
Graph-Based Design of Hierarchical Reinforcement Learning Agents

Davide Tateo1, İdil Su Erdenliğ2, and Andrea Bonarini1

Abstract— There is an increasing interest in Reinforcement
Learning to solve new and more challenging problems, as
those emerging in robotics and unmanned autonomous vehicles.
To face these complex systems, a hierarchical and multi-scale
representation is crucial. This has brought the interest on Hi-
erarchical Deep Reinforcement learning systems. Despite their
successful application, Deep Reinforcement Learning systems
suffer from a variety of drawbacks: they are data hungry,
they lack of interpretability, and it is difficult to derive the-
oretical properties about their behavior. Classical Hierarchical
Reinforcement Learning approaches, while not suffering from
these drawbacks, are often suited for finite actions, and finite
states, only. Furthermore, in most of the works, there is no
systematic way to represent domain knowledge, which is often
only embedded in the reward function.

We present a novel Hierarchical Reinforcement Learning
framework based on the hierarchical design approach typical
of control theory. We developed our framework extending the
block diagram representation of control systems to fit the needs
of a Hierarchical Reinforcement Learning scenario, thus giving
the possibility to integrate domain knowledge in an effective
hierarchical architecture.

I. INTRODUCTION
There is a growing interest in complex robotics systems,

particularly in autonomous mobile robots and unmanned
autonomous vehicles. In these contexts, it is often useful to
build an agent able to react to previously unseen scenarios
and non-stationary environments. To face these challenges, a
wise usage of machine learning, and Reinforcement Learning
(RL) in particular, becomes crucial.

Deep RL algorithms have shown the potential to solve
complex problems, also in robotics-related domains [1], [2]
characterized by continuous actions. However, plain Deep
Learning approaches often exhibit unstable behaviour during
the learning process, and the interpretation of Deep Networks
is extremely difficult, if not impossible.

For these reasons, in recent years we have seen a renewed
interest in Hierarchical Reinforcement Learning (HRL). The
first approaches to HRL can be divided in three major cat-
egories: the Hierarchy of Abstract Machines framework [3],
the Max-Q approach [4], and the option framework [5]. All
these approaches are based on classical RL theory, and are
particularly suited to finite state and action representations.
Among these works, Ghavamzadeh & al. have proposed
the Hierarchical Policy Gradient approach [6], suitable for
continuous action representation.

To face the new challenges imposed by emerging appli-
cations, researchers have started to develop Deep Learning

1Dipartimento di Elettronica, Informazione e Bioingegneria, Politec-
nico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
{davide.tateo, andrea.bonarini}@polimi.it

2su.erdenlig@gmail.com

approaches to HRL. Feudal Networks [7] are based on
one of the first approaches to HRL, the Feudal Q-Learning
algorithm [8]. However, this work has been developed mainly
considering a two-level hierarchy, and the algorithm displays
some major differences w.r.t. the original approach. In [9],
the authors present a Policy Gradient formulation able to
learn options policy and termination conditions without any
explicit subgoal discovery algorithm. A promising Deep
Learning approach is the Hindsight Experience Replay [10],
where a particular replay memory is exploited to learn
multiple subgoals and to improve the learning performance,
particularly in the case of sparse reward functions. In [11],
these ideas are extended in an actor-critic framework. Other
Deep HRL methods are based on pre-training the low level
skills [12]. These methods are better suited to face new
complex problems, but still share the major drawbacks of
Deep learning approaches. Differently from classical HRL
approaches, they have few theoretical properties, are com-
putationally and data hungry, and are complex to tune and
implement. Moreover, most of the Deep and classical HRL
approaches share the difficulty to exploit domain expert
knowledge: this is usually put into predefined policies,
skills, and reward functions. As it can be seen in [6], HRL
algorithms often require a custom implementation for each
problem.

Control Theory, instead, provides a well defined frame-
work to build hierarchical control structures for complex
systems. One of the fundamental design tools of control
theory is the block diagram. Block diagrams can model
systems composed by plants, sensors, controllers, actuators,
and signals. With block diagrams it is easy to describe the
control architecture of any kind of control system. The block
diagram is based on blocks and connections. A block can
represent a dynamical system, or a function, and connections
represent the flow of the input and output signals among
blocks.

This paper presents an approach based on the same idea,
with modifications needed to fully describe an HRL system.
We believe that this representation is beneficial in general for
an HRL system and, in particular, for robotic applications,
where the control system often comes structured as a block
diagram. There exist some Deep HRL approaches that have
faced the problem starting from a control-theoretic point
of view (e.g., [13]), but our approach is more general
and formal. It allows to easily implement existing control
structures and policies (designed using control theory), and
to use RL algorithms to fine-tune or adapt the parameters to
changing dynamics or unknown scenarios. Our framework
also eases the process of mixing low-level controllers with



high-level RL techniques that can be effectively applied when
the interaction model is not known. This makes the design
of the HRL simple, and decouples the learning algorithms
from domain-specific details.

II. PRELIMINARIES

An RL problem consists of two main components: the
agent (i.e., the decision maker and learner), and the environ-
ment. The agent interacts with the environment by selecting
an action according to its perceptions of the environment
state, while the environment reacts to the agent’s actions
by evolving to a possibly different state and providing a
performance signal. The agent can be represented in terms
of a learning algorithm and a policy; everything else is part
of the environment, e.g., in the case of a robotic agent,
the state of its joints. A (stochastic) policy is a probability
density distribution π(·|x) over the action space U given
the current state x ∈ X . The objective of the learning
algorithm is to maximize the performance of the policy
w.r.t. a metric computed using the reward signal, e.g., the
expected discounted return. The agent can have an internal
state or other data structures, e.g. a value function or a replay
memory. The environment can be partially observable: this
happens when the observations do not provide a complete
representation of the state of the environment.

The most common type of environment in RL is the
Markov Decision Process (MDP), which is defined as a tuple
M = 〈X ,U ,P,R, γ, ι〉, where X is the state space, U is
the action space, P is a Markovian transition model where
P(x′|x, u) defines the transition density for reaching state
x′, starting from state x and applying action u, R is the
reward function, where R(x, u, x′) is the reward obtained
by the agent when it takes the action u in state x, reaching
the state x′, γ ∈ [0, 1) is the discount factor and ι is the
distribution of the initial state.

For practical design reasons, we will consider agents
displaying only two functionalities: the act procedure, that
selects an action to be applied in the current state using the
policy of the agent, and the fit procedure, that updates the
policy and data structure using a given dataset. Every RL
algorithm can implement this interface, at the possible cost
of storing additional information at each procedure call. By
exploiting this interface we are able to consider both batch
and online learning algorithms in the same framework: the
only difference will be the sequence of act and fit calls.

III. FORMAL DEFINITION

We now describe the formal structure of our framework.
To this aim, we start by modifying the standard interaction
model for RL. Instead of having a system composed only of
an agent and an environment, we introduce a control graph
to describe their interactions.

A. The Control Graph

The Control Graph is defined as follows:

G = (E , B,D,C,A)

where B is the node set, D is the data edge set, C is
the reward edge set, A is the alarm edges set, and E is the
environment.

Each node b ∈ B represents a subsystem of the control
structure. We will refer to the nodes in the set B as blocks.
Each block can contain either a dynamical system, a function,
or an RL agent. Each block is characterized by a set of
input and output signals, exchanged with other blocks or the
environment. These signals are represented in the graph by
data edges d ∈ D. For each block, at each control cycle,
we call state the vector of its input signals, and action the
vector of its output signals. If a block contains an RL agent,
then it requires a reward signal to evaluate its performance
and optimize its objective function. The reward signal can
be produced either by the environment or by another block.
Every edge c ∈ C represents a reward signal connection.
Finally, each block can produce an auxiliary output called
alarm. The alarm signal can be read by other blocks. Every
edge a ∈ A represents an alarm signal connection.

We call as E everything that is outside the set of blocks
B, which represents, along with the interconnecting edges,
the hierarchical agent. The environment is modeled in the
graph by means of three special blocks, called interfaces:

• the state interface, which contains the current environ-
ment observation;

• the action interface, which contains the action to be
applied to the environment at the beginning of each
control cycle, which can also be used by other blocks,
e.g., to compute a quadratic penalty over the last action
used;

• the reward interface, which contains the last reward
produced by the environment.

All the edges in G are directed, and the graph must be
acyclic when considering all edges except the ones connected
to the action interface. At least one block must be connected
to the action interface.

B. The Control Cycle

Control Cycle is the cycle describing the interaction of
the control system with the environment. Each cycle starts
by obtaining an observation from the environment through
the state interface. Then, each block of the graph is evaluated
by collecting all its inputs into the state vector, and producing
an action as output vector. Also the information coming
from the reward and alarm connections are considered, if
they exist. Each block must be evaluated after all of its
inputs, reward, and alarm signals have been computed. This
means that blocks must be evaluated following a topological
ordering, where the last block to be evaluated must be
the action interface. After the action interface has been
updated, the action is applied to the environment and a new
control cycle starts. While the same structure can be used
for continuous time systems, as it is often done in control,
we focus in this work just on discrete time systems.



C. Connections

In this model, three different types of connections have
been devised. Data connections must be differentiated from
reward connections, since they have different roles. Notice
that, differently from many other HRL frameworks, in our
approach there is no explicit representation of goals: the goal
is fully described by the reward function signal, while the
observed variables and computed actions are carried by the
data connections. This design choice is motivated by the fact
that we want to be able to exploit the RL algorithms and
theory defined for non-hierarchical agents. The last type of
connection is the alarm connection, which plays a relevant
role in implementing control systems working at different
time scales. Indeed, at each control cycle, all blocks are
evaluated and this behaviour makes it impossible to have
controllers that work on different time scales. However, each
block can maintain the previous output signal until an event
occurs. Events can be notified to other blocks by using
alarm signals. Every block can generate alarm signals and
can exploit the information of the alarm in any useful way.
The introduction of alarms allows to implement event-based
controls, e.g., to wake one of the (RL) agents in the control
graph only when a particular state of the environment is
reached. It is also possible to create temporally extended
actions by raising an event from a lower-level agent whenever
its episode terminates. Consequently, the higher level agent
can only choose its action when the effect of the related
temporally extended action is finished. By exploiting alarm
connections, it is possible to implement –using the Control
Graph formalism– other HRL frameworks (e.g., options)
with minor modifications.

D. Blocks

Blocks contain the components of the hierarchical agent.
We can look at the single block as an isolated agent
considering the remaining part of the graph as a part of
the environment. We call as Ei the induced environment
seen by each block bi. The concatenation of the signals
of incoming data connections can be seen as the current
observation (or, in some cases, the state) of Ei, while the
outgoing data connection can be seen as the action applied
to Ei. Finally, the reward connection can be seen as the
reward of the induced environment. The nature of each Ei
depends on the structure of the control graph, but, in general,
it can be a partially observable, time variant, stochastic, non-
Markov environment. This makes it impossible to derive
general convergence results for arbitrary control graphs, as
the theoretical characteristics of the induced environment for
each block are arbitrary. This consideration is particularly
important, and makes a careful design of the graph structure,
the RL agents, and the performance metrics, crucial. To
mitigate this issue, specific learning algorithms or a multi-
block algorithm could be exploited.

Each block can contain either a function, a dynamical
system, or an RL agent. This makes the block a very general
and versatile component. Given the definition of induced
environment, it is straightforward to apply classical RL

theory in this framework. We present here below some of
the most useful blocks we have developed, which are the
basic building blocks of the majority of the control graphs.

a) Interface Block: is the interface to the environment.
The environment can read and write data by these blocks.

b) Function Block: has the only task of computing a
function from the input vector e.g., to compute feature vec-
tors from state vectors. They are generally stateless blocks.

c) Learning Block: contains an RL agent. The purpose
of the learning block is to interface a generic RL agent to the
control graph. The learning block applies the act procedure
of the agent on the incoming state, and produces the output
action. It also collects the transition dataset and activates
the fit procedure of the agent when needed. The frequency
of the calls to the fit procedure depends on the nature of
the algorithm (online or batch) and on the batch size. It is
possible to truncate episodes of each learning block through
a termination condition that can be either a fixed number
of steps, or state dependent. However, it is not possible to
define absorbing states for subtasks, since at each control
cycle each block has to return an action. This implies that
in any non-absorbing state of the original environment, the
learning block has to provide an action, even if the block
termination condition has been met. This behavior is fun-
damentally different from that of other HRL methods. This
may be a problem when considering subtasks in finite state
MDPs, as it is not possible to define absorbing states for the
subtasks, as commonly done in classical HRL. However, it
is not a problem when dealing with continuous environments
with fine grained time discretization, where the effect of a
single action is not affecting heavily the general behavior.
Indeed, this is the case of most robotic environments. The
final purpose of the learning block is to handle signals and
synchronization with others blocks. In order to do so, it
raises the alarm signal whenever the termination condition
is met. The control has two synchronization behaviors: if
there is no alarm connection, the agent policy will be called
at each control cycle. If any alarm signal is connected to
the agent, then the agent policy will be executed only when
one of the connected alarms has been raised. Only the states
coming from the blocks that raised the alarms (or the initial
environment state) are considered in input. The learning
block maintains the last selected output value until the next
event occurs.

d) Reward Accumulator Block: is a particularly im-
portant block with state, used in conjunction with cascade
control systems that operate at a different time scale. Indeed,
when computing the reward of a temporally extended action,
it is needed to accumulate the reward of any intermediate
steps, discounting the new rewards by the appropriate dis-
count factor.

e) Selector Block: allows to select one chain from a
list of chains of blocks. The selection is done by the first
input of the block, which must be an integer value. Further
inputs are passed as inputs to the first block of the selected
chain. The output of the selector block is the output of the last
block of the chain. The blocks in the chain can be connected



to other blocks through alarm and reward connections. This
enables the conditional computation of blocks, allowing to
have different low-level RL agents that represent different
temporally extended actions.

IV. COMPARISON WITH OTHER FRAMEWORKS

Existing approaches are mostly based on the concept of
macro actions. Macros are executed following the stack
principle, where each macro can call another one, until
a primitive action is executed. After the macro has been
executed, the control returns to the one that activated it.
Both MAX-Q and the option frameworks are based on
this concept. The HAM framework is also based on this
idea, but learning is performed on the “reduced” SMDP,
reducing learning to flat SMDPs. Although this is a powerful
approach, it is not the most natural approach in control
systems, where decentralized controllers work in parallel,
and each controller regulates a specific part of the system.

Control systems design is fundamentally different from the
macro concept. There are two main concepts that must be
considered when comparing our framework to other existing
HRL frameworks. The hierarchy is formed by the structure
of the control system, and not by the stack discipline. This
has a major impact on how subtasks are defined: a subtask is
not anymore a function call that executes until termination,
but can be better seen as a setpoint to be reached by a lower
level controller. Furthermore, in most HRL approaches the
state seen by each level of the hierarchy is the environment
state itself or a state abstraction [4], [6]: in HCGL, instead,
we consider each block as an independent RL agent. State
and action are then related to the induced environment:
this makes it possible to use any suitable RL agent for
learning the subtask. Furthermore, using HCGL the definition
of parametrized continuous subtasks is straightforward, and
does not need any deviation from the framework definition
or special handling. Differently from Feudal Q-Learning [8],
its Deep Learning version [7], and other Deep approaches,
we do not add any sub-goal specification as input together
with the current state.

HCGL has been developed with a slightly different ob-
jective w.r.t. the classical and Deep HRL frameworks. The
options framework objective is to enrich the MDPs action
set in order to improve exploration by following a sub-
policy for an extended period of time. The objective of
the MAX-Q framework is to have a factored representation
of the state-action value function, in order to reuse the
information for different high-level tasks and to transfer
learning. The objective of the HAM framework is to exploit
the expert knowledge to constrain the policy, imposing the
desired behavior and improving learning speed by reducing
exploration and parameters to learn. The objective of our
framework is twofold: simplify the design of hierarchical
agents, by providing a flexible design tool, and favor the
reuse of existing RL algorithms.

Fig. 1. Control Graph used in the ship steering environment experiment

V. EXPERIMENTAL RESULTS

The main objective of this section is to show that it
is easy to design RL structures using the control graph
formalism, and that it is indeed possible to use different
learning algorithms inside this system. As our method does
not impose any learning algorithm to be used in the design,
it is not relevant to compare the raw performances w.r.t. a
specific algorithm. Indeed, it is reasonable to assume that
any algorithm can be outperformed by adding specifically
designed expert knowledge. The implementation and all the
details of every experiment in this work can be found in [14].
Every setting is evaluated using 100 independent runs for
each algorithm considered.

A. Ship steering

This problem consists of driving a ship through a gate,
without going outside a defined region (see [6] for details).
We used two different versions of the ship steering environ-
ment: the small and the big environments, both with a single
gate. The big environment is the one presented in [6], while
the small environment is a reduced version where the area
is 150m × 150m and the gate is the line joining the points
(100, 120) and (120, 100).

1) Small environment: We use this version of the envi-
ronment to show how a hierarchical formalization of the en-
vironment with our framework is beneficial for learning also
in environments that are easy to learn with flat Policy Search
methods. For each algorithm, the experiment consists of 25
epochs of 200 episodes each. After each epoch an evaluation
run (with no learning) of 50 episodes is performed.

The hierarchical structure used is shown in Figure 1. The
high level controller CH selects a position setpoint for the
ship. The function block ϕ transforms this position setpoint
into the error of the heading of the ship and the distance
of the current position and orientation of the ship w.r.t.
the given setpoint. The low level controller CL learns a
policy to drive the ship towards the selected setpoint, and
its output is the desired turning rate of the ship. The high
level control changes its setpoint only when a low level
environment episode terminates: this is possible due to the
alarm connection between the two blocks. The low level
environment episode terminates after 100 steps or when
the distance to the setpoint is less than 0.2m. The high
level controller uses the reward function of the environment
as performance metric. The reward between each different
setpoint is accumulated by the reward accumulator block
Rγ , which properly discounts the reward at each step using
the discount factor γ = 0.99 of the environment. The low



0 5 10 15 20 25

−100

−90

−80

−70

−60

epoch

J

0 5 10 15 20 25
0

200

400

600

epoch

L

GPOMDP PGPE REPS RWR H GPOMDP PGPE

Fig. 2. Learning curves for the ship steering small environment

level reward is provided by the function block RL, which
computes the cosine of the heading error. In this experiment,
we used the GPOMDP algorithm [15] as high level controller
and the PGPE algorithm [16] for the low level one. All
the flat algorithms use tiles as features over the state. For
the flat experiments, we selected the GPOMDP algorithm as
an example of gradient method, and three other black box
algorithms: PGPE [16], RWR [17] and REPS [18].

Results are shown in Figure 2. By looking at the objective
function, it is clear that the policy gradient approaches,
PGPE and GPOMDP are the slowest and achieve the worst
performances. RWR and PGPE quickly converge to good
performances, however they may get stuck to slightly sub-
optimal policies. RWR converges faster than REPS, but it is
slightly more prone to premature convergence. Our approach
achieves better performances on this task, and the results are
much less variant, particularly at the end of training. The
performance gain and the reduced variance of the learning
curve is due to the fact that the hierarchical approach can
represent a more structured policy, with fewer parameters
and more expressiveness in terms of possible behaviors.
The hierarchical decomposition splits the problem in two
by decomposing the high level problem (reach a point) from
the low level control task (steer the ship), making it possible
to reuse the low level control policy from each point and
each orientation of the ship. This results in a policy that is
easy to interpret and to be used in other contexts, e.g., the
low level policy learned in the small environment may be
used also in the big ship steering environment. The learned
high level policy is a good policy for most of the possible
alternative starting points of the environment. The learning
curve behavior can be easily understood by considering the
episode length. Flat algorithms tend to increase the episode
length progressively, to avoid bringing the ship outside the
bounds. As the gate is located at the end of the diagonal, they
will find the gate while moving towards longer trajectories.
The hierarchical approach instead behaves very differently: at
the beginning most of the trajectories loop around the center
of the environment, increasing the episode length, while the
low level starts to learn to reach the setpoint appropriately,
and the high level learns to avoid the map boundaries. When
some trajectories are able to cross the gate, the high level
starts to learn the position of the gate and the variance of
the high level policy reduces towards 0. This, jointly with the
learning of the optimal low level policy, reduces the episode
length until the optimal performance is reached.

The hierarchical method has some drawbacks w.r.t. the
other methods. It can be noticed that the number of steps
needed to learn is greater than that needed by the other
methods, although the number of failed episodes (going
outside the bounds) is smaller. This turns out to be an
advantage, rather than a problem, if safety is a major concern,
as we avoid the most “dangerous” event. Furthermore, due
to the fact that the learning of each agent of the hierarchy
is performed independently, we must choose carefully the
learning algorithms and the policies. Indeed, we forced the
low level policy to be stable. This issue is present because
the induced environment of the low level policy is partially
observable: this may cause some ambiguities in interpreting
the results of the selected behavior. The low level controller
may learn an unstable controller that forces the ship to go
out of bounds to terminate the episode earlier. Given an
unstable low-level controller, the high-level one could learn
to move the set point in the opposite direction w.r.t. the
actual goal, which is an undesired behavior. The possibility
of undesired interactions between learning processes is a
major issue of the framework. To avoid this, a careful design
of the policy, and a good initialization of the policies from
expert knowledge could be exploited.

2) Big environment: With this version of the environment
we will show how our method is able to scale to bigger and
more complex problems and compare it, from both the point
of view of the performance and the design of the hierarchical
agent, with existing state of the art method, in particular
with the hierarchical policy gradient approach shown by
Ghavamzadeh & al. [6]. In this environment, the state space
dimension (1000×1000m) makes it difficult to build generic
features that allow for both a complete coverage of the state
space and a fine discretization needed to have a fine-grained
action selection.

For each algorithm, the experiment consists of 50 epochs
of 800 episodes each. After each epoch an evaluation run
(with no learning) of 50 episodes is performed. Differently
from the small environment, the initial state of the environ-
ment is sampled uniformly from X . For our method, we
used the same control graph used for the small environment
(Fig. 1). The Ghavamzadeh method is implemented using
our framework. This has a minor impact, as our framework
is not able to represent absorbing sub-task states. However,
given the dimension of the environment, the properties of
the policy and of the low level task, we can consider this
issue as irrelevant. The control graph used to implement the
Ghavamzadeh’s method is shown in Fig. 3. The function
block ϕ represents the state of the environment using a
20× 20 tiling discretization over the first two state variables
(the position of the ship in the environment). The high
level controller CH takes as input the discretized state and
selects one of the 8 possible directions to reach. The function
block S transforms one of the possible directions in a
binary value, to select the straight/diagonal sub-task of the
connected selector block. This is done because in the original
work symmetry is exploited to group together the sub-tasks,
instead of learning each sub-task independently. The function



Fig. 3. Control graph used to implement the Ghavamzadeh’s algorithm

0 10 20 30 40 50

−95

−90

epoch

J

0 10 20 30 40 50

500

1,000

1,500

epoch

L

H GPOMDP PGPE Ghavamzadeh

Fig. 4. Learning curves for the ship steering environment

block H is used to hold the value of the starting position
of the subtask. H is needed because the Γ block performs
the needed transformation to map the state of the original
environment in the sub-task by rototranslating appropriately
the current state w.r.t. the position in which the sub-task has
begun. For the straight sub-task, the initial state is mapped
into [40, 75], while for the diagonal is mapped into [40, 40].
All straight sub-tasks are rotated into the “right” sub-tasks,
while the diagonal subtasks are rotated into the “up-right”
sub-task. The two learning blocks C+ and C× are the two
controllers that learn the straight and horizontal sub-task
respectively. The reward for the high level block is the sum
of the additional reward computed by the function block
RH , which gives a reward of 100 for crossing the gate, and
the reward accumulator block R+, which computes the sum
of every reward during the low level episodes. The reward
for the low level controller is computed by the function
block RL, which gives -100 for going outside the low level
environment area (a squared region of 150m), +100 for being
closer than 10 meters to the objective of the low level task
([140, 75] for the straight and [140, 140] for the diagonal),
plus the angular penalty rextra, which penalizes the angular
error, as described in [6]. The low level episodes terminate
when the ship reaches the goal or goes outside the low level
task region.

We have used the Q(λ) algorithm in the same way
as described in [6] for the high-level controller and the
GPOMDP algorithm for the low level controller, that had
better performances than the original gradient algorithm
proposed in [6]. The settings for our framework are the same
of the small environment experiment. The only difference is
the initialization and parameters for the high level controller,
that are scaled accordingly to the different scale of the
environment.

As it can be seen from Figure 4, the hierarchical agent
learning is slower than the Ghavamzadeh approach in the

beginning. This is due to the time spent by the ship moving
around the map, while the position of the gate is learned
and the optimal policy for the low level is found. After the
position of the gate is found by the high level controller, the
length of the trajectories quickly decreases and the algorithm
converges rapidly to good performances. This is due to the
fact that the position of the gate does not depend on the
current position of the ship, thus, learning this information
results in a policy that generalizes to the whole state space,
instead of being useful only locally, as the policy learned
by the Ghavamzadeh’s approach. By looking at the episode
length, we can see that Ghavamzadeh converges to shorter
trajectory lengths, and this is due to sub-optimal behavior
learned by the agents along the borders, where the agent
prefers to go outside of the map instead of going towards
the center of the environment. This is due to the fact that
the Q values must be propagated from the center of the
map towards the boundaries, and this propagation is affected
negatively by several factors. Among these issues, we can
consider the dimension of the state space, the small number
of trajectories on the boundaries o the environment, and the
initial low level performance at the beginning of the learning
process, which can affect the initial updates of the Q-
function. Our approach instead learns the general objective,
leading to a good generalization in almost any state, that is
particularly helpful when starting in unseen states.

Another important aspect that should be considered is the
design of the algorithm. Our framework allows to easily
design a hierarchical system by including the function blocks
needed to exploit expert domain knowledge. The learning
algorithm can be any off-the-shelf learning algorithm taken
from the state of the art. Therefore, domain experts only need
to focus on the structure of the problem and not on learning
algorithms. This is particularly useful in order to bring the
RL tools to industrial applications. Furthermore, the design
tool is close to what engineers use in other tasks, as it is in-
spired by control theory block diagrams. The Ghavamzadeh’s
approach, instead, can’t be implemented in a general way, but
must be re-implemented for each problem instance, in order
to easily exploit domain knowledge. Furthermore, while the
Ghavamzadeh’s approach looks extremely intuitive from the
point of view of RL researchers, which are used to work
with options and Semi-Markov Decision Processes, it is not
intuitive from the point of view of a control engineer. This
can be easily seen by trying to implement the Ghavamzadeh
approach in our framework: it is possible to implement it
(with minor changes), but the resulting design looks overly
complicated, particularly if compared with our model.

B. Segway

This problem consists of balancing a 2D Segway on a fixed
point. The experiment for this environment shows how the
presented tool can be suitable also for the design of classical
control applications, and that there are some advantages in
using such hierarchical learning approach instead of using
black box optimization on a complex non differentiable
equivalent policy. For this example we used the REPS and



Fig. 5. Control graph used in the Segway experiments

0 5 10 15 20 25

−1

−0.5

·104

epoch

J

0 5 10 15 20 25

0

500

1,000

1,500

epoch

L

REPS RWR H RWR RWR H REPS RWR

Fig. 6. Learning curves for the Segway experiment

the RWR black box algorithms, to compare our distributed
learniong approach with the centralized one. For each algo-
rithm, the experiment consists of 25 epochs of 100 episodes
each. After each epoch, an evaluation run of 100 episodes
is performed. To further exploit the distributed learning
supported by our approach, boosting the performances, we
avoid to learn the high level controller for the first two
epochs.

The control scheme is reported in Figure 5; it is extremely
simple, as it matches existing control schemes for similar
platforms. The high level controller CH is a simple propor-
tional controller over the linear position that computes the
angular setpoint. The function block ϕ removes the linear
component from the current state and considers the error
w.r.t. the desired setpoint instead of the actual angle. The
low level controller is another proportional controller over
the full state computed by the function block ϕ. We partially
enforce the stability of the low-level policy, by avoiding
the use of negative gains as policy parameters. Figure 6
shows that the hierarchical architecture improves learning
stability, as the hierarchical algorithm achieves the optimal
performance more consistently. It is important to notice that,
while the difference in performance in terms of the objective
function is not statistically relevant, at least compared with
the RWR method, it becomes relevant in terms of episode
length, where our approach is able to reach the horizon faster
and more consistently. This is an important result, as this
means that our approach is less prone to failures, i.e., the
robot falling, before the end of the episode.

This experiment shows that this approach can improve the
performance of black box optimization by learning subsys-
tems independently, and that it may be beneficial to slow
down the learning of higher level controllers, to have good
low level policies. Moreover, with this approach it is easier
to highlight the subsets of the systems parameters that do
not need correlated exploration, extending the applicability
of black box optimization to larger systems.

VI. CONCLUSION

We presented a novel HRL framework based on the
block diagram, a well known tool of control theory. We
have demonstrated the effectiveness of our approach in
two classical robotic and control tasks. We believe that the
proposed framework has a huge potential, particularly in the
design of industrial applications, as it makes it possible to
exploit the knowledge from classical engineering and control
theory, while re-using any RL algorithm, ranging from the
classical ones, such as Q-Learning, to Deep Policy Search
approaches, or any algorithm developed for Semi-Markov
Decision Processes.

Our framework is particularly beneficial when dealing with
robotics and autonomous vehicles, both because the Control
Graph already resembles the existing control structure for
such systems, and because the structure naturally fits all the
scenarios where set points of each subsystem are continuous
action values.

REFERENCES

[1] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. ICML2015, 2015, pp. 1889–1897.

[2] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[3] R. Parr and S. J. Russell, “Reinforcement learning with hierarchies of
machines,” in Proc. NIPS97, 1997.

[4] T. G. Dietterich, “Hierarchical reinforcement learning with the maxq
value function decomposition,” J. Artif. Intell. Res., vol. 13, pp. 227–
303, 2000.

[5] R. S. Sutton, D. Precup, and S. P. Singh, “Between mdps and
semi-mdps: A framework for temporal abstraction in reinforcement
learning,” Artif. Intell., vol. 112, pp. 181–211, 1999.

[6] M. Ghavamzadeh and S. Mahadevan, “Hierarchical policy gradient
algorithms,” in Proc. ICML. AAAI Press, 2003, pp. 226–233.

[7] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg,
D. Silver, and K. Kavukcuoglu, “Feudal networks for hierarchical
reinforcement learning,” arXiv preprint arXiv:1703.01161, 2017.

[8] P. Dayan and G. E. Hinton, “Feudal reinforcement learning,” in Proc.
NIPS93, 1993, pp. 271–278.

[9] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture.”
in Proc. AAAI2017, 2017, pp. 1726–1734.

[10] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, O. P. Abbeel, and W. Zaremba, “Hindsight
experience replay,” in Proc. NIPS2017, 2017, pp. 5048–5058.

[11] A. Levy, R. Platt, and K. Saenko, “Hierarchical actor-critic,” arXiv
preprint arXiv:1712.00948, 2017.

[12] C. Florensa, Y. Duan, and P. Abbeel, “Stochastic neural networks for
hierarchical reinforcement learning,” arXiv preprint arXiv:1704.03012,
2017.

[13] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement
learning,” ACM Transactions on Graphics, vol. 36, no. 4, p. 41, 2017.

[14] D. Tateo and I. Su Erdenliğ, “Mushroom Hierarchical,” https://github.
com/AIRLab-POLIMI/mushroom hierarchical.

[15] P. L. Bartlett and J. Baxter, “Infinite-horizon policy-gradient estima-
tion,” J. Artif. Intell. Res., vol. 15, pp. 319–350, 2001.

[16] F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and
J. Schmidhuber, “Parameter-exploring policy gradients,” Neural Net-
works, vol. 23, no. 4, pp. 551–559, 2010.

[17] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy
search for robotics,” Foundations and Trends in Robotics, vol. 2, no.
12, pp. 1–142, 2013.

[18] J. Peters, K. Mülling, and Y. Altun, “Relative entropy policy search.”
in Proc. AAAI2010. Atlanta, 2010, pp. 1607–1612.


