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Abstract

Robots as well as other autonomous systems are becoming increasingly prevalent in our
daily lives. To control these systems in complex and uncertain environments, Reinforce-
ment Learning is a promising approach. However, Reinforcement Learning lacks safety
guarantees, which are crucial for deployment in the real world. Especially in autonomous
control or robot-human collaboration, strict constraint adherence is paramount. Safe
Reinforcement Learning methods aim to provide these safety guarantees with two distinct
approaches. The model-based approach exploits additional knowledge such as constraints
and dynamics to ensure safety. While the dynamics are readily available in the robotics
domain, assuming knowledge of the constraints is problematic because they can be diffi-
cult to compute analytically. Additionally encoding long-term safety constraints apriori is
difficult in underactuated or stochastic environments, where avoiding actions have to be
taken long before a given constraint is reached. Model-free approaches, on the other hand,
do not require this additional knowledge. Instead, they learn safe behaviour through
countless unsafe environment interactions, which are only feasible in simulation. Thus, the
deployment of model-free approaches to the real world is difficult due to the sim-to-real
gap. In this thesis, we bridge the gap between model-based and model-free approaches
with a model-based safe reinforcement learning algorithm that can enforce long-term
safety constraints as well as capture and handle uncertainty. Our approach is based on the
ATACOM algorithm, which uses the robot dynamics and predefined constraints to project
actions onto a safe manifold. We incorporate online constraint learning into the ATACOM
approach to handle long-term safety and uncertainty. We explicitly model the constraints’
uncertainty in a distributional reinforcement learning perspective, which results in a
risk-aware policy. We evaluate our approach in three distinct environments: a cart-pole
control task, a differential drive robot navigation task, and a robot air hockey task. In
these environments, our approach is competitive or superior to state-of-the-art methods
in final performance. Additionally, we maintain safer behaviors throughout training and
converge to a safer policy.



Zusammenfassung

Roboter und andere autonome Systeme sind in unserem Alltag immer häufiger anzutreffen.
Um diese Systeme in komplexen und unsicheren Umgebungen zu steuern, ist Reinfor-
cement Learning ein vielversprechender Ansatz. Allerdings fehlt es dem Reinforcement
Learning an Sicherheitsgarantien, die für den Einsatz in der realen Welt entscheidend sind.
Vor allem bei der autonomen Steuerung oder der Zusammenarbeit zwischen Roboter und
Mensch ist die strikte Einhaltung von Beschränkungen von größter Notwendigkeit. Sichere
Reinforcement Learning-Methoden versuchen, diese Sicherheitsgarantien mit zwei un-
terschiedlichen Ansätzen zu gewährleisten. Der modellbasierte Ansatz nutzt zusätzliches
Wissen wie Beschränkungen und Dynamik, um Sicherheit zu gewährleisten. Während
die Dynamik in der Robotik bereits verfügbar ist, ist es problematisch, die Kenntnis der
Beschränkungen vorauszusetzen, da diese analytisch schwer zu berechnen sind. Außer-
dem ist es in unteraktuierten oder stochastischen Umgebungen schwierig, langfristige
Sicherheitsbedingungen im Voraus zu kodieren, da Ausweichmanöver lange vor Erreichen
einer bestimmten Beschränkung durchgeführt werden müssen. Modellfreie Ansätze hin-
gegen benötigen dieses zusätzliche Wissen nicht. Stattdessen lernen sie sicheres Verhalten
durch unzählige unsichere Umgebungsinteraktionen, die nur in der Simulation möglich
sind. Daher ist der Einsatz modellfreier Ansätze in der realen Welt aufgrund der Diskre-
panz zwischen Simulation und Realität schwierig. In dieser Arbeit überbrücken wir die
Lücke zwischen modellbasierten und modellfreien Ansätzen mit einem modellbasierten
sicheren Reinforcement-Learning-Algorithmus, der sowohl langfristige Sicherheitsbedin-
gungen durchsetzen als auch Unsicherheiten erfassen und behandeln kann. Unser Ansatz
basiert auf dem ATACOM-Algorithmus, der die Roboterdynamik und vordefinierte Be-
schränkungen verwendet, um Steuersignale auf eine sichere Menge zu projizieren. Wir
integrieren Online-Constraint-Learning in den ATACOM-Ansatz, um langfristige Sicherheit
und Unsicherheit zu behandeln. Wir modellieren explizit die Ungewissheit der Beschrän-
kungen in einer verteilungsorientierten Reinforcement-Learning-Perspektive, was zu einer
risikobewussten Strategie führt. Wir evaluieren unseren Ansatz in drei verschiedenen
Umgebungen: eine Aufgabe zur Steuerung von Cart-Poles, eine Aufgabe zur Navigation
von Robotern mit Differentialantrieb und eine Aufgabe beim Roboter-Air-Hockey. In diesen
Umgebungen ist unser Ansatz konkurrenzfähig oder den modernsten Methoden in der
Endleistung überlegen. Außerdem behalten wir während des gesamten Trainings sicherere
Verhaltensweisen bei und konvergieren zu einer sichereren Strategie.
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1. Introduction

1.1. Motivation

In recent years Reinforcement Learning (RL) has shown remarkable success in solving
complex tasks. For example Mnih et al. [33] proposed an agent that performs on par with
professional video game testers in a suite of 51 Atari games. However, these games are
mostly straightforward problems that don’t require sophisticated strategies. In Games
with a greater strategic depth, such as Dota 2 [7], Starcraft II [46], and Go [38], RL
agents have surpassed even the best human performance and compete in a league of their
own. In more practical applications, RL has been deployed in robotic manipulation [22]
for grasping tasks such as opening doors or folding laundry. Another field in which RL
agents thrive is autonomous driving [8].

In summary RL shows a lot of promise in automating tedious and dangerous tasks like
driving or folding laundry for humans. However, a major challenge for RL is adhering
to safety constraints. The RL framework does not provide any safety guarantees, which
are crucial for deployment in the real world. In domains like autonomous driving or
robot-human collaboration, constraint violations can lead to catastrophic failures and
harm people or cause damage. Unfortunately, simply encoding these constraints into the
reward function is not sufficient, as the agent will maximize the sum of rewards. Thus
short-term constraint violations are worth it for the agent if it leads to high rewards in
the long term. Instead, the constraint needs to be respected at all times regardless of the
potential reward.

The field of Safe Reinforcement Learning (SafeRL) solves this problem by learning policies
that maximize task performance while satisfying the safety requirements. The SafeRL
problem usually falls into one of the two categories: Safe Exploration (SafeExp) and
Constrained Markov Decision Processes (CMDP).
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SafeExp aims to ensure the agent’s safety during the exploration phase and formulates the
safety problem as a stepwise constraint that the agent should not violate at each step. Solv-
ing the SafeExp problem requires additional prior knowledge, such as constraints, robot
dynamics, or previously collected datasets. While the SafeExp algorithms have been de-
ployed successfully on complex real-world tasks [44, 39, 29, 30], most of these approaches
suffer from many drawbacks preventing their application to complex or out-of-the-lab
tasks. First, safety specifications defined as constraints entail an in-depth understanding
of the environment and dynamics. Designing and validating safety constraints requires
extensive expertise and experience. Second, real-world applications contain various uncer-
tainty sources, such as sensor noise, model error, environmental disturbance, and partial
observability, which are often neglected in the design of constraints. Third, the optimiza-
tion techniques for constrained optimization problems are limited and often require a
specific problem structure, such as quadratic programming with linear complementarity
constraints. Lastly, the learning algorithms should also guarantee long-term safety, which
is often neglected [16] or simplified to a tractable setting [44, 20].

CMDP approaches, on the other hand, learn the safe policies directly from the interaction
with the environment. Thus, they cannot guarantee safety during the exploration phase
but converge on a safe policy. This approach does not need handcrafted constraints and
can handle long-term safety. However, the sim-to-real transfer can be problematic for
safety, as the reality gap may cause catastrophic constraint violations.

1.2. Goal of the Thesis

In this thesis, we aim to bridge the gap between SafeExp methods and model-free SafeRL
approaches. We argue that incorporating prior knowledge for safety-critical robotics
applications can be beneficial, as prior knowledge, such as kinematics and dynamics, is
often well-studied and readily available. Furthermore, in robotics, we can assume that the
dynamics of the robot itself are known, while knowledge of the environment is unknown.
Under this assumption, we combine techniques from model-free SafeRL methods and
SafeExp approaches, showing how to exploit the knowledge of the dynamics while learning
of unknown, long-term constraints.

To achieve this goal, we extend the Acting on the TAngent Space of the COnstraint Manifold
(ATACOM) approach by dropping some key assumptions of the original formulation, such
as known constraints and local safety, allowing learning of long-term safety constraints
directly from data. Furthermore, we explicitly model the constraints’ uncertainty in a
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distributional RL perspective, which provides us with a way to estimate the total uncertainty
of the model.

We provide a novel algorithm, Distributional ATACOM (D-ATACOM), that combines the
ATACOM framework with distributional learned constraints, ensuring long-term safety
and properly dealing with constraint uncertainty. D-ATACOM produces a risk-aware policy
by restricting the level of acceptable risk, allowing the agent to explore more cautiously
whenever the constraints are uncertain or the policy is close to violating them.

Our experiments demonstrate that D-ATACOM achieves a safer performance during the
training phase and reaches a similar or better performance at the end of training. For tasks
where the optimal policy stays within constraints, D-ATACOM explores more cautiously at
a cost of slower learning speed. Instead, D-ATACOM show faster and safer behaviors during
training whenever there is a conflict between the policy optimization problem and the
constraint satisfaction one. Additionally, our method does not require excessive parameter
tuning, as it includes automatic tuning rules for the most important hyperparameters.
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2. Foundations

In this chapter, we will introduce the concepts of Reinforcement Learning, Safe Rein-
forcement Learning and Distributional Reinforcement Learning. Additionally, we present
the method of ATACOM and discuss the related work in the field of Safe Reinforcement
Learning.

2.1. Reinforcement Learning

Figure 2.1.: Diagram of the agent environment interaction. The agent interacts with the
environment based on the state s with an action a

Reinforcement learning is an area of machine learning, where an agent learns to interact
with an environment by exploring it. Instead of the labeled data utilized in supervised
learning, reinforcement learning collects data via an agent. As shown in Figure 2.1 the
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agent observes that the environment is currently in state st. Based on this observation
he chooses an action at. After taking the action in the state st, the agent reach a new
state st�1. Additionally, there is a reward function, which provides a local measure of the
agent’s performance. The resulting reward can be seen as a rating for the action at given
the state st.

To formalize this concept mathematically, we assume that the environment can be modeled
as a Markov Decision Process (MDP) [41], which is a tuple pS,A,P,R, γq. The state space
S contains all possible states the environment can be in. The action space A contains all
possible actions the agent can take. The transition function P describes the probability of
transitioning from one state to another given an action. The reward function R provides
the reward for transitioning from one state to another. The discount factor γ determines
how much the agent values future rewards.

The goal of the agent is to maximize the discounted sum of rewards. This is achieved by
learning a policy π, which maps states to actions. The agent learns the policy by interacting
with the environment and updating the policy based on the rewards received. However,
this formulation lacks the concept of safety, which is crucial for real-world applications. As
explained in Section 1.1, encoding constraints into the reward function is not sufficient
either. Instead, we introduce the concept of Safe Reinforcement Learning to address this
issue.

2.2. Safe Reinforcement Learning

We formulate the safety problem in the framework of CMDP [2, 3]. A CMDP is defined
as a tuple pS,A,P, r, k, γq with a state space S, an action space A, a stochastic function
P : S�A�S Ñ R that represents the transition probability from a state to another state by
an action, a reward function rps, aq P rrmin, rmaxs, a constraint function kpsq P rkmin, kmaxs,
and a discount factor γ P r0, 1q.

The goal of SafeRL algorithms is to produce a policy π that maximizes the expected return
while adhering to a safety constraint Fpsq:

max
π

E
π

�
8̧

t�0

γtrpst, atq

�
, s.t. Fpsq ¤ 0 (2.1)

Depending on the perspective of the safety problem [10] F can take different forms, such
as
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kpstq ¤ 0,@t (2.2a)

Ppkpstq ¡ 0q ¤ ηc,@t (2.2b)

E
π

�¸
t

γtkpstq|st

�
¤ ηe (2.2c)

The first constraint in (2.2a) describes the hard constraint, to be satisfied at each time step.
However, we cannot enforce these constraints in the setting of stochastic environments.
To address this issue, we can use chance constraints, as shown in (2.2b), to restrict the
probability of the violations to be smaller than a threshold ηc. Both (2.2a) and (2.2b)
are stepwise constraints that focus on safety at the current time step. The last type of
constraint, as shown in (2.2c), forces the cumulative cost of the trajectory to be smaller
than a threshold ηe.

In this thesis, we define safety and feasibility following [50] as:

Definition 1. Consider a constraint function k : S Ñ R and a policy π : S Ñ A.

i. A state s is Safe if kpsq ¤ 0.
ii. The Safe Set is defined as SS � ts P S : kpsq ¤ 0u.
iii. The Unsafe Set is the complementary set SsS � SzSS .
iv. A state s is Feasible under a policy π if kpstq ¤ 0 for all t P t0, 1, . . . ,8u, s0 � s, at �

πpstq.
v. A policy π is Feasible if all initial states are feasible under π.

To ensure that the policy is Feasible we use the constraint formulation of form (2.2c). To
account for prediction errors and uncertainties, we combine this constraint formulation
with the distributional formulation of (2.2b). We will introduce a method to learn this
distributional long-term safety constraint in the following section.

2.2.1. Distributional Reinforcement Learning

Unlike the typical RL setting that considers the expected value of the reward (the cumula-
tive cost in our case), distributional RL treats the reward (cost) as a random variable and,
therefore, the value function describes the distributions of the random cumulative return
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(cumulative cost). Distribution RL has shown superior performance in many benchmarking
tasks, such as Atari Games [5, 15, 14] and Mujuco tasks [19] since the distributional
value function contains more information beyond the first moment. The value function
is represented as a random variable Zπ instead of a scalar of the expected value Qπ, the
random variable Bellman equation has a similar form 1 Zπpsq

D
� Rpsq � γZπpS1q where

the random variable S1 follows the distribution under the policy π and the dynamics P.
The distribution of the random value function can be represented by different types of
models, such as the network with fixed support [5, 15], Gaussian Network [43] and
Implicit Quantile Network [14]. This thesis focuses on Gaussian Networks. However, we
are not limited to the model type and show further experiments using Implicit Quantile
Networks.

2.3. Safe Learning on the Constraint Manifold

We briefly introduce the ATACOM approach [28, 29, 30], which forms the basis of our
approach. ATACOM addresses stepwise hard constraint, as defined in Equation (2.2a).
Furthermore, ATACOM assumes that the dynamic system of the robot is a given nonlin-
ear affine system, s9 � fpsq � Gpsqa. ATACOM constructs the Constraint Manifold by
introducing a slack variable µ as M � tps,µq P D : cps,µq � 0u with cps,µq � kpsq �µ.
We assume that µ is equipped with a dynamic system µ9 � αpµquµ and α is a class K
function2. Using the concept of Constraint Manifold, a safe controller can be obtained by
setting d

dtcps, µq � 0. The resulting controller has the following form�
� a
uµ

�
� � �J:uψ � λJ:uc�Buu, (2.3)

with Jups,µq �
�
JGpsq Apµq

�
, JGpsq � JkpsqGpsq, Jkpsq � d

dskpsq and the Constraint
Drift ψpsq � Jkpsqfpsq induced by the system drift fpsq. Bu is a set of basis vectors
tangent to the manifold. The first and the second terms on the right-hand side are the
contraction term that compensates for the drift and retracts the system to the manifold;
the last term is the tangential term that drives the system along the constraint manifold.
An RL agent only needs to learn a policy for the tangential action u � πpsq, while the

1A
D
� B denotes that two random variable A and B are equal in distributions.

2class K function: (1) continuous; (2) strictly increasing; (3) αp0q � 0.
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safety is guaranteed by the controller structure. ATACOM can be used in combination with
various types of RL methods, as this technique only modifies the action space of the agent.
However, ATACOM requires predefined deterministic constraints. In this work, we extend
ATACOM for distributional constraints and propose a new method to simultaneously learn
the policy and the long-term constraint online.

2.4. Related Work

Many algorithms try to solve the constraint optimization problem of the CMDP. The RL
agent aims to maximize the expected return while maintaining the expected cost below a
threshold [1, 11, 45, 32, 40, 18, 4, 13, 52]. This type of constraint has been extended to
different variants, such as the risk-sensitive constraint [9, 51, 26, 49], in which the agent
aims to keep the worst-case cost, which is computed from the probabilistic constraints
with a risk function like Conditional Value-at-Risk (CVaR) or Mean-deviation, below a
threshold. Another approach is to directly keep the probability of the constraint violation
below a threshold [47, 34, 35].

Different types of constrained optimization techniques are applied in the policy update
process, such as the trust-region method [1, 26]. In trust-region methods, the policy
update is constrained by the Kullback-Leibler divergence between the old and the new
policy. To ensure safety another constraint is added to the policy update such that
only feasible Policies are considered. Another method is the interior point method [32],
which uses a barrier function to constraint the policy update. The barrier function is a
function that approaches infinity as the constraint is violated. The Lagrangian relaxation
method [2, 45, 40, 18, 9, 51] is another method to solve the constrained optimization
problem. The Lagrangian relaxation method adds a Lagrangian multiplier to the policy
update to penalize the constraint violation. The Lagrangian multiplier is updated in
each iteration to ensure that the constraint is satisfied. Furthermore, the Lyapunov
function is also used to derive a policy improvement procedure [11, 12, 37]. A Lyapunov
function is a type of scalar potential function that keeps track of the energy that a system
continually dissipates. Besides modeling physical energy, Lyapunov functions can also
represent abstract quantities, such as the steady-state performance of a Markov process.
The Lyapunov function is used to translate the global discounted sum of cost to a local
step-wise surrogate constraint, which is then used to ensure safety in the policy update.

Notably, learning the value function of the accumulative cost has gained incremental
attraction as it addresses long-term safety. Recent works have shared a common view
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that the value function of constraint provides a predictive estimation of safety, such as the
feasibility value [53, 50], control barrier function [42, 31], and safety critic [48, 49].

In this thesis, we leverage the idea of the safety value function. Instead of penalizing the
policy by adding a Lagrangian multiplier, we combine the safety value function with a
model-based exploration method to derive a safe policy.
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3. Methodology

In this chapter, we present D-ATACOM, a data-driven approach that guarantees long-term
safety. Our method reduces constraint violations during learning as quickly as possible
while converging to a final policy that guarantees long-term safety. To introduce this
algorithm, we first establish a method to estimate the constraint for long-term safety, and
then we show how to integrate the time-varying constraint into the ATACOM learning
framework.

3.1. Feasibility Value Function

To ensure long-term constraint satisfaction, we introduce the concept of FVF, which
describes the expected cumulative constraint violation under a policy π with an infinity
horizon. Formally, we define the feasibility value function under a policy π as

V π
F psq � E

π

�
8̧

t�0

γtmaxpkpstq, 0q

����� s0 � s

�
(3.1)

We assume the constraint kpsq P rkmin, kmaxs is bounded and consequently V π
F P r0, kmax

1�γ s.
When k is an indicator function of the constraint violation, the FVF is analogous to the
Constraint Decay Function (CoDF) introduced in [50], defined as F πpsq � γNπpsq, with
Nπpsq the number of steps to the first constraint violation. Unlike the CoDF that assumes
the unsafe state is absorbing, the FVF do not terminate the episode at the unsafe state,
allowing the agent to retract the state back to safe in the future and therefore V π

F psq ¥
F πpsq. The feasibility value function estimates the expected discounted cumulative cost
of maxpkpsq, 0q under policy π. We can use the standard Bellman operator pBπVFqpsq �
maxpkpsq, 0q�γVFpsq to update the estimate. For continuous state-action space, a common
choice is to use a neural network to approximate the value function and update the value
function using TD learning. When V π

F psq � 0, we have maxpkpsq, 0q � 0 indicating
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kpsq ¤ 0. Thus, the Feasibile Set SF � ts P S : V π
F psq � 0u is a subset of the Safe Set.

Ensuring the feasibility value function to be zero is sufficient to guarantee stepwise safety.

3.2. Stochastic Constraint

The definition of FVF in (3.1) does not capture the stochasticity of the cost. If the constraint
has a higher variance or a heavy-tailed distribution, the mean-based constraint may not
be sufficient to ensure safety, as shown in Fig. 3.1. This problem can be alleviated by
constructing stochastic constraints exploiting the theory of distributional RL [6]. We can
model the FVF V π

F psq as a distribution value function, i.e., the cumulative cost at each
state is a random variable instead of the expectation.

Different parametric models have been used to approximate the target distribution
maxpkpsq, 0q � γV π

F psq. In this thesis, we use two approaches to model the FVF. For
the first approach, we model the distribution as a Gaussian. However, this Gaussian
assumption is arbitrary and might not properly model the true distribution. Thus we
also choose to directly model the Cumulative Distribution Function (CDF) with Implicit
Quantile Networks (IQN). This approach does not assume a specific distribution and thus
can capture more heavy-tailed cost distributions.

3.2.1. Gaussian Approximation

For the Gaussian Approximation we use Gaussian support up to the 2nd-order moment
[43, 48], i.e. we assume V π

F psq � N
�
µF psq,ΣF psq

�
to approximate the distribution. We

can compute the mean of the target distribution µF psq � k1psq� γµF ps1q and the variance

ΣF psq � k1psq2 � 2γk1psq E
s1�Pπ

�
ΣF ps1q

�
� γ2 E

s1�Pπ

�
ΣF ps1q �

�
µF ps1q

�2�
�
�
µF psq

�2
Here, k1psq � maxpkpsq, 0q and Pπps1|sq is the transition probability under policy π.
The TD error between the target distribution N pµF psq,ΣF psqq and the parameterized
distribution N pµFϕ psq,Σ

F
ϕ psqq with respect to the 2-Wasserstein distance can be computed

as

LF � }µF psq � µFϕ psq}
2 �Tr

�
ΣF psq � ΣF

ϕ psq � 2
�
ΣF psq1{2ΣF

ϕ psqΣ
F psq1{2

	1{2

. (3.2)
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Since the value function is one-dimensional, we simplify Equation (3.2) as

LF � }µF psq � µFϕ psq}
2 �

����bΣF psq �
b
ΣF
ϕ psq

����2 .
Given that V F

π ¥ 0, we use a Softplus activation for the mean and a Exponetial parameteri-
zation for the standard deviation to ensure positiveness.

3.2.2. Implicit Quantile Network

IQN [14, 49] is a parametric model representing the quantile function of the distribution,
which takes a quantile value τ as input and outputs a threshold value z so that the
probability of Z being less or equal to z is τ . Let ητϕpsq be the quantile function at
τ P r0, 1s for the random feasibility value at state s. The TD error between two samples
τ, τ 1 � Upr0, 1sq for the transition ps, a, s1, r, kq is

dτ,τ
1

ϕ � k1psq � γητ
1
ps1q � ητϕpsq

The IQN model can be optimized via the Huber quantile regression loss

Lτ pdq � |τ � Itdu|Lkpdq, where Lkpdq �

#
d2{2k, |d|   k

|d| � k{2, otherwise
(3.3)

We use the network structure as proposed in [14] with cosine embeddings for the τ and a
multilayer perceptron for the state embeddings.

With the approximators for the FVF in place, we will now introduce the risk measures we
use to ensure safety during learning.

3.3. Chance Constraint with (Conditional) Value-at-Risk

Value-at-Risk (VaR) and CVaR quantify the risk of a random variable. The VaR is the
smallest value such that the probability of Z is bigger than a value α. The CVaR risk
measure is the mean of the α-tail of the distribution of Z.
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Figure 3.1.: Distribution of V π
F and illustration of mean, VaR (red), and CVaR (green). The

shaded area shows the cumulative probability α.

VaRαpZq � inftz P R|F pzq ¥ αu, (3.4a)

CVaRαpZq � E rz|z ¥ VaRαpZqs . (3.4b)

where F pzq is the CDF of the random variable Z. When F is continuous and strictly
increasing, the VaR is uniquely defined as VaRαpZq � F�1pαq, i.e., the quantile function.
The VaR and CVaR offer a risk-aware constraint formulation by restricting the VaR or CVaR
to be smaller than a threshold δ. The CVaR constraint for the Gaussian approximator of
FVF is

CVaRF
α psq� µF psq �

1

1� α
φpΦ�1pαqqΣF psq ¤ δ, (3.5)

where φ and Φ are the Probability Density Function (PDF) and the CDF of the standard
normal distribution, respectively. The constant α determines the probability of constraint
satisfaction, thus, the risk is 1�α. Considering the CVaR constraints (3.5), the constrained
optimization problem as described in Equation (2.1) can be solved with ATACOM. Since
ATACOM exploits the prior knowledge of the robot dynamics, the RL agent will converge
to a safe policy as the estimation of FVF is getting accurate.

3.3.1. Adaptive constraint threshold estimate

While ideally, we would like to have the FVF to be always equal to zero, setting δ � 0 is
neither a practical choice since the network’s mean is always bigger than 0, nor beneficial
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State Space

Feasible Set
0-level CVaR

Figure 3.2.: Illustration of the feasible set (light blue), the learned FVF at 0-level red
and threshold δ. The threshold δ provides a small feasible region (white) to
explore within a small cost budget.

for the training of FVF as it restricts the exploration. The threshold δ trades off the
constraint violation and the exploration, sometimes requiring further engineering.

To alleviate the engineering effort, we propose an adaptive scheme that updates the
δ based on the current episodic cost and the estimation of the FVF. We use a Softplus
parametrization to keep the δ positive. The δ parameter is updated during the learning
process after each episode using the following loss

Lδ �
1

H

Ḩ

i�0

LHuber pdcpsiq,CVaRαpstq � δq (3.6)

with the horizon of the episode H, the accepted discounted cost budget C̄ and the the
predictive cost CVaRαpstq. The term dcpsiq �

°H
t�i γ

t�ik1pstq� C̄ computes the difference
between the emperical discounted cost starting from si. We use Huber Loss to obtain
a more robust update against outliers. Intuitively, the δ are tuned such that the CVaR
constraint is increased by the accepted cost budget. As the FVF estimation is becoming
accurate, the discounted cost and the CVaR will converge to zero since D-ATACOM ensures
safety, the Huber Loss in the end minimizes the difference between δ and C̄.
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3.4. Policy Iteration with Learnable Constraint using ATACOM

As introduced in Section 2.3, ATACOM constructs a safe action space by determining the
basis vectors of the tangent space of the constraint manifold. However, previous work
assumes that the constraint is given, fixed, and deterministic. This assumption is no longer
valid when the constraint is trained during the learning process. Since the constraint
function changes during training, the safe action space changes accordingly, leading to a
non-stationary MDP, which causes the failure of the training. Specifically, let a P A be
the action applied to the environment and the u P U be the control input obtained from
the policy u � πpsq. ATACOM constructs an affine mappingW : U Ñ A, defined in (2.3),
that maps an action in safe space into the original one. Combining ATACOM with the
actor-critic framework, a value function estimator Qωps,uq is trained to approximate the
expected return. Then, the policy πθpsq is updated by maximizing the Qωps,uq. However,
when the constraint is updated during the training process, the action mappingW will
also change. The same action u will result in different a at different steps. This variation
of the action space leads to an unstable update of Qωps,uq and πθpsq.

In the following, we will demonstrate how to address this problem for the Soft Actor Critic
(SAC) algorithm [24]. However, it is possible to use the same methodology to extend most
Deep RL algorithms, e.g., DDPG [27] TD3 [21], PPO [36]. To solve this issue, we learn the
value function of the original action space Qωps,aq, which is invariant to the constraints.
Since Qω is represented by a neural network and can be differentiated, we can use the
reparameterization trick to obtain the gradient for θ (similar to TD3 and SAC [24]), the
objective and policy gradient can be obtained as

max
πθ

Jπ � E
s,u�πθpsq

rQωps,W puqqs , ∇θJπ � ∇aQωps, aq∇uW puq∇θπθpsq.

Note that in SAC, the soft Q-function includes the entropy termHpW pπθpsqqq to encourage
exploration. The entropy is computed as

Hpπθpsqq � � E
πθpsq

rlogW pπθpsqqs .

This means the entropy term is indeed constraint-dependent. Thus, updating the con-
straints may change the entropy of the policy, consequently, the estimated value function
is not proper anymore. We argue that practically, the variation of the entropy bonus has
a negligible effect on the training stability because the entropy term is scaled down by
a coefficient. Furthermore, the online training of the value function allows us to quickly
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Algorithm 1 D-ATACOM with constraint learning
Initialize: FVF network parameters ϕ, number of steps N , threshold δ, cost budget C̄.
1: for 1 � � �N do
2: Construct CVaRFα pstq using µFθ pstq, ΣFθ pstq from Equation (3.5).
3: Draw action in safe action space ut and obtain the actual action at from Equation (2.3).
4: Observe st�1, rt, kt from the environment.
5: Save replay buffer pst, at, rt, kt, st�1q Ñ D and pst, kt, st�1q Ñ Df if kt ¡ 0.
6: If the episode terminates, update δ using Equation (3.6).
7: Sample a batch of transitions ps, a, r, k, s1q from D YDf .
8: Update ϕ using Equation (3.2), ϕÐ ϕ� αϕ∇ϕLF
9: Update value function and policy π with RL, the update with SAC is shown in Algorithm 2.
10: end for

Algorithm 2 SAC implementation for D-ATACOM
Initialize: Batch of transitions B � ps, a, r, k, s1q, policy parameters θ and Q-function parameters ψ1, ψ2.
1: Draw next action in safe action space u1 and obtain the actual next action a1 and B1

u from Equation (2.3).

2: Compute FVF adjusted log probability log p1 � log πθpa
1|s1q � log |B1

u|
3: Update Q-functions with the TD loss Lψ � 1

|B|
pQψps, aq � r � γpQψps

1, a1q � α log p1qq2.
4: Draw actions uθ and obtain aθ that are differentiable w.r.t. θ, obtain Bu from Equation (2.3).
5: Compute FVF adjusted log probability, log pθ � log πθpa|sq � log |Bu|
6: Update policy with the gradient �∇θ

1
|B|
pQψps, aθq � α log pθq

adapt to the new policy entropy. Algorithm 1 demonstrates the general structure of the
D-ATACOM with constraint learning. Algorithm 2 shows the implementation of SAC with
the ATACOM framework.

During training, we keep a replay buffer of limited size. As training progresses, the
agent will behave safer and encounter fewer constraint violations, flushing away unsafe
transitions when using a single replay buffer. Instead, we would like the agent to remember
the failures and avoid being overly optimistic, using a separate, smaller, Failure Buffer Df

to store the unsafe transitions. In each data batch, we sample a proportional number of
data coming from this buffer.
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4. Experimental Evaluation

In this chapter, we compare the performance of our approach in three different envi-
ronments with different characteristics. We compare with SafeRL baselines such as the
LagSAC [23] and the WCSAC [48]. All environments and algorithms based on SAC are im-
plemented using the MushroomRL framework [17]. We use the implementations provided
by OmniSafe [25] for PPO-based algorithms. We conducted a hyperparameter search
on the learning rates, cost budget, and accepted risk with 10 random seeds. We present
the learning performance with 25 seeds for the hyperparameters with the best trade-off
between performance and safety. In additional experiments, we also compare the learned
behavior and the impact of certain hyperparameters on the learning performance.

4.1. Learning Performance

For the Learning Performance, we conducted a hyperparameter search on the learning
rates, cost budget, and accepted risk with 10 random seeds. We present the learning
performance with 25 seeds for the hyperparameters with the best trade-off between
performance and safety. In additional experiments, we also compare the learned behavior
and the impact of certain hyperparameters on the learning performance.

Further hyperparameter search experiments and tables with all used hyperparameters are
in Appendix A.

4.1.1. Cartpole Environment

The cartpole environment, depicted in Figure 4.1a is a classic control problem with the
goal of moving the pole tip to a desired position (green point) by controlling a cart. The
pole has a length of 1 unit and is initialized in an upright position on the cart. The cart
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(a) Cartpole Environment (b) Navigation Environment (c) Air Hockey Environment

Figure 4.1.: The three Environments used for evaluation of all algorithms

can move on a rail 10 units long. The cart is initialized on the left side of the rail, and
the goal is to move the cart towards the goal position of the pole tip on the right rail’s
side while keeping the pole upright. Despite the simplicity of the environment, designing
a feasible long-term constraint is very challenging due to the actuator and cart position
limits.

The state space of the environment is s � rx, sin θ, cos θ, x9 , θ9 sT where x is the position of
the cart, x9 is the velocity of the cart, θ is the angle of the pole with the vertical axis, and θ9
is the angular velocity of the pole. The action space is a P r�1, 1s where the action is the
force applied to the cart.

The reward function given a goal position xG and pole tip position xT is defined as rpsq �
clipp1 � }xG�xT }

4 , 0, 1q. The constraint function prevents the pole from deviating more
than π from the vertical axis. Thus we define the cost function as cpsq � max

�
θ

0.5π � 1, 0
�
.

As we can see from the results in Figure 4.2, our approach is the best-performing one
among the SafeRL baselines in terms of learning speed, while achieving small constraint
violations. SAC achieves a policy with higher performance, but this policy heavily violates
the safety constraints as it completely disregards the pole angle constraint while reaching
the goal. The RCPO algorithm [45] achieves better performance, but violations are
comparable with SAC. Notice that D-ATACOM requires a feasible cost budget to generate
feasible actions since a single constraint violation will result in a high sum cost and the
complete maximum violations. We investigate the impact of the cost budget parameter in
the Cartpole task in experiment 4.2.1.

4.1.2. Navigation

The Navigation task consists of two robots, one differential-driven TIAGo++ (white) that
learns a navigation policy to a goal while avoiding the Fetch robot (blue), as shown in
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Figure 4.2.: Learning Curves for the Cartpole Environment

Figure 4.1b. The Fetch robot constantly moves its robotic arm in a periodic motion, such
that the end-effector draws a lemniscate into the air in front of the robot. Additionally, the
Fetch robot constantly moves to a randomly assigned target position using a hand-crafted
policy that ignores the TIAGo. The agent controls the TIAGo robot to reach the target
position while avoiding the Fetch robot, which serves as a dynamic obstacle. In this
setting, the impact of the arm’s motion on the constraint is not explicit, which generates
stochasticity on the constraint.

The state space consists of the cartesian position and velocity of the two robots, the target
position of the TIAGo, the previous action, and the cartesian position and velocity of
Fetch’s end-effector. The action space is the linear velocity in the x-direction and angular
velocity around the z-axis of the TIAGo robot. These are converted into the left and right
wheel velocities.

Given the distance to the goal dG, the current orientation θ and the goal orientation θG
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Figure 4.3.: Learning Curves for the Navigation Environment
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Figure 4.4.: Learning Curves for the Air Hockey Environment

the reward is defined as:

rpsq � �}dG} � sigmoid p30p}dG} � 0.2qq
θG � θ

π
� 0.1}a}

The constraint is the smallest 2d cartesian distance between the TIAGo base and every
joint of the Fetch Robot. Additionally, the constraint also prevents the TIAGo from hitting
the surrounding walls. Given the TIAGos’ position pT and cartesian position of the ith
Fetch joint piF the Fetch cost is cF psq � maxip�p}pT �p

i
F }�ωqq where ω is a constant that

accounts for the width of the robots. The wall cost is defined as cW psq � maxip�pd
i
wall�ωqq

where diwall is the distance to the ith wall. The step cost is cpsq � maxpcF psq, cW psqq.

From the result in Figure 4.3, D-ATACOM clearly outperforms all the state-of-the-art
methods both in terms of safety and final task performance. Inspecting the learned policies,
it is clear that D-ATACOM is the only approach presenting active collision avoidance
behaviors, including driving backward to prevent collision. These collision avoidance
behaviors are mostly achieved by the model-based treatment of the constraint function.
In this setting, using the constraint gradient and the model of the environment is a strong
inductive bias for the method. On top of that, the control system can exploit the physical
meaning of the variables, such as other obstacle velocity, allowing it to compensate in
advance for the other robot movements. In this task, most approaches behave the same.
We argue that in this task, the conflict between the task objective, pushing the robot to
disregard the obstacle, and the constraint function, forcing the robot to cause a detour, is
problematic for the Lagrangian approaches. Indeed, Lagrangian optimization is trying
to balance constraint satisfaction and policy improvement in the update step, possibly
causing the algorithm to get stuck in local minima.
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4.1.3. 3dof Robot Air Hockey

The objective of this task is to control a 3-DoF arm to score a goal in the robot air hockey
task, shown in Figure 4.1c. The episode terminates when the puck enters the goal or hits
one of the table’s walls.

The state space consists of the robots’ joint positions, velocities, puck position, and velocity.
The action space is the acceleration setpoint for each robot joint.

The reward for non-absorbing states is the change of distance between the puck and the
goal. In absorbing states the reward depends on the distance of the puck to the goal.
Given the puck position rxt, ytsT at timestep t and the distance between puck and goal as
dt, we define the reward as:

rpstq �

$''''''&
''''''%

50pdt�1 � dtq if not absorbing
ρp1.5� 5 � clipp|yt|, 0, 0.1qq if puck in goal
ρp1� 2 � clipp|yt| � 0.1, 0, 0.35qq if puck on backboard next to goal
ρp0.3� 0.3 � clipp1.43� |xt|, 0, 1qq if puck on sidebars
0 otherwise

where ρ is a constant that scales the reward. The constraint prevents the mallet from
touching the sides of the table and the robot from violating its joint position and joint
velocity limits. The mallet cost is defined as cM psq � maxip�d

i
W � ωq where diW is the

distance to the ith wall and ω is a constant that accounts for the width of the mallet. Given
the joint positions qi and the joint velocities q9 i the position cost is cP psq � maxipqi �
qu,i,�qi� ql,iq and the velocity cost is cV psq � maxptq9 i� q9u,i,�q9 i� q9 l,iq. The total cost is
cpsq � maxpcP psq, cV psq, cM psq, 0q Since the optimal strategy for hitting the puck toward
the goal is achievable within the tables’s boundary, high reward performance and low
constraint violations are achievable at the same time.

In this task, D-ATACOM is safer than the other baselines at the cost of slower learning
performance, as shown in Figure 4.4. The reason for this performance drop is that our
approach learns to expand the safe region progressively and improve the performance. The
final performance is lower as the robot hits more cautiously at the boundary regions due
to strict constraint satisfaction, while other approaches allow the robot to go outside for
stronger hitting, as shown in Experiment 4.2.3. A characteristic of this environment is that
the constraints do not majorly affect an optimal policy. Therefore, constraint satisfaction
is more difficult in the initial phases of learning than in the final one. This allows classical
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Figure 4.5.: FVF for the Air Hockey Environment. The colored region shows half of the air
hockey table on the agent’s side. We compute the value of CVaR� δ for each
end-effector’s position on the table with 0 velocity. After a short training with
an initial dataset, The feasible region shrinks to a small region on the table
at Epoch 2 and then increases progressively reaching considerable coverage
at the end of training.

lagrangian methods to be particularly competitive in the task. Figure 4.5 illustrates the
learned constraint at different training steps. We can clearly observe that the feasible
region expands progressively and reaches a good coverage at the final epoch. Since FVF
is a policy-dependent value function, the prediction at the corner regions is poor, as the
policy does not reach these states with the hitting behavior.

4.2. Additional Experiments

In this section, we investigate the impact of the cost budget and accepted risk hyperpa-
rameters on the performance of D-ATACOM. We also analyze the final performance of the
policies in the air hockey task to understand the differences that lead to the performance
gap.

4.2.1. Impact of Cost Budget

In this experiment, we will compare the impact of the cost budget parameter on D-ATACOM
and WCSAC. We chose the CartPole task for this comparison because both algorithms do
not learn a completely safe policy. Figure 4.6 shows the performance of D-ATACOM and
WCSAC with different cost budgets. We can observe that the performance of D-ATACOM
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Figure 4.6.: Impact of the cost budget parameter on D-ATACOMandWCSAC performance
in the CartPole task

is more sensitive to the cost budget parameter compared to WCSAC. When the policy
cannot achieve the given cost budget the performance of D-ATACOM degrades significantly.
This performance drop occurs because the delta eventually will converge towards zero,
which results in a very conservative policy. The behavior for D-ATACOM with the cost
budgets of 0.1 and 5 is balancing to the pole in its initial position because the policy is too
conservative to move towards the goal, as this will lead to constraint violations.

On the other hand, WCSAC is more robust w.r.t. the cost budget parameter. An unreason-
able cost budget will increase the Lagrange multiplier, giving more weight to the constraint.
The difference is that the Lagrange multiplier does not set an explicit limit to the constraint
like the delta does in D-ATACOM. Instead, WCSAC gives more weight to the constraint
violations in the optimization problem, which has less impact on policy performance.
Is worth noting that, depending on the application, one of the two behaviors would be
preferable. In safety-critical applications, having an algorithm that strongly enforces
the constraint violation, independently of the performance, is preferable. Instead, when
partial constraint satisfaction is enough, it may be better to choose a lagrangian-based
algorithm.
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Figure 4.7.: Impact of accepted risk on performance in the Navigation task with a fixed
delta. The plots are smoothed via the exponential moving average with 0.9
weight

4.2.2. Experiment with different Accepted Risk

In the distributional setting, the parameter accepted risk determines how much of the
tail of the distribution we are willing to violate, i.e., how much risk we want to take.
However, this is not the only parameter that influences the safety of a policy. Usually,
there is another parameter that is tuned with a given cost budget that also influences how
safe the behavior is. For WCSAC this parameter is the Lagrange multiplier beta, and for
D-ATACOM it is the learned δ. To show the complete impact of the accepted risk, we fix δ
to a constant value such that it cannot compensate for the difference in the accepted risk.
Figure 4.7 shows the performance of D-ATACOM with a fixed delta and different levels of
accepted risk in the Navigation task. Clearly, a lower accepted risk leads to safer behavior.

The impact of the accepted risk on the safety shrinks for D-ATACOM when the delta is
learned. Delta can compensate for a high accepted risk, resulting in the same safe policy
as a lower accepted risk would produce. The accepted risk has an impact in this setting
toward the beginning of the training when delta is not yet converged. Thus accepted risk
determines how risky the exploration at the beginning of the training will be. Figure 4.8
shows the impact of different accepted risk settings on the air hockey task. The lower
accepted risk explores slower, thus the discounted return converges slower. The maximum
violation and sum of cost are comparable for all accepted risk settings because, in the air
hockey task, the constraint does not majorly affect the optimal policy.
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Figure 4.8.: Impact of accepted risk on performance the air hockey task

4.2.3. Analysis of Air Hockey

In the air hockey task, D-ATACOM cannot reach the same discounted return as LagSAC and
WCSAC. We investigate the final performance of the policies to understand the differences
that lead to the performance gap. As D-ATACOM results in a safer policy, we theorize
that performance is lost when the puck is initialized too close to the edge of the table. To
test this hypothesis, we evaluate the performance of the final policies with an adjusted
region for the initial puck position, that omits these critical positions. Figure 4.9 shows
the performance for the original and adjusted regions and the difference between them.

The original region D-ATACOM has significant outliers in the discounted return compared
to WCSAC and LagSAC. However, LagSAC and WCSAC have more outliers in the maximum
violation and sum of cost. Thus, WCSAC and LagSAC sacrifice safety to gain a stable
performance. The safe exploration of D-ATACOM results in the opposite behavior, where
the policy will sacrifice performance to ensure safety.

When we evaluate the performance with the adjusted region, we can observe that the
discounted return of D-ATACOM increases more compared to WCSAC and LagSAC. Addi-
tionally, the decrease in maximum violation and sum of cost is more significant for LagSAC
and WCSAC. This result confirms our hypothesis that D-ATACOM does not properly hit
the puck when it is too close to the edge of the table because it is not possible to do so
safely. WCSAC and LagSAC learn to hit the puck in these critical positions, but this comes
at the cost of safety.
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5. Conclusion

In this thesis, we started to bridge the gap between model-based SafeExp methods and
model-free SafeRL approaches. We extended the ATACOM framework to work with learned
constraints, by dropping some key assumptions of the original formulation, such as known
constraints and local safety. We directly learn the constraint in the form of a distributional
FVF from data, which allows us to estimate the total uncertainty of the model. D-ATACOM
produces a risk-aware policy by restricting the level of acceptable risk, allowing the agent
to explore more cautiously whenever the constraints are uncertain or the policy is close to
violating them.

Our results show that our method is competitive with state-of-the-art approaches, out-
performing them in terms of safety, keeping an on-par learning speed, and achieving
similar or better performance for environments with different characteristics. Also, the
method does not require excessive parameter tuning, as it includes automatic tuning
rules for the most important hyperparameters. Therefore, our work proves that including
prior knowledge in data-driven methods can actually be beneficial for scaling SafeRL
approaches. Although all of the experiments are trained from scratch, we believe starting
with an offline dataset and pre-training will significantly reduce the initial violations,
leading to safe performance.

At the moment D-ATACOM cannot solve complex control tasks, such as the 7-DoF Robot
Air Hockey task, without predefined constraints. Exploring such a large space while trying
to accurately estimate the complex constraints is too hard for the current implementation.
D-ATACOM ends up overestimating the constraints, which leads to overly cautious behavior
that does not resemble the desired behavior. Unfortunately, this makes the deployment
of our method on complex real-world tasks problematic. Nevertheless, we believe that
D-ATACOM provides a solid foundation for future research in this direction. Another
limitation of this approach is that it requires knowledge of the robot dynamics. While
this is often the case in many applications, for other approaches, it may be problematic to
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derive even an approximate model. Lastly, our experiments provided a dense cost function,
which is not always available in real-world applications.

In future work, we will further investigate how to integrate known local constraints with
long-term safety. This can be easily integrated into the D-ATACOM framework and will
allow scaling the ATACOM approach to real-world robotics tasks involving complex long-
term constraints and human-robot interaction. Additionally, we will explore the impact of
sparse cost functions on the performance of the method. Another interesting direction is to
learn the model dynamics from data, which will allow our approach to be applied to a wider
range of tasks. It has been shown that ATACOM is still effective with a moderate model
mismatch, thus learning the dynamics from data should be feasible. Finally, using a more
structured constraint instead of the FVF might lead to better performance. Combining a
stepwise constraint (2.2b) with a linear add-on that ensures long-term safety similar to
viability constraints might lead to better constraint estimation and gradients which are
crucial for ATACOMs performance.

29



Bibliography

[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained Policy
Optimization. In International Conference on Machine Learning (ICML), 2017.

[2] Eitan Altman. Constrained Markov Decision Processes with Total Cost Criteria:
Lagrangian Approach and Dual Linear Program. Mathematical methods of operations
research, 48(3):387–417, 1998.

[3] Eitan Altman. Constrained Markov decision processes: stochastic modeling. Routledge,
1999.

[4] Haitham Bou Ammar, Rasul Tutunov, and Eric Eaton. Safe policy search for lifelong
reinforcement learning with sublinear regret. In International Conference on Machine
Learning. PMLR, 2015.

[5] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective
on reinforcement learning. In International conference on machine learning, pages
449–458. PMLR, 2017.

[6] Marc G. Bellemare, Will Dabney, and Mark Rowland. Distributional Reinforcement
Learning. MIT Press, 2023. http://www.distributional-rl.org.

[7] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, PrzemyslawDebiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse,
Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov,
Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter,
Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan
Zhang. Dota 2 with large scale deep reinforcement learning. CoRR, abs/1912.06680,
2019. URL http://arxiv.org/abs/1912.06680.

[8] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai

30

http://www.distributional-rl.org
http://arxiv.org/abs/1912.06680


Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End to end learning for self-driving
cars, 2016.

[9] Vivek Borkar and Rahul Jain. Risk-constrained markov decision processes. IEEE
Transactions on Automatic Control, 59(9):2574–2579, 2014.

[10] Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo
Panerati, and Angela P Schoellig. Safe learning in robotics: From learning-based
control to safe reinforcement learning. Annual Review of Control, Robotics, and
Autonomous Systems, 5:411–444, 2022.

[11] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh.
A Lyapunov-based Approach to Safe Reinforcement Learning. In Conference on
Neural Information Processing Systems (NIPS), 2018.

[12] Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mo-
hammad Ghavamzadeh. Lyapunov-based Safe Policy Optimization for Continuous
Control. In Reinforcement Learning for Real Life (RL4RealLife) Workshop in the 36 th
International Conference on Machine Learning, 2019.

[13] Alexander I Cowen-Rivers, Daniel Palenicek, Vincent Moens, Mohammed Amin
Abdullah, Aivar Sootla, Jun Wang, and Haitham Bou-Ammar. Samba: Safe model-
based & active reinforcement learning. Machine Learning, pages 1–31, 2022.

[14] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile
networks for distributional reinforcement learning. In International conference on
machine learning, pages 1096–1105. PMLR, 2018.

[15] Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional
reinforcement learning with quantile regression. In Proceedings of the AAAI conference
on artificial intelligence, volume 32(1), 2018.

[16] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru,
and Yuval Tassa. Safe Exploration in Continuous Action Spaces. arXiv preprint
arXiv:1801.08757, 2018.

[17] Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters.
Mushroomrl: Simplifying reinforcement learning research. Journal of Machine
Learning Research, 22(131):1–5, 2021. URL http://jmlr.org/papers/v22/
18-056.html.

31

http://jmlr.org/papers/v22/18-056.html
http://jmlr.org/papers/v22/18-056.html


[18] Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo R.
Jovanovic. Provably Efficient Safe Exploration via Primal-Dual Policy Optimization.
In International Conference on Artificial Intelligence and Statistics (AISTATS), volume
130, 2021.

[19] Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng.
Distributional soft actor-critic: Off-policy reinforcement learning for addressing value
estimation errors. IEEE Transactions on Neural Networks and Learning Systems, 33
(11):6584–6598, 2022. doi: 10.1109/TNNLS.2021.3082568.

[20] Jaime F. Fisac, Anayo K. Akametalu, Melanie N. Zeilinger, Shahab Kaynama, Jeremy
Gillula, and Claire J. Tomlin. A General Safety Framework for Learning-Based Control
in Uncertain Robotic Systems. IEEE Transactions on Automatic Control, 64(7):2737–
2752, July 2019. ISSN 0018-9286, 1558-2523, 2334-3303. doi: 10.1109/TAC.2018.
2876389. URL https://ieeexplore.ieee.org/document/8493361/.

[21] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation
error in actor-critic methods. In International conference on machine learning, pages
1587–1596. PMLR, 2018.

[22] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates. In 2017
IEEE International Conference on Robotics and Automation (ICRA), pages 3389–3396,
2017. doi: 10.1109/ICRA.2017.7989385.

[23] Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. Learning to walk in
the real world with minimal human effort. In Jens Kober, Fabio Ramos, and Claire
Tomlin, editors, Proceedings of the 2020 Conference on Robot Learning, volume 155
of Proceedings of Machine Learning Research, pages 1110–1120. PMLR, 16–18 Nov
2021. URL https://proceedings.mlr.press/v155/ha21c.html.

[24] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International conference on machine learning, pages 1861–1870. PMLR, 2018.

[25] et al. Jiaming Ji, Jiayi Zhou. Omnisafe: An infrastructure for accelerating safe
reinforcement learning research. arXiv preprint arXiv:2305.09304, 2023.

[26] Dohyeong Kim and Songhwai Oh. Efficient off-policy safe reinforcement learning
using trust region conditional value at risk. IEEE Robotics and Automation Letters, 7
(3):7644–7651, 2022.

32

https://ieeexplore.ieee.org/document/8493361/
https://proceedings.mlr.press/v155/ha21c.html


[27] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous Control with Deep Rein-
forcement Learning. In International Conference on Learning Representations (ICLR),
2016.

[28] Puze Liu, Davide Tateo, Haitham Bou Ammar, and Jan Peters. Robot Reinforcement
Learning on the Constraint Manifold. In Conference on Robot Learning, pages 1357–
1366. PMLR, 2022.

[29] Puze Liu, Kuo Zhang, Davide Tateo, Snehal Jauhri, Zhiyuan Hu, Jan Peters, and
Georgia Chalvatzaki. Safe Reinforcement Learning of Dynamic High-Dimensional
Robotic Tasks: Navigation, Manipulation, Interaction. In Proceedings of the IEEE
International Conference on Robotics and Automation. IEEE, 2023.

[30] Puze Liu, Haitham Bou-Ammar, Jan Peters, and Davide Tateo. Safe reinforce-
ment learning on the constraint manifold: Theory and applications. arXiv preprint
arXiv:2404.09080, 2024.

[31] Simin Liu, Changliu Liu, and John Dolan. Safe control under input limits with neural
control barrier functions. In Conference on Robot Learning, pages 1970–1980. PMLR,
2023.

[32] Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization
under constraints. In AAAI Conference on Artificial Intelligence (AAAI), volume 34(04),
pages 4940–4947, 2020.

[33] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby Fidjeland,
Georg Ostrovski, Stig Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou,
Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nature, 518:529–533,
2015. URL https://api.semanticscholar.org/CorpusID:205242740.

[34] Baiyu Peng, Yao Mu, Jingliang Duan, Yang Guan, Shengbo Eben Li, and Jianyu Chen.
Separated proportional-integral lagrangian for chance constrained reinforcement
learning. In 2021 IEEE Intelligent Vehicles Symposium (IV), pages 193–199. IEEE,
2021.

[35] Samuel Pfrommer, Tanmay Gautam, Alec Zhou, and Somayeh Sojoudi. Safe rein-
forcement learning with chance-constrained model predictive control. In Learning
for Dynamics and Control Conference, pages 291–303. PMLR, 2022.

33

https://api.semanticscholar.org/CorpusID:205242740


[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[37] Harshit Sikchi, Wenxuan Zhou, and David Held. Lyapunov barrier policy optimiza-
tion. arXiv preprint arXiv:2103.09230, 2021.

[38] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of go with deep neural networks and tree
search. Nature, 529:484–503, 2016. URL http://www.nature.com/nature/
journal/v529/n7587/full/nature16961.html.

[39] Kyle Stachowicz and Sergey Levine. Racer: Epistemic risk-sensitive rl enables fast
driving with fewer crashes. arXiv preprint arXiv:2405.04714, 2024.

[40] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive Safety in Reinforcement
Learning by PID Lagrangian Methods. In International Conference on Machine
Learning (ICML), 2020.

[41] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018. URL http://incompleteideas.net/
book/the-book-2nd.html.

[42] Daniel CH Tan, Fernando Acero, Robert McCarthy, Dimitrios Kanoulas, and
Zhibin Alex Li. Your value function is a control barrier function: Verification of
learned policies using control theory. arXiv preprint arXiv:2306.04026, 2023.

[43] Yichuan Charlie Tang, Jian Zhang, and Ruslan Salakhutdinov. Worst Cases Policy
Gradients. In Proceedings of the Conference on Robot Learning, volume 100, pages
1078–1093. PMLR, 2020.

[44] Andrew Taylor, Andrew Singletary, Yisong Yue, and Aaron Ames. Learning for
safety-critical control with control barrier functions. In Learning for Dynamics and
Control, pages 708–717. PMLR, 2020.

[45] Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward Constrained Policy
Optimization. In International Conference on Learning Representations (ICLR), 2019.

34

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html


[46] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David Choi, Richard Powell, Timo Ewalds, Petko Georgiev,
Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, L. Sifre, Trevor
Cai, John P. Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond,
Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom Le
Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yo-
gatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy P. Lilli-
crap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575:350 – 354,
2019. URL https://api.semanticscholar.org/CorpusID:204972004.

[47] Nolan C Wagener, Byron Boots, and Ching-An Cheng. Safe reinforcement learning
using advantage-based intervention. In International Conference on Machine Learning,
pages 10630–10640. PMLR, 2021.

[48] Qisong Yang, Thiago D Simão, Simon H Tindemans, and Matthijs TJ Spaan. Wc-
sac: Worst-case soft actor critic for safety-constrained reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35 (12), pages
10639–10646, 2021.

[49] Qisong Yang, Thiago D Simão, Simon H Tindemans, and Matthijs TJ Spaan. Safety-
constrained reinforcement learning with a distributional safety critic. Machine
Learning, 112(3):859–887, 2023.

[50] Yujie Yang, Zhilong Zheng, and Shengbo Eben Li. Feasible policy iteration. arXiv
preprint arXiv:2304.08845, 2023.

[51] Chengyang Ying, Xinning Zhou, Hang Su, Dong Yan, Ning Chen, and Jun Zhu.
Towards safe reinforcement learning via constraining conditional value-at-risk. In
International Joint Conference on Artificial Intelligence, 2022.

[52] Ming Yu, Zhuoran Yang, Mladen Kolar, and Zhaoran Wang. Convergent policy opti-
mization for safe reinforcement learning. Advances in Neural Information Processing
Systems, 32, 2019.

[53] Yinan Zheng, Jianxiong Li, Dongjie Yu, Yujie Yang, Shengbo Eben Li, Xianyuan
Zhan, and Jingjing Liu. Safe offline reinforcement learning with feasibility-guided
diffusion model. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=j5JvZCaDM0.

35

https://api.semanticscholar.org/CorpusID:204972004
https://openreview.net/forum?id=j5JvZCaDM0


A. Hyperparameter Search

In this chapter, we report the parameter tuning for all the baselines in all tasks. In general,
we test all the methods with different learning rates, cost budgets and safety parameters
to ensure the performance of the baseline is optimal. We report all the hyperparameter
configurations we tried and indicate which configuration is used for the main evaluation.

Every algorithm is first evaluated with the learning rates of 1e�4, 5e�4 and 1e�3. To keep
the computation reasonable, we use the same learning rate for the actor, the critic, the
constraints, and the learning rates for the Lagrangian multiplier that are updated every
step. We report the results of these experiments for each task in the following sections.

As a second step, we experimented with different cost budgets to get the best trade-off
between safety and performance. Our goal is to get the least constraint violations possible
while maintaining reasonable behavior. As we show in Section 4.2.1, setting the cost
budget too low can have an impact on the performance with no safety benefit.

Lastly, we tuned the cost-dampening parameters of LagSAC and WCSAC using the same
principle we used for the cost budget.

A.1. CartPole

Figure A.1 shows the results of the learning rate tuning for the CartPole task. We can
see that RCPO and LagSAC have a learning rate that achieves the best performance. For
PPOLag and WCSAC, the differences are more nuanced. Table A.1 shows all the parameters
we tried for the Cartpole task. The resulting best parameters used for the main evaluation
can be found in Table A.2.
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RCPO PPOLag LagSAC WCSAC D-ATACOM

Sweeping parameter

learning rate actor/critic/constraint t1e�3, 5e�4, 1e�4u

cost budget 5 5 {0.1, 5, 25, 40}

cost dampening - - {1, 10} -

learning rate lagrangien multipliers 0.035 0.035 t1e�4, 5e�4, 1e�4u

accepted risk - - - {0.1, 0.5, 0.9}

Default parameter

epochs 100 100 100 100 100

steps per epoch 20000 20000 10000 10000 10000

steps per fit 20000 20000 1 1 1

episodes per test - - 25 25 25

network size [128 128]

batch size 128 64 64 64 64

initial replay size - - 2000 2000 2000

max replay size 200000 200000 200000 200000 200000

soft update coefficient - - 1e�3 1e�3 1e�3

warm-up transitions - - 2000 2000 2000

target kl 0.01 0.02 - - -

update iterations 10 40 - - -

Table A.1.: Training Parameters for the CartPole task
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RCPO PPOLag LagSAC WCSAC D-ATACOM

Sweeping parameter

learning rate actor/critic/constraint 5e�4 1e�4 5e�4 5e�4 5e�4

cost budget 5 5 5 5 40

cost dampening - - 1 1 -

learning rate lagrangian multipliers 0.035 0.035 5e�4 5e�4 5e�4

accepted risk - - - 0.9 0.9

Table A.2.: Result of hyperparameter tuning for the CartPole task
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Figure A.1.: Learning rate ablation study for the Cartpole task. For each experiment we
run 10 seeds with all learning rates of the algorithm set to the respective
value.
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A.2. Navigation

Figure A.2 shows the results of the learning rate tuning for the navigation task. We can
see WCSAC is the only algorithm where the learning rate has a significant impact on the
performance. Table A.3 shows all the parameters we tested for the navigation task. The
resulting best parameters used for the main evaluation can be found in Table A.4.
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RCPO PPOLag LagSAC WCSAC D-ATACOM

Sweeping parameter

learning rate actor/critic/constraint t1e�3, 5e�4, 1e�4u

cost budget 0 0 {0, 1}

cost dampening - - {1, 10} -

learning rate lagrangian multipliers 0.035 0.035 t1e�4, 5e�4, 1e�4u

accepted risk - - - {0.1, 0.5, 0.9}

Default parameter

epochs 100 100 100 100 100

steps per epoch 20000 20000 10000 10000 10000

steps per fit 20000 20000 1 1 1

episodes per test - - 25 25 25

network size [128 128]

batch size 128 64 64 64 64

initial replay size - - 2000 2000 2000

max replay size 200000 200000 200000 200000 200000

soft update coefficient - - 1e�3 1e�3 1e�3

warm-up transitions - - 2000 2000 2000

target kl 0.01 0.02 - - -

update iterations 10 40 - - -

Table A.3.: Training Parameters for the navigation task
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Figure A.2.: Learning rate ablation study for the Navigation task. For each experiment,
we run 10 seeds with all learning rates of the algorithm set to the respective
value.
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RCPO PPOLag LagSAC WCSAC D-ATACOM

Sweeping parameter

learning rate actor/critic/constraint 1e�4 1e�4 1e�4 1e�4 1e�4

cost budget 0 0 0 0 0

cost dampening - - 1 1 -

learning rate lagrangian multipliers 0.035 0.035 1e�4 1e�4 1e�4

accepted risk - - - 0.9 0.5

Table A.4.: Result of hyperparameter tuning for the navigation task
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A.3. Air Hockey

Figure A.3 shows the results of the learning rate tuning for the air hockey task. We can see
that RCPO and PPOLag learn safer behaviors compared to LagSAC and WCSAC. However,
their discounted return is lower, and they need twice as many steps. Table A.5 shows all
the parameters we tested for the air hockey task. The resulting parameters used for the
main evaluation can be found in Table A.6.
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RCPO PPOLag LagSAC WCSAC D-ATACOM

Sweeping parameter

learning rate actor/critic/constraint t1e�3, 5e�4, 1e�4u

cost budget 0 0 {0, 1}

cost dampening - - {1, 10} -

learning rate lagrangian multipliers 0.035 0.035 t1e�4, 5e�4, 1e�4u

accepted risk - - - {0.1, 0.5, 0.9}

Default parameter

epochs 100 100 100 100 100

steps per epoch 20000 20000 10000 10000 10000

steps per fit 20000 20000 1 1 1

episodes per test - - 25 25 25

network size [128 128]

batch size 128 64 64 64 64

initial replay size - - 2000 2000 2000

max replay size 200000 200000 200000 200000 200000

soft update coefficient - - 1e�3 1e�3 1e�3

warm-up transitions - - 2000 2000 2000

target kl 0.01 0.02 - - -

update iterations 10 40 - - -

Table A.5.: Training Parameters for the air hockey task
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Figure A.3.: Learning rate ablation study for the Air Hockey task. For each experiment,
we run 10 seeds with all learning rates of the algorithm set to the respective
value.
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RCPO PPOLag LagSAC WCSAC D-ATACOM

Sweeping parameter

learning rate actor/critic/constraint 5e�4 1e�3 5e�4 5e�4 5e�4

cost budget 0 0 0 0 1

cost dampening - - 1 1 -

learning rate lagrangian multipliers 0.035 0.035 5e�4 5e�4 5e�4

accepted risk - - - 0.9 0.9

Table A.6.: Result of hyperparameter tuning for the air hockey task
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