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Abstract

Deep Reinforcement Learning (RL) achieved several successes ranging from super human
performances in multiple video games to difficult manipulation skills for specific robot
learning tasks. In recent years, several different algorithms have been developed which
now serve as baselines to compare the performance of novel work with. However, the
benchmarks of these algorithms are often not carried out in a scientifically sound way,
which causes the results to not be reproducible at best and highly misleading at worst.
Missing hyperparameter configurations, too few independent experiment trials and the use
of biased evaluation metrics all lead to inconsistent and inaccurate results which therefore
are hard to use as point of comparison. This problem is enhanced by the high variance
inherent to some algorithms and the stochasticity of several benchmark environments.
In this thesis, we provide benchmarks for the currently most well-known model-free RL
algorithms, namely A2C, TRPO, PPO, DDPG, TD3 and SAC.We evaluate these algorithms on
four of the most common benchmark tasks for continuous control (Hopper, Walker, Cheetah
and Ant) using the implementations of three different benchmark libraries (OpenAI Gym,
PyBullet and the DeepMind Control Suite). We provide meaningful and reproducible
results by averaging our outcomes over a large amount of independent trials, displaying
confidence bounds, explaining our experiment setup in detail and using meaningful
evaluation metrics. Specifically, we examine how the algorithm performances vary between
the different tasks and libraries and also show the impact of input normalization and
different network sizes.



Zusammenfassung

In den letzten Jahren konnten viele Erfolge im Bereich des bestärkenden Lernens erzielt
werden, die von übermenschlichen Leistungen in mehreren Videospielen bis hin zu schwie-
rigen Manipulationsfähigkeiten für spezielle Roboterlernaufgaben reichen. Im Laufe der
Zeit haben sich verschiedene Algorithmen herauskristallisiert, die nun als Vergleichsbasis
für neue Arbeiten dienen. Allerdings werden die Benchmarks dieser Algorithmen oft
nicht wissenschaftlich fundiert durchgeführt, was dazu führt, dass die Ergebnisse im
besten Fall nicht reproduzierbar und im schlimmsten Fall sehr irreführend sind. Fehlende
Hyperparameterkonfigurationen, zu wenige unabhängige Experimentierversuche und
die Verwendung voreingenommener Bewertungsmetriken führen zu inkonsistenten und
ungenauen Ergebnissen, die deshalb nur schwer als Vergleichspunkt verwendet werden
können. Dieses Problem wird durch die hohe Varianz, die einigen Algorithmen innewohnt,
und die Stochastizität einiger Benchmark-Umgebungen verstärkt.
In dieser Arbeit stellen wir Benchmarks für die derzeit bekanntesten modellfreien Al-
gorithmen des bestärkenden Lernens, nämlich A2C, TRPO, PPO, DDPG, TD3 und SAC,
bereit. Wir evaluieren diese Algorithmen auf vier der gängigsten Benchmark-Aufgaben
für kontinuierliche Steuerung (Hopper, Walker, Cheetah und Ant) unter Verwendung der
Implementierungen von drei verschiedenen Benchmark-Bibliotheken (OpenAI Gym, Py-
Bullet und die DeepMind Control Suite). Wir liefern aussagekräftige und reproduzierbare
Ergebnisse, indem wir unsere Resultate über eine große Anzahl von unabhängigen Versu-
chen mitteln, Konfidenzintervalle angeben, unseren Versuchsaufbau detailliert erklären
und aussagekräftige Bewertungsmetriken verwenden. Insbesondere untersuchen wir, wie
die Algorithmusleistungen zwischen den verschiedenen Aufgaben und Bibliotheken variie-
ren und zeigen auch die Auswirkungen von Eingabenormalisierung und verschiedenen
Netzwerkgrößen.
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1 Introduction

Reinforcement Learning (RL) is a machine learning technique for the process of making
informed decisions by learning from experience. Contrary to supervised learning, though,
the experience is not available prior to the learning process in form of labeled data which
can be used for the training. Instead, RL agents have to create their own experience
by interacting with an environment through trial and error. They do so by performing
actions based on current observations of the environment state and by receiving feedback
from the environment in the form of a reward signal that quantifies how good the chosen
actions were. Based on this feedback, the agents try to learn behaviors that maximize the
received rewards in order to reach some predefined objectives for the specific tasks they
are trained to solve. The introduction of deep neural networks made it possible to process
high-dimensional inputs without the need of hand-crafted feature representations, which
led to big successes in domains like image classification [2] or speech recognition [3].
The concept of Deep Learning ([4, 5]) was then quickly adopted for the use in RL ([6])
leading to Deep RL. From this point on, many noticeable successes of Deep RL have been
made. Starting from the super-human performance in playing Atari games based only
on raw pixel observations in [7], Deep RL was also used to outperform humans in the
game of Go ([8, 9]) and in the field of competitive video games ([10, 11]). In addition to
that, Deep RL is regularly used in the domain of Robot Learning ([12, 13]) to solve tasks
like grasping objects ([14]), various locomotion tasks ([15]) and many other complex
manipulation or control tasks ([16, 17, 18]).

In recent years, many different deep RL algorithms have emerged that all have different
advantages and shortcomings. Naturally, the need of benchmarks for the plethora of
new approaches became bigger and bigger to be able to compare the effectiveness of
different strategies and quantify their quality. The Arcade Learning Environment ([19])
was created as a platform for evaluating different algorithms on a wide range of Atari
games. However, this testbed was not suitable for the domain of continuous control since
the different tasks only had discrete actions. Existing benchmarks only included low-
dimensional continuous control tasks like inverted pendulum, mountain car or acrobot,
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which is why [20] introduced a new set of benchmark tasks including more challenging
and higher-dimensional problems.

Even using those proposed benchmarks, it can be very hard to reproduce the results of
deep RL algorithms, because of many sources of possible instability and variance [21].
The variance can be caused by random stochasticity inherent to the algorithms themselves
or incorporated in the dynamics of the environments. This issue was investigated by
[21] who reported that the results of some works could be roughly reproduced, but
others were wildly varying from their findings. They suggest to average the results of
many different trials and report them together with the observed standard deviations to
counteract the high variance. Furthermore, they emphasize the importance of reporting
all hyperparameters used for the experiments to make the results more reproducible. Both
recommendations are often only partly followed (only subsets of hyperparameters, low
number of trials), which is also why different works often report different baseline results
[21].

Another problem that hinders meaningful comparisons between algorithm performances
is the diversity of evaluation procedures and used metrics, which can lead to misleading
reporting of results [22]. Specifically, some works only show a subset of their evaluations
that only includes the best performing trials. Others are either only using environments for
which their algorithm is especially suited, or tailor their algorithm and its hyperparameters
specifically for one particular task, which is described as environment overfitting [23].

Looking at all these issues, many of the modern RL algorithms have not been properly
evaluated on the proposed suite of benchmark environments for continuous control. We
focus on the currently most well-known model-free RL algorithms that are often serving as
baselines for novel work, namely A2C, TRPO, PPO, DDPG, TD3 as well as SAC, and provide
evaluations for the most commonly used benchmarking tasks (Hopper, Walker, Cheetah,
Ant) using the environment implementations from three different benchmark libraries
(OpenAI Gym [24], PyBullet [25], DeepMind Control Suite [1]). Therefore, we are not
only able to compare overall algorithm performances, but also investigate differences
between the same task in different libraries.
We follow the before mentioned recommendations by providing the full set of hyperpa-
rameters, averaging our results over many trials, displaying confidence bounds and using
several meaningful and non-biased evaluation metrics. Therefore, this work provides
a summary of several algorithm performances using well carried out and much more
reproducible experiments enabling direct comparisons, all in one place.

The thesis is structured as follows. Chapter 2 provides the needed background explaining
the concept of RL followed by a description of the algorithms and tasks used for the
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benchmarks. The setup of the experiments is layed out in Chapter 3 including the
evaluation procedure as well as the used metrics and hyperparameters. In Chapter 4, we
examine the experiment results by evaluating and comparing the different performances
while highlighting particularities. The final Chapter 5 serves as a summary of the gained
insights and concludes the thesis by adding final remarks and describing possible future
works.

1.0.1 The importance of Benchmarking

To motivate the procedure in this thesis we use this subsection to explain why accurate
and sound benchmarking is fundamental in the field of RL.
With the introduction of several new RL algorithms in the recent years the question of
how good each of the new approaches performs naturally arises. In order to quantify
the quality of different techniques, benchmarks are needed. They allow comparisons
between the effectiveness of different methods and make it possible to establish baseline
results that can be used as a reference point for future work. Using these baselines, we
can evaluate and quantify scientific progress in a more sound way. Benchmarks also make
it easier to understand the effects of certain approaches by highlighting their strengths
and weaknesses. We can then build on the improvements of certain techniques and
do more exploration in these directions or even combine several promising approaches
to create novel methods that unite the best ideas of previous work. At the same time,
approaches that lead to weaker results can be neglected saving valuable research time.
Furthermore, the gained insights can help identifying current limitations and areas that
need improvement, which defines goals and starting points for future work. In addition
to that, the existence of benchmarks increases the competition between researchers so
that they feel the need to develop novel solutions and establish a culture of continuous
improvement. This mindset leads to more innovation and technological progress with
lower chances of stagnation in certain fields.
Benchmarks can also be used to highlight the applicability of certain approaches to differ-
ent domains and can demonstrate how well the particular methods generalize to other
problems. They can also measure how reliable and reproducible the results of specific
algorithms are if the benchmarks are carried out properly and with a statistically significant
sample size.
However, if the benchmarks are carried out poorly, the opposite effect can be achieved.
As mentioned in the previous section, the experiments are often insufficiently described
without a proper explanation of the evaluation process and the used hyperparameters.
This lack of documentation leads to results that are not reproducible, which slows down
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the scientific progress, because more time has to be invested to recreate the findings of
other work. In addition to that, the performance for the benchmarks is often measured in
different ways, which makes the reported results not comparable. Because of the high
variance and instability of certain algorithms and environments, we need to report the
results of a high number of independent trials to measure the consistency of the outcomes.
If instead only a subset of the best results is reported, then the findings can be very
misleading. The same can happen if specific environments that are especially well suited
for the benchmarked algorithm are chosen as a base for the experiments or the algorithms
are particularly tuned for one specific task, which makes the performance look better than
it actually would be in a fair setting.
Therefore, we need standardized benchmarks and meaningful metrics that lead to con-
sistent results which can be reproduced and used as a point of comparison for future
work.
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2 Background

2.1 Reinforcement Learning

RL describes the problem of one or more agents interacting with an environment and
learning through trial and error. The environment describes the world the agent is located
in and changes its state based on the behavior of the agent. The learning process is not
based on labeled data like in supervised learning, but instead based on the experience
the agent gains through exploring the environment by executing different actions and
receiving feedback (rewards) from the environment depending on how good or bad the
chosen actions were. Using this feedback the agent can learn a behavior that leads to
a specific goal by repeating actions which lead to good rewards and dismissing actions
which lead to bad rewards.

2.1.1 Markov Decision Process

To formally describe the RL problem, we define the case of Markov Decision Processes
(MDPs), which are a classical formalization of sequential decision making [26]. A decision
maker called agent interacts with the environment E by choosing actions a based on
observations o of the current state s. The set of possible states (also called state space)
is defined as S and can have a finite or infinite amount of elements. Likewise, the set of
possible actions is defined as A and called action space. In the case of a finite state/ action
set, the state/ action space is called discrete. If the states/actions correspond to continuous
variables the state/ action space is called continuous and the amount of possible states/
actions is infinite. The environment is fully observable if the complete state can be seen
by the agent. If the agent can only observe a part of the full state, the environment is
called partially observable. In the literature, the symbol s is often used for observation
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even though o would technically be more correct if the environment is partially observed.
For simplicity, we do the same in the following sections.

The interaction between the agent and the environment is divided into different timesteps.
At each timestep t the agent makes a decision based on the current state st and chooses
an action at to take. This decision making process is based on the so called policy π of the
agent. If the policy is deterministic - meaning that an observed state s always leads to the
same action a - the policy can be described as π(s). If the policy is stochastic, it is denoted
as π(a | s) = Pr (at = a | st = s) describing the probability of taking action a if the state
s is observed at timestep t. A stochastic environment responds with the new state st+1

based on its transition probability distribution: st+1 ∼ P (· | st, at). If the environment is
deterministic, this distribution can be simplified to a transition function.

In addition to the new state, the environment returns a reward rt, which is based on the
reward function R(st, at, st+1) and describes the short-term quality of the current state-
action pair (st, at). The overall goal of the agent is to maximize the expected cumulative
reward (often called return) over an episode (also called rollout or trajectory). An episode
is a sequence of states and actions starting with the initial state-action pair (s0, a0) and
continuing with (st, at) for t = 1 until t = T , where T describes the timestep when the
environment gets reset to an initial state [27]. An environment is reset, i.e. an episode
ends, when either a terminal state or a predefined maximum amount of timesteps is
reached. Because of the fact that the chosen actions at each timestep do not only influence
the immediate rewards, but also the subsequent states and therefore also future rewards,
there needs to be a trade-off between short-term (immediate) and long-term reward
maximization. This is done by discounting future rewards by a certain factor γ ∈ [0, 1],
the discount factor. Therefore, the agent tries to maximize the expected (finite-horizon)
discounted return:

J (π) = Eπ [G] = Eπ

[︄
T∑︂
t=0

γtrt

]︄
.

For non-episodic tasks, that means tasks that go on continually without a natural limit on
the episode length (so T =∞, also called infinite-horizon), this also solves the problem of
maximizing a potentially infinite sum, because if γ < 1 the sum has finite value as long as
the reward sequence is bounded [26]. Usually, a value close to 1 is chosen for γ to have
future rewards still be impactful for the decision making of the agent. If γ = 1 the return
is called undiscounted. The overall optimization problem of RL then lies in finding the
optimal policy π∗ that maximizes J (π).

To summarize, an MDP is defined by the tuple (S,A, P,R, d0, γ) where S is the set of
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possible states, A is the set of possible actions, P denotes the transition probability
distribution over the next state given state-action-pairs, and R(st, at, st+1) the reward
function. The initial state distribution is defined by d0 , and γ ∈ [0, 1) denotes the chosen
discount factor used for calculating the future discounted return [26].

2.1.2 Model-Free vs Model-Based Reinforcement Learning

RL algorithms can be divided into two major subcategories.

The first category consists of model-free RL algorithms such as A2C [28], TRPO [29] or
PPO [30] (see Section 2.2 for more details). The main characteristic that distinguishes
them from model-based approaches is the non-existence of a model of the environment.
The agent has no explicit understanding of what the environment it interacts with looks
like and, more importantly, does not know how it will change after performing an action.
Accordingly, the agent typically learns either a value function for every state of the state
space, forming a policy derived from these values, or directly the policy itself only by
interacting with the environment and observing the received rewards and next states.

In contrast to model-free RL approaches, model-based algorithms rely on an available
model of the environment which, if not already existing, has to be learned before applying
the actual RL algorithm. By exploiting the model, the algorithm can predict the state
transitions and rewards. The method then computes, similar to model-free methods, some
kind of value function and eventually obtains a policy. The difference is that, instead
of learning values by directly interacting with the environment, the values are updated
based on the environment model only, which is called planning. This approach allows the
agent to think ahead. When the model-based planning is done, the agent may interact
with the environment. The experience gained in this way can be used by either resume
training the model of the environment or directly improve the value function [26]. An
obvious problem of model-based reinforcement learning approaches is that in most cases
there is no perfect model given and learning a model often leads to suboptimal models.
Planning on such a model then obviously can lead to suboptimal policies. On the other
hand, a well trained model forms the basis for a good chance of obtaining an optimal
policy which can also be superior to model-free approaches in planning over long time
periods [31]. In addition to that, model-based algorithms often have a better sample
efficiency than model-free methods since they can rely on the model instead of having to
do a lot of environment interactions. This can be very beneficial, especially in real world
environments like those used for robot learning tasks, where it is essential to reduce the
amount of environment interactions to a minimum, not only because of the time needed
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for the system to respond, but also because the mechanical parts may wear down or even
break in the course of the training process resulting in increased financial expenses [12].

2.1.3 Q-Learning and Policy Search

In order to explain these two approaches for model-free RL, we first need to introduce
the concept of (Q)-Value Functions, which are commonly used in both variants. These
functions approximate the expected infinite-horizon discounted return, which measures
the value of a state or state-action pair. The On-Policy Value Function is denoted as

V π(s) = Eπ

[︄ ∞∑︂
t=0

γtrt | s0 = s

]︄

representing the value of starting in state s and following a policy π afterwards. Similar
to that, we define the On-Policy Action-Value Function (also Q-Value Function) as

Qπ(s, a) = Eπ

[︄ ∞∑︂
t=0

γtrt | s0 = s, a0 = a

]︄
,

which describes the value of starting in state s, taking action a and thereafter following a
policy π [26]. We can then draw the connection from the value function to the action-
value function with V π(s) = Ea∼π [Q

π(s, a)] with a ∼ π meaning that action a is chosen
according to policy π. Finding the optimal policy π∗ is often done by using the Optimal
Value Function V ∗(s) = maxπ V

π(s) or the Optimal Action-Value Function Q∗(s, a) =
maxπ Q

π(s, a).

The relationship between the value of a state and the value of its successor states is
expressed by the Bellman equation for V :

V π(s) = E
a∼π,s′∼P (·|s,a)

[︁
r(s, a) + γV π

(︁
s′
)︁]︁

.

Hereby, s′ ∼ P (· | s, a) means that the next state s′ is sampled according to the environ-
ment’s transition probability distribution P [27]. Similarly, the Bellman equation can also
be written for the action-value function:

Qπ(s, a) = E
s′∼P (·|s,a)

[︃
r(s, a) + γ E

a′∼π

[︁
Qπ

(︁
s′, a′

)︁]︁]︃
.
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Using the concept of Q-Value functions leads to the approach of Q-Learning [32] which
is the basis of value-based RL methods. Here, a learned action-value function, Qϕ(s, a),
is used to approximate the optimal action-value function Q∗(s, a). The Bellman equation
for Q∗

Q∗(s, a) = E
s′∼P (·|s,a)

[︃
r(s, a) + γmax

a′
Q∗ (︁s′, a′)︁]︃

can be used to update the estimate of Q∗

Q̂(s, a)← Q̂(s, a) + α

[︃
r(s, a) + γmax

a′
Q̂
(︁
s′, a′

)︁
− Q̂(s, a)

]︃
with α being a positive learning rate that determines the extent of the update step [26].
The agent can then choose the actions in the following way:

a(s) = argmax
a

Qϕ(s, a).

One big deficit of value-based methods is that they update their value function estimates
based on other estimates, which is called bootstrapping. While this approach can lead to a
faster learning behavior, it introduces bias and leads to the fact that value-based methods
do not have general convergence guarantees if they use function approximations for Q∗.
Another problem of Q-Learning methods is that the max operator for the action choosing
process is very expensive in the case of big action spaces and it becomes impossible in the
case of continuous action spaces. Here, the action space needs to be discretized to a finite
amount of possibilities, which can limit the options of the agents and therefore is hard to
do appropriately [26].

The other very popular approach to RL problems is called Policy Search. Here, a parame-
terized policy πθ(a | s) is learned directly which can then be used for the action selection
process without the need for a value function. The updates for the policy are carried out
by doing gradient ascent on the performance objective J or some local approximation of
it:

θt+1 = θt + α ˆ︂∇J (θt).

Methods that follow this general schema are called policy gradient methods and belong
to the class of policy-based methods [26]. The policy gradient can be simplified to the
general form of:

∇θJ (πθ) = Eπθ

[︄
T∑︂
t=0

∇θ log πθ (at | st) Φt

]︄
.
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where Φt can appear in different valid forms. One of the first established forms was

Φt =

T∑︂
t′=t

rt′ − b (st) ,

where b(s) is an arbitrary function called the baseline. The baseline serves as a comparison
for the quality of the chosen action value and was introduced as it lowers the variance
of the update without changing its expected value. This fact holds true as long as the
baseline does not use bootstrapping, because that would then introduce bias. One of the
first established policy gradient algorithms of this form was REINFORCE [33], which used
Φt = Qπθ − b (st) with any unbiased baseline b(s). The advantages of policy gradient
methods lie in stronger convergence guarantees, a natural form of exploration by using a
stochastic policy and the possibility to handle continuous action spaces without discretiza-
tion.

Even when using a baseline function, policy gradient methods suffer from high variance
and therefore slower convergence, because of their reliance on Monte Carlo rollouts. For
this reason, an estimate of the state value function V π(st) (also called the Critic) is often
learned in parallel to the policy (the Actor) and is used as the baseline, which highly
decreases the variance of the process while increasing the sample efficiency. In return, a
bias is introduced, which leads to the loss of convergence guarantees. Algorithms using
this approach are called Actor-Critic algorithms.

2.1.4 On-Policy vs Off-Policy

There are two ways for RL algorithms to explore the environment in order to get new
experiences that can then be used to improve the current policy. They differ in which kind
of policy is used to make decisions and generate new data.

The first way creates the family of on-policy methods. Here, the algorithms use the
same policy that they try to optimize also for the data gathering process. Therefore,
on-policy methods learn action values not for the optimal policy, but for a near-optimal
policy that still explores [26]. The advantage hereby lies in the fact that the data for the
policy updates comes from the same state visitation distribution that is encountered when
following the currently assumed best policy, which makes on-policy methods generally
more stable than their counterpart. In return, on-policy methods are generally less sample
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efficient since older samples can not be reused if they were not generated by the current
policy.

Off-policy methods use a different policy for exploration than the one they are currently
optimizing. The policy that is learned and that becomes the optimal policy is called the
target policy whereas the policy to generate behavior is called the behavior policy [26].
The possibility to reuse data from other policies (often in the form of a replay memory,
see DDPG) makes off-policy methods generally much more sample efficient. This benefit
comes at the price of fewer guarantees for performance improvements, which is why
off-policy methods are often considered more unstable than on-policy methods. Since
the behavior policy might look entirely different than the target policy, it might lead to
new experiences that are not beneficial or even disadvantageous for the improvement of
the current target policy. Value-based methods often use a common policy as an ϵ-greedy
behavioral policy. Here, a random action is chosen with probability ϵ; otherwise the
current target policy is followed [26].

State-of-the-art on-policy and off-policy algorithms try to counteract their specific deficits
(sample efficiency/ instability) by several techniques, which we see in Section 2.2.

Finding a good balance between choosing optimal actions and exploring the environment
to potentially find better options is not trivial, neither for off-policy nor for on-policy
methods. This problem is often referred to as the exploration-exploitation dilemma [26].
Typical approaches are decreasing the exploration over time or letting the agent decide
when to explore as it is done for stochastic policy gradient methods.

2.2 Algorithms

This section provides a short description of each of the used algorithms in the benchmarks.
All algorithms fall into the category of model-free approaches and can handle continuous
state and action spaces. The code base of all algorithms used for the benchmarks is built
upon the Stable Baselines [34] implementations, which is an improved version of the
OpenAI Baselines repository [35]. We made slight modifications to the code for evaluating
the performances correctly.
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2.2.1 A2C

A2C stands for Advantage Actor Critic and is a synchronous version of the A3C algorithm
first introduced in [28]. It is a policy gradient algorithm that uses an on-policy value
function V π

ϕ (st) (the Critic) that is learned during the training process as its baseline. This
baseline is biased, but reduces the variance of the policy gradient estimate, which makes
the training process faster and more stable.
Therefore, A2C uses the Advantage value

Aπ (st, at) = Qπ (st, at)− V π
ϕ (st) = rt + γV π

ϕ (st+1)− V π
ϕ (st)

instead of just the Q-Value.

The stochastic policy π (Actor) is updated via stochastic gradient ascend with the following
gradient estimator:

∇θJ (πθ) = Eπθ

[︄
T∑︂
t=0

∇θ log πθ (at | st)Aπ (st, at)

]︄

θk+1 = θk + α∇θJ (θ)

2.2.2 TRPO

Trust Region Policy Optimization (TRPO) was first introduced in [29]. It is an on-policy
algorithm that uses a constraint on the policy updates in order to restrict the change in
policy space to achieve guaranteed monotonic improvements.
Since small differences in the policy parameters can have big impacts on the performance
of the policy, it is problematic to use large step sizes for policy gradient algorithms. This
leads to bad sample efficiency which TRPO tries to improve by using importance sampling.
Here, samples from rollouts of previous policy versions are reused to estimate the rewards
of the current policy version. Those samples are reasonable estimates as long as the current
and old version of the policy are similar enough. This is why TRPO uses a trust region for
the policy update so that the policy update steps can not get too big. Staying inside the
trust region is ensured by bounding the average KL-divergence between two subsequent
policies:

DKL(πθold ||πθ) <= δ
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Putting this together, we get the following new objective function, which is maximized
with respect to the policy parameters θ and while satisfying the KL constraint:

J (θ) = Es∼ρθold ,a∼πθold

[︃
πθ (a | s)
πθold (a | s)

Aπθold (s, a)

]︃
,

where ρθold is the state visitation distribution for the policy πθold .

2.2.3 PPO

Proximal Policy Optimization (PPO) is an on-policy RL algorithm that was first introduced
in [30]. It builds on the same ideas as TRPO (2.2.2), but does not use a hard constraint
on the KL divergence between two subsequent policies. Instead, it has two other ways of
ensuring the trust region.

The clipping variant of PPO specifies how far the new policy can diverge from the old
policy by clipping the probability ratio r(θ) = πθ(a|s)

πθold
(a|s) between the old and the new

policy in the range of [1− ϵ, 1 + ϵ] with ϵ being a new hyperparameter which was set to
0.2. This leads to the following objective function without any additional constraints:

J CLIP(θ) = Es∼ρθold ,a∼πθold
[min(r(θ)Aπθold (s, a) , clip(r(θ), 1− ϵ, 1 + ϵ)Aπθold (s, a))]

The penalty variant of PPO adds the KL-divergence between the old and new policy as a
penalty by subtracting it from the objective:

J PENALTY(θ) = Es∼ρθold ,a∼πθold

[︃
πθ (a | s)
πθold (a | s)

Aπθold (s, a)

]︃
− βDKL(πθold ||πθ)

The hyperparameter β controls how much impact the KL penalty should have and can be
adjusted during the training process.

Stable baselines provides two versions of PPO (PPO1 and PPO2) which both use the
clipping variant of PPO, but differ in how multiprocessing takes place. PPO1 uses MPI
[36] whereas PPO2 uses vectorized environments. We provide benchmarks for both
implementations.
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2.2.4 DDPG

Deep Deterministic Policy Gradient (DDPG) [37] is an off-policy algorithm that combines
Q-Learning and Policy Search using the ideas of DPG [38] and Deep Q-Networks (DQN)
[39], which is being used as its critic part.
In contrast to DQN, DDPG is suited for continuous action spaces. While DQN chooses its
actions with a(s) = argmaxaQϕ(s, a), which is only feasible for finite and low dimensional
action spaces, DDPG learns an approximator for a(s), which is denoted as µθ(s) and used
as a deterministic actor (the policy). Since this policy is not of stochastic nature anymore
as it is for most other actor-critic algorithms, DDPG needs a different form of exploration,
which is the reason why noise is added to the policy at training time. This noise can come
in different forms, e.g. mean-zero Gaussian noise, time-correlated Ornstein-Uhlenbeck
noise ([40]) or parameter space noise ([41]).

The actor µθ(s) is being trained by trying to maximize the objective

J (θ) = Eπθ
[Q(s, µ(s|θ)|ω)]

using the performance gradient, which is described by

∇θJ (θ) ≈ ∇aQ (s, a|ω)|s=st,a=µ(st)
∇θµ (s|θ)|s=st ,

where ω denotes the parameters of the critic and θ the parameters of the actor [37].
As it is often done in connection with DQN, a target networkQ′ is used to obtain the targets
for the updates of the Q-network so that they do not depend on the same parameters
that are being updated anymore, which has lead to oscillations and/or divergence [26].
The parameters ω′ of the target network Q′ are close to the ones of Q, but time-delayed.
Instead of just periodically copying the parameters of the main network to the target
network as it is done in DQN, DDPG uses soft target updates in the form of

ω′ ← τω + (1− τ)ω′

after each update of the main network (τ is hyperparameter that has to be tuned, usually
close to 0). This way of updating the target network leads to slower changes of the target
values, which increases the stability of learning [37]. Another difference to DQN is that
DDPG also uses a target network for the action prediction, the target policy network µ′,
which is updated in the same time-delayed way as Q′. This results in the target equation

yi = ri + γQ′ (︁si+1, µ
′ (︁si+1|θ′

)︁
|ω′)︁
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with target functions Q′ and µ′ and their respective parameters ω′ and θ′ [37]. Using
these targets for the updated Q value, we get the loss

L(ω) = 1

N

∑︂
i

(yi −Q (si, ai | ω))2 ,

which is minimized with stochastic gradient descent.
N is the number of transitions (si, ai, ri, si+1) sampled from a so called replay buffer, which
is used to store previous experiences so that they can be reused later for updating the
policy and value function without querying the environment again. This procedure of
experience replay increases the sample efficiency of DDPG while also reducing the variance
of the updates, because successive updates are not correlated with one another as they
would be with standard Q-Learning [26].

2.2.5 TD3

Twin Delayed Deep Deterministic Policy Gradient (TD3) [42] is an off-policy algorithm
that builds on DDPG. It tries to minimize the effects of function approximation errors,
which lead to overestimated values and suboptimal policies, because the policy tries to
exploit errors in the Q-function. Three different improvements are made in comparison to
DDPG that improve this issue.
The first improvement is Target Policy Smoothing. This regularization technique is applied
to the action that is used to compute the Q target, but not when interacting with the
environment. Clipped noise (from −c to c) is added to each dimension of the action and
the resulting action is then clipped to ensure that it stays in the range of valid actions, i.e.
aLow ≤ a ≤ aHigh:

a′ (si+1) = clip
(︁
µ′ (︁si+1|θ′

)︁
+ clip(ϵ,−c, c), aLow, aHigh

)︁
, ϵ ∼ N (0, σ).

This approach smoothes out the Q-function over similar actions so that the Q-function
approximator does not develop incorrect narrow peaks, which are then exploited by
the deterministic policy and lead to target values with high variance [42]. The second
improvement is called Double Q-Learning, which means that TD3 concurrently learns two
Q-functions, Q1 and the twin Q2, and uses the one that outputs a smaller value in the
target for both Q-functions:

yi = ri + γ min
k=1,2

Q′
k

(︁
si+1, a

′ (si+1) |ω′
k

)︁
.
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By doing so, we get the following loss functions for Q1 and Q2:

L(ω1) =
1

N

∑︂
i

(yi −Q (si, ai | ω1))
2 ,

L(ω2) =
1

N

∑︂
i

(yi −Q (si, ai | ω2))
2 .

This approach is used to counteract the often reported problem of overestimation bias
of the Q-functions, which is shown to lead to safer policy updates with stable learning
targets [42].
The third thing that TD3 changes in comparison to DDPG is the usage of Delayed Policy
Updates. Here, the policy is updated less frequently than the Q-functions (the critics),
i.e. not at every timestep. The policy updates can then rely on a lower variance value
estimate, which results in higher quality policy updates [42]. The objective is defined just
as it is for DDPG, but in terms of Q1:

J (θ) = Eπθ
[Q1(s, µ(s|θ)|ω)] .

2.2.6 SAC

Soft Actor-Critic (SAC) ([43]) is an off-policy actor-critic RL algorithm that combines the
ideas of stochastic policy optimization with the DDPG-way of learning. It uses the clipped
Double Q-Learning approach just like TD3, but adds entropy regularization as one of its
central features. Entropy can be seen as a measurement of uncertainty in the outcome of
a random variable. If the outcome is very predictable, the entropy is small and the more
uncertain the outcome gets the higher the entropy of the random variable is. Formally,
entropy is defined as

H(P ) = E
x∼P

[− logP (x)],

where x is a random variable and P describes its probability mass or density function.

Instead of only trying to maximize the expected cumulative reward, SAC also tries to
maximize the entropy of the policy at the same time, which leads to a new definition of
the objective (infinite-horizon formulation):

J (π) = Eπ

[︄ ∞∑︂
t=0

γt(rt + αH (π (· | st)))

]︄
,
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where α > 0 is an explore-exploit trade-off coefficient and H (π (· | st)) describes the
entropy of the policy π at timestep t.
The Q-value function formulation is adjusted in the same way to include the entropy
bonuses from every timestep but the first:

Qπ(s, a) = Eπ

[︄ ∞∑︂
t=0

γtrt + α
∞∑︂
t=1

γtH (π (· | st)) | s0 = s, a0 = a

]︄
,

so that we get the connection to the value function in this way:

V π(s) = E
a∼π

[Qπ(s, a)] + αH(π(· | s)) = E
a∼π

[Qπ(s, a)− α log π(a | s)] .

Just as TD3, SAC uses two target Q-networks which are softly updated as explained in
Section 2.2.4. SAC uses no target policy and therefore does not make use of target policy
smoothing. Instead, it uses a stochastic policy, which incorporates noise because of its
stochasticity, to achieve a similar effect [27].
The loss functions for Qk look similar to the ones for TD3:

L(ωk) =
1

N

∑︂
i

(yi −Q (si, ai | ωk))
2 ,

but with a target that includes the entropy bonus:

yi = ri + γ

(︃
min
k=1,2

Q′
k

(︁
si+1, ãi+1|ω′

k

)︁
− α log πθ (ãi+1 | si+1)

)︃
, ãi+1 ∼ πθ (· | si+1)

where the next action ãi+1 is sampled from the current policy and not taken from the
replay buffer [27].

In order to learn the policy, a reparameterization trick is used. Sampling from the policy is
done by computing a deterministic function which is dependant on the state, the policy
parameters and independent noise ξ:

ãθ(s, ξ) = tanh (µθ(s) + σθ(s)⊙ ξ) , ξ ∼ N (0, I).

The log standard deviations are not state-independent parameter vectors like they were
for A2C,PPO and TRPO, but are instead represented as outputs from the neural network
making them dependent on the specific state. In addition to that, a tanh squashing
function is added to bind the actions to a finite range [27].
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Using these adaptations, SAC can then maximize the objective as an expectation over
noise instead of as an expectation over actions:

J (θ) = Eπθ
ξ∼N

[︃
min
k=1,2

Qk (s, ãθ(s, ξ))− α log πθ (ãθ(s, ξ) | s)
]︃
.

Different to TD3, SAC uses the minimum of the two Q-function outputs instead of always
using the first approximator Q1.

The different adjustments for SAC lead to faster learning speed and a more stable learning
behavior [43].

2.3 Environments

In this section, we provide a description of the environments used for the benchmarks. We
make use of three big libraries which provide several tasks for benchmarking RL algorithms.
Each of those libraries includes a set of continuous control tasks. The first library we use
is Open AI Gym ([24]), which was one of the first libraries that provided a wide range
of RL tasks. PyBullet ([25]) was introduced later and provided own implementations of
various tasks. Our third library, the DeepMind Control Suite ([44]), focuses exclusively
on continuous control tasks and has a unified reward structure that offers interpretable
learning curves and aggregated suite-wide performance measures [44]. Both OpenAI
Gym and the DeepMind Control Suite are based on the MuJoCo physics engine [45] while
PyBullet has its own physics engine. Some general statements about the reward functions
of each library can be made:

Open AI Gym:
The exact reward functions look like the following:

r = b+ vx − wc · (∥a∥)2 − wf · (∥f∥)2

with b being a bonus for being alive (+1 for all tasks except Cheetah), vx being the forward
velocity of the robot, a being the action vector and f being the vector of raw contact forces
(clipped from −1 to 1). Consequently, the reward is negatively impacted by the squared
euclidean norm of the action vector and the same happens for the raw contact forces. The
values of the weights wc for the control cost and wf for the contact cost (only used for
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Ant) are specific to the particular environment. The same is the case for the episode-end
criteria of each environment.

PyBullet:
The PyBullet library adds two costs to the reward, which leads to the reward formulation
of

r = b+ vx − ce − cj

with b being the bonus for being alive (+1 for each timestep, −1 if the robot dies) and vx
being the forward velocity of the robot. An electricity cost ce for using motors is calculated
by

ce = 2 ·
∑︁N

i=1 |ai · vi|
N

+ 0.1 · (∥a∥)
2

N

where a is the action vector, v is the vector of the joint velocities, ai stands for the action
for joint i and N is the total amount of joints. The joints-at-limit cost cj = 0.1 · ns

discourages the amount ns of stuck joints. This exact reward function is used for all
PyBullet environments, but the episode-end criteria are different for each.

DeepMind Control Suite:
The environments of the DeepMind Control Suite all have rewards in the unit interval
r(s, a) ∈ [0, 1]. They also run for a fixed length of exactly 1000 time steps per episode
without any early stopping criteria due to out-of-bounds states or bad torso tilts. Therefore,
the maximum achievable cumulated undiscounted reward is 1000 for all tasks. However,
this score is not achievable in practice since it takes some time for the robots to reach a
state in which they can reliably get the maximum reward of 1.0 per time step [44]. The
agent can get rewarded for torso height and forward velocity depending on the specific
task.

Instead of providing benchmarks for all available tasks, we focus on a subset of continuous
control tasks that have become the de-facto benchmark in continuous RL [44]. In particular,
we use the domains of Hopper, Walker, Cheetah and Ant. These tasks are challenging,
because they have high degrees of freedom and also make it easy to get stuck in local
optima. Therefore, a high amount of exploration is needed to learn optimal control policies
that do not only try to not let the robot fall over, e.g. by staying at the origin, but instead
focus on moving forward as fast as possible [20]. The dynamics of the tasks are subject
to second-order equations of motion, which means that the states are built based on
position-like and velocity-like variables, while the state derivatives are acceleration-like
[44]. These properties make the chosen tasks appropriate for benchmarking algorithms
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Table 2.1: Summary of the environment specifics

Env ID Obs dim Action dim

Gym Hopper Hopper-v3 11 3

Gym Walker Walker2d-v3 17 6

Gym Cheetah HalfCheetah-v3 17 6

Gym Ant Ant-v3 111 8

PyBullet Hopper HopperBulletEnv-v0 15 3

PyBullet Walker Walker2DBulletEnv-v0 22 6

PyBullet Cheetah HalfCheetahBulletEnv-v0 26 6

PyBullet Ant AntBulletEnv-v0 28 8

DeepMind Hopper Hopper; Hop 15 4

DeepMind Walker Walker; Walk 24 6

DeepMind Cheetah Cheetah; Run 17 6

DeepMind Ant Quadruped; Walk 78 12

in a simulated way with results that can be compared with the expected performances for
real-world robotics or other physical control tasks.

The exact identifier, the observation space dimensionality and the action space dimension-
ality of each environment in each library can be found in Table 2.1. All environments use
continuous states and actions.

2.3.1 Hopper

This environment consists of a two-dimensional one-legged robot (see Fig. 2.1a) which
has to move forward by doing hops.
The received reward can include a bonus for being alive and is often positively impacted
by the forward velocity of the robot. Negative impacts can come from stuck joints and the
characteristics of the action vector depending on the specific library.
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(a) Hopper (b) Walker (c) Cheetah (d) Ant (Quadruped)

Figure 2.1: The environments used for the benchmarks. Visualizations exemplary taken
from the corresponding task in the Deepmind Control Suite [1].

An episode can end when the robot’s torso is tilted too much, when an out-of-bounds
state is reached or when 1000 timesteps are reached.
The dynamics of this task are very unstable, which leads to agents often getting stuck in
local optima by only trying to keep the robot alive without focusing on moving forward
quickly.

Gym:
The control cost weight wc is set to 0.001 and wf equals 0. The alive bonus b is 1 for each
timestep.
Uniform noise from −0.005 to +0.005 is added to the vector of the initial state.
The episode-end criterion is reached in four different ways. The first way includes the
z-coordinate of the body (zbody) getting smaller than or equal to 0.7. The episode is also
ended when |θ| ≤ 0.2, when the state leaves the range of (−100, 100) in any dimension or
when 1000 timesteps are reached with θ being the forward pitch of the body.

PyBullet:
The total amount of actuated joints N is 3, which is why also the action is of dimension 3.
The initial state is [ 0. sin θ cos θ 0. 0. 0. 0. 0. j1 v1 j2 v2 j3 v3 0. ] with the relative joint positions
ji that are derived by adding uniform noise from −0.1 to +0.1 to their initial absolute
positions, the joint velocities vi that are initially all equal to zero and θ, which represents
the robot’s initial angle to the target position.
An episode can end on three different occasions. The first criterion is reached when the
sum of the body height above ground and the initial torso height (1.25 for Hopper) is
smaller than or equal to 0.8. The other ways for an episode to end are either the absolute
value of the body pitch being greater than or equal to 1 or the full 1000 timesteps being
reached.
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DM Control:
The reward is calculated based on the forward velocity v of the robot:

r =

⎧⎨⎩max(0,min(
v

2
, 1)), if 0.6 ≤ z ≤ 2

0, otherwise
,

where z is the body height of the robot.
As for all DeepMind environments, the episodes always run for exactly 1000 timesteps.

2.3.2 Walker

This environment consists of a two-dimensional bipedal robot (see Fig. 2.1b) which has
to walk forward as fast as possible. The task is more difficult than Hopper as it has more
degrees of freedom and is even more prone to falling [20].
The received reward can include a bonus for being alive and can also be positively impacted
by the forward velocity of the robot. Negative impacts can come from stuck joints, touching
legs and the characteristics of the action vector depending on the specific library.
An episode can end when the robot’s torso is tilted too much, when an out-of-bounds
state is reached or when 1000 timesteps are reached.

Gym:
The control cost weight wc is set to 0.001 and wf equals 0. The alive bonus b is 1 for each
timestep.
Uniform noise from −0.005 to +0.005 is added to the vector of the initial state.
The episode-end criterion is reached in three different ways. For Walker, the z-coordinate
of the body (zbody) is not only lower bounded, but also upper bounded. An episode ends
if zbody leaves the range of (0.8, 2.0), when |θ| ≤ 1., where θ is the forward pitch of the
body, or when 1000 timesteps are reached. There are no specified state bounds that have
to be fulfilled as it is the case for Hopper.

PyBullet:
The total amount of actuated joints N is 6, which is why also the action is of dimension 6.
The initial state is [ 0. sin θ cos θ 0. 0. 0. 0. 0. j1 v1 j2 v2 j3 v3 j4 v4 j5 v5 j6 v6 0. 0. ] with the relative
joint positions ji that are derived by adding uniform noise from −0.1 to +0.1 to their
initial absolute positions, the joint velocities vi that are initially all equal to zero and θ,
which represents the robot’s initial angle to the target position.
The episode-end criteria are defined in the exact same way as they are for PyBullet Hopper
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(see Sec. 2.3.1). That means, if the sum of the body height above ground and the initial
torso height (1.25 for Walker) is smaller than or equal to 0.8, the episode ends. The same
happens if the absolute value of the body pitch is greater than or equal to 1 or when the
full 1000 timesteps are reached.

DM Control:
The reward is calculated based on the forward velocity v of the robot and a factor s:

r = s · 5 ·max(0,min(v, 1)) + 1

6
,

where
s =

3 ·max(0,min(1.5z − 0.8, 1)) + (0.5 + 0.5u)

4

describes the standing factor with z being the torso height of the robot and u being a
projection from the z-axes of the torso to the z-axes of the world.
As for all DeepMind environments, the episodes always run for exactly 1000 timesteps.

2.3.3 Cheetah

This environment consists of a two-dimensional bipedal cheetah robot (see Fig. 2.1c)
which has to run forward as fast as possible.
The dynamics of this task are much more stable compared to tasks like Hopper, which
means that failures (abrupt episode endings) occur less often and with less variance [21].
The reward is build differently depending on the specific library.
An episode only ends if the full 1000 timesteps are reached.

Gym:
The control cost weight wc is higher for this environment (0.1) and wf equals 0. Contrary
to Hopper and Walker, the received reward includes no bonus for being alive (b = 0) so
all focus is laid on the robot’s forward velocity.
For Cheetah, more uniform noise (from −0.1 to +0.1) than for Hopper and Walker is
added to the vector of the initial state.

PyBullet:
The total amount of joints N is 6, which is why also the action is of dimension 6.
The initial state is [ 0. sin θ cos θ 0. 0. 0. 0. 0. j1 v1 j2 v2 j3 v3 j4 v4 j5 v5 j6 v6 0. 0. 0. 0. 0. 0. ]with the
relative joint positions ji that are derived by adding uniform noise from −0.1 to +0.1 to
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their initial absolute positions, the joint velocities vi that are initially all equal to zero and
θ, which represents the robot’s initial angle to the target position.
The alive bonus b is 1 if both the absolute body pitch is smaller than 1.0 and also no body
part other than the feet touches the ground or another body part. If that is not the case,
the episode is not ended, but the alive bonus becomes −1 instead.

DM Control:
The reward is calculated based on the forward velocity v of the robot:

r = max(0,min(
v

10
, 1)),

which means that r is linearly proportional to v up to a maximum of 10m/s [1].
As for all DeepMind environments, the episodes always run for exactly 1000 timesteps.

2.3.4 Ant

This environment consists of a three-dimensional quadruped robot (see Fig. 2.1d) which
has to walk forward as fast as possible. The third dimension and therefore bigger observa-
tion and action spaces make this environment the hardest to learn of the four described
environments, in theory.
The received reward can include a bonus for being alive and can also be positively impacted
by the forward velocity of the robot. Negative impacts can come from stuck joints and the
characteristics of the action vector depending on the specific library.
An episode can be ended when the robot’s torso height gets too low or when 1000 timesteps
are reached.

Gym:
The control cost weight wc is set to the highest value of all environments with 0.5. Also,
Ant is the only environment where wf is not zero, but 0.0005 instead.
Just like for the Cheetah environment, the Ant environment makes use of the higher
uniform noise of −0.1 to +0.1, which is added to the vector of the initial state.
The episode-end criterion is reached in only two ways. The z-coordinate of the body
(zbody) has to stay in the range of (0.2, 1.0). If that is not the case or 1000 timesteps have
been reached, the episode is ended.

PyBullet:
The total amount of joints N is 8, which is why also the action is of dimension 8.
The initial state is [ 0. sin θ cos θ 0. 0. 0. 0. 0. j1 v1 j2 v2 j3 v3 j4 v4 j5 v5 j6 v6 j7 v7 j8 v8 0. 0. 0. 0. ]with
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the relative joint positions ji that are derived by adding uniform noise from −0.1 to +0.1
to their initial absolute positions, the joint velocities vi that are initially all equal to zero
and θ, which represents the robot’s initial angle to the target position.
For Ant, there is no body pitch to be considered so the episode is ended when the central
sphere scrapes the ground, which is expressed by the sum of the body height above ground
and the initial torso height (0.75 for Ant) becoming smaller than or equal to 0.26. An
episode is also ended when 1000 timesteps are reached.

DM Control:
The reward is calculated based on the forward velocity v of the robot and a factor that is
proportional to how upright the torso is:

r = (0.5u+ 0.5) ·max(0,min(v + 0.5, 1)),

where u is a projection from the z-axes of the torso to the z-axes of the world.
As for all DeepMind environments, the episodes always run for exactly 1000 timesteps.
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3 Experiments

In this chapter, we describe the experiments that are carried out including the setup, the
evaluation metrics and also the chosen hyperparameters.

3.1 Experiment Setup

Experiments: We make use of all algorithms described in Section 2.2 (A2C, TRPO, PPO
1 and 2, DDPG, TD3, SAC) building on the implementations of Stable Baselines [34].
All algorithms are evaluated on the four tasks described in Section 2.3, namely Hopper,
Walker, Cheetah and Ant, to cover a diverse range of continuous control tasks with different
dynamics. Moreover, we include different variations of the same task by using three
different libraries that all provide their own specific environment implementations (Open
AI Gym [24], DeepMind Control Suite [44] and PyBullet [25]). Consequently, we cannot
only investigate how the algorithm performances differ from task to task, but also which
impact different environment implementations of the same task have for the evaluations in
order to give a more insightful overview. This procedure is important, because parameter
tuning may overfit on a single environment and a better performance in one environment
does not mean that the algorithm is more suited or that the parametrization is reasonable.
In addition to a general overview about the algorithm performances on the different
environments (Section 4.1), we investigate the impact of input normalization for the
algorithms A2C, TRPO and both versions of PPO (Section 4.2) as well as compare the
results between small and big network architectures for the algorithms DDPG, TD3 and
SAC (Section 4.3).
The python requirements look like the following: python 3.7.4, tensorflow-gpu 1.15.0,
stable-baselines 2.10.0, gym 0.17.2, pybullet 3.0.4 and dm-control 0.0.322773188.

Training and evaluation process: During the learning process, the performance of RL
algorithms is not very stable, which is why it is not recommended to track a running
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average performance based on the most recent training samples as this might average the
performance across several different policy updates and therefore lead to misleading and
highly fluctuating results. In addition to that, exploratory behavior cannot be factored out
so that, even if the policy was fixed, it would not be possible to distinguish exploratory,
noisy actions from greedy actions sampled on-policy, which means we are not actually
evaluating the behavior the agent currently considers as best. In order to circumvent these
issues, we perform our evaluations periodically after batches of update steps (one epoch)
have been carried out. After each of those epochs we do one evaluation phase for which
we hold the current policy fixed and predict actions in greedy fashion. One epoch includes
215 = 32768 training steps and the evaluation is carried out over 214 = 16384 episode
steps in order to derive a meaningful average performance after each training epoch.

Recent work has shown that the variance in benchmarking results due to environment
randomness or stochasticity in the learning process is a major concern for deep RL [22].
That means that the randomness in the initial model weights, the randomness in the
exploration and also in the dynamics of the environments causes drastic differences in the
actual outcome of each run. They also show that even averaging the results over too few
runs can lead to misleading results by splitting 10 different runs into two sets of 5. The
variance between runs is enough to create statistically different distributions for the two
sets just from varying random seeds [22]. What makes this problem even worse is that
often only the top-N runs of several are selected to show seemingly good results which
may only be caused by lucky random seeds (e.g. [46] and [28]).

That is why we average our results for each experiment over 25 different independent runs.
To visualize the variance across the runs, we also report the 95% confidence intervals of
our results,

(x− tn−1 ·
s√
n
, x+ tn−1 ·

s√
n
),

with n describing the sample size, x = 1/n ·
∑︁n

i=1 xi describing the sample mean, s
describing the sample standard deviation and tn−1 being the critical t-value from the
t-distribution with n− 1 degrees of freedom [47]. So we can say that the true mean of
each metric lies within the confidence bounds for 95% of all experiments carried out in
this fashion.

Evaluation metrics: In the literature, the algorithm evaluations are often reported with
highly biased performance measures which lead to misleading results. One of such
measures is the Maximum Return, which is considered to be unsuitable, because single
outlying trials may yield a vastly larger maximum return than what can usually be achieved,
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especially for high-variance policies and environments [21]. The Maximum Average Return
is better in that regard, but still has the same problem of high performing sets of trials
being cherry picked for good results.

For those reasons, we track the Average Undiscounted Return

R =
1

n

n∑︂
i=1

Ri =
1

n

n∑︂
i=1

T∑︂
t=0

rt

over all n episodes that fit in the 16384 evaluation steps as it is suggested in [22].

In addition to that, we depict the Average Discounted Return

J =
1

n

n∑︂
i=1

Gi =
1

n

n∑︂
i=1

T∑︂
t=0

γtrt

calculated in the same fashion. This metric is not shown very frequently in related
work even though it represents the expected discounted return, which is the value that is
approximated by the value functions.

Speaking of which, we also keep track of the (Q-)Value Function Output averaged over
all initial states of the evaluation episodes. By doing so, we have a measure of the expected
discounted return at the start of an episode. We can then compare this value with the
actual discounted return J to examine how accurately the value function approximation
works. In the case of TD3 and SAC we take the minimum value of the two Q-value
functions.

Another metric that is documented is the Average Episode Length. The benchmark
environments often include a bonus reward for staying alive at each timestep so that
just trying to keep the episode running forms a local optimum for the behavior of the
agents, which is why it makes sense to investigate how the average episode lengths change
with more and more epochs. We exclude this metric for environments with fixed episode
horizons that are not dependent on the policy (e.g. Cheetah Gym).

The final metric that is kept track of is the Entropy of the policies of A2C, TRPO, PPO1
and 2 as well as SAC. This metric measures the uncertainty of the action choice of the
current policy and can be used to examine the exploratory behavior over the course of the
training process.

For all five described metrics we take the arithmetic mean over all 25 runs and then
calculate the 95% confidence intervals as described in the paragraph above. The figures
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use a different color for each evaluated algorithm and depict the confidence bounds by
using a transparent version of the respective color.

3.2 Hyperparameters

In this section, we provide the hyperparameter values used for the benchmarks. In order to
create reproducible results we include all customized hyperparameters as suggested in [22].
All unmentioned hyperparameters are left at the default values of the algorithm’s Stable
Baselines implementation (release 2.10.0). The hyperparameters are manually tuned
on the Gym Hopper environment using different sources ([48], [20], [30]) as starting
values for the tuning process to produce comparable results. The found hyperparameter
settings are then used for all tasks of all libraries in order to investigate the robustness of
hyperparameters across different environments.

3.2.1 Common Hyperparameters

Network Architecture: We use feed-forward neural networks with identical network
sizes as approximators for the policy and value function. There are no shared layers
between them so that they are independent from each other. This approach makes sure
that changes in the policy are not affecting the value function and, therefore, also the
gradients are kept untouched, which results in a mathematically more correct way of
approximating the policy and value functions.

The networks sizes are the same for A2C, TRPO as well as PPO1 and 2 with two hidden
layers of 32 units. DDPG, TD3 and SAC are shown to perform better with bigger networks
[21], which is why we use two hidden layers with 400 and 300 hidden units for the general
experiments (Sec. 4.1). In Section 4.3, we explore the difference between the performance
of small and big networks for those algorithms.

ReLU [49] is chosen as our activation function throughout all experiments, which is
commonly used in the literature and is shown to perform best across environments and
algorithms [22].

Discount Factor: Our discount factor γ is set to 0.99 for all experiments. This is a commonly
used value which ensures that the long term effects are properly taken into account when
optimizing the policy.
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Buffer Size: The replay memory for DDPG, TD3 and SAC can contain 500000 samples,
which is a size that is big enough to contain a diverse range of experiences while still
fitting into the memory.

Noise type: We use Gaussian action space noise with mean 0 and a standard deviation
of σ = 0.2 for DDPG and σ = 0.1 for TD3. Parameter space noise is not used, but
might improve the results for some environments as described in [41], because it is state-
dependant and, thus, can adjust the exploratory behavior specifically based on the current
state.

Reward Scale: This hyperparameter can be used to potentially improve the stability
of the training process by multiplying the gained rewards by a factor RS. We use no
reward scaling (RS = 1), because the results of this hyperparameter are reported to be
inconsistent between different environments and scaling values [22]. However, some
related works found a value of 0.1 to produce the best overall results [20], [50].

Input Normalization: We test the impact of normalized observations in Section 4.2 for
the algorithms A2C, TRPO as well as PPO1 and 2 by using the VecNormalize wrapper of
Stable Baselines. It will be specified whether those algorithms used normalized inputs in
the specific experiments or not. For the remaining algorithms we do not normalize the
inputs with the exception of DDPG.

3.2.2 Specific Hyperparameters

The hyperparameters that are different for each of the benchmarked algorithms can be
found in Table 3.1. We also include hyperparameters that are exclusive for some algorithms
and label these fields as "-" for algorithms that do not use this hyperparameter.
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Table 3.1: Algorithm specific hyperparameters

A2C TRPO PPO DDPG TD3 SAC

Batch Size 32 2048 2048 64 128 256

Actor LR 0.001 0.01 (max KL) 0.0003 0.0001 0.001 0.0003

Critic LR 0.001 0.00025 0.0003 0.001 0.001 0.0003

Ent Coef 0.0 0.0 0.0 - - ’auto’

VF Coef 0.5 - 0.5 - - -

tau - - - 0.001 0.005 0.01

vf_iters - 5 - - - -

noptepochs - - 10 - - -

lr_schedule ’linear’ - - - - -

GAE λ - 0.98 0.95 - - -

nminibatches - - 64 - - -

cliprange - - 0.2 - - -

learning_starts - - - - 8192 10000

train_freq - - - - 1024 1

gradient_steps - - - - 1024 1
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4 Results

This chapter shows and describes the outcomes of the experiments mentioned in Chapter
3. We compare the results of the different algorithms with results that can be found in
related work and also show how the algorithm performance varies depending on the
chosen environment and library. We first show the results of the settings found to be best
for each individual task and investigate the impact of input normalization and network
size in the later sections.

4.1 General

This section includes the results for the best performing settings within the selected
environments. We show the progress of the learning process in terms of the undiscounted
cumulative reward R, the discounted cumulative reward J , the value function output V ,
the entropy of the policy and the episode length when it is meaningful. All experiments
are run for 100 epochs, which corresponds to 3276800 total training steps.

4.1.1 Hopper

Looking at the algorithm performances on the OpenAI Gym Hopper environment we can
clearly see that SAC is the best performing algorithm in terms of the discounted cumulative
reward J (see Figure 4.1). It not only has the fastest learning behavior, but also the
highest peak performance at the later epochs. Furthermore, the SAC learning behavior
can be described as very stable because of the low margin of error throughout the learning
process over the 25 different runs. The same can be said for TRPO, PPO1 and PPO2 on
Hopper Gym, but those algorithms reach a lower peak performance and also converge a
bit slower (especially PPO2). TD3 reaches a similar performance while having a somewhat
more unstable learning process leading to higher error margins. This instability is even

33



more visible for A2C and DDPG. In addition to that, those two algorithms also perform
considerably worse in terms of average J . This instable behavior of DDPG is also reported
in [21] and explained by the high variance of DDPG itself, but also by the high stochasticity
of the Hopper environment. We later show that the performance of DDPG is indeed a lot
better on other tasks, e.g. Cheetah (see Section 4.1.3). In [20] they improve the stability
of DDPG by scaling the reward by a factor of 0.1 which is not tested here. Different reward
scaling factors are benchmarked in [22], who show that this approach can indeed have a
big impact on the algorithm performance. However, the results are inconsistent between
different environments and scaling factors, which is why a more principled approach like
the adaptive reward target rescaling in [51] is suggested.
The benchmarks on the PyBullet Hopper environment look similar in terms of overall
algorithm rankings when looking at J with SAC again performing the best. TD3 scores
a bit better on the PyBullet variant of Hopper reaching values nearly as good as SAC
and outperforming the on-policy algorithms TRPO, PPO1 and PPO2 by a decent margin.
Especially TRPO achieves results that are considerably worse comparatively reaching only
81% of the final SAC performance (cf. 91% on Gym Hopper). These results show that
even on the same task the algorithm performances can differ significantly depending on
the chosen library and its exact implementation of the environment. Another discrepancy
that can be observed for all algorithms on PyBullet Hopper is expressed by the size of
error margins. They are significantly larger than on Hopper Gym, which means that the
individual random seed has a very big impact on the algorithm performance - even with
the same hyperparameters. This observation is also made by [22] and is the reason why
benchmarks should always average the results over a sufficient number of independent
runs to ensure that the reported scores are not only based on lucky random seeds. The
initial learning behavior of DDPG looks a bit faster on PyBullet Hopper than it does on
Gym Hopper, but it still cannot reach a good performance after 100 epochs and neither
can A2C.
The evaluation of DeepMind Hopper paints a completely different picture than what can
be observed for the other two libraries. SAC is the only algorithm that shows a noticeable
performance increase, but still can not reach very high J values. All other algorithms can
not learn a behavior that notably increases the discounted return, which emphasizes how
hard the DeepMind variant of Hopper is compared to its counterparts.

The fact that several evaluation metrics should be used to describe the performance of an
algorithm can be seen in Figure 4.2. The results in terms of the undiscounted cumulative
reward R do not match the picture that emerges when only looking at J (Fig. 4.1). On
Gym Hopper, TD3 appears to be the best performing algorithm. The large confidence
bounds show that it is even more important to perform enough runs when comparing
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Figure 4.1: J (discounted cumulative reward) on the Hopper environment averaged over
25 runs with 95% confidence bounds. Input normalization was used for A2C,
TRPO, PPO1 and PPO2 onGymHopper, for A2C and PPO2 on PyBullet Hopper,
and for all four on-policy algorithms on DeepMind Hopper.

benchmarks in terms of R. SAC shows a very fast initial learning behavior (as is the case
when looking at the J curve), but then seemingly drops in performance and ends up with
the third worst final undiscounted return at the 100 epoch mark. This behavior can be
explained by looking at the course of the episode lengths during the training process.
The plots in Figure 4.3 are closely related to the progress in terms of R. The reason
for that is that the Hopper environment adds a bonus for being alive to the reward at
each timestep so that learning a policy that focuses on keeping the robot alive at each
timestep and therefore maximizes the average episode length automatically also increases
R. SAC, however, in this case, learns a policy that focuses on maximizing the immediate
(short-term) reward at each timestep (e.g. by trying to reach a very high forward velocity),
which leads to shorter episodes, because out-of-bounds states are reached faster, and,
consequently, less undiscounted cumulative reward. This discrepancy can not be observed
for SAC on the PyBullet Hopper environment where the algorithm leads in performance
for both J and R so the exact reward function of the specific environment implementation
plays a large role in how the evaluation of different agents looks. Looking at the DeepMind
variant of Hopper in terms of R adds proves this point. Apart from SAC, no algorithm
can achieve notable return values as it is the case for J , which can be explained by the
missing bonus for just staying alive. The policy is only rewarded for forward velocity for
the DeepMind implementation so that only real hopping behaviors increase the gained
reward.
Comparing the other algorithms learning curves in terms of R as opposed to J leads to
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roughly the same results with some notable exceptions. On the Gym Hopper environment,
the PPO2 performance appears worse than the performance of PPO1 and TRPO although
it is roughly on par in terms of J . The same phenomenon can be observed for PPO2 on
PyBullet Hopper with TRPO reaching better R values, but PPO2 achieving better values
for J . A2C and DDPG still have the worst performances also when looking at R, but they
appear a bit closer on the PyBullet variant.

0 20 40 60 80 100
epoch

0

500

1000

1500

2000

2500

3000

3500

Re
tu

rn

Return, Hopper Gym

0 20 40 60 80 100
epoch

0

500

1000

1500

2000

2500

Re
tu

rn
Return, Hopper Bullet

0 20 40 60 80 100
epoch

0

50

100

150

200

Re
tu

rn

Return, Hopper DM

a2c ddpg ppo1 ppo2 sac td3 trpo

Figure 4.2: Return (undiscounted cumulative reward) on the Hopper environment aver-
aged over 25 runs with 95% confidence bounds. Input normalization was
used for A2C, TRPO, PPO1 and PPO2 on Gym Hopper, for A2C and PPO2 on
PyBullet Hopper, and for all four on-policy algorithms on DeepMind Hopper.

The before mentioned instability of DDPG is also clearly depicted by its exploding value
function estimates which can be seen in Figure 4.4. The off-policy nature of the algorithm
leads to sudden failures if the environment dynamics are unstable, which is the case for
Hopper. That means, the exploration noise can lead to abrupt episode terminations which
make it hard to learn a good Q-value estimation [22]. The value function estimates of the
other algorithms roughly correspond to the course of their achieved J values. Notably, SAC
and TD3 seem to underestimate the value of the starting states on the PyBullet Hopper
environment, because of their Double Q-Learning method. An exception to this behavior
can be seen when looking at the course of the value estimate of SAC on DeepMind Hopper.
After around 50 epochs with stable estimates, the outputs explode and highly fluctuate for
the remaining 50 epochs. We have no explanation of why this always happens at roughly
the same point in the training process.

The course of the entropy of the algorithms’ policies is shown in Figure 4.5. The entropy
of SAC lowers much faster than it does for the other algorithms on both the Gym and
the PyBullet variants of Hopper and subsequently stays on roughly the same value. This
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Figure 4.3: Episode length on the Hopper environment averaged over 25 runs with 95%
confidence bounds. Input normalization was used for A2C, TRPO, PPO1 and
PPO2 on Gym Hopper, and for A2C and PPO2 on PyBullet Hopper.
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Figure 4.4: Value function output on the Hopper environment averaged over 25 runswith
95% confidence bounds. Input normalization was used for A2C, TRPO, PPO1
and PPO2 on Gym Hopper, for A2C and PPO2 on PyBullet Hopper, and for all
four on-policy algorithms on DeepMind Hopper.
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observation can not be made for DeepMind Hopper where SAC only slightly decreases its
entropy at the start and stays there throughout the remaining epochs. In contrast to that,
PPO1 and especially PPO2 lower their entropy values much further though initially not as
fast. For A2C and TRPO, nearly no decrease in the entropy values is visible, which can be
explained by the fact that no performance gains are made and the agents want to keep
exploring. For Gym and PyBullet Hopper, the policies of the batch algorithms gradually
decrease their entropy over the training process and reach the minimum value after 100
epochs. PPO1 on PyBullet forms an exception to this with increasing entropy values after
around 30 epochs.
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Figure 4.5: Entropy on the Hopper environment averaged over 25 runs with 95% confi-
dence bounds. Input normalization was used for A2C, TRPO, PPO1 and PPO2
on Gym Hopper, for A2C and PPO2 on PyBullet Hopper, and for all four on-
policy algorithms on DeepMind Hopper.

4.1.2 Walker

For both the OpenAI Gym and also the PyBullet implementation of the Walker task, SAC
achieves the best performance regarding the discounted cumulative reward J (see Figure
4.6) closely followed by the results of TD3. On PyBullet Walker, those two algorithms also
have a much faster initial learning behavior compared to the other algorithms breaking
the mark of J = 100 convincingly after only 10 epochs, which is already in the range
of what the other algorithms reach after the full 100 epochs. The same can be said
for the DeepMind version of Walker where SAC and TD3 significantly outperform the
other algorithms both in terms of initial learning speed and also in terms of asymptotic
performance. What is notable is that after the initial big rise in observed J values, the
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performance stays at about the same level throughout the rest of the training process
suggesting that no further improvements can be made. The performances of TRPO, PPO1
and PPO2 are very similar, especially on PyBullet where all three algorithms show nearly
the exact same learning behavior only differing in a small drop in performance of PPO1 at
the later epochs. On Gym Walker, PPO1 starts off with a bit faster initial learning speed,
but ends up at roughly the same final values as PPO2 and TRPO at the 100 epoch mark. It
has to be noted that the error margins are a lot bigger comparatively on PyBullet Walker
just like for the Hopper task (cf. Section 4.1.1). For DeepMind Walker, PPO1 seems to
outperform TRPO and PPO2 significantly, but still does not come close to the performance
of SAC and TD3.
The only major difference in algorithm performances between Gym Walker and PyBullet
Walker can be seen when looking at the behavior of DDPG. While it is the worst performing
algorithm on GymWalker reaching only less than half the amount of discounted cumulative
reward that TRPO, PPO1 and PPO2 achieved, it comes decently close the numbers of those
three algorithms on the PyBullet implementation of the Walker environment after 100
epochs. The difference is even bigger for the DeepMind variant of Walker where DDPG
even manages to outperform TRPO and PPO2 at the later epochs. The initial learning
progress is slightly slower though and the variance of the results is significantly higher as
well. The generally much better return values for the DeepMind environment compared to
DeepMind Hopper (cf. Section 4.1.1 can be attributed to the fact that the reward function
for Walker also is impacted by the torso height of the robot and not only by its forward
velocity so that even just standing leads to some reward. A2C is again one of the worst
performing algorithms, which is the case for all three libraries.

The results in terms of the undiscounted cumulative reward R (see Fig. 4.7) look very
similar to what can be observed for J . TD3 manages to reach results that are just as good
as the ones of SAC on the Gym and PyBullet variant, but still lacks behind for DeepMind
Walker. The other algorithms mostly follow their performances in terms of J with the
exception of PPO2 that is achieving slightly worse results for R on PyBullet compared to
TRPO and PPO1, which is not the case when looking at J . For Gym Hopper, we can see the
non-optimality of the DDPG learning process even more drastically when looking at the
course of R. It seems to have nearly no improvement for this evaluation criterion making
it clearly the worst performing algorithm on this specific environment implementation.
For DeepMind Walker, the undiscounted returns nearly look exactly the same as the
discounted ones. We can also see that SAC achieves a near-optimal performance getting
very close to the theoretical maximum return of 1000. The remaining gap is most likely
not closable, because the agent first needs to get into a state where always receving the
full reward of 1 is possible.
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Figure 4.6: J (discounted cumulative reward) on the Walker environment averaged over
25 runs with 95% confidence bounds. Input normalization was used for A2C,
TRPO, PPO1 and PPO2 on GymWalker, for TRPO, PPO1 and PPO2 on PyBullet
Walker, and for all four on-policy algorithms on DeepMind Walker.
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Figure 4.7: Return (undiscounted cumulative reward) on the Walker environment aver-
aged over 25 runs with 95% confidence bounds. Input normalization was
used for A2C, TRPO, PPO1 and PPO2 on Gym Walker, for TRPO, PPO1 and
PPO2 on PyBullet Walker, and for all four on-policy algorithms on DeepMind
Walker.
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Figure 4.8 shows the average episode lengths during the training process. For the Gym
variant, there are no particular differences compared to the results for R. While SAC and
TD3 manage to consistently reach nearly the maximum amount of timesteps per episode
after 100 epochs, DDPG does not even find a policy that regularly leads to the robot
walking for more than 200 timesteps per episode before falling over. For the PyBullet
variant, it is notable that DDPG, PPO1 and especially TRPO achieve much better results in
terms of average episode length than they are when comparing R - with TRPO reaching
about the same value at epoch 100 as SAC and TD3. The fact that the values for R look
so much worse comparatively can be explained by the fact that those algorithms get
stuck in local optima trying to stabilize the robot as long as possible without finding
ways to concurrently maximize the forward velocity of the robot. The episode lengths for
DeepMind Walker are not shown, because each episode runs for exactly 1000 timesteps.
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Figure 4.8: Episode length on the Walker environment averaged over 25 runs with 95%
confidence bounds. Input normalization was used for A2C, TRPO, PPO1 and
PPO2 on Gym Walker, and for TRPO, PPO1 and PPO2 on PyBullet Walker.

Figure 4.9 depicts the course of the value function estimates on the Walker environments.
While the estimated values are very close to the achieved J values for PPO1, PPO2, TRPO
and A2C, there are apparent differences for SAC, TD3 and DDPG. SAC and TD3 tend to
underestimate the value of the initial states by a considerable margin for all libraries,
especially at the later stages of the learning process. In contrast to that, DDPG tends to
overestimate this value by nearly 100% of the actual observed J values for the Gym and
PyBullet implementations. For DeepMind Walker, though, the value estimates of DDPG
seem very accurate, which is also why the performance of DDPG is comparatively high
here.

The entropy development shown in Figure 4.10 can be compared with the one that is
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Figure 4.9: Value function output on theWalker environment averaged over 25 runs with
95% confidence bounds. Input normalization was used for A2C, TRPO, PPO1
and PPO2 on GymWalker, for TRPO, PPO1 and PPO2 on PyBullet Walker, and
for all four on-policy algorithms on DeepMind Walker.

observable for the Hopper task (cf. Section 4.1.1). The entropy of the policy of SAC again
rapidly decreases at the start of the training process. For PyBullet Walker, it then slowly
increases again while it keeps slowly decreasing on the Gym environment. The other
algorithms follow roughly the same trend as on the Hopper environment (cf. Fig. 4.5). An
exception to this forms PPO2 on DeepMind Walker, which lowers its entropy much slower
than it is the case for Hopper. The opposite can be said for SAC which reaches much lower
final entropy values corresponding to the fact that a near-optimal policy is learned.

42



0 20 40 60 80 100
epoch

2

0

2

4

6

8

En
tro

py

Entropy, Walker Gym

0 20 40 60 80 100
epoch

6

4

2

0

2

4

6

8

En
tro

py

Entropy, Walker Bullet

0 20 40 60 80 100
epoch

2

0

2

4

6

8

En
tro

py

Entropy, Walker DM

a2c ddpg ppo1 ppo2 sac td3 trpo

Figure 4.10: Entropy on the Walker environment averaged over 25 runs with 95% con-
fidence bounds. Input normalization was used for A2C, TRPO, PPO1 and
PPO2 on GymWalker, for TRPO, PPO1 and PPO2 on PyBullet Walker, and for
all four on-policy algorithms on DeepMind Walker.

4.1.3 Cheetah

Looking at the performances for the Cheetah task in terms of discounted cumulative reward
J (Figure 4.11), we can see several similarities between the three task libraries. A2C
always achieves the worst result overall, which mirrors what can be observed for the
other benchmark tasks. The algorithms TRPO, PPO1 and PPO2 all perform very similarly.
However, they differ in their relative performance compared to the other algorithms. While
achieving a comparatively weak performance on Gym Cheetah (only slightly better than
A2C), the results on DeepMind Cheetah look a lot better. For PyBullet Cheetah, PPO1
and PPO2 even manage to achieve similar J values as the top performing algorithms for
this library (SAC, DDPG and TD3). TRPO lacks a bit behind though. TD3 and SAC also
reach the best results for the Gym and DeepMind versions of Cheetah. Not only do they
have the best sample efficiency with a fast initial learning speed, but also do they reach
by far the best final performances after 100 epochs for those environments. For DDPG,
the results vary a lot between the three task libraries. On DeepMind Cheetah, it performs
worse than every other algorithm except A2C. For Gym Cheetah, DDPG has the third best
performance, but is far from reaching the values of SAC and TD3. On the PyBullet version,
however, it reaches one of the best results and even outperforms SAC on the later epochs.
These varying results show that, even though all libraries technically provide environments
for the same task (Cheetah), the actual performance can be significantly different, because
of different reward functions and different exact dynamics and episode-end criteria. New
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emerging algorithms might be presented using the library that fits best without mentioning
that the results are worse for other implementations of the same environment, which is
why those results always have to be taken with caution.
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Figure 4.11: J (discounted cumulative reward) on the Cheetah environment averaged
over 25 runs with 95% confidence bounds. Input normalization was used for
A2C, TRPO, PPO1 and PPO2 on Gym Cheetah, for A2C, TRPO and PPO1 on
PyBullet Cheetah, and for all four on-policy algorithms on DeepMind Chee-
tah.

In Figure 4.12, we can see that the results in terms of the undiscounted cumulated reward
follow the ones for J very closely. The only notable differences can be observed for DDPG
on the PyBullet version of Cheetah. Here, the agent seems to learn a policy that focuses
more on immediate rewards than on long-term rewards, because the performance for
the undiscounted return formulation looks worse than the one for the discounted case,
especially at the final epochs where DDPG ends up in the second to last spot only followed
by A2C. Roughly the same is the case for the DeepMind version of Cheetah, although the
variance for the undiscounted return is lower here.

Since the episode lengths are fixed at 1000 timesteps for all three versions of Cheetah,
there are no figures provided for this metric here.

The course of the value function estimates is depicted in Figure 4.13. We can see that
TD3 and SAC heavily underestimate the expected values for Gym Cheetah, which can
be attributed to the Double Q-Learning trick. This behavior can also be observed for
DeepMind Cheetah except for the evaluations on some of the later epochs where the value
function estimate is exploding for SAC for a short time. The same happens for SAC on
PyBullet Cheetah and also in a less drastic way for TD3 on PyBullet and Gym Cheetah.

44



0 20 40 60 80 100
epoch

0

2000

4000

6000

8000

10000

12000

Re
tu

rn

Return, Cheetah Gym

0 20 40 60 80 100
epoch

1500

1000

500

0

500

1000

1500

2000

2500

Re
tu

rn

Return, Cheetah Bullet

0 20 40 60 80 100
epoch

0

100

200

300

400

500

600

700

800

Re
tu

rn

Return, Cheetah DM

a2c ddpg ppo1 ppo2 sac td3 trpo

Figure 4.12: Return (undiscounted cumulative reward) on the Cheetah environment av-
eraged over 25 runs with 95% confidence bounds. Input normalization was
used for A2C, TRPO, PPO1 and PPO2 on Gym Cheetah, for A2C, TRPO and
PPO1 on PyBullet Cheetah, and for all four on-policy algorithms on Deep-
Mind Cheetah.

For DDPG, however, the value function estimates seem very stable and closely follow the
observed J values for all three benchmark libraries. The stable dynamics of the Cheetah
task lead to estimates that are significantly more accurate than the ones for DDPG on
Hopper and Walker (cf. Section 4.1.1 and 4.1.2). For the remaining four algorithms, the
value function output is very accurate as well.

Figure 4.14 shows the course of the entropy values for the Cheetah task. For A2C, TRPO,
PPO1 and PPO2 the entropy gradually decreases with more epochs. The PPO algorithms
generally decrease their entropy faster than the other two batch algorithms, which is
the case for all three benchmark libraries. For DeepMind Cheetah, it is notable that the
entropy of A2C is only decreasing very slowly compared to how much it is decreasing
on the PyBullet and Gym counterparts. SAC has a very fast drop at the starting epochs,
followed by a steep but short rise and then a slow decline for the remaining epochs (Gym
and DeepMind Cheetah). For the PyBullet variant, the entropy drops even lower at the
start, but does not have the sudden rise after that and instead slowly increases over time.
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Figure 4.13: Value function output on the Cheetah environment averaged over 25 runs
with 95% confidence bounds. Input normalization was used for A2C, TRPO,
PPO1 andPPO2onGymCheetah, for A2C, TRPOandPPO1 onPyBullet Chee-
tah, and for all four on-policy algorithms on DeepMind Cheetah.
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Figure 4.14: Entropy on the Cheetah environment averaged over 25 runs with 95% con-
fidence bounds. Input normalization was used for A2C, TRPO, PPO1 and
PPO2 on Gym Cheetah, for A2C, TRPO and PPO1 on PyBullet Cheetah, and
for all four on-policy algorithms on DeepMind Cheetah.
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4.1.4 Ant

Figure 4.15 shows the algorithm performances with respect to the discounted cumulative
reward J on the different versions of Ant. The results of TD3 vary between the three
libraries. While it only achieves moderate discounted returns for the DeepMind imple-
mentation, it reaches by far the best performance on Gym Ant and is also among the top
algorithms for the PyBullet version only challenged by SAC, which also has varying results.
It is the second best performing algorithm on Gym Ant, but considerably trails behind
TD3. For the DeepMind implementation, however, it accomplishes the highest J values
by a wide margin. SAC has high variance in its results, which can be seen by the large
confidence intervals. This observation can also be made for DDPG, which overall reaches
rather mediocre results. What is notable is that its learning curve for Gym Ant starts very
promising with a very fast initial rise in performance. However, after that, the observed
J values slowly decline and reach their lowest point at the final epochs. This behavior
of dropping performance is not present for any of the other algorithms. The two PPO
implementations have comparable learning curves and reach a decent performance for all
three libraries. For TRPO, the achieved discounted returns are generally lower, especially
at the early epochs. Later during the training process, it catches up to the other algorithms
and even outperforms all of them except SAC on DeepMind Ant. A2C accomplishes the
worst overall results, but can keep up with the other algorithms for the Gym version of Ant.
PPO, TRPO and A2C have very low variance in their results compared to the off-policy
algorithms.
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Figure 4.15: J (discounted cumulative reward) on the Ant environment averaged over 25
runs with 95% confidence bounds. Input normalization was used for A2C
on Gym Ant and for all four on-policy algorithms on DeepMind Ant.
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Looking at the undiscounted cumulative reward, we can see that there are nearly no major
differences to what can be observed when looking at J (see Figure 4.16). For the Gym and
DeepMind implementations, the curves very closely follow the trends that could be seen in
the discounted case. The same is the case for PyBullet Ant with the only exception being
DDPG, which accomplishes the worst undiscounted return values although it seemingly
outperformed A2C and TRPO when looking at the discounted returns.
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Figure 4.16: Return (undiscounted cumulative reward) on the Ant environment averaged
over 25 runs with 95% confidence bounds. Input normalization was used
for A2C on Gym Ant and for all four on-policy algorithms on DeepMind Ant.

The value function estimates for A2C, TRPO, PPO1 and PPO2 closely follow the achieved
discounted returns on all three Ant implementations with only A2C slightly overestimating
the expected values on Gym Ant (see Figure 4.17). TD3 tends to underestimate the values
instead, especially on Gym Ant. For the PyBullet version, the estimates seem very unstable
with high variance, but are roughly accurate in the mean. SAC, as the other algorithm
that uses the Double Q-Learning trick, also shows tendencies of underestimation, but
sometimes has big spikes in the value function output. While this phenomenon only
happens twice during the learning process for DeepMind Ant, it is present throughout the
whole learning process for the Gym Ant, which leads to tremendous confidence intervals.
This instability in the value function estimates might be the reason for the comparatively
low performance of SAC for this specific implementation of Ant. DDPG shows considerably
less overestimation than it did for the Hopper and Walker tasks (see Section 4.1.1, 4.1.2).
Only for DeepMind Ant does it show a big spike in the estimates at the early epochs.

The episode lengths are fixed at 1000 timesteps for the DeepMind implementation and
also on PyBullet Ant nearly all algorithms reach the maximum of 1000 timesteps per
episode very fast (see Figure 4.18). The only exception to this forms DDPG, which has
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Figure 4.17: Value function output on the Ant environment averaged over 25 runs with
95% confidence bounds. Input normalization was used for A2C on Gym Ant
and for all four on-policy algorithms on DeepMind Ant.

a much more unstable behavior with lower average episode lengths with high variance.
For the Gym implementation of Ant, we can see that PPO1 converges to a local optimum
that achieves high episode lengths very fast, but does not lead to high returns as they
can be observed for TD3. TRPO takes a long time to learn a policy that leads to long
episode lengths, which is related to its previously observed slow learning speed in terms of
discounted and undiscounted return. A2C initially reaches high average episode lengths
very fast, but subsequently experiences a drop that leads to much shorter lengths for the
remaining epochs. However, the observed returns are not dropping in a similar way, so
the learned policies favour actions that lead to higher quality immediate rewards while
accepting potentially faster episode fails for that.
The behavior of DDPG for PyBullet and A2C for Gym is an example of where reporting
results in terms of average reward would be very misleading since the algorithms may
achieve a decent average reward, but do not manage to keep the robot alive for the whole
episode leading to worse cumulative rewards. This effect can to some extent already
be seen when comparing the discounted and undiscounted returns as described in the
previous paragraphs, because shorter episode lengths have less impact in the discounted
case as the missing rewards at the later timesteps are discounted anyway.

The entropy development looks normal for A2C, TRPO and PPO on Gym and PyBullet
Ant with slowly declining values over the course of the training process (see Figure 4.19).
For the DeepMind version, A2C and TRPO decrease the entropy of their policies much
slower than the two PPO versions and therefore still do a lot of exploration at the later
epochs. For TRPO this behavior might lead to much higher returns if the algorithm was to
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Figure 4.18: Episode length on the Ant environment averaged over 25 runs with 95% con-
fidence bounds. Input normalization was used for A2C on Gym Ant.

be trained for more than 100 epochs (cf. Fig. 4.30). SAC also keeps its entropy very high
throughout the learning process for DeepMind Ant, which is not the case for the Gym
and PyBullet variants where the entropy drops really fast at the start and then slowly
increases with further epochs.
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Figure 4.19: Entropy on the Ant environment averaged over 25 runs with 95% confidence
bounds. Input normalization was used for A2C on Gym Ant and for all four
on-policy algorithms on DeepMind Ant.
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4.2 Normalization

In this section, we investigate the impact of input normalization for the on-policy algorithms
A2C, TRPO, PPO1 and PPO2. The algorithms are trained for 350 epochs (5734400 training
steps) as opposed to only 100 epochs in the previous section, because the training process
is considerably faster for these algorithms. The normalization takes place by using the
VecNormalize wrapper of Stable Baselines with the clipping parameter clip_obs set to 10.0.
The rewards are not normalized so that differences in performance can fully be attributed
to the input normalization.

4.2.1 Hopper

Figure 4.20 shows how A2C is affected by input normalization for the Hopper task. We
can see that the performance is considerably improved for the Gym environment, but
the variance is also increased in the process. For PyBullet Hopper, the results are similar
in terms of the undiscounted return, but seem to improve for the discounted case. The
observed returns on the DeepMind version of Hopper are very low for A2Cwith and without
input normalization, although the normalization leads to very slight improvements with
high variance.

Looking at the normalization impact for TRPO, we can see clear improvements for Gym
Hopper (see Figure 4.21). On the PyBullet environment it is not clear whether input
normalization really improves the performance because of the high variance, but the
undiscounted return values seem worse in the mean by a small margin. For DeepMind
Hopper, the normalization leads to better mean returns, but the variance is drastically
increased so that those results have to be taken with caution.

The impact of normalized inputs for PPO1 and 2 is depicted in Figure 4.22. For Gym
Hopper, no clear conclusion can be drawn. The normalization seems to improve the
learning behavior in the earlier epochs, but leads to lower final values at the later epochs.
Looking at the PyBullet variant of Hopper, the results look extremely close for PPO1. For
PPO2, however, normalized inputs lead to moderately higher returns, but again with high
variance. For DeepMind Hopper, the performance can be increased tremendously both for
PPO1 and 2. Without normalization, the algorithms show close to no learning behavior
while the normalized variants can achieve good results.
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Figure 4.20: A2C comparison of normalized and non-normalized observations on the
Hopper environment averaged over 25 runs with 95% confidence bounds.
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Figure 4.21: TRPO comparison of normalized and non-normalized observations on the
Hopper environment averaged over 25 runs with 95% confidence bounds.
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Figure 4.22: PPO1 and PPO2 comparison of normalized and non-normalized observa-
tions on the Hopper environment averaged over 25 runs with 95% confi-
dence bounds.
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4.2.2 Walker

On the Walker task, we can see that A2C can achieve considerable performance gains
by using input normalization (Figure 4.23), both for Gym and DeepMind Walker. The
PyBullet variant paints a different picture when looking at the discounted return. Here,
the normalization seems to worsen the results. In the undiscounted case, there is no clear
advantage for either approach.

TRPO can also substantially increase its achieved returns by using normalized inputs
on the Gym variant of Walker (see Figure 4.24). For PyBullet Walker, this effect is not
as apparent with the results laying a lot closer and being of higher variance. Even less
differences between the two approaches are present for DeepMind Walker where the
results are almost identical.
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Figure 4.23: A2C comparison of normalized and non-normalized observations on the
Walker environment averaged over 25 runs with 95% confidence bounds.

When looking at the returns of the two PPO variants on Gym and PyBullet Walker (Figure
4.25), we can see that input normalization leads to higher performances, but also higher
variances. For the DeepMind version of Walker, we can say the same for PPO1 where not
only the final returns are superior, but even the initial learning speed is a lot faster than
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without normalized inputs. PPO2 does not show the same behavior. Here, the results of
normalization are marginally worse.
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Figure 4.24: TRPO comparison of normalized and non-normalized observations on the
Walker environment averaged over 25 runs with 95% confidence bounds.
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Figure 4.25: PPO1 and PPO2 comparison of normalized and non-normalized observa-
tions on the Walker environment averaged over 25 runs with 95% confi-
dence bounds.
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4.2.3 Cheetah

A2C achieves higher returns on the Cheetah task for all three benchmark libraries when
using input normalization (see Figure 4.26). This is the case for both the discounted
and undiscounted case. For PyBullet Cheetah, using normalized inputs even lowers the
variance of the return values.

0 100 200 300
epoch

0

500

1000

1500

2000

2500

Re
tu

rn

Return, Cheetah Gym

a2c
a2cNorm

0 100 200 300
epoch

1000

500

0

500

1000

1500

Re
tu

rn
Return, Cheetah Bullet

a2c
a2cNorm

0 100 200 300
epoch

0

50

100

150

200

Re
tu

rn

Return, Cheetah DM

a2c
a2cNorm

0 100 200 300
epoch

0

50

100

150

200

J

J, Cheetah Gym

a2c
a2cNorm

0 100 200 300
epoch

100

50

0

50

100

J

J, Cheetah Bullet

a2c
a2cNorm

0 100 200 300
epoch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

J

J, Cheetah DM

a2c
a2cNorm

Figure 4.26: A2C comparison of normalized and non-normalized observations on the
Cheetah environment averaged over 25 runs with 95% confidence bounds.

TRPO also seems to considerably benefit from normalizing the inputs for this task. The
advantage becomes apparent when looking at Figure 4.27 where the achieved returns are
substantially higher for the DeepMind and Gym environments. For PyBullet Cheetah, the
gains are very slim for both the discounted and also the undiscounted case.

Figure 4.28 shows the normalization impact for PPO on Cheetah. Both versions of PPO
reach higher discounted and undiscounted returns on the Gym and DeepMind environ-
ments. PyBullet Cheetah forms an exception again. While normalized inputs work slightly
better for PPO1, they lead to worse results for PPO2 with higher variance.
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Figure 4.27: TRPO comparison of normalized and non-normalized observations on the
Cheetah environment averaged over 25 runs with 95% confidence bounds.
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Figure 4.28: PPO1 and PPO2 comparison of normalized and non-normalized observa-
tions on the Cheetah environment averaged over 25 runs with 95% confi-
dence bounds.
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4.2.4 Ant

The impact of using normalized inputs for the Ant task greatly differs between the different
algorithms and the different benchmark libraries.

For A2C, the achieved J values are higher for normalized Gym Ant, but lower for normal-
ized PyBullet Ant (see Figure 4.29). On the DeepMind implementation, it is hard to spot
a difference, also because of the high variance. When looking at the undiscounted return,
there are also no clear conclusions possible since input normalization seems better for the
DeepMind version, but worse for PyBullet and about equal for Gym Ant.

For TRPO, the results on normalized Gym and PyBullet Ant not only are of higher variance,
but also have lower mean. On DeepMind Ant, however, input normalization leads to
significantly better discounted and undiscounted returns, which can be seen in Figure
4.30. Especially at the earlier epochs, the learning seems to happen a lot faster on this
specific environment.

The two PPO algorithms also differ in how they react to input normalization on the Ant
task (see Figure 4.31). For Gym Ant, non-normalized inputs outperform normalized ones
later during the training process in the case of PPO2, but for PPO1 there is no clear better
variant. On the PyBullet environment, input normalization leads to drastically worse
results for PPO2 and the same is the case for PPO1 to a lesser but still significant extent.
For DeepMind Ant, a contrary behavior can be observed, especially for the undiscounted
return where normalized inputs increase the performance for both PPO versions. However,
this improvement comes with the prize of largely increased variance in the observed
returns.
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Figure 4.29: A2C comparison of normalized and non-normalized observations on the
Ant environment averaged over 25 runs with 95% confidence bounds.
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Figure 4.30: TRPO comparison of normalized and non-normalized observations on the
Ant environment averaged over 25 runs with 95% confidence bounds.
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Figure 4.31: PPO1 and PPO2 comparison of normalized and non-normalized observa-
tions on the Ant environment averaged over 25 runs with 95% confidence
bounds.
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4.3 Network Size

In [21] and [22], it is shown that bigger network architectures could significantly improve
the results of DDPG on certain environments, because of the amount of information that
can be stored in the network. We investigate to which extent the same behavior can
be observed for TD3 and SAC by evaluating all three off-policy algorithms with small
and big network sizes. We use feed forward neural networks with hidden layer sizes of
(32, 32) as well as (400, 300) and compare the results in terms of average discounted and
undiscounted return of both setups (referenced as SmallNet and BigNet). ReLU is used
as the activation function across all experiments and all other hyperparameters are held
fixed. We exemplarily show the results on the OpenAI Gym implementations of Hopper,
Cheetah and Ant as those three tasks have the most diverse dynamics while Walker behaves
similarly to Hopper to a certain degree.
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Figure 4.32: Comparison of small and big networks on the Hopper environment aver-
aged over 25 runs with 95% confidence bounds.

On Hopper, we can see that the improvements are significantly more apparent for TD3
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and SAC than they are for DDPG (see Figure 4.32). Both the discounted as well as the
undiscounted return values are considerably higher for TD3 and SAC using the bigger
network setup. This improvement is not only expressed in better peak performances at
the later epochs, but also in higher sample efficiency with faster initial learning speeds.
For DDPG, we can only see noticeable improvements in terms of average J while there is
no clear better setup recognizable in the undiscounted case. However, the bigger network
setup seems to considerably reduce the variance of the observed returns, which leads to
smaller confidence intervals.

The results of different network architectures on the Gym Cheetah environment can be
seen in Figure 4.33. As it is also reported in [21], the network size seems to have big
effects on the performance of DDPG, which is improved both in terms of discounted and
undiscounted return. The same statement can be made about the other two algorithms
which also show significantly higher J and R values over the whole training process. The
variance is staying similar for all three algorithms no matter which architecture is used.
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Figure 4.33: Comparison of small and big networks on the Cheetah environment aver-
aged over 25 runs with 95% confidence bounds.

The biggest differences in the results of the two network architectures can be observed on
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the Gym Ant environment. While nearly no learning behavior is achieved for neither of
the three algorithms when using small networks, the bigger setup leads to decent results
in terms of J and R (see Figure 4.34). The small networks seem to not be able to hold
enough information to extract the properties of the observed states to the full extent.
This can be attributed to the fact that the observation space dimensionality of the Ant
environment (111) is decisively larger than the one of Hopper or Cheetah (11 and 17
respectively, see Fig. 2.1).
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Figure 4.34: Comparison of small and big networks on the Ant environment averaged
over 25 runs with 95% confidence bounds.
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5 Discussion and Outlook

Coming back to the general benchmark results in Section 4.1, we can draw several
conclusions.
SAC generally seems to be the best performing algorithm across the board both in terms
of initial learning speed and also in terms of the final return values at the later epochs.
For some environments (e.g. DeepMind Hopper, see Fig. 4.2), it even turns out to be the
only algorithm that shows any relevant learning behavior. In addition to that, the learning
is very stable in most cases without big variances in the observed results. An exception to
this property is formed by the Gym Ant environment where SAC performs comparatively
weaker and has higher variance than it normally does.
TD3 also achieves good results on most environments and even outperforms SAC in some
cases (e.g. Gym Ant, see Fig. 4.16). However, it usually is less stable and more variant in
its results (e.g. Gym Hopper, cf. Fig. 4.2).
The remaining off-policy algorithm, DDPG, achieves significantly worse results than its
two successor algorithms. Due to not making use of the Double Q-Learning approach, it
often overestimates the Q-values and, for tasks with unstable dynamics, like Hopper, the
value estimates can even completely explode (see Gym and PyBullet Hopper in Figure
4.4). This behavior results in very low returns or no learning at all (e.g. Gym Walker, see
Fig. 4.7). DDPG also generally has very large confidence intervals for the returns, which
means that the outcome of single runs can be significantly better or worse depending
on the random seed. However, on environments with more stable dynamics, like Gym
Cheetah, the performance looks a lot better and much more stable (see Fig. 4.12).
TRPO, PPO1 and PPO2 achieve close results on most of the environments. The specific
outcomes vary between the different tasks and the chosen library. While TRPO outperforms
both PPO variants on PyBullet Walker, it scores weaker on the PyBullet versions of Cheetah
and Ant. PPO1 overall achieves better results than its counterpart PPO2. For environments
like DeepMind Walker, the outcomes between the two variants look exceedingly different
(see Fig. 4.7). Because of the fact that we use a large amount of independent runs, we
can consider this a meaningful result which shows that the specific implementation of an
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algorithm can have a big effect in how it actually performs in practice.
The results of the on-policy algorithms generally seem to have less variance than the ones
of the off-policy algorithms, which makes them more stable. However, in most cases, they
can not keep up with the ones of SAC and TD3 in terms of peak performance. Especially
A2C performs comparatively weakly in nearly all environments, which is expected due to
its simplicity and the lack of the sophisticated improvements the other algorithms make
use of.

Looking at the evaluation metrics we can see that the undiscounted return is closely
related to the discounted return in most cases and shows similar trends. There are some
exceptions, though, where improvements in terms of J do not entail rising undiscounted
return values (e.g. Gym Hopper, see Fig. 4.2). This behavior shows that reporting results
for both return formulations can be advantageous and can highlight particularities that
would not become apparent if only the undiscounted return was measured. The large
confidence intervals of certain results also show that it is utterly important to perform
enough independent runs for the same experiment in order to counteract the randomness
in the algorithms and environments. Otherwise, the results can become very misleading
as they might only represent a lucky or unlucky set of outcomes. This problem becomes
even more severe if metrics like the Maximum Return or Maximum Average Return are
used instead of the Average Return.
Our reported results are wildly varying depending on the dynamics and reward functions
of the specific tasks. We experience that the Hopper and Walker tasks behave similarly to
a certain degree while the evaluations on Cheetah and Ant look entirely different for some
algorithms. The plethora of exceptions in the algorithm performances on some tasks show
that it is important to cover a wide range of benchmark tasks instead of only reporting
results on single environments. The second approach becomes even worse if the algorithm
hyperparameters are specifically tuned for the chosen environment and the algorithm is,
therefore, overfitting on this environment, which makes the results even less suited for
serving as a meaningful benchmark.
Furthermore, even if several different tasks are chosen for the benchmarks, it is important,
which exact benchmark library provides the implementation of the task. We show that
the algorithm performances can turn out entirely different depending on the specific
environment implementation. As an example, we can reference the results of TD3 on
the Hopper task. While good returns can be achieved on the OpenAI Gym and PyBullet
variants of Hopper, this is not the case for the DeepMind implementation where nearly
no learning behavior can be observed (see Fig. 4.2). Choosing a library that has an
implementation which leads to better results on a chosen task, can also make results
misleading. In general, the DeepMind environments seem to require more exploration
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and are also harder to solve overall, although the state and action space dimensionalities
are not necessarily bigger. Thus, the complexity of an environment does not only lie in
the size of its state and action spaces, but, more importantly, in the exact dynamics and
the reward function.

The comparison of normalized and non-normalized inputs in Section 4.2 shows that no
clear statements can be made whether one or the other is generally preferable. While
input normalization increases the performance on most DeepMind environments, this is
not the case for Gym and PyBullet. For example, we can observe worse results for nearly
all algorithms on the Gym and PyBullet versions of the Ant task when using normalized
inputs. In contrast to that, the Walker and Cheetah environments mostly seem to benefit
from input normalization. Therefore, we conclude that this method has to be tested and
adjusted individually for each environment. For most of our experiments, normalized
inputs increased the variance of the results, which might be a drawback.

The network size seems to have large effects on the performance of DDPG, TD3 and SAC
(see Section 4.3). Bigger networks lead to both faster initial learning speed as well as
higher peak returns. This improvement is present for all used environments, but most
extreme for the Ant task where nearly no learning behavior can be observed when using
smaller networks. In return, the training time of the algorithms is considerably increased,
which might be a problem for certain use cases.

In this thesis, we perform an extensive set of experiments on a suite of established con-
tinuous control environments using the implementations of the three biggest benchmark
libraries. We provide results for six of the most well-known model-free deep RL algorithms
and also examine the impact of input normalization as well as bigger network architectures.
Our experiments are carried out in a reproducible way by reporting all used hyperparame-
ters as well as by providing details about the experiment setup and execution. In addition
to that, we follow the suggestions of averaging our results over many trials, displaying the
resulting confidence bounds and using meaningful, non-biased evaluation metrics. We
point out similarities and differences in the algorithm performances and compare how
the different environment implementations impact the results by highlighting peculiar
results. Furthermore, we point out potential pitfalls in the benchmarking process and in
the way of reporting results.
Our results show that the tuning for the environments is not equivalent, although this be-
havior would be expected since they are all used to benchmark the suitability of algorithms
for the domain of continuous control. Instead, the performances vary from environment
to environment and are highly susceptible to favourable random seeds in addition to that.
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While the OpenAI Gym and PyBullet environments have been commonly used for bench-
marks in related work, the environments of the DeepMind Control Suite have not been
thoroughly evaluated on all common model-free RL algorithms yet. To our knowledge, we
are the first to provide various results for these environments with a sufficient amount of
independent runs and meaningful evaluation metrics that are presented directly together
with the results for the other two benchmark libraries to enable easy comparisons. We
also do not only measure the performance in terms of average undiscounted return as it
is normally done, but instead also show the discounted returns, the episode lengths, the
value function estimates and the entropy of the policies over the course of the training,
which enables a deeper insight into the learning process.

Starting from the outcomes of our analysis, several research directions that tackle the
observed problems are possible. New approaches could range from methods that lead to
even more accurate value estimates (building on the Double Q method of TD3 and SAC)
and ideas that explicitly control the amount of exploration to further ways of avoiding
performance decreases.

Similar to our examinations regarding input normalization and network size, further
experiments that explore the robustness to changes of other hyperparameters could
be performed. For example, we do not evaluate the impact of other noise types like
time-correlated Ornstein-Uhlenbeck noise ([40]) or parameter space noise ([41]). Investi-
gations regarding the reward scale and layer normalization have been performed in [22],
but not for the Ant and Walker task and also only using the OpenAI Gym library. Similarly,
[21] looked at the impact of different batch sizes and different activation functions, but
not for all algorithms and also not using all three task libraries. Furthermore, we only
evaluate the six most common model-free RL algorithms. The same experiments could be
performed using the state-of-the-art model-based algorithms to measure the applicability
of those approaches in this field. [52] already did an extensive study for model-based
algorithms, which could be extended to include results for the PyBullet and DeepMind
environments.
One could also, instead of trying to find an algorithm with the overall best performance
across a suite of benchmark tasks, try to identify which exact criteria of the environments
makes algorithms perform better or worse. By doing so, we could specify specific applica-
tion criteria for the algorithms and make an individual decision for each use case.
Since sample efficiency is an important criterion for real world robotic and continuous con-
trol tasks as samples are usually expensive to get, we plot our results in terms of training
samples obtained from the environment. However, for certain use cases, it might be useful
to consider the computational complexity of the different algorithms and measure the
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performance with respect to the resulting training time efficiency. This approach might be
a starting point for future work.
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