
Computer Science
Department
Intelligent Autonomous
Systems

Isaac Sim Integration in the
MushroomRL Library for
Locomotion Learning
Isaac Sim Integration in die MushroomRL Bibliothek für Fortbewegungslernen
Bachelor thesis in the department of Computer Science by Bjarne Freund
Date of submission: March 19, 2025

1. Review: Davide Tateo
2. Review: Jan Peters
Darmstadt

Vorlage „Erklärung zur Abschlussarbeit“ Dezernat II – Studium und Lehre, Hochschulrecht Stand 28.04.2023

Erklärung zur Abschlussarbeit gemäß § 22 Abs. 7 APB TU Darmstadt

Hiermit erkläre ich, Bjarne Freund, dass ich die vorliegende Arbeit gemäß § 22 Abs. 7 APB TU
Darmstadt selbstständig, ohne Hilfe Dritter und nur mit den angegebenen Quellen und Hilfsmitteln
angefertigt habe. Ich habe mit Ausnahme der zitierten Literatur und anderer in der Arbeit genannter
Quellen keine fremden Hilfsmittel benutzt. Die von mir bei der Anfertigung dieser wissenschaftlichen
Arbeit wörtlich oder inhaltlich benutzte Literatur und alle anderen Quellen habe ich im Text deutlich
gekennzeichnet und gesondert aufgeführt. Dies gilt auch für Quellen oder Hilfsmittel aus dem
Internet.

Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§38 Abs.2 APB) ein Täuschungsversuch vorliegt, der dazu
führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht wird.
Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische Fassung dem
vorgestellten Modell und den vorgelegten Plänen.

English translation for information purposes only:

Thesis Statement pursuant to § 22 paragraph 7 of APB TU Darmstadt

I herewith formally declare that I, Bjarne Freund, have written the submitted thesis independently
pursuant to § 22 paragraph 7 of APB TU Darmstadt without any outside support and using only the
quoted literature and other sources. I did not use any outside support except for the quoted
literature and other sources mentioned in the paper. I have clearly marked and separately listed in
the text the literature used literally or in terms of content and all other sources I used for the
preparation of this academic work. This also applies to sources or aids from the Internet.

This thesis has not been handed in or published before in the same or similar form.

I am aware, that in case of an attempt at deception based on plagiarism (§38 Abs. 2 APB), the thesis
would be graded with 5,0 and counted as one failed examination attempt. The thesis may only be
repeated once.

For a thesis of the Department of Architecture, the submitted electronic version corresponds to the
presented model and the submitted architectural plans.

Datum / Date: Unterschrift/Signature:

________________________ ______________________________________

Abstract

Deep Reinforcement Learning (DRL) has significantly advanced robotics, particularly in
autonomous locomotion. However, traditional CPU-based environments limit scalability,
leading to long training times. The introduction of massively parallelized simulations has
transformed the field, enabling efficient training on GPU-accelerated platforms. However,
MushroomRL, a RL framework, lacks support for parallelized environments, restricting
its use in large-scale research. To address this, we developed an interface for Nvidia
Isaac Sim within MushroomRL, allowing seamless integration of massively parallelized
robotic simulations. This interface abstracts simulator complexities, enabling researchers
to focus on reward design and algorithm development while optimizing performance
for efficient parallel execution. To validate our approach, we implemented locomotion
environments for the quadrupedal robots Unitree A1, Honey Badger, and Silver Badger.
These environments replicate existing works. By extending MushroomRL with parallelized
environment support, we provide an accessible framework for large-scale reinforcement
learning.

3

Contents

1 Introduction 5

2 State of the Art 7

3 Methodology 9
3.1 MushroomRLs Vectorized Core Logic . 9
3.2 General Isaac Sim Environment . 12

3.2.1 Initialization . 13
3.2.2 Environment Step . 13
3.2.3 Environment Reset . 14
3.2.4 Collision Detection . 15
3.2.5 Optimizations . 15

3.3 Unitree A1 Environment . 16
3.4 Honey and Silver Badger Environment . 18

4 Experiments 20
4.1 Results for Unitree A1 . 20
4.2 Results for Honey Badger . 23
4.3 Results for Silver Badger . 25

5 Conclusion 27

4

1 Introduction

Deep Reinforcement Learning (DLR) has become a powerful tool for modern robotics
research, in particular in the development of autonomous agents capable of sophisticated
locomotion. By leveraging deep neural networks, Reinforcement Learning (RL) techniques
enable robots to develop policies that allow them to navigate complex terrains, adapt
to dynamic environments, and respond robustly to external perturbations. Traditionally,
reinforcement learning relied on CPU-based environments that constrained the scalability
due to the sequential execution of the environment interaction. This resulted into longer
and longer training times for complex tasks and limited the progress in the field. The intro-
duction of massively parallelized reinforcement learning environments has fundamentally
transformed this landscape, enabling training at an unprecedented scale and efficiency.
By utilizing GPUs and TPUs, researcher can simulate thousands of parallel agents simulta-
neously, which has lead to significant breakthroughs, in particular in locomotions. Studies
such as those by Rudin et al. have demonstrated that by running thousands of concurrent
environment instances on a GPU, quadrupedal locomotion policies can be learned in a
fraction of the time required by conventional approaches. This drastic reduction in training
time has driven a shift toward parallel RL, making massively parallelized environments the
standard in modern locomotion research. As demonstrated by numerous examples that
have achieved remarkable results in locomotion while using parallelized environments
such as running on deformable objects [6], mastering an obstacle course [3] and leaping
over large gaps [32].

MushroomRL [7] is a Python library designed for conducting Reinforcement Learning
(RL) experiments. Its main focus is to provide a modular framework where all essential
RL components are represented. This approach makes it easy to understand and to
extend it. The library includes a variety of already implemented classical and deep RL
algorithms, along with several environments such as MuJoCo or gymnasium. The modular
structure, with common interfaces, enables users to seamlessly experiment with different
algorithms or integrate custom environments. However, its lack of support for parallelized

5

environments limits its usefulness in cutting-edge research, particularly in locomotion
learning, which heavily relies on massive parallelization.

To address this limitation, we implemented an interface for Nvidia Isaac Sim into Mush-
roomRL. Nvidia Isaac Sim is a robotic simulation platform built on Nvidia Omniverse. It
uses the GPU-based PhysX engine, and offers high-fidelity physics, photo-realistic render-
ing and sensor simulation in virtual worlds. And most important, Isaac Sim is capable
of running simulations with thousands of robots in parallel. The implemented interface
provides an easy way for users to develop environments that utilize Isaac Sim and thereby
leverage massively parallelization. The interface is designed to streamline the develop-
ment process and minimize the need for direct interaction with the underlying simulator.
This allows developers to concentrate on the design of the reward function or other RL
specific parts when implementing a new environment. Another key focus in developing
the interface was maximizing its performance by fully leveraging Isaac Sim’s capabilities
for speed and efficiency.

Additionally, we implemented three specialized environments that utilize the new Isaac
Sim integration and enable locomotion learning for the quadrupeds Unitree A1, Honey
Badger and Silver Badger. The environment that we implemented for the Unitree A1 robot
closely resembles the one used by Rudin et al. [28], most importantly the used reward
function and domain randomization are identical. For the Honey Badger environment,
we adapt the Honey Badger environment used by Bohlinger et al. [2]. The environment
we implemented for Honey Badger is also used for Silver Badger, with the only difference
being adaptions for the one additional joint of Silver Badger.

To conclude, the thesis makes several contributions. First, we implemented a parallelized
version of MushroomRLs core logic to support large-scale reinforcement learning experi-
ments. Second, we developed a generic interface a for integrating Isaac Sim environments
intoMushroomRL, making it easier to design and implement RL tasks with GPU-accelerated
simulation. Hereby, we investigate the factors that influence the simulation efficiency,
identifying bottlenecks and optimizations that can enhance the learning process. Third,
we implemented three environments for three different robots, that demonstrate the
capabilities of the implemented Isaac Sim interface. Finally, using the three environments,
we perform an analysis of the learning performance and the impact of the number of
parallel environments.

6

2 State of the Art

Nicolas Heess et al. [13] demonstrated that deep reinforcement learning can enable the
emergence of complex locomotion behaviors, even when using simple reward functions as
long as the training takes place in rich environments so very diverse environments with
many different challenges and obstacles are used. For this they used CPU parallelization
where multiple instances of the simulation were running in parallel. However, this appli-
cation of parallelization in the environment doesn’t focus on improving learning speed
and instead was used for averaging the gradient between the instances.

Daniel Freeman et al. [9] have achieved great results by utilizing TPUs for parallelizing
the environment. To accomplish this, they developed a new differentiable physics engine
that is optimized to run on TPUs. With this new physics engine, they successfully trained
policies for multiple classic locomotion tasks such as Cheetah or Ant in under 10 minutes
using optimized versions of Proximal Policy Optimization (PPO)[29] and Soft Actor-Critic
(SAC) [11].

Further advancing the field of high-speed RL training, Rudin et al. [28] demonstrated
the effectiveness of massively parallelized training environments combined with highly
optimized RL algorithms. Their study demonstrated that utilizing a massively parallelized
training framework enables extremely fast policy learning that is multiple times faster
than previous works. Specifically, they trained a walking policy for the quadrupedal robot
ANYmal in under 4 minutes on flat terrain and in less than 20 minutes on rough terrain,
all on a single GPU. To achieve these results, they used the simulation tool NVIDIA Isaac
Gym and a customized version of PPO.

The success of parallelized environments has led to their application in solving a wide
variety of tasks. In high-agility locomotion, substantial progress has been made. For
example, [6] utilizes parallelized environments to enhance training effectiveness for
locomotion tasks on deformable terrains, such as running on soft surfaces. Additionally,
[22] showcased highly agile behaviors such as sprinting and high-speed turning, while
[15] focused on sprinting on slippery surfaces. Similarly, [3, 32] demonstrated that

7

quadrupedal robots could develop complex locomotion skills, including parkour-style
movements and obstacle course navigation, through parallelized learning frameworks.

Parallelized environments have also been employed in perception-based tasks. Agarwal
et al. [1] presented a robust locomotion controller that utilizes vision to traverse stairs
and other challenging terrains. Furthermore, Gangapurwala et al. [10] developed a
controller that prioritizes stability through elevation mapping. In navigation tasks, end-to-
end policies have been trained to reach targets within a given time while autonomously
selecting optimal paths [27].

Parallelized environments also contribute to robust generalization. [23] showed that a
single policy could encode diverse locomotion strategies, enhancing adaptability across
various environments. Parallelization has further enabled advancements in generalizing
locomotion across multiple robot morphologies. [30, 8, 19] successfully developed loco-
motion controllers capable of achieving robust locomotion across different quadrupedal
robots.

Moreover, parallelized environments have helped in developing policies that are in par-
ticularly successful in the real-world , as well as techniques that ease the deployment of
RL-trained policies in real-world scenarios. Kumar et al. [17] introduced an approach
with excellent adaptability to unforeseen real-world conditions, such as varying terrains
and payloads. [4] shows that good real word performance with minimal dynamics ran-
domization is possible by utilizing random forces to emulate dynamics randomization.

Sparse reward problems, which are common in locomotion tasks, have also been addressed
through hybrid architectures. [14] proposed a framework that integrates trajectory
optimization with inverse dynamics and RL to tackle sparse reward settings effectively.

Parallelized environments are also valuable when constrains are addressed during training.
[18] successfully incorporated physical constraints into the learning process, while [16]
showed that leveraging physical constraints reduces the need for extensive reward engi-
neering while maintaining high locomotion performance. Additionally, in safe locomotion,
parallelized environments have facilitated progress. [12] developed methods for safe,
high-speed locomotion that avoid collisions, ensuring reliable real-world deployment while
utilizing a massively parallelized simulator.

Beyond quadrupedal locomotion, parallelized environments have also been applied to
humanoid locomotion. Radosavovic et al. [26] developed RL-based approach for humanoid
robot locomotion. Cheng et al.[5] demonstrated expressive whole-body movements
in humanoid robots, and Luo et al. [20] presented human-like motion capabilities in
humanoid systems.

8

3 Methodology

3.1 MushroomRLs Vectorized Core Logic

The core components of Mushroom RL are the interface Environment and Agent and
the class Core that ties them together and controls the learning loop. The environment
interface is similar to the environment interface from gymnasium, most importantly,
it provides the methods step and reset. The method step is intended to update the
environment with a given action and returns the resulting observation, the resulting
reward, a flag if the state is absorbing and additional information. The reset function
resets the environment to its initial state and returns the resulting observation and
additional information that may exist. The agent implements the learning algorithm and
contains policy.

The environment and core each have a vectorized variant. The vectorized environment is
a wrapper that allows multiple instances of an environment to run in parallel, allowing
a RL agent to interact with several environments simultaneously. Additionally to the
environment interface, it provides the methods step_all and reset_all which allow for
a specification of which environments of the vectorized environment should be used.
The vectorized core is a variant of the normal core class that can deal with vectorized
environments.

The vectorized core provides two fundamental functionalities: learning and evaluation.
For learning, the vectorized core collects data from the vectorized environment and fits the
policy using the passed algorithm. For evaluation, it collects data from the environment
and returns the dataset without modifying the policy. Both the learning and evaluation
run for specified number of steps or episodes. Additionally, for learning, the user can
also specify the frequency (number of steps or episodes) at which the policy should be
updated.

9

A learning run begins with the creation of an empty Dataset with a fixed size, designed
to store the data needed for one fit. The dataset stores for each step the state at the
beginning of the step, the action taken, the resulting state and two flags that indicate
whether the resulting state is absorbing and whether the environment must be reset
before the next step. However, in vectorized environments, the dataset can not store any
additional information of each step.

A learning run consists of two alternating phases that are repeated until the specified
total number of steps or episodes is reached. The first phase is the data collection phase.
The core first checks whether an environment needs to be reset, which occurs either
when it was flagged as absorbing by the vectorized environment or when the episode
horizon is reached. If resets are required, the core calls the reset function of the vectorized
environment with a specification of the affected sub environments and stores the resulting
observation and additional info in the dataset. Next, the vectorized environment step
function is called, and the resulting data is stored in the dataset. The data collection
repeats until the specified number of episodes or steps required for the next policy update
are reached. Once the condition for the next fit is met, the dataset will be passed to the
agent for the fit. After the update, all data used for the training is removed from the
dataset and the core resumes the data collection for the next fit. This process continues
until the total number of steps or episode specified for the learning run is reached.

During data collection, a mask generation algorithm regulates the number of data points
generated per step, adapting to whether the fit frequency and the learning run length
are defined by steps or episodes. If it is determined by steps, the generated mask will
be always active for all parallel environments. Data points that produced, without being
needed for the next fit, will be passed to the next data collection phase. This procedure
allows for maximum efficiency without losing any data points. If the fit frequency is
determined by episodes, the mask remains active for all parallel environments when the
number of remaining episodes for the next fit exceeds the number of parallel environments,
otherwise, it matches the number of remaining episodes. Additionally, the masking logic
ensures that the total training run length is not exceeded, preventing the number of steps
from surpassing the chosen steps per run or the number of episodes from exceeding the
chosen episodes per run. This approach offers full flexibility in configuring fit frequency
and epoch length, even allowing combinations of fixed steps per fit with fixed episodes
per epoch, or vice versa. This flexibility ensures that the training process can be tailored
precisely to the desired objectives, like optimizing for fast convergence or aligning for
certain hardware constrains.

However, the preexisting version did not function as intended due to two major issues.

10

First, the dataset length was not updated correctly after each fit, as it was always reset to
zero, leading to unnecessary data generation and an unpredictable dataset size. This issue
was resolved during the thesis by ensuring that the dataset length was correctly updated
after each fit. The preexisting implementation miscalculated the necessary dataset shape,
which hindered the effectiveness of the masking feature. To understand this, it is important
to note that the dataset is two-dimensional: The first dimension represents the current
data collection step and the second dimension corresponds to the number of parallel
environments. In the faulty implementation, the dataset shape was defined as follows,
where Nenvs represents the number of parallel environments, Nsteps denotes the number
of steps and Nepisodes denotes the number of episodes:

(Nsteps, Nenvs)

or:
(Nepisodes · horizon, Nenvs)

However, this formulation was incorrect because it allocated Nenvs times more space than
necessary. The correct formulation is(⌈

Nsteps

Nenvs

⌉
+ 1, Nenvs

)
or, alternatively: (⌈

Nepisodes

Nenvs

⌉
· horizon,min(Nenvs, Nepisodes)

)
The additional +1 accounts for data points carried over from the previous data collection
phase.

Beyond correcting the dataset allocation, this adjustment introduces an additional op-
timization. When evaluation runs are defined by the number of episodes, or when the
fit frequency is based on an episode count and the used number of episodes is smaller
than the number of parallel environments, memory usage is significantly reduced. Imple-
menting this optimization required minor modifications to how data is appended to the
dataset. Together, these changes (correct shape calculation and special variant if number
of episodes is less than number of environments) lead to memory savings by several orders
of magnitude.

11

3.2 General Isaac Sim Environment

The Isaac Sim environment class follows a similar design approach to the pre-existing Mu-
JoCo environment. However, it differs among other things in its vectorized implementation
and its reliance on Isaac Sim as the simulator.

At a minimum, the environment must be provided with several essential configurations.
These include a USD file, a file format used by Isaac Sim to store object descriptions and
geometries, in this case it should specify the robot and its components, a definition of
which joints are to be controlled, a specification of which properties are to be included in
the observation, and the number of parallel environments, i.e. the count of robot instances
that should be simulated concurrently.

The observation specification is a structured list where each entry defines a property of
the robot that should be part of the observation. Each property is described by specifying
the path to the corresponding object in the USD file (e.g. a robot’s foot), the property
identifier (e.g. global position), and, if necessary, sub-entities required to fully describe
the property. Sub-entities are necessary for certain cases. For example, when reading
joint positions, the main object is the robot itself, and the sub-entities are the specific
joints whose positions must be observed. During both environment steps and resets,
this observation specification specifies the construction of the observation. If there are
specific values that cannot be retrieved directly from the simulator but still need to be
part of the observation, users can define custom observations. These custom observations
require a unique name, the number of values, and the minimum and maximum possible
values. Space for these custom observations is reserved within the observation during the
observation construction, allowing users to easily insert their custom data.

The provided write_data and read_data methods allow users to read and write prop-
erties defined within the observation specification directly to and from the simulation.
Furthermore, if there is a need to access properties that should not be part of the obser-
vation, an additional data specification, that is structured identically to the observation
specification, can be passed to the Isaac Sim environment. All properties defined in this
specification can be used for the write_data and read_data methods, but they are
ignored during the observation creation.

12

3.2.1 Initialization

During the initialization, Isaac Sim is launched, and the simulation scene is created.
Initially, the robot described in the provided USD file is loaded into the simulation scene.
This robot is then cloned according to the user-specified number of parallel environ-
ments. All robot instances are arranged systematically in a grid pattern, maintaining a
fixed, user-defined distance between individual robots. Users can additionally specify
whether collision detection between separate robot environments should be activated or
deactivated. Furthermore, a ground plane is automatically added to the simulation scene.

Subsequently, for each unique object described by a path in the observation specification
and the additional data specification, a RigidPrim is registered in the simulation scene.
A RigidPrim is a wrapper provided by Isaac Sim, capable of grouping multiple rigid
bodies into one manageable entity, thereby facilitating efficient data reading and writing
operations [25]. In the context of the Isaac Sim environment, one RigidPrim contains the
same component of the robot for every cloned robot. For example, a single RigidPrim
might represent the front right foot across all robot instances. After the registration
process is complete, these RigidPrims enable efficient interaction with all properties
defined within the observation and additional data specifications.

After completing the robot instantiation process, an object containing all essential environ-
mental information is created. This object is required by algorithms implemented within
Mushroom-RL. It includes the horizon length, the discount factor (γ), the step frequency,
and the minimum and maximum allowable values for each element of both the observation
and action spaces. For each observation and action element, the corresponding minimum
and maximum values are obtained directly from the USD file if available (e.g., predefined
joint range limits). If such values are not specified in the USD file, default bounds of
negative and positive infinity are assigned. For user-defined custom observation elements,
the minimum and maximum values explicitly provided by the user are utilized.

3.2.2 Environment Step

The step function takes as input the action for each parallel environment and a mask
indicating which parallel environments are actively being simulated. The process begins
with an optional action preprocessing phase, where users can scale or limit the actions to
their specific requirements. Following preprocessing, the function executes a sequence of
intermediate steps. During each step, actions are applied to the controlled joints, and a
simulation step advances the physical simulation. Actions can be recomputed during each

13

intermediate step, enabling implementation of control algorithms such as PD-controllers.
Before and after each simulation step, overwritable functions are provided, allowing for
custom operations like state adjustments, logging, or monitoring.

Following these intermediate steps, the system automatically constructs the observation
according to the observation specification. It reads the properties from each robot using
the RigidPrims registered during the initialization. The resulting observation may include
dedicated space for custom observation elements, that the user registered. An overwritable
function allows users to populate this dedicated space in the observation. The system then
performs two key evaluations, each requiring custom user implementation: it determines
for all parallel environments whether the current state is absorbing (terminal) through
one user-implemented function, and calculates the reward for all parallel environments
through another user-implemented function. In addition, the system generates additional
step information if the user has implemented the corresponding overwritable function.
Before finalizing the process, a final overwritable function allows users to modify the
observation if needed. The step function then returns four elements: the observation, the
calculated reward, any additional step information, and a flag indicating which parallel
environments are currently active and have reached absorbing states.

3.2.3 Environment Reset

The reset function accepts two parameters: a mask indicating which environments should
be reset and an optional target state. By default, robots in the masked parallel environ-
ments will reset to their default states as defined in the USD file. However, users can
customize this behavior through a mandatory user-implemented function called setup,
in which the user can implement custom reset behaviors using the write_data method
to manipulate robot properties directly. For example, a common application of the setup
function is implementing randomized initial joint positions, which enhances training
robustness by exposing the learning algorithm to varied starting conditions.

If the environment needs to support algorithms that reset to specific states, the setup
function must be capable of resetting the robot to the given state. After this reset process,
the observation construction process follows the same procedure as in the step function:
reading robot properties, constructing the observation and populating any custom obser-
vation components. As with the step function, additional information may be generated if
the user has implemented the associated function. The reset function then returns both
the constructed observation and any additional information. Notably, observations are

14

generated for all parallel environments, regardless of whether a specific parallel environ-
ment was reset or not. This comprehensive observation generation occurs because the
VectorCore filters which observations are relevant to the algorithm.

3.2.4 Collision Detection

The environment allows the collision detection between user defined collision groups. Each
collision group is specified by a name and a list of paths to objects that should be included.
The specification for all collision groups must be passed as a parameter during environment
initialization. During the environment’s initialization phase, before the robot is cloned, the
system checks whether the objects specified in the collision groups possess the necessary
APIs so that Isaac Sim can detect collisions. If required APIs are missing from any object,
they are automatically applied. This verification is crucial prior to cloning, as failure
to properly configure physics components would prevent physics cloning, resulting in
significant performance degradation. After the robots are cloned, the environment registers
a RigidContactView for each collision group. RigidContactView is a wrapper
provided by Isaac Sim that combines multiple rigid bodies and allows efficient contact
tracking [24]. The environment offers two collision detection approaches: the first method,
get_collision_force, detects collisions between two specified collision groups; the
second method, get_net_collision_forces, provides unfiltered contact forces for
each object in a collision group, functioning similarly to a pressure sensor. Building upon
get_collision_force, the environment also provides two helper functions: One that
checks whether a collision occurred between two collision groups and another that counts
the number of collisions between two collision groups.

3.2.5 Optimizations

The primary factor influencing the simulation speed of Isaac Sim is how the collision
detection is implemented in the interface. There are three main methods for detecting
collisions in Isaac Sim: using RigidContactViews, using RigidPrims, and directly accessing
the ContactReportAPI. Among these, RigidContactViews is the most efficient. Although
RigidPrim internally utilizes a RigidContactView, it introduces significant overhead, making
it slower. Directly accessing the ContactReportAPI is the least efficient approach, as it
can only detect one collision at a time, leading to a sequential and consequently slow
detection process.

15

However, the way RigidContactViews are used also plays a crucial role in performance.
As previously mentioned, the PhysxContactReportAPI, which is required for RigidCon-
tactViews to function, should be applied to every object in a collision group before cloning.
Failing to do so results in each robot being treated as a separate object, significantly
reducing performance. Additionally, the prepare_contact_sensors option should be
disabled when creating RigidContactViews, as enabling it drastically increases startup time.
The number of registered RigidContactViews is another important consideration. Each
registered RigidContactView slows down the simulation, regardless of how many objects it
includes. For example, using two RigidContactViews, one containing all feet of all robots
and another containing all calves, results in slower performance compared to using a
single RigidContactView that includes both feet and calves. That’s why, the implemented
interface uses one RigidContactView per collision group, as this is the minimal number
required without reducing functionality. If maximizing simulation speed is a priority, users
should aim to minimize the number of collision groups needed for their application.

The second most critical performance optimization involves setting low values for the
position solver iteration count and the velocity solver iteration count. These values
determine how accurately contacts, drives, and limits are resolved. Since they impact
simulation accuracy, the ideal values may vary depending on the use case. To provide
flexibility, the interface allows users to specify these values via the constructor. Users
should choose the lowest values that still maintain sufficient accuracy for their application.

Finally, we use many different settings of Isaac Sim to optimize its performance. While
each individual setting provides only a small improvement, their combined effect can lead
to significant speed gains. The most important settings include disabling scene query
support, disabling contact processing, disabling custom geometries for collision detection
of cones and cylinders, and optimizing rendering settings. Despite its name, disabling
contact processing doesn’t interfere with the collision detection.

3.3 Unitree A1 Environment

This section describes the learning environment developed for training the Unitree A1
robot [31] to walk, implemented using the above introduced Isaac Sim environment for
MushroomRL. The environment replicates the training conditions from Rudin et al. [28],
which has demonstrated excellent performance for the A1 robot when paired with a heavily
parallelized simulation framework. By leveraging these established design principles, the

16

environment aims to demonstrate that the integration of Isaac Sim with MushroomRL
can effectively yield robust locomotion behaviors.

The observation space provided to the agent during the training consists of the joint
positions and velocities of all joints of the robot, a projected gravity vector representing
the direction of gravity, expressed in the robot’s local reference frame and the commanded
velocities, composed of the linear velocities along the x- and y-axis and the yaw velocity.
Additionally, an observation includes the most recently applied action, as well as the robot’s
linear and angular velocities expressed in the global reference frame. The individual
observation components are normalizes and all except the most recently applied action
and the commands incorporate some noise. The episodes terminate upon entering an
absorbing state, defined as the state in which the robot’s trunk contacts the ground plane,
indicating a fall or instability.

The commands have a probability of 0.2% of being resampled at every environment
step. Both commanded linear velocities (along the x- and y-axes) are randomly sampled
from a uniform distribution between −1ms−1 and 1ms−1. However, values whose
magnitudes are less than 0.2ms−1 are rounded to 0. Additionally, a target heading angle
is simultaneously sampled uniformly between −π and π. At the end of each step, the
commanded yaw velocity is computed based on the difference between the robot’s current
heading and the target heading angle. This yaw velocity command is then clipped within
the range −1 rad s−1 to 1 rad s−1.

To ensure robust performance across varied scenarios, the environment incorporates
several domain randomization techniques. These include randomizing friction coefficients
at the robot’s feet, randomizing initial joint positions slightly around the default robot
pose, and applying random external pushes to the robot to simulate disturbances. Such
randomizations help the trained policy generalize effectively to real-world uncertainties
and unforeseen disturbances.

The robot’s motion is controlled by an action vector, where each value indicates the target
position for an individual joint. Each environment step includes four intermediate control
updates, in which the target positions indicated by the action are translated into torques
and that are applied to the robot’s joints. The target positions are translated using a
Proportional-Derivative (PD) controller, which calculates the required torques based on
the difference between the target positions and the robot’s current joint positions and
velocities.

The reward function is designed to encourage a behavior that is closely aligned with
the commanded velocities and stability criteria. Specifically, rewards are granted for

17

matching the commanded linear velocities in the x and y directions, as well as matching
the commanded yaw velocity. Conversely, penalties are applied to discourage undesirable
behaviors, including linear velocity along the z-axis, angular velocity around the x and y
axes, collisions involving the robot’s thighs and calves, and joint positions approaching
mechanical limits. Additionally, the reward function imposes penalties to minimize torque
usage, joint acceleration and action changes. Finally, it incentivizes longer steps, promoting
more efficient locomotion strategies.

3.4 Honey and Silver Badger Environment

This section describes the learning environments for training the Honey Badger Robot
and the Silver Badger Robot [21] to walk, implemented using the introduced Isaac Sim
environment for Mushroom RL. The environment resembles the setup that was introduced
by Bohlinger et al. for the Honey Badger Robot for his work in developing one policy that
runs multiples robots[2]. Silver Badger and Honey Badger are identical robots with one
exception: the Silver Badger’s upper body consists of two parts which are connected by
an additional joint. Consequently, the learning environments for both robots are nearly
identical, with minor modifications to the Silver Badger environment to accommodate its
additional joint and this additional body part.

The observation space, command structure, and robot motion control closely mirror
those used for the A1 environment, with only minor differences. The observation space
additionally contains the robot’s z-position. For the commands, the commanded yaw
velocity is directly randomly sampled from a uniform distribution between −1 rad s−1 and
1 rad s−1 together with the linear velocity commands. This skips the additional step used
by the A1 environment of first sampling a target heading. The robot’s motion control
remains consistent with the A1 environment’s approach, with the key distinction that the
PD-controller incorporates additional parameters subject to domain randomization, as
detailed in the following section.

The environment implements extensive domain randomization techniques. Similar to
the A1 Environment, the system randomizes the friction coefficients on all robot feet,
uses randomized initial joint positions, and applies random external pushes to the robot.
Additionally, the environment introduces slight variations in several physical parameters:
trunk mass, center of mass positioning, joint torque limits, maximum joint velocities, and
foot size. Furthermore, the environment randomly varies the damping, stiffness, armature,
and friction loss values across all joints. As previously mentioned, the environment also

18

introduces slight random variations in the PD controller parameters, specifically: the P-
gain, D-gain, action scaling factor (applied before the PD controller processes the actions),
and torque scaling multiplier. Most of these randomized parameters are incorporated into
the observation space with some added noise, enabling the agent to adapt to different
scenarios.

The reward function incorporates the same components as the reward function used for
the A1 environment, with two notable additions. First, it penalizes deviations between the
robot’s z-position and a goal height of 0.3. Second, the reward function includes penalties
when both front feet or both rear feet simultaneously lose ground contact.

19

4 Experiments

For evaluation, we tested the implemented learning environments on the Unitree A1,
Honey Badger, and Silver Badger robots, analyzing the impact of the number of parallel
environments and the number of steps per fit on both the return and the time required
to achieve a satisfactory return. The reported times are measured after the agent is
evaluated for an epoch, encompassing both the learning and evaluation durations. We
used a modified version of the PPO algorithm implemented in MushroomRL, which applies
gradient norm clipping to a predefined value and dynamically adjusts the learning rate
based on the Kullback-Leibler (KL) divergence between the old and new policies after
each policy update. Additionally, we tested each robot with MushroomRL’s default PPO
algorithm to verify its compatibility with the respective robot. All the experiments are
conducted on five different seeds, and additional plots for each experiment can be found
in the appendix.

4.1 Results for Unitree A1

For the Unitree A1 experiments, we used the hyperparameters shown in Figure 5.1, which
are largely based on those used by Rudin et al. [28] in their implementation of a learning
environment for the A1 robot. To measure training time, we defined a return of 21
as a satisfactory threshold, as training typically slows down around this point for most
configurations. However, this value does not carry any deeper significance, and any similar
value in this range could have been used.

To examine the impact of the number of parallel environments used, we kept all hyperpa-
rameters unchanged except for the number of parallel environments, which we varied
across four values: 512, 1024, 2048, and 4096. Due to hardware limitations, we could
not test configurations beyond 4096 environments, as the 8GB VRAM of the RTX 3060 Ti
on which the A1 experiments were run, constrained the simulation capacity.

20

0 5 10 15 20 25 30 35 40
Epoch

0

5

10

15

20

25

Un
di

sc
ou

nt
ed

 R
et

ur
n

512 environments
1024 environments
2048 environments
4096 environments

(a) Undiscounted return after each epoch.

Number of Time for
envs return > 21

512 Envs 2054 s

1024 Envs 1639 s

2048 Envs 1526 s

4096 Envs 888 s

(b) Wall-clock time required to
reach an undiscounted re-
turn of over 21.

Figure 4.1: Experiment results for the A1 robot using varying numbers of parallel environ-
ments, executed on an RTX 3060 Ti GPU and a Ryzen 5800X3D CPU. Each
graph presents the mean and the 95% confidence interval. A modified version
of MushroomRL’s PPO algorithm was used. Each configuration was run on
five different seeds.

As shown in Figure 4.1a, the learning successfully converges across all tested configurations,
confirming that the learning environment is functioning correctly. We also verified that
the converging and a high return does translate into the intended behavior. Among the
tested setups, 4096 parallel environments achieved the best performance in terms of
both maximum return and training speed, as illustrated in Figure 4.1b. Interestingly,
while the other configurations reached similar maximum returns after 40 epochs, the
2048-environment setup converged more slowly and underperformed compared to the
512- and 1024-environment configurations for most of the training process. This result
is somewhat counterintuitive, as one would expect 2048 environments to behave more
similarly to 4096 rather than to the lower-count configurations.

To examine the impact of the number of steps per fit, we kept all hyperparameters
unchanged, as shown in Figure 5.1, except for the number of steps per fit, which we varied
across four values: 49,152, 98,304, 147,456, and 196,608. These values correspond to
12, 24, 36, and 48 steps per parallel environment.

21

0 5 10 15 20 25 30 35 40
Epoch

0

5

10

15

20

25

Un
di

sc
ou

nt
ed

 R
et

ur
n

49152 steps per fit
98304 steps per fit
147456 steps per fit
196608 steps per fit

(a) Undiscounted return after each epoch.

Number of Time for
steps per fit return > 21

49152 steps 862 s

98304 steps 888 s

147456 steps 2105 s

196608 steps 2336 s

(b) Wall-clock time required to
reach an undiscounted return
of over 21.

Figure 4.2: Experiment results for the A1 robot using varying numbers of steps per fit,
executed on an RTX 3060 Ti GPU and a Ryzen 5800X3D CPU. Each graph
presents the mean and the 95% confidence interval. A modified version of
MushroomRL’s PPO algorithm was used. Each configuration was run on five
different seeds.

As shown in Figure 4.2a, the learning process successfully converges for all tested con-
figurations, and the final return after 40 epochs is approximately the same across all
setups. However, there are significant differences in performance before epoch 20. The
configurations with 49,152 and 98,304 steps per fit show similar performance, while those
with 147,456 and 196,608 steps per fit also behave similarly. However, there is a clear gap
between these two groups, with the latter configurations performing significantly worse.
This trend is also evident in training speed, where the setups with 49,152 and 98,304
steps per fit require less than half the training time compared to those with 147,456 and
196,608 steps per fit to reach a return of 21.

Lastly, we examine the difference in learning performance between MushroomRL’s default
PPO and the modified variant. For this, we use the same hyperparameters as in the previous
experiments, except that the learning rate for MushroomRL’s PPO is set to 1× 10−4, as it
becomes unstable at 1× 10−3.

Overall, both versions of PPO exhibit similar performance, but the modified variant

22

0 5 10 15 20 25 30 35 40
Epoch

0

5

10

15

20

25

Un
di

sc
ou

nt
ed

 R
et

ur
n

PPO
PPO Variant

(a) Undiscounted return after each epoch.

Number of Time for
envs return > 21

PPO 913 s

PPO Variant 888 s

(b) Wall-clock time required to
reach an undiscounted return
of over 21.

Figure 4.3: Experiment results for the A1 robot, comparing its performance when trained
with MushroomRL’s default PPO versus a modified version incorporating
gradient clipping and learning rate adaptation. The experiment is executed
on an RTX 3060 Ti GPU and a Ryzen 5800X3D CPU. Each graph presents the
mean and the 95% confidence interval. Each configuration was run on five
different seeds.

consistently outperforms the default implementation. It converges faster and achieves a
slightly higher return after 40 epochs, as shown in Figure 4.3a. However, this advantage
shrinks when considering training speed. While the modified PPO reaches a return of 21
after six epochs, the default PPO requires eight epochs. In terms of wall-clock time, this
difference amounts to only 20 seconds, likely due to the additional computational cost
introduced by calculating the Kullback-Leibler divergence, which slows down the modified
PPO.

4.2 Results for Honey Badger

For the Honey Badger experiments, we used the hyperparameters shown in Figure 5.1. To
examine the impact of the number of parallel environments, we kept all hyperparameters

23

unchanged except for this variable, which we tested at four different values: 512, 1024,
2048, and 4096.

0 5 10 15 20 25 30
Epoch

0

10

20

30

40

Un
di

sc
ou

nt
ed

 R
et

ur
n

512 environments
1024 environments
2048 environments
4096 environments

(a) Undiscounted return after each epoch.

0 5 10 15 20 25 30
Epoch

0

50

100

150

200

250

300

Ab
so

rb
in

g

512 environments
1024 environments
2048 environments
4096 environments

(b) Terminations per epoch.

Figure 4.4: Experiment results for the Honey Badger robot using varying numbers of
parallel environments, executed on an RTX 2080 Ti GPU and six CPU-Cores
of Ryzen 3950X. Each graph presents the mean and the 95% confidence
interval. A modified version of MushroomRL’s PPO algorithm was used. Each
configuration was run on five different seeds.

As shown in Figure 4.4a, the learning process does not reliably converge for any tested
configuration. In every case, some runs failed to improve and achieved only very low
performance. Even the runs that reached a high return did not translate into the intended
behavior and remained unstable. As illustrated in Figure 4.4b, the robot frequently
terminates episodes due to falls.

This issue persists when analyzing the effect of the number of steps per fit. As before,
we kept all hyperparameters unchanged and varied only the number of steps per fit
across four values: 49,152, 98,304, 147,456, and 196,608. As shown in Figure 4.5a,
performance remained poor across all tested configurations. The setup with 49,152
steps per fit performed noticeably better than the others, but even this configuration
included runs that failed to learn effectively. Similar to the A1 experiments, we also
compared MushroomRL’s default PPO with the modified version. As seen in Figure 4.5c,
MushroomRL’s PPO performed even worse in this scenario.

These results suggest that the learning environment for the Honey Badger requires fur-
ther tuning, particularly in the reward function or termination conditions, to improve
performance.

24

0 5 10 15 20 25 30
Epoch

0

10

20

30

40

50

Un
di

sc
ou

nt
ed

 R
et

ur
n

49152 steps per fit
98304 steps per fit
147456 steps per fit
196608 steps per fit

(a) Undiscounted return after each epoch.

0 5 10 15 20 25 30
Epoch

0

50

100

150

200

250

300

Ab
so

rb
in

g

49152 steps per fit
98304 steps per fit
147456 steps per fit
196608 steps per fit

(b) Terminations per epoch.

0 5 10 15 20 25 30
Epoch

0

10

20

30

40

Un
di

sc
ou

nt
ed

 R
et

ur
n

PPO
PPO Variant

(c) Undiscounted return after each epoch.

0 5 10 15 20 25 30
Epoch

0

50

100

150

200

250

300

Ab
so

rb
in

g

PPO
PPO Variant

(d) Terminations per epoch.

Figure 4.5: Experiment results for the Honey Badger robot using varying values for steps
per fit (a - b) and comparing MushroomRL’s PPO with the modified PPO.

4.3 Results for Silver Badger

For the Silver Badger experiments, we use the same hyperparameters as in the Honey
Badger experiments. Since the learning environment remains nearly identical, we do not
expect significant differences in performance between Silver Badger and Honey Badger.

As shown in Figure 4.6a, the performance exhibits a similar level of unreliability as
observed in the Honey Badger experiments. This trend persists in the analysis of steps per
fit (Figure 4.6c) and in the comparison between MushroomRL’s PPO and the modified
PPO (Figure 4.6e). In conclusion, as expected, the Silver Badger learning environment
does not perform any better, given that it is essentially the same as the Honey Badger
environment.

25

0 5 10 15 20 25 30
Epoch

0

10

20

30

40

Un
di

sc
ou

nt
ed

 R
et

ur
n

512 environments
1024 environments
2048 environments
4096 environments

(a) Undiscounted return after each epoch.

0 5 10 15 20 25 30
Epoch

0

50

100

150

200

250

300

Ab
so

rb
in

g

512 environments
1024 environments
2048 environments
4096 environments

(b) Terminations per epoch.

0 5 10 15 20 25 30
Epoch

0

5

10

15

20

25

30

35

40

Un
di

sc
ou

nt
ed

 R
et

ur
n

49152 steps per fit
98304 steps per fit
147456 steps per fit
196608 steps per fit

(c) Undiscounted return after each epoch.

0 5 10 15 20 25 30
Epoch

0

50

100

150

200

250

300

Ab
so

rb
in

g

49152 steps per fit
98304 steps per fit
147456 steps per fit
196608 steps per fit

(d) Terminations per epoch.

0 5 10 15 20 25 30
Epoch

0

10

20

30

40

Un
di

sc
ou

nt
ed

 R
et

ur
n

PPO
PPO Variant

(e) Undiscounted return after each epoch.

0 5 10 15 20 25 30
Epoch

0

50

100

150

200

250

300

Ab
so

rb
in

g

PPO
PPO Variant

(f) Terminations per epoch.

Figure 4.6: Experiment results for the Silver Badger robot using varying numbers of
parallel environments (a-b), varying steps per fit (c-d) and comparing Mush-
roomRL’s PPO with the modified PPO (e-f), executed on an RTX 2080 Ti GPU
and six CPU-Cores of Ryzen 3950X. Each graph presents the mean and the
95% confidence interval. Each configuration was run on five different seeds.

26

5 Conclusion

In conclusion, we developed an easy-to-use and efficient interface for IsaacSim within
MushroomRL, along with three environments for different robots utilizing this interface.
Using the A1 environment, an agent successfully learns a robust policy for the A1 robot,
demonstrating the capabilities of the IsaacSim interface. However, the Honey Badger and
Silver Badger learning environments will need further tuning of the reward function or
the termination condition.

With the new interface, MushroomRL now supports massively parallelized environments,
significantly enhancing its usability for state-of-the-art robotics research. However, there
are still many features that could be added to further improve the IsaacSim interface.
First, enabling the training of multiple different robots within the same environment
simultaneously would unlock a range of new applications, such as multi-morphology
research. To achieve this, the initialization process would need to be adapted to support the
cloning of different robot models, and the automatic observation generation process would
likely require modifications. Additionally, other useful extensions could include support
for camera sensors and deformable objects, which are features available in IsaacSim that
are not yet integrated into the interface.

27

Bibliography

[1] Ananye Agarwal et al. “Legged Locomotion in Challenging Terrains using Egocentric
Vision”. In: Proceedings of The 6th Conference on Robot Learning. Ed. by Karen
Liu, Dana Kulic, and Jeff Ichnowski. Vol. 205. Proceedings of Machine Learning
Research. PMLR, 14–18 Dec 2023, pp. 403–415. url: https://proceedings.
mlr.press/v205/agarwal23a.html.

[2] Nico Bohlinger et al. One Policy to Run Them All: an End-to-end Learning Approach to
Multi-Embodiment Locomotion. 2024. arXiv: 2409.06366 [cs.RO]. url: https:
//arxiv.org/abs/2409.06366.

[3] Ken Caluwaerts et al. Barkour: Benchmarking Animal-level Agility with Quadruped
Robots. 2023. arXiv: 2305.14654 [cs.RO]. url: https://arxiv.org/abs/
2305.14654.

[4] Luigi Campanaro et al. Learning and Deploying Robust Locomotion Policies with
Minimal Dynamics Randomization. 2023. arXiv: 2209.12878 [cs.RO]. url:
https://arxiv.org/abs/2209.12878.

[5] Xuxin Cheng et al. “Expressive whole-body control for humanoid robots”. In: arXiv
preprint arXiv:2402.16796 (2024).

[6] Suyoung Choi et al. “Learning quadrupedal locomotion on deformable terrain”.
In: Science Robotics 8.74 (2023), eade2256. doi: 10.1126/scirobotics.
ade2256. eprint: https://www.science.org/doi/pdf/10.1126/
scirobotics.ade2256. url: https://www.science.org/doi/abs/
10.1126/scirobotics.ade2256.

[7] Carlo D’Eramo et al. “MushroomRL: Simplifying Reinforcement Learning Research”.
In: Journal of Machine Learning Research 22.131 (2021), pp. 1–5. url: http:
//jmlr.org/papers/v22/18-056.html.

28

https://proceedings.mlr.press/v205/agarwal23a.html
https://proceedings.mlr.press/v205/agarwal23a.html
https://arxiv.org/abs/2409.06366
https://arxiv.org/abs/2409.06366
https://arxiv.org/abs/2409.06366
https://arxiv.org/abs/2305.14654
https://arxiv.org/abs/2305.14654
https://arxiv.org/abs/2305.14654
https://arxiv.org/abs/2209.12878
https://arxiv.org/abs/2209.12878
https://doi.org/10.1126/scirobotics.ade2256
https://doi.org/10.1126/scirobotics.ade2256
https://www.science.org/doi/pdf/10.1126/scirobotics.ade2256
https://www.science.org/doi/pdf/10.1126/scirobotics.ade2256
https://www.science.org/doi/abs/10.1126/scirobotics.ade2256
https://www.science.org/doi/abs/10.1126/scirobotics.ade2256
http://jmlr.org/papers/v22/18-056.html
http://jmlr.org/papers/v22/18-056.html

[8] Gilbert Feng et al. “GenLoco: Generalized Locomotion Controllers for Quadrupedal
Robots”. In: Proceedings of The 6th Conference on Robot Learning. Ed. by Karen Liu,
Dana Kulic, and Jeff Ichnowski. Vol. 205. Proceedings of Machine Learning Research.
PMLR, 14–18 Dec 2023, pp. 1893–1903. url: https://proceedings.mlr.
press/v205/feng23a.html.

[9] C. Daniel Freeman et al. Brax – A Differentiable Physics Engine for Large Scale Rigid
Body Simulation. 2021. arXiv: 2106.13281 [cs.RO]. url: https://arxiv.
org/abs/2106.13281.

[10] Siddhant Gangapurwala et al. “RLOC: Terrain-Aware Legged Locomotion Using
Reinforcement Learning and Optimal Control”. In: IEEE Transactions on Robotics
38.5 (2022), pp. 2908–2927. doi: 10.1109/TRO.2022.3172469.

[11] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor”. In: International conference on machine
learning. Pmlr. 2018, pp. 1861–1870.

[12] Tairan He et al. “Agile but safe: Learning collision-free high-speed legged locomo-
tion”. In: arXiv preprint arXiv:2401.17583 (2024).

[13] Nicolas Heess et al. Emergence of Locomotion Behaviours in Rich Environments. 2017.
arXiv: 1707.02286 [cs.AI]. url: https://arxiv.org/abs/1707.02286.

[14] Fabian Jenelten et al. “DTC: Deep Tracking Control”. In: Science Robotics 9.86
(2024), eadh5401. doi: 10.1126/scirobotics.adh5401. eprint: https:
/ / www . science . org / doi / pdf / 10 . 1126 / scirobotics . adh5401.
url: https://www.science.org/doi/abs/10.1126/scirobotics.
adh5401.

[15] Gwanghyeon Ji et al. “Concurrent Training of a Control Policy and a State Estimator
for Dynamic and Robust Legged Locomotion”. In: IEEE Robotics and Automation
Letters 7.2 (2022), pp. 4630–4637. doi: 10.1109/LRA.2022.3151396.

[16] Yunho Kim et al. “Not Only Rewards but Also Constraints: Applications on Legged
Robot Locomotion”. In: IEEE Transactions on Robotics 40 (2024), pp. 2984–3003.
doi: 10.1109/TRO.2024.3400935.

[17] Ashish Kumar et al. “Rma: Rapid motor adaptation for legged robots”. In: arXiv
preprint arXiv:2107.04034 (2021).

[18] Joonho Lee et al. “Evaluation of constrained reinforcement learning algorithms for
legged locomotion”. In: arXiv preprint arXiv:2309.15430 (2023).

29

https://proceedings.mlr.press/v205/feng23a.html
https://proceedings.mlr.press/v205/feng23a.html
https://arxiv.org/abs/2106.13281
https://arxiv.org/abs/2106.13281
https://arxiv.org/abs/2106.13281
https://doi.org/10.1109/TRO.2022.3172469
https://arxiv.org/abs/1707.02286
https://arxiv.org/abs/1707.02286
https://doi.org/10.1126/scirobotics.adh5401
https://www.science.org/doi/pdf/10.1126/scirobotics.adh5401
https://www.science.org/doi/pdf/10.1126/scirobotics.adh5401
https://www.science.org/doi/abs/10.1126/scirobotics.adh5401
https://www.science.org/doi/abs/10.1126/scirobotics.adh5401
https://doi.org/10.1109/LRA.2022.3151396
https://doi.org/10.1109/TRO.2024.3400935

[19] Zeren Luo et al. “MorAL: Learning Morphologically Adaptive Locomotion Controller
for Quadrupedal Robots on Challenging Terrains”. In: IEEE Robotics and Automation
Letters 9.5 (2024), pp. 4019–4026. doi: 10.1109/LRA.2024.3375086.

[20] Zhengyi Luo et al. “Universal humanoid motion representations for physics-based
control”. In: arXiv preprint arXiv:2310.04582 (2023).

[21] MAB Robotics. MAB Robotics - Robotics and Automation Solutions. Accessed: 2025-
03-14. 2025. url: https://www.mabrobotics.pl/.

[22] Gabriel B Margolis et al. “Rapid locomotion via reinforcement learning”. In: The
International Journal of Robotics Research 43.4 (2024), pp. 572–587.

[23] Gabriel B. Margolis and Pulkit Agrawal. “Walk TheseWays: Tuning Robot Control for
Generalization with Multiplicity of Behavior”. In: Proceedings of The 6th Conference
on Robot Learning. Ed. by Karen Liu, Dana Kulic, and Jeff Ichnowski. Vol. 205.
Proceedings of Machine Learning Research. PMLR, 14–18 Dec 2023, pp. 22–31.
url: https://proceedings.mlr.press/v205/margolis23a.html.

[24] NVIDIA Corporation. Isaac Sim Core API Documentation - RigidContactView. Ac-
cessed: 2025-03-17. 2025. url: https://docs.isaacsim.omniverse.
nvidia.com/latest/py/source/extensions/isaacsim.core.api/
docs/index.html#isaacsim.core.api.sensors.RigidContactView.

[25] NVIDIA Corporation. Isaac Sim Core API Documentation - RigidPrim. Accessed:
2025-03-17. 2025. url: https://docs.isaacsim.omniverse.nvidia.
com/latest/py/source/extensions/isaacsim.core.prims/docs/
index.html#isaacsim.core.prims.RigidPrim.

[26] Ilija Radosavovic et al. “Real-world humanoid locomotion with reinforcement learn-
ing”. In: Science Robotics 9.89 (2024), eadi9579.

[27] Nikita Rudin et al. “Advanced Skills by Learning Locomotion and Local Naviga-
tion End-to-End”. In: 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2022, pp. 2497–2503. doi: 10.1109/IROS47612.2022.
9981198.

[28] Nikita Rudin et al. “Learning to Walk in Minutes Using Massively Parallel Deep
Reinforcement Learning”. In: Proceedings of the 5th Conference on Robot Learning.
Ed. by Aleksandra Faust, David Hsu, and Gerhard Neumann. Vol. 164. Proceedings
of Machine Learning Research. PMLR, Aug. 2022, pp. 91–100. url: https://
proceedings.mlr.press/v164/rudin22a.html.

[29] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

30

https://doi.org/10.1109/LRA.2024.3375086
https://www.mabrobotics.pl/
https://proceedings.mlr.press/v205/margolis23a.html
https://docs.isaacsim.omniverse.nvidia.com/latest/py/source/extensions/isaacsim.core.api/docs/index.html#isaacsim.core.api.sensors.RigidContactView
https://docs.isaacsim.omniverse.nvidia.com/latest/py/source/extensions/isaacsim.core.api/docs/index.html#isaacsim.core.api.sensors.RigidContactView
https://docs.isaacsim.omniverse.nvidia.com/latest/py/source/extensions/isaacsim.core.api/docs/index.html#isaacsim.core.api.sensors.RigidContactView
https://docs.isaacsim.omniverse.nvidia.com/latest/py/source/extensions/isaacsim.core.prims/docs/index.html#isaacsim.core.prims.RigidPrim
https://docs.isaacsim.omniverse.nvidia.com/latest/py/source/extensions/isaacsim.core.prims/docs/index.html#isaacsim.core.prims.RigidPrim
https://docs.isaacsim.omniverse.nvidia.com/latest/py/source/extensions/isaacsim.core.prims/docs/index.html#isaacsim.core.prims.RigidPrim
https://doi.org/10.1109/IROS47612.2022.9981198
https://doi.org/10.1109/IROS47612.2022.9981198
https://proceedings.mlr.press/v164/rudin22a.html
https://proceedings.mlr.press/v164/rudin22a.html

[30] Milad Shafiee, Guillaume Bellegarda, and Auke Ijspeert. “ManyQuadrupeds: Learn-
ing a Single Locomotion Policy for Diverse Quadruped Robots”. In: 2024 IEEE
International Conference on Robotics and Automation (ICRA). 2024, pp. 3471–3477.
doi: 10.1109/ICRA57147.2024.10610155.

[31] Unitree Robotics. Unitree A1 - The High-Performance Quadruped Robot. Accessed:
2025-03-13. 2025. url: https : / / unitreerobotics . net / robotdog /
unitree-a1/.

[32] Ziwen Zhuang et al. Robot Parkour Learning. 2023. arXiv: 2309.05665 [cs.RO].
url: https://arxiv.org/abs/2309.05665.

31

https://doi.org/10.1109/ICRA57147.2024.10610155
https://unitreerobotics.net/robotdog/unitree-a1/
https://unitreerobotics.net/robotdog/unitree-a1/
https://arxiv.org/abs/2309.05665
https://arxiv.org/abs/2309.05665

Appendix

Hyperparameters for Experiments

Parameter Unitree A1 Honey / Silver Badger

Number of epochs 40 30
Steps per epoch 204800 409600
Steps per fit 98304 98304

Episodes in evaluation 256 256
Mini-batch size 6144 3072
Learning rate 1× 10−3 1× 10−4

Discount factor 0.99 0.99
GAE λ 0.95 0.95

Entropy coefficient 0.01 0
Epsilon 0.2 0.2

Number of epochs policy 5 5
Gradient norm clipping - 1.0

Desired kl - 0.01

Figure 5.1: Table containing the PPO hyperparameters used in all experiments.

32

Additional results for the unitree a1 robot

0 5 10 15 20 25 30 35 40
Epoch

0.0

0.5

1.0

1.5

2.0

Di
sc

ou
nt

ed
 R

et
ur

n

512 environments
1024 environments
2048 environments
4096 environments

(a) Discounted return after each epoch.

0 2000 4000 6000 8000 10000
Time

0

5

10

15

20

25

Un
di

sc
ou

nt
ed

 R
et

ur
n

512 environments
1024 environments
2048 environments
4096 environments

(b) Time needed to achieve return.

0 5 10 15 20 25 30 35 40
Epoch

2

4

6

8

10

12

14

16

En
tro

py

512 environments
1024 environments
2048 environments
4096 environments

(c) Entropy after each epoch.

0 5 10 15 20 25 30 35 40
Epoch

0.0

0.5

1.0

1.5

2.0

Va
lu

e
fu

nc
tio

n

512 environments
1024 environments
2048 environments
4096 environments

(d) Value function estimate for the initial states.

Figure 5.2: Experiment results for the A1 robot using varying numbers of parallel environ-
ments, executed on an RTX 3060 Ti GPU and a Ryzen 5800X3D CPU. Each
graph presents themean and the 95% confidence interval. Graph b only shows
the mean values. A modified version of MushroomRL’s PPO algorithm was
used. Each configuration was run five different seeds.

33

0 5 10 15 20 25 30 35 40
Epoch

0.0

0.5

1.0

1.5

2.0

Di
sc

ou
nt

ed
 R

et
ur

n

49152 steps per fit
98304 steps per fit
147456 steps per fit
196608 steps per fit

(a) Discounted return after each epoch.

0 1000 2000 3000 4000 5000 6000
Time

0

5

10

15

20

25

Un
di

sc
ou

nt
ed

 R
et

ur
n

49152 steps per fit
98304 steps per fit
147456 steps per fit
196608 steps per fit

(b) Time needed to achieve return.

0 5 10 15 20 25 30 35 40
Epoch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

En
tro

py

49152 steps per fit
98304 steps per fit
147456 steps per fit
196608 steps per fit

(c) Entropy after each epoch.

0 5 10 15 20 25 30 35 40
Epoch

0.0

0.5

1.0

1.5

2.0

Va
lu

e
fu

nc
tio

n

49152 steps per fit
98304 steps per fit
147456 steps per fit
196608 steps per fit

(d) Value function estimate for the initial states.

Figure 5.3: Experiment results for the A1 robot using varying values for steps per fit,
executed on an RTX 3060 Ti GPU and a Ryzen 5800X3D CPU. Each graph
presents the mean and the 95% confidence interval. Graph b only shows the
mean values. A modified version of MushroomRL’s PPO algorithm was used.
Each configuration was run five different seeds.

34

0 5 10 15 20 25 30 35 40
Epoch

0.0

0.5

1.0

1.5

2.0

Di
sc

ou
nt

ed
 R

et
ur

n

PPO
PPO Variant

(a) Discounted return after each epoch.

0 1000 2000 3000 4000 5000
Time

0

5

10

15

20

25

Un
di

sc
ou

nt
ed

 R
et

ur
n

PPO
PPO Variant

(b) Time needed to achieve return.

0 5 10 15 20 25 30 35 40
Epoch

2

4

6

8

10

12

14

16

En
tro

py

PPO
PPO Variant

(c) Entropy after each epoch.

0 5 10 15 20 25 30 35 40
Epoch

0.0

0.5

1.0

1.5

2.0

Va
lu

e
fu

nc
tio

n

PPO
PPO Variant

(d) Value function estimate for the initial states.

Figure 5.4: Experiment results for the A1 robot, comparing its performance when trained
with MushroomRL’s default PPO versus a modified version incorporating
gradient clipping and learning rate adaptation. The experiment is executed
on an RTX 3060 Ti GPU and a Ryzen 5800X3D CPU. a, c, d present the mean
and the 95% confidence interval. A modified version of MushroomRL’s PPO
algorithm was used. Each configuration was run five different seeds.

35

Additional results for the honey badger robot

0 5 10 15 20 25 30
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Di
sc

ou
nt

ed
 R

et
ur

n

512 environments
1024 environments
2048 environments
4096 environments

(a) Discounted return after each epoch.

0 2500 5000 7500 10000 12500 15000 17500
Time

0

5

10

15

20

Un
di

sc
ou

nt
ed

 R
et

ur
n

512 environments
1024 environments
2048 environments
4096 environments

(b) Time needed to achieve return.

0 5 10 15 20 25 30
Epoch

30

20

10

0

10

En
tro

py

512 environments
1024 environments
2048 environments
4096 environments

(c) Entropy after each epoch.

0 5 10 15 20 25 30
Epoch

0

1

2

3

4

Va
lu

e
fu

nc
tio

n

512 environments
1024 environments
2048 environments
4096 environments

(d) Value function estimate for the initial states.

Figure 5.5: Experiment results for the Honey Badger robot using varying numbers of
parallel environments, executed on an RTX 2080 Ti GPU and six CPU-Cores of
Ryzen 3950X. Each graph presents the mean and the 95% confidence interval.
Graph b only shows the mean values. A modified version of MushroomRL’s
PPO algorithm was used. Each configuration was run five different seeds.

36

0 5 10 15 20 25 30
Epoch

0

1

2

3

4

Di
sc

ou
nt

ed
 R

et
ur

n

49152 steps per fit
98304 steps per fit
147456 steps per fit
196608 steps per fit

(a) Discounted return after each epoch.

0 2000 4000 6000 8000 10000 12000 14000
Time

0

5

10

15

20

25

30

Un
di

sc
ou

nt
ed

 R
et

ur
n

49152 steps per fit
98304 steps per fit
147456 steps per fit
196608 steps per fit

(b) Time needed to achieve return.

0 5 10 15 20 25 30
Epoch

15

10

5

0

5

10

15

En
tro

py

49152 steps per fit
98304 steps per fit
147456 steps per fit
196608 steps per fit

(c) Entropy after each epoch.

0 5 10 15 20 25 30
Epoch

0

1

2

3

4

Va
lu

e
fu

nc
tio

n

49152 steps per fit
98304 steps per fit
147456 steps per fit
196608 steps per fit

(d) Value function estimate for the initial states.

Figure 5.6: Experiment results for the Honey Badger robot using varying values for steps
per fit, executed on an RTX 2080 Ti GPU and six CPU-Cores of Ryzen 3950X.
Each graph presents the mean and the 95% confidence interval. Graph b only
shows the mean values. A modified version of MushroomRL’s PPO algorithm
was used. Each configuration was run five different seeds.

37

0 5 10 15 20 25 30
Epoch

0

1

2

3

4

Di
sc

ou
nt

ed
 R

et
ur

n

PPO
PPO Variant

(a) Discounted return after each epoch.

0 2000 4000 6000 8000 10000 12000
Time

0

5

10

15

20

Un
di

sc
ou

nt
ed

 R
et

ur
n

PPO
PPO Variant

(b) Time needed to achieve return.

0 5 10 15 20 25 30
Epoch

10

5

0

5

10

15

En
tro

py

PPO
PPO Variant

(c) Entropy after each epoch.

0 5 10 15 20 25 30
Epoch

0

1

2

3

4

Va
lu

e
fu

nc
tio

n

PPO
PPO Variant

(d) Value function estimate for the initial states.

Figure 5.7: Experiment results for the Honey Badger robot, comparing its performance
when trained with MushroomRL’s default PPO versus a modified version in-
corporating gradient clipping and learning rate adaptation. The experiment is
executed on an RTX 2080 Ti GPU and six CPU-Cores of Ryzen 3950X. Each
graph presents themean and the 95% confidence interval. Graph b only shows
the mean values. Each configuration was run five different seeds.

38

Additional results for the silver badger robot

0 5 10 15 20 25 30
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Di
sc

ou
nt

ed
 R

et
ur

n

512 environments
1024 environments
2048 environments
4096 environments

(a) Discounted return after each epoch.

0 2500 5000 7500 10000 12500 15000 17500
Time

0

5

10

15

20

25

Un
di

sc
ou

nt
ed

 R
et

ur
n

512 environments
1024 environments
2048 environments
4096 environments

(b) Time needed to achieve return.

0 5 10 15 20 25 30
Epoch

10

5

0

5

10

15

En
tro

py

512 environments
1024 environments
2048 environments
4096 environments

(c) Entropy after each epoch.

0 5 10 15 20 25 30
Epoch

1

0

1

2

3

4

Va
lu

e
fu

nc
tio

n

512 environments
1024 environments
2048 environments
4096 environments

(d) Value function estimate for the initial states.

Figure 5.8: Experiment results for the Silver Badger robot using varying numbers of
parallel environments, executed on an RTX 2080 Ti GPU and six CPU-Cores of
Ryzen 3950X. Each graph presents the mean and the 95% confidence interval.
Graph b only shows the mean values. A modified version of MushroomRL’s
PPO algorithm was used. Each configuration was run five different seeds.

39

0 5 10 15 20 25 30
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Di
sc

ou
nt

ed
 R

et
ur

n

49152 steps per fit
98304 steps per fit
147456 steps per fit
196608 steps per fit

(a) Discounted return after each epoch.

0 2000 4000 6000 8000 10000 12000 14000 16000
Time

0

5

10

15

20

25

Un
di

sc
ou

nt
ed

 R
et

ur
n

49152 steps per fit
98304 steps per fit
147456 steps per fit
196608 steps per fit

(b) Time needed to achieve return.

0 5 10 15 20 25 30
Epoch

5

0

5

10

15

En
tro

py

49152 steps per fit
98304 steps per fit
147456 steps per fit
196608 steps per fit

(c) Entropy after each epoch.

0 5 10 15 20 25 30
Epoch

1

0

1

2

3

4

Va
lu

e
fu

nc
tio

n

49152 steps per fit
98304 steps per fit
147456 steps per fit
196608 steps per fit

(d) Value function estimate for the initial states.

Figure 5.9: Experiment results for the Silver Badger robot using varying values for steps
per fit, executed on an RTX 2080 Ti GPU and six CPU-Cores of Ryzen 3950X.
Each graph presents the mean and the 95% confidence interval. Graph b only
shows the mean values. A modified version of MushroomRL’s PPO algorithm
was used. Each configuration was run five different seeds.

40

0 5 10 15 20 25 30
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Di
sc

ou
nt

ed
 R

et
ur

n

PPO
PPO Variant

(a) Discounted return after each epoch.

0 2000 4000 6000 8000 10000 12000
Time

0

5

10

15

20

25

Un
di

sc
ou

nt
ed

 R
et

ur
n

PPO
PPO Variant

(b) Time needed to achieve return.

0 5 10 15 20 25 30
Epoch

10

5

0

5

10

15

En
tro

py

PPO
PPO Variant

(c) Entropy after each epoch.

0 5 10 15 20 25 30
Epoch

1

0

1

2

3

4

Va
lu

e
fu

nc
tio

n

PPO
PPO Variant

(d) Value function estimate for the initial states.

Figure 5.10: Experiment results for the Silver Badger robot, comparing its performance
when trained with MushroomRL’s default PPO versus a modified version
incorporating gradient clipping and learning rate adaptation. The experiment
is executed on an RTX 2080 Ti GPU and six CPU-Cores of Ryzen 3950X. Each
graph presents the mean and the 95% confidence interval. Graph b only
shows the mean values. A modified version of MushroomRL’s PPO algorithm
was used. Each configuration was run five different seeds.

41

	Introduction
	State of the Art
	Methodology
	MushroomRLs Vectorized Core Logic
	General Isaac Sim Environment
	Initialization
	Environment Step
	Environment Reset
	Collision Detection
	Optimizations

	Unitree A1 Environment
	Honey and Silver Badger Environment

	Experiments
	Results for Unitree A1
	Results for Honey Badger
	Results for Silver Badger

	Conclusion

