dataset

C. Training

We train our model by optimizing the following loss

L(D) =
∑

qr,ωo,p̄∈D
H (p̂coll (qr,ωo) , p̄) + γ · R (qr,ωo) , (4)

where H is the binary cross-entropy between the CP pre-
diction of the network, p̄ the target value computed in the
dataset, and R is a regularization term, weighted by a γ
coefficient, composed by the sum of the following two terms

R (qr,ωo) = |∆ρθ|+
∑

i={1,2}
sigmoid

(
siαi

θ ·∆ρθ/2
)
, (5)

with ∆ρθ = ρ2θ − ρ1θ the difference of the mode switching
parameters. The first term of the regularizer forces the net-
work to switch between the regimes of data-driven collision
probabilities to the inductive bias of zero or one probabilities
as soon as possible, by bringing the thresholds ρiθ closer
together. The second term enforces the thresholds to be in
the right order by minimizing the influence of the bias in
their center. The regularization term is particularly important
in areas with low sample density.

III. EVALUATION

We empirically evaluate DCPF in three sets of experi-
ments. The first experiment evaluates the CP predictions
obtained by DCPF on a dataset inspired by an autonomous
driving scenario, examining the impact of number and size
of network layers. In the second experiment, we use the
best network obtained in the first experiment to tackle two
simulated planning scenarios: one with static obstacles and
one with dynamic obstacles. In the third experiment, we
validate DCPF in the real world with two TIAGo robots
(Fig. 9), where one acts as the agent and the other acts as a
dynamic obstacle.

TABLE I
PERCENTAGE OF PREDICTIONS WITHIN CONFIDENCE INTERVAL

TABLE FOR DIFFERENT NETWORK SIZES

Network [0.0, 10−2) [10−2, 10−1) [10−1, 1] [0.0, 1.0]
3x128 0.666045 0.602677 0.906839 0.723093
3x512 0.407508 0.569119 0.888136 0.594182
4x512 0.757707 0.701193 0.939518 0.798590
4x1024 0.761130 0.667497 0.934856 0.790180
5x1024 0.770757 0.722915 0.946965 0.812132
6x1024 0.779680 0.747732 0.951831 0.823841
7x1024 0.757662 0.698077 0.947665 0.800255

A. DCPF Estimation of CP

We build a dataset of one billion samples, with an 80%-
10%-10% training-validation-test split, ensuring an equal
balancing across the different probability intervals (see Sec-
tion II-B). We assume the robot dimensions to be fixed to a
width of 4.07 and height of 1.74, while the qo is obtained
by drawing from a Gaussian distribution with Σo ∈ [0,

√
2]5.

The dataset generation phase took 80 hours on a computer
equipped with an AMD Ryzen 9 5950X 16-Core and an RTX
3080Ti (12 GB). We use the Adam optimizer for training
with 2.4·10−4 learning rate. We evaluate the network varying
the number of hidden layers in 3 to 7 and the number of hid-
den layers neurons in 128, 512, and 1024, while the network
for the regularized was kept fixed to 3 layers of 512 neurons.
For every setting, we use an ensemble of 10 networks and we
evaluate the average prediction. We consider two metrics, the
Mean Absolute Error (MAE) and the Percentage of Accurate
Predictions (PAP). The MAE measures the absolute average
error of the network prediction over the full dataset. Since
our dataset samples are approximations we also use PAP
to measure the percentage of accurate predictions, where we
consider a prediction as accurate if it is within the confidence
interval of the collision probability estimate.

In Table I, we report the ablation study on the network
size using the PAP as metric. We obtain accurate predictions
for each network size and the network precision improves
increasing the number of neurons. However, increasing the
number of layers does not have a consistent positive impact.
Due to the results of our ablation, we select a network
with 6 hidden layers of 1024 neurons for the subsequent
experiments.

In Figure 3, we evaluate the performance of our selected
network by reporting the boxplots of absolute errors for
different CP buckets. The results clearly show that our
prediction error for the best network is very accurate, falling
most of the time in the desired bucket accuracy. By looking at
the worst prediction of each ensemble, we notice a significant
drop in the accuracy. However, the presence of these outliers
in the prediction is strongly mitigated by using the ensemble
mean, which brings the distribution close to the best network,
indicating that these errors are not very frequent in the
dataset. This proves that, by using an ensemble technique,

TABLE II
INFERENCE COMPUTATION TIME PER SAMPLE

Method Mean Time Std Time Max Time
[ms] [ms] [ms]

SPRT pmax = 0.1 0.558 0.589 19.123
SPRT pmax = 0.01 0.900 0.743 12.392
SPRT pmax = 0.001 9.378 7.227 114.030
z-Test pmax = 0.1 0.918 25.520 1761.018
z-Test pmax = 0.01 3.634 49.207 2409.020
z-Test pmax = 0.001 68.661 598.436 8554.228
Network CPU b = 1 14.770 3.477 122.731
Network GPU b = 1 2.636 13.067 415.570
Network CPU b = 16 1.523 0.299 10.774
Network GPU b = 16 0.181 0.908 28.870
Network CPU b = 1024 0.718 0.007 0.878
Network GPU b = 1024 0.011 0.013 0.412

we provide highly accurate CP computations, ensuring the
safety of the planning algorithm. It is possible to enforce this
safety guarantee with high probability by using a confidence
interval to provide a conservative estimate of the network.

To evaluate the performance in terms of computation time,
we compare our approach with the Sequential Probability
Ratio Test (SPRT) and the Z-Test methods [1] to ensure
the CP is below a set of fixed constraints. We use pmax ∈
{10−1 10−2, 10−3} and a sample function based on the sep-
arating axis theorem. The CP distribution is approximately
reciprocal. For every approach, we test the performance
evaluation on the CPU using a single configuration, while
for DCPF we also evaluate the performance with batch sizes
1, 16, and 1024, in GPU and CPU. The computation time
reported is the computation time per configuration, i.e., the
total computation time divided by the batch size. Both Z-
Test and SPRT sample a maximum of 4 · 106 times for each
constraint respectively. Our results, presented in Table II,
show that SPRT is a competitive method only when using a
high CP collision probability, and together with the Z-Test
provides a highly variant behavior in terms of computation
time. Our approach has much more consistent computation
times. It is worth noting that the mean computation time
can be heavily affected by the outliers, particularly for lower
CP budgets. Our method shines particularly with high batch
sizes, making it suitable when checking collision probabili-
ties of long trajectories or in combination with parallelized
planners, e.g. [12], [13], [14].

B. Planning with DCPF

a) Static Obstacles: For this work we consider two
settings. A a narrow passage scenario with two obstacles
and a random obstacle planning setting.

In the first planning scenario, we consider a square
workspace containing two static obstacles forming a narrow
passage, as shown Fig. 4, with uncertainty described by

Σ1 = diag(0.05, 0.2, 0.03, 0.0001, 0.0001)

Σ2 = diag(0.15, 0.4, 0.13, 0.01, 0.015),

where Σi represents the uncertainty distribution of the i-th
obstacle qo

i =
[
xi, yi, ϕi, li1, l

i
2

]T
. The goal of the robot

is to find a path leading to the goal region to the left of
the workspace while accounting for a given CP constraint
pmax ∈ {10−1, 10−2, 10−3}.

The planner assumes a bicycle model for the robot and
plans using Hybrid-A∗ using a set of 10 motion primitives.
To check the satisfaction of the CP constraint by evaluating
if the sate is below the lower bound of the 95% confidence
interval around the mean of 10 DCPF Networks. We consider
two baselines to compare against our method. The first
is a common Simple Monte Carlo baseline [7], also used
in [8], [1]. Specifically, we compute the CP estimate via
Simple Monte Carlo and use a one sided z-test to check
if it can be concluded, with 95% confidence, that the CP
constraint is not violated. The second baseline is the SPRT
approach introduced in [1]. In both cases, we run experiments
for pmax ∈ {10−1, 10−2, 10−3}, and examine the impact

pmax = 10−1 pmax = 10−2 pmax = 10−3
D

C
PF

SP
R

T
Z

-T
es

t

Fig. 4. Comparison of paths generated using A* using different sampling
algorithms. Blue rectangles represent obstacles sampled from the obstacle
distribution, while the other rectangles represent a configuration of the robot
checked by the planner. The configurations chosen as part of the solution
are marked in dark green. SPRT samples a maximum of 4 × 106 and the
Z-Test uses 105 samples at most.

of using a limited number of samples for testing. In the
first scenario we use a maximum of 4 · 106 samples for
the SPRT baseline and tested different sample maxima of
{102, 103, 104, 105, 106, 4 · 106} for the Z-Test.

From Figure 4 we can see that the trajectory computed
by the planner changes the homotopy class for collision
probabilities smaller than 10−3. Instead, both Z-test and
SPRT change the homotopy class for lower constraints. This
happens as both methods will mark a state as unsafe if
they cannot decide with the given sample budget if the CP
constraint is respected. This behavior is highlighted in Figure
5, showing that our method gets closer to the constraint,
while not violating it, whereas the other methods stay further
away, not allowing the car to pass through the narrow gap.

We further analyze the behavior of our algorithm by
computing the difference p̂coll − p̄, where p̄ is the ground
truth value, computed using the z-test with an unlimited
amount of samples. The results, presented in Figure 6 show
that our approach in general computes accurate collision
probabilities while finding a less conservative path than Z-
test with limited computation. Indeed, the prediction mostly
falls into the confidence interval of the ground truth, meaning

TABLE III
RANDOM OBSTACLES IN MAP EXPERIMENT RESULTS

Metric DCPF z-Test SPRT
n = 1e6 n = 4e6

No solution 23 47 30

Path duration [s] 26.133 26.133 26.101
±6.651 ±6.651 ±6.680

Planning Time[s] 335.220 6764.291 1223.666
±359.047 ±5182.787 ±869.418

pmax = 10−1 pmax = 10−2 pmax = 10−3

D
C

PF
p
m
a
x
−

p
g
t

1 5 10

0

1
·10−1

1 5 10 15

0

1
·10−2

1 5 10 15

0

1
·10−3

SP
R

T
p
m
a
x
−

p
g
t

1 5 10 15

0

1
·10−1

1 5 10 15

0

1
·10−2

1 5 10 15

0

1
·10−3

Z
-t

es
t

p
m
a
x
−

p
g
t

1 5 10

0

1
·10−1

step

1 5 10 15

0

1
·10−2

step

1 5 10 15

0

1
·10−3

step

Precision threshold Constraint margin

Fig. 5. The distance of the CP constraint pmax to the CP pgt, computed
with the CLT-based method outlined in II-B, during the planned trajectories
seen in figure 4. More conservative methods will have a higher minimal
distance. For values below the precision threshold it cannot be verified
whether the constraint is respected, due to the uncertainty of pgt

we cannot distinguish the error from noise in the data
generation process. In the experiments, our approach always
outputs conservative CP estimates thanks to the confidence
interval upper bound, reflected in a positive error in the CP
estimate when the error is outside the ground truth confidence
interval. This result is particularly important to provide the
required level of safety.

We also test our approach in a realistic scenario and
present the results in Table III. In this second experiment,
we consider 10 different cleaned-up occupancy maps of
real-world environments [15], [16], [17] populated with
120 random obstacles per free 100m2. Width and height
are between 0.1m and 3m. The uncertainties are drawn
uniformly between 0.001 and 0.1. The start and goal position
are chosen, so that the distance without considering the map

pmax = 10−1 pmax = 10−2 pmax = 10−3

D
C

PF
pr

ed
ic

tio
n

er
ro

r

1 5 10

0

1

2

·10−3

step

1 5 10 15

0

5

·10−4

step

1 5 10 15

0

1

·10−4

step

Error inside of CI Error outside of CI

Fig. 6. Error of CP estimate during the planned trajectory for DCPF in
figure 4 The green bar represents an estimation error inside the confidence
interval of the ground truth calculation, while the red bar represents an error
outside the confidence interval.

Fig. 7. Path found in between random obstacles in an occupancy map with
hybrid A* using DCPF to ensure satisfaction of the CP constraint pmax

Fig. 8. Example of the paths computed during the dynamic overtake
experiments

is between 35m and 40m. We set the CP constraint pmax

to 10−3 and compare our method against s-Test and SPRT
baselines in 10 random configurations per map. The sample
maxima are set to 106 for the z-Test and 4 × 106 for the
SPRT baseline. Due to the set computing time limitations the
z-Test and SPRT baselines find fewer solutions. The mean
and standard deviation of the path length and planning time
are only computed for the paths, where all of the methods
found a solution. Also here the DCPF approach outperforms
the baselines in all metrics.

b) Dynamic Obstacles: To test the performance with
dynamic obstacles we implemented a time-dependent version
of Hybrid-A∗, and we tested our approach in a dynamic
overtake setting, depicted in Fig 8. The objective of the
task is to reach the end of the lane as soon as possible,
by overtaking a car running in front of the controlled
vehicle, while another car, driving in the opposite lane, is
approaching. The position of the non-controlled car is known
with uncertainty. The uncertainty grows over time as it would
happen if a Kalman filter computes the prediction.

We test this challenging planning task under CP constraint
pmax ∈ {.1, .01, .001}, and we provide the results in Table IV.
In this table, ”overtake before” and ”overtake after” refer

TABLE IV
OVERTAKE EXPERIMENT RESULTS

pmax 10−1 10−2 10−3

Overtake before 29 29 27
Overtake after 21 18 18
No overtake 0 3 5
Violations 0 0 0

MAE (·10−3)
0.1452 0.0187 0.0031

±0.0006 ±0.0001 ±0.0000

Fig. 9. TIAGo robot performing an overtake by planning under uncertainty
and collision probability bounds

to an overtake happening, respectively, before or after the
car riding on the opposite lane reaches the one in front of
the agent. The results show a clear effect on the planned
overtake for different CP constraints. Lowering the budget
forces the car to wait for the other car to pass by before
the overtake is complete more often, as a result of a bigger
safety margin. For the same reasons, the number of episodes
where no overtake happens increases when tightening the CP
constraint. These results show that the proposed task is quite
challenging for the CP evaluation. Despite the difficulty of
the task, our method provides an accurate estimate of CP
for every pmax level and, in the experiment setting, we have
no constraint violations. This accurate estimation can also be
seen by inspecting the values of the mean absolute error and
the mean violation, which are also extremely low.

To improve the relevance of our evaluation, we again
use 10 different occupancy maps populated with obstacles
moving in rectangular paths or back and forth. For the
starting and goal positions, 250 configurations are chosen,
such that a significant portion of the map has to be traversed
and various moving obstacles have to be avoided. We set the
CP constraint pmax to 10−3 and the maximum sample counts
for the z-Test and SPRT baselines to 4×106. Table V shows
the results, which show that while the baselines seem to find
shorter paths, the planning time is significantly shorter.

c) Real robot experiments: We also provide a small
proof-of-concept experiment, where we deploy our approach
on a real robot setup. Here we implement the overtake
experiment using two TIAGo robots, as shown in Figure 9.
The TIAGo robot that is running in front of the controlled
one is changing the width of his arms, enlarging his footprint,
making his bounding box uncertain in every instant. To allow
for an easy deployment and exploit the advantages of the

TABLE V
DYNAMIC OBSTACLES IN MAP EXPERIMENT RESULTS

Metric DCPF z-Test SPRT
n = 4e6 n = 4e6

No solution 151 192 158

Path duration [s] 173.668 146.848 159.187
±124.989 ±81.375 ±102.153

Planning Time[s] 1342.551 6245.175 2721.024
±3181.698 ±6432.084 ±4905.856

parallelization coming from our method, we implement a
simple motion-primitive-based planner. These motion prim-
itives are pre-generated spline-based overtake trajectories,
followed by a simulated bicycle drive controller to estimate
the timestamp at each point. We then evaluate them at
different discretization levels to quickly narrow down options
while ensuring that the chosen trajectory does not violate the
CP constraint. The algorithm runs real-time on the system
and the overtake happens without any collision happening.
In future works, we expect to deploy DCPF planners in more
complex robotics setups with ease.

IV. CONCLUSION

In this paper, we introduced DCPF, a neural approach
to compute efficiently CP. Differently from sampling-based
approaches, DCPF shifts the heavy part of the computation
offline, allowing for a fast, time-consistent, yet very accurate,
evaluation of CP during planning. Our method can easily
incorporate obstacle uncertainty in many different settings,
including dynamic environments and shape uncertainty. Fur-
thermore, DCPF provides a differentiable representation of
the collision probability, allowing for an easy combination
with trajectory combination methods. Additionally, to in-
crease the applicability in safety-critical settings, we present
an ensemble approach to deal with model prediction uncer-
tainty and provide conservative CP estimations.

Our experiments show that DCPF can speed up the CP
evaluation, particularly in the setting of parallelizable plan-
ning algorithms. As the inference time of the neural network
is consistent, we are free from the need to specify a planning
time budget, which may cause the standard method to
wrongly label safe configurations. Our planning experiments
show that DCPF provides a better evaluation of the safety
of the states than the sampling-based methods with a limited
computation budget. Finally, we show that we can deploy
our approach in the real world, by performing a real-world
overtaking task using two Tiago robots, under perception and
dynamic uncertainty. While we focus on the simple setting
of rectangular obstacles (crucial for autonomous driving),
DCPF can be easily extended to support arbitrary shapes,
as it only requires generating a proper dataset. This includes
non-convex shapes that are particularly computationally in-
tensive for sample-based CP estimation methods.

In future works, we will investigate the applicability of our
approach in more challenging settings and we will combine
our method with state-of-the-art parallel planning algorithms:
this would allow us to reduce massively the planning time,
allowing methods of planning under uncertainty to scale to
complex real-world scenarios.

ACKNOWLEDGMENT

This researcher has been supported by the BMBF col-
laborative project KIARA (grant no. 13N16274), and the
the DFG EN Project iROSA (CH 2676/1-1). The authors
acknowledge the use of the high-performance computer
Lichtenberg at the NHR Centers NHR4CES at TU Darm-
stadt. This is funded by the Federal Ministry of Education

and Research, and the state governments participating based
on the resolutions of the GWK for national high-performance
computing at universities.

We sincerely thank Sophie Lüth for her help and techni-
cal assistance with the real-world deployment, and Matteo
Luperto for providing evaluation datasets.

REFERENCES

[1] J. Banfi, Y. Zhang, G. E. Suh, A. C. Myers, and M. Campbell,
“Path Planning Under Malicious Injections and Removals of Perceived
Obstacles: A Probabilistic Programming Approach,” IEEE Robotics
and Automation Letters, vol. 5, no. 4, pp. 6884–6891, Oct. 2020.

[2] J. Hardy and M. Campbell, “Contingency Planning Over Probabilistic
Obstacle Predictions for Autonomous Road Vehicles,” IEEE Transac-
tions on Robotics, vol. 29, no. 4, pp. 913–929, Aug. 2013, conference
Name: IEEE Transactions on Robotics.

[3] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in 2011 IEEE international conference on
robotics and automation. IEEE, 2011, pp. 723–730.

[4] A. Lee, Y. Duan, S. Patil, J. Schulman, Z. McCarthy, J. Van Den Berg,
K. Goldberg, and P. Abbeel, “Sigma hulls for gaussian belief space
planning for imprecise articulated robots amid obstacles,” in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2013, pp. 5660–5667.

[5] M. Kamel, J. Alonso-Mora, R. Siegwart, and J. Nieto, “Robust
collision avoidance for multiple micro aerial vehicles using nonlinear
model predictive control,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 236–243.

[6] A. Thomas, F. Mastrogiovanni, and M. Baglietto, “Exact and bounded
collision probability for motion planning under gaussian uncertainty,”
IEEE Robotics and Automation Letters, vol. 7, no. 1, pp. 167–174,
2021.

[7] A. Lambert, D. Gruyer, G. S. Pierre, and A. N. Ndjeng, “Collision
Probability Assessment for Speed Control,” in 2008 11th International
IEEE Conference on Intelligent Transportation Systems, Oct. 2008, pp.
1043–1048, iSSN: 2153-0017.

[8] E. Schmerling and M. Pavone, “Evaluating Trajectory Collision
Probability through Adaptive Importance Sampling for Safe Motion
Planning,” Jun. 2017, arXiv:1609.05399 [cs].

[9] P. Liu, K. Zhang, D. Tateo, S. Jauhri, J. Peters, and G. Chalvatzaki,
“Regularized deep signed distance fields for reactive motion gen-
eration,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2022, pp. 6673–6680.

[10] A. B. Owen, Monte Carlo theory, methods and examples. unpub-
lished, 2013, sec. 2.4.

[11] D. Claes, D. Hennes, K. Tuyls, and W. Meeussen, “Collision
avoidance under bounded localization uncertainty,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Oct.
2012, pp. 1192–1198, iSSN: 2153-0866. [Online]. Available:
https://ieeexplore.ieee.org/document/6386125

[12] A. Lambert, A. Fishman, D. Fox, B. Boots, and F. Ramos, “Stein vari-
ational model predictive control,” arXiv preprint arXiv:2011.07641,
2020.

[13] A. T. Le, G. Chalvatzaki, A. Biess, and J. Peters, “Accelerating motion
planning via optimal transport,” in Advances in Neural Information
Processing Systems (NeurIPS), 2023.

[14] J. Carvalho, A. T. Le, M. Baierl, D. Koert, and J. Peters, “Motion
planning diffusion: Learning and planning of robot motions with
diffusion models,” in 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2023, pp. 1916–1923.

[15] E. Whiting, J. Battat, and S. Teller, “Topology of urban environ-
ments,” in Computer-Aided Architectural Design Futures (CAAD-
Futures) 2007: Proceedings of the 12th International CAADFutures
Conference. Springer, 2007, pp. 114–128.

[16] A. Aydemir, P. Jensfelt, and J. Folkesson, “What can we learn from
38,000 rooms? reasoning about unexplored space in indoor environ-
ments,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2012, pp. 4675–4682.

[17] F. Amigoni, V. Castelli, and M. Luperto, “Improving repeatability of
experiments by automatic evaluation of slam algorithms,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 7237–7243.

APPENDIX

A. Max samples computation
In Section II-B we set our worst-case maximum total samples to 4 · 106. We compute this number as the infimum of the

Gaussian test
n ≥ 1.962 · p · (1− p)

ϵ2

with

ϵ =

0.0001 for 0 ≥ p > 0.01

0.001 for 0.01 ≥ p > 0.1

0.01 for 0.1 ≥ p ≥ 1

where ϵ refers to the accuracy associated with the probability bin. Using these values, the highest lower bound that needs
to be fulfilled is at n ≥ 3.803.183 for the accuracy ϵ of 0.0001.

B. Ablation studies

This section presents the results of the ablation studies performed in the network. Specifically, we ablate the dataset size
showing the training and validation loss in Fig. 10 and the MAE in Fig. 12. We also ablate the network size, showing in
Fig. 11 the training and validation loss and the respective MAE in Fig. 13. results show that our method is sufficiently
reliable even with smaller dataset sizes and that it is not too dependent on the network size, provided sufficient network
capacity.

Training Validation

0 5 10 15
7.9

8

8.1

8.2

8.3
·10−2

Epoch

L
os

s

0 5 10 15
1

1.02

1.04

1.06

·10−2

Epoch

10 % 30 % 70 % 100 %

Fig. 10. Loss for different dataset sizes

Training Validation

0 5 10 15 20
7.9

7.95

8

8.05

·10−2

Epoch

L
os

s

0 5 10 15 20

1.01

1.02

·10−2

Epoch

3x128 3x512 4x512 4x102 5x102 6x102 7x1024

Fig. 11. Loss for different network sizes

[0 - 0.01[[0.01 - 0.1[[0.1 - 1]

0 5 10 15

10−3

Tr
ai

ni
ng

M
A

E

0 5 10 15

10−2.5

10−2

0 5 10 15

10−2

10−1.5

0 5 10 15

10−4

10−3

Epoch

V
al

id
at

io
n

M
A

E

0 5 10 15

10−3

10−2.5

Epoch
0 5 10 15

10−2.4

10−2.2

10−2

Epoch

10 % 30 % 70 % 100 %

Fig. 12. MAE on train and validation dataset for different dataset sizes

[0 - 0.01[[0.01 - 0.1[[0.1 - 1]

0 10 20
10−4

10−3

10−2

10−1

Tr
ai

ni
ng

M
A

E

0 10 20

10−2

10−1

0 10 20

10−2

10−1

0 10 20

10−4

10−3

Step

V
al

id
at

io
n

M
A

E

0 10 20

10−3

10−2.8

10−2.6

Step
0 10 20

10−2.4

10−2.2

Step

512 x 3 512 x 4 1024 x 4 1024 x 5 1024 x 6 1024 x 7

Fig. 13. MAE on train and validation dataset for different network sizes

C. Additional details from experiments

In this section, we report additional details from the experimental section presented in the main paper. Figure 14 presents
the runtime experiments as a boxplot. Tables VI, VII and VIII instead report more detailed results for the random obstacle
experiment for different levels of pmax with 50 obstacles in an otherwise empty square map of 50m by 50m. Notice that
the computational advantages of SPRT vanishes for very low CP budgets.

10−5 10−4 10−3 10−2 10−1 100 101

SP
R

T
z

-T
es

t
D

C
PF

Time [s]
SPRT pmax = .1 SPRT pmax = .01 SPRT pmax = .001 z-Test pmax = .1 z-Test pmax = .01 z-Test pmax = .001

Network CPU b=1 Network GPU b=1 Network CPU b=16 Network GPU b=16 Network CPU b=1024 Network GPU b=1024

Fig. 14. Box plot of inference computation time (per sample), where b is the number of points evaluated in parallel and pmax is the probability constraint.
If not otherwise specified b=1. The distribution of CP is approximately reciprocal. In the plot, outliers are represented by points and the mean of the
distribution is represented by an x mark.

TABLE VI
RESULTS FROM THE RANDOM OBSTACLE EXPERIMENTS FOR pMAX = 0.1

DCPF z-Test
n = 1000

z-Test
n = 10000

No solution found 24 24 24
Mean path length [m] 32.6711 32.5658 32.6579
Std path length [m] 4.2901 3.9714 4.1724
Mean time [s] 106.2414 20.4188 131.9221

z-Test
n = 100000

z-Test
n = 1000000

SPRT
n = 4000000

No solution found 25 25 24
Mean path length [m] 32.4400 32.4400 32.8289
Std path length [m] 3.8201 3.8201 5.0923
Mean time [s] 1277.1769 4890.3260 20.0671

TABLE VII
RESULTS FROM THE RANDOM OBSTACLE EXPERIMENTS FOR pMAX = 0.01

DCPF z-Test
n = 1000

z-Test
n = 10000

No solution found 24 24 24
Mean path length [m] 33.1316 33.0133 33.1200
Std path length [m] 4.8050 4.9652 5.2712
Mean time [s] 121.3385 35.7087 110.7654

z-Test
n = 100000

z-Test
n = 1000000

SPRT
n = 4000000

No solution found 25 25 19
Mean path length [m] 33.1333 33.1333 33.9753
Std path length [m] 5.2823 5.2823 6.0878
Mean time [s] 907.5650 3499.4843 39.4890

TABLE VIII
RESULTS FROM THE RANDOM OBSTACLE EXPERIMENTS FOR pMAX = 0.001

DCPF z-Test
n = 1000

z-Test
n = 10000

No solution found 21 23 23
Mean path length [m] 33.7089 33.6234 33.4286
Std path length [m] 5.3205 5.3623 5.4877
Mean time [s] 140.6172 284.8185 327.5759

z-Test
n = 100000

z-Test
n = 1000000

SPRT
n = 4000000

No solution found 21 21 22
Mean path length [m] 33.7342 33.7342 33.2692
Std path length [m] 5.9058 5.9058 4.4338
Mean time [s] 1090.1761 3434.1721 269.8011

