




Abstract

Disaster scenarios like nuclear reactor accidents, bomb defusal, or accidents at chemical
facilities often disallow on-site inspection by humans. In the last decades, robotics have
moved into the spotlight to perform manipulation and navigation tasks in these environ-
ments. Currently, robots are controlled remotely most of the time, putting pressure on the
operators who are controlling the robot in these stressful conditions. Autonomous assis-
tance functions that help with navigation and environment manipulation are useful since
they allow the operator to focus on crucial mission objectives. Task-based autonomous
support of this kind is only sparsely available on a few robotics platforms. Since movements
in disastrous environments carry innate risks, these control policies need to guarantee
stability, and the robot needs to converge to the nominal motion even when external
environmental disturbances are present.

We extend the LieFlows method which uses stable vector fields on Lie groups to represent
robot motions. We introduce two new motion types that we embed into the method,
to learn two new tasks commonly needed in these emergency response settings. These
motion types are developed to represent precise positioning and cyclic motions, we use
them for opening doors and swiping a swab on a table to take a sample. The trained
policies are executed and evaluated in simulation. We integrate the swiping policy into a
graphical user interface for easy access by teleoperators and deploy it on the real robot.
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Zusammenfassung

Katastrophenszenarien wie Kernreaktorunfälle, Bombenentschärfung oder Unfälle in
Chemieanlagen lassen eine Inspektion vor Ort durch Menschen oft nicht zu. In den
letzten Jahrzehnten ist die Robotik ins Rampenlicht gerückt, um Manipulations- und
Navigationsaufgaben in solchen Umgebungen zu übernehmen. Gegenwärtig werden
Roboter meistens ferngesteuert. Das erhöht den Druck auf die Bediener, die den Roboter
unter diesen stressvollen Bedingungen steuern. Autonome Assistenzfunktionen, die bei
der Navigation und der Umgebungsmanipulation helfen, sind nützlich, da sie es dem
Bediener ermöglichen, sich auf die wichtigsten Missionsziele zu konzentrieren, sind
allerdings nur auf wenigen Robotikplattformen verfügbar. Da Robotereinsatz in diesen
Katastrophenszenarien riskant ist, müssen autonome Steuerungsmethoden Stabilität
garantieren, und der Roboter muss selbst bei externen Störungen aus der Umgebung zur
nominalen Bewegung zurückkehren.

Wir erweitern die LieFlows-Methode, die stabile Vektorfelder auf Lie-Gruppen als Repräsen-
tation für Roboterbewegungen verwendet. Wir führen zwei neue Bewegungstypen ein,
die wir in die Methode einbetten. Damit trainieren wir zwei neue Bewegungsroutinen, die
in diesen Notfallsituationen häufig benötigt werden. Diese Bewegungstypen modellieren
präzise Positionierung und die Ausführung zyklischer Bewegungen. Wir wenden sie an
um das Öffnen von Türen und das Wischen eines Tupfers auf einem Tisch, um eine Probe
zu entnehmen zu erlernen.

Die trainierten Strategien werden in Simulation ausgeführt und ausgewertet. Wir in-
tegrieren das Kontrollschema zur Probenentnahme durch wischen in eine grafische Be-
nutzeroberfläche, um den Teleoperatoren die Anwendung zu erleichtern und führen die
steuerung auf dem Roboter aus.
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1 Introduction

Teleoperated robots are used in scenarios where human access to a site is deemed too
dangerous. These can be rescue missions, explosive ordnance disposal, or inspections
after accidents at industrial facilities or power plants. Robotics have been used in nuclear
disasters, at least since the Chernobyl nuclear reactor catastrophe of 1986 [2]. Robot
operators have to deal with complex problems in these situations. While working on the
main objective, like radiation source locating, they have to overcome obstacles and do
routine tasks that contribute to the exhaustion of the operator.

Autonomous or semi-autonomous assistance functions can reduce the operator’s work-
load by automating repeating movement tasks. These assistance functions can be the
automation of navigation tasks or locally defined manipulation procedures like taking
a sample by picking up objects or swiping a surface with a swab. Currently, advanced
robotic control policies that take care of these tasks are, at best, partially available on
the robots used in these scenarios. One notable example of such an assistance function
is the Spot robot by Boston Dynamics, which includes a routine to open doors[6]. The
robotics systems typically used by special task forces are usually explicitly designed for
teleoperation. They often need these advanced assistance features. The Telemax robot, a
prominent model used in Germany, shows the capabilities of robotic technology in these
scenarios. Manufactured by Telerob, this robot is highly appreciated for its manipulation
tasks, thanks to its robust and precise arm attached to a stable base. Its performance in
these tasks instills confidence in the potential of robotic assistance functions. We use this
robot to test the application of our method in realistic scenarios.

Since these robots often operate in very hazardous environments, limiting the risk of
further deterioration of the situation is necessary. On the one hand, the robot should
not worsen the contamination by changing the environment, for example, by knocking
over containers, on the other hand, the robot should stay operable so it does not block
the way for further missions. This necessitates stable control policies, which make the
execution of autonomous tasks predictable. Since these movements are carried out in a
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three-dimensional cartesian environment where orientation is essential, representations
that include position and orientation into a single pose are needed. Control policies
need to be defined concerning this representation, and their execution must be stable.
Therefore, representing the task space in the SE(3) manifold satisfies the requirements of
the pose, and the stable control policy is defined by a stable vector field defined on this
manifold.

Defining thesemanipulation tasks with a handcrafted algorithm is difficult. The algorithmic
representation must be adapted and hand-tuned from scratch by an expert for each task.
Representing these movements may require complex logic and tracking of the robot’s state
to decide which motion to execute. Guaranteeing stability of the motion is difficult in this
context. Machine learning enables data-driven execution of motor skills that supersede
the need for algorithmic movement definition. Behavioral cloning, a machine learning
technique that relies on the invaluable expertise of human demonstrations, uses these
demonstrations as the basis to learn actions to execute depending on the current state of
the robot, resulting in a control policy that can be applied to robot motion. Since complex
sequences of movements can be hard and laborious to define programmatically, imitation
learning simplifies capturing the essence of a movement into a computable policy. Inducing
domain-specific structure into the learning process can ensure stability and significantly
aid the generalization of the model. LieFlows is a method that guarantees stable robot
policies using a vector field.

In contrast to movement and locomotion tasks, the barrier of entry for the practical
deployment of autonomous assistance functions is lower for manipulation tasks that
are temporally and spatially contained. These functions can be exposed as discrete
triggerable modules to the operator of the robot, providing a flexible system where the
manipulation can still be done by hand using the joystick interface if automatic execution
fails. Nevertheless, having access to these assistance functions is useful anyway. Not every
operator is able to do these tasks, so in addition to saving time, assistance functions make
it possible for less skilled users to navigate uncertain environments.

LieFlows defines a vector field in task space used with an operational space controller.
Defining the action in task space is useful, as it allows us to acquire demonstrations of
the task space representation. This is advantageous since this movement description
is independent of any specific robot or kinematic chain. Deployment profits from this,
too. Trained skills can be re-used plug-and-play by running the task space policy on a
different robot using a robot-specific operational space or nullspace control scheme. The
fact that the movements are independent of a particular robot enables the demonstration
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Figure 1.1: ANYmal by ANYbotics (left) and Telemax by Telerob (right)
Picture taken at the training scenario from Kerntechnische Hilfsdienst GmbH
during the final KIARA project meeting

generation by humans using motion-tracking markers. Any other robot can also capture
demonstration trajectories.

Robots like the telemax deployed for exploration and manipulation in a training setting
can also capture examples. A skilled operator controlling the robot by teleoperation can
also generate demonstrations. The resulting data set can be used to train an autonomous
skill, making demonstration acquisition particularly easy.

For the training and operation of our skills, we assume sufficiently precise perception is
available and focus on representing the pure manipulation task. The tasks are learned
as stable vector fields, which provide stability guarantees, inherent reactivity, and good
generalization.
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1.1 Goal of the Thesis

In this thesis we extend the LieFlows method to find a good policy architecture for precise
movements and cyclic motions, we describe LieFlows in chapter 3. LieFlows is based on
representing movement by stable vector fields that are created by deforming a movement
primitive in a latent space to the task space by a diffeomorphic mapping that is based
on Lie groups. We apply this imitation learning scheme to two different manipulation
tasks that are common in typical search and rescue scenarios where robots are deployed
to learn these manipulation tasks from data.

First, we learn a movement to take a sample on a surface by swiping in an oval planar
shape. We provide a simple user interface to the operator so that sample-taking can be
automated by clicking on a surface inside the 3D representation of the robot’s environment.
The robot will then execute the trained skill in an automated way. Since this type of
movement requires a steady height above the surface, which is difficult to maintain by
manual control, executing the task with an autonomic routine speeds up taking samples
from the environment significantly.

The second skill we train addresses the task of automated door opening. Robot operators
typically take around 25 minutes1 to open a door manually. This shows, that opening
a door with a robot remotely is extremely difficult. It is apparent that automation can
greatly reduce the time needed to execute these tasks as well as spare the users from
executing those movements manually by using the joystick input.

In order to enable learning to open doors, we have to enable motions that allow positioning
the robot to a target pose precisely. To learn swiping, we extend the method to use limit
cycles as movement primitives. We parametrize the movement primitives by neural
networks predicting the movement speeds. Those two movement types are described in
the methodology section (chapter 4). In chapter 5 we apply these learned tasks to the
Telemax robot in simulation, as well as on the real system.

1I learned this from the teleoperators using remote-controlled robots in nuclear accidents to navigate and
observe contaminated spaces
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2 Related Work

Currently, the focus for manipulation tasks has shifted from classical trajectory descriptions
to methods driven by machine learning. Imitation learning is a class of techniques used to
directly learn a policy from demonstration movements, enabling the utilization of expert
demonstrations to describe a task[19]. Humans quickly learn to execute movements based
on simple observations, suggesting using a similar approach for machine learning. In
recent years several different imitation learning techniques have emerged. One of the most
basic techniques is behavioral cloning[3], which directly learns the policy by state action
pairs using supervised training. Since the policy is simply trained on the demonstration
data, the performance of the trained policy can suffer from a range of problems. It is
not robust against disturbances and errors, potentially resulting in poor generalization,
due to small errors adding up, causing the trajectory to stray from the state space area
covered by the demonstrations. Therefore behavioral cloning has been extended, one
method to do this is by augmenting the dataset during training querying an expert. The
policy is trained on the demonstrations then the resulting policy is evaluated using the
expert. these results are iteratively added to the training dataset and training is repeated,
resulting in an iterative process. Several methods have been proposed doing this, like
the DAgger (Dataset Aggregation) method[17] or Direct Policy Learning (DPL). Other
approaches try to model the expert’s reward function like inverse reinforcement learning
(IRL)[1].

There are two fundamental classes of imitation learningmethods. The training architecture
can be offline or online. Offline methods base the training on a previously captured data
set. Online methods incorporate interaction with an expert or the environment during the
training. This makes offline methods generally simpler since the process of generating the
demonstrations can be completely separated from the training. Online methods, however,
are intertwined with the domain expert or the environment, which can make the training
more difficult or slow.
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Imitation learning methods can be based on task space or joint space demonstrations.
Joint space methods offer a more application-specific definition of the movement since
every joint angle is precisely defined by the captured demonstration trajectory. However,
acquiring training data is more difficult, since it can only be generated with access to an
identical kinematic system. If demonstrations should be taken from moving the robot
directly, the robot needs to have a compliant controller as well, so that an expert can move
the manipulator according to the task. Capturing a teleoperated movement is also possible.
Task space demonstrations are more versatile as they intrinsically are not dependent
on any kinematic chain. Therefore capturing examples can be done using a variety of
different methods. Task-space demonstrations exceed the possibilities set out by joint
space demonstrations. We gain the possibility to acquire demonstrations by teleoperated
and manually guided demonstrations, it’s also possible to use motion capture systems or
robots with different kinematic chains. This independence of physical layout makes it
possible to quickly transfer policies trained in task space between different robots using
operational space control.

Movement primitives are another common technical foundation used for robotic manipu-
lation. Parametrizing these enables the construction of complex movements using these
dynamic systems as building blocks. This lays the foundation of motor primitives the-
ory[12], whose premise is that complex movements are decomposable into distinct atomic
movements. In recent years it has become clear, that motor actions of large animals can
be understood as a combination of primitive building blocks[9]. This makes representing
movements with motor primitives an obvious choice for robotics. Different mathemat-
ical constructs have been used to model these primitives, from dynamical systems and
statistical models (ProMP and Kernelized Movement Primitives) to Task parametrized
Gaussian mixture models (TP-GMM)[4][25]. Dynamic movement primitives are using
dynamical systems as a basis to model movements. The basis of this technique is laid by
simple dynamic systems like attractors2 or limit cycles. Dynamic movement primitives
(DMP) [18] span a vector field that defines the movement of the policy through the state
space by assigning velocities to each point in the state space. Integrating and using these
velocities as a control input results in a reactive policy controlling robotic movements.

Behavioral cloning techniques have been augmented by supplementing them with dynamic
movement primitives. The movement primitives live in a latent space representation. Task
space movements are created by combining these two building blocks with a mapping that
morphs the latent space into the task space. The movement primitives can be understood

2This can be understood as using singularities in the dynamic systems like sources and sinks as movement
features

12



as inductive biases to the learning architecture to impose guarantees on the resulting policy.
For control policies defined in task space, the mathematical representation of rotation is
an important component of the control strategy, since it imposes the inherent properties
of the representation onto the control behavior. Multiple representations have been used
in robotics from Euler angles to rotation matrices and quaternions. Euler angles are
easily understandable since humans have an intuitive understanding of rotation by axes.
They have unfavorable characteristics disincentivizing the use for robot control, however,
since they are susceptible to gimbal locks3 as well as ambiguity[24]. Quaternions and
rotation matrices provide more attractive properties since they are unambiguous. Rotation
matrices are defined in the special orthogonal lie group SO(3) describing any rotations in
three-dimensional space. Defining a diffeomorphic mapping on these representations is
difficult, however, since not every combination of values constitutes correct quaternions
or rotation matrices. Additionally, ensuring stability guarantees poses difficulty since the
mapping is not defined in an Euclidean space. LieFlows[22] solve this issue by defining
the mapping function connecting the latent dynamics to the task space with Lie groups,
enabling the training of robot policies with stability guarantees this way. We extend the
method of LieFlows, which previously has been deployed to do robot control in joint
space[23] and task space[22]. We adapt the architecture to enable precise point-to-point
motions as well as cyclic motions.

3Singularities in the rotation angle representation
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3 Foundations

This thesis uses the term skill to describe a movement executing a specific spatial ma-
nipulation task. This movement is defined as a vector field on the tangent space of a Lie
group, generated by morphing the dynamics of a latent space by using neural ODEs as a
diffeomorphism. A task can be composed of several skills.

3.1 Stable Vector Fields

Vector fields are a functional mapping of points in a manifold to vectors, these vectors are
called tangent vectors. Vector fields are commonly used in robotics to assign actions to a
state space representation. In our method, stable vector fields are generated by nonlinear
dynamical systems that are stable in terms of Lyapunov. We define basic vector fields
on the SE(3) manifold that describe circular or linear motions. Combining these vector
fields with invertible mappings forms the basis for more complex movements. Ensuring
stability by carefully constraining the mapping enables us to guarantee convergence to
the terminal motion. This destination can either be a singular point or a limit cycle. Stable
vector fields form the basis of our technique.

Using stable vector fields on the SE(3) Lie group creates stable, smooth, and reactive
control policies. A reactive control scheme makes the movement execution robust against
disturbances. If the robot is controlled by a compliant controller, users can move the
arm without the quality of the control policy deteriorating, which results in very robust
movements. The policy adapts the actions to the new position, and the vector field pushes
the robot state toward the trained movement pattern.

14



3.1.1 Dynamic Systems as Movement Primitives

We use dynamical systems as movement primitives to describe motion on a vector field.
Dynamical systems are generally described like this

ẋ = f(x, t) x(t0) = x0

We define x as part of a cartesian vector space.

x ∈ R
n

It is possible to incorporate components that can be trained using gradient descent
since dynamic systems are differentiable. This is elaborated in subsection 4.1.3 and
subsection 4.2.2 in the methodology of the thesis.

Lyapunov Stability

Consider a dynamical system described by an ordinary differential equation (ODE).

ẋ = f(t,x), x(t0) = x0, x ∈ R
n (3.1)

According to the Picard-Lindelöf theorem the ODE f(t,x) has a unique solution if Lipschitz
continuous with respect to x and continuous with respect to t. Each point x∗ that satisfies
f(x∗, t) = 0 is called an equilibrium point of 3.1. An equilibrium point is locally stable

if initial conditions near x∗ do not diverge and stay near x∗. This formalizes the notion
of Lyapunov stability. By shifting the coordinate system so that x∗ = 0 we define an
equilibrium point x∗ = 0 stable with respect to Lyapunov at t0 if

∀ ε > 0 ∃ δ > 0 : ‖x(t0)|| < δ =⇒ ‖x(t)‖ < ε (3.2)

Intuitively, this says, that trajectories can not move away from the equilibrium point
according to the amount of coordinates[16].

Asymptotic Stability

An equilibrium point x∗ = 0 is considered asymptotically stable[16] at t0 if

1. the point is stable in terms of Lyapunov

2. x∗ is locally attractive: ∃ δ : ‖x(t0)‖ < δ =⇒ limt→∞ x(t) = 0
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Stability of Cyclic Motions

On limit cycles, the notion of Lyapunov stability does not hold. Limit cycles carry innate
notions of stability, however. Limit cycles are called stable if trajectories generated from
neighboring initial conditions converge to the limit cycle. Therefore stable limit cycles are
attractors.

3.2 Lie Theory

Lie theory has been named after Sophus Lie, who developed this methodology to solve
differential equations using symmetries, inspired by Galois theory which addressed alge-
braic equations[20]. Besides differential equations, its usefulness reaches many different
branches of mathematics, physics, and engineering. Lie theory has been applied to ge-
ometrical problems early. In recent years, however, Lie theory has become increasingly
popular in robotics and is used as a favorable representation of task space in robotic
applications[21].

3.2.1 Lie Groups

A Lie group is a mathematical group as well as a differentiable manifold. A mathematical
group (G, ⋆) is a set G with an operator ⋆ satisfying the group axioms [21].

We require for all x, y, z ∈ G:

closure under ⋆ x ⋆ y ∈ G
existence of identity ǫ ǫ ⋆ x = x ⋆ ǫ

existence of inverse element x−1 ⋆ x = x ⋆ x−1 = ǫ

associativity (x ⋆ y) ⋆ z = x ⋆ (y ⋆ z)

A differentiable manifold is a manifold that is smooth, with smoothness referring to the
property of being locally similar to an Euclidean vector space. This allows us to use
calculus. Lie groups have a tangent space, which is modeled by the Lie algebra. The
logarithmic map relates lie groups to lie algebras, and the exponential map does the
inverse. We describe them in detail in subsection 3.2.2.
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The Lie Group SO(3)

SO(3) =

{

R

∣

∣

∣

∣

∣

R ∈ R
3×3,RR⊺ = R⊺R = I, det(R) = 1

}

(3.3)

The Lie group SO(3) is the special orthogonal group. It is defined by an orthogonal three-
by-three matrix with determinant one. This class of matrices can be used to express any
rotation in three-dimensional space. Its tangent vector spaces can be expressed as values
in R

3.

The Lie Group SE(3)

SE(3) =

{

A

∣

∣

∣

∣

∣

A =

[

R t

0⊺ 1

]

,R ∈ R
3×3, t ∈ R

3,RR⊺ = R⊺R = I, det(R) = 1

}

(3.4)

The Lie group SE(3) consists of homogenous transformation matrices. It consists of a
rotation matrix R ∈ SO(3) and a position vector t represented using homogeneous
coordinates. This group is called the special Euclidean group. Transformations in SE(3) are
a subgroup of affine transformations preserving angles. Operations in SE(3) are describing
rigid motion. Its tangent vector spaces can be expressed as values in R

6.

SE(3) and SO(3) satisfy the group axioms under multiplication. Since multiplication is a
continuous function of two matrices, SO(3) and SE(3) are differentiable manifolds.

3.2.2 The Tangent Space of a Lie Group

We write the tangent space of a Lie group M in the point x as TxM. The tangent space
at x is called the Lie algebra of M and spans the local tangent space. We call this
TxM. Lie algebras can have complex structures like skew-symmetrical matrices. Since
representing the tangent space of a Lie group using an Euclidean coordinate system R

m

is intuitive, we focus on describing Lie theory using this representation. This is possible
since each Lie algebra has an isomorphic cartesian vector space description[21]. We skip
the mathematically rigorous definition of Lie algebras and their mapping to the tangent
vector space for the sake of briefness and simplicity. Intuitively a tangent space can be
thought of as imposing Euclidean coordinates onto its manifold (Figure 3.1).
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The LieFlows method learns stable vector fields using diffeomorphisms on Lie groups.
Diffeomorphism-based stable vector field methods are based on a movement primitive
represented in a latent space, that is deformed and projected back to task space using
a diffeomorphic function Φ (Figure 3.3). Since the movement primitive is represented
by a dynamic system in latent space, we also call it the latent dynamics. We describe it
in subsection 3.3.2. Complex movements are represented by the shape of Φ. In order
to train policies based on this architecture, practical learning-based methods model Φ
by an invertible neural network [23][22][7], which is trained using gradient descent.
LieFlows represents these invertible networks with neural ODEs, described in detail in
subsection 3.3.1.

The task space and latent space are modeled with identical Lie groups and called M and
N . This paper applies the method to three-dimensional poses, we use the Lie group SE(3)
to represent them. The latent space movement primitive is modeled by stable differential
equations and projects the calculated velocity as a stable vector field g : N → TN to the
latent tangent space. Points from the task space M are mapped to the latent space using
the diffeomorphism Φ : M → N . To correctly resemble a complex movement, Φ, and the
latent dynamics need to be chosen carefully. Since we ultimately want to calculate the
vector field in task space, Φ must be invertible. A given mapping Φ between M and N
has a corresponding linear map between the tangent spaces of M and N .

Φx : TxM −→ TΦ(x)N (3.7)

With g(x) cleverly designed, defining the dynamical system as the LogMap of the latent
space representation at Φ(x), the reverse mapping is used to get the morphed dynamics
in task space. We call this the pullback operation4:

dΦ∗
x
: TΦ(x)N −→ TxM (3.8)

ẋ = dΦ∗
x(g(Φ(x))) (3.9)

Note that the pullback operation is in tangent space representation, this only works if Φ is
diffeomorphic.

Defining mappings on manifolds like SE(3) directly can result in unstable policies, since
definitions of diffeomorphic functions on non-euclidean manifolds are difficult. Stable
vector field approaches usually achieve stability guarantees by defining Φ on Euclidean
spaces.

Φ : Rn → R
m (3.10)

4This is the reason why invertibility is not sufficient and Φ needs to be diffeomorphic
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Euclidean spaces do not represent orientations, however.

The LieFlows method models the diffeomorphism Φ with Lie groups since they allow
representing rotations in the tangent space as an Euclidean space. The mapping can then
be described with a diffeomorphic function fθ which is much simpler to define since it
operates on Euclidean spaces.

We describe how this method can be applied to the SE(3) lie group. The diffeomorphism
must be defined in parts since a Lie group is topologically different from its tangent space,
making the definition of a diffeomorphism by a single function impossible.

Φ(x) =

{

ExpMap(fθ(LogMap(x))) if x ∈ UM

x if x ∈ M \ UM

(3.11)

Points of the Lie group that are unambiguous under the coordinate map are assigned toUM,
the rest are inM\UM. Under the condition that fθ(x) is diffeomorphicExpMap(fθ(LogMap(x)))
also is, since ExpMap and LogMap are diffeomorphic functions[14]. The identity mapping
of elements x ∈ M\UM to y ∈ N \UN is also diffeomorphic. Although Φ is diffeomorphic
in parts, continuity and differentiability at the boundaries are required, too. We require

Φ(x) = ExpMap(fθ(LogMap(x)))

ExpMap(LogMap(x)) = x
(3.12)

when x approaches the boundariesM\UM. This way, values inUM nearing the boundaries
will approach identity mapping. Section 5.2 and section 5.3 show how this is implemented
in practice.

LogMap : UM −→ ÛM, x̂ ∈ ÛM ⊆ TxH
M

fθ : ÛM −→ ÛN , ẑ ∈ ÛM ⊆ fθ ◦ TxH
M

ExpMap : ÛN −→ UN , z ∈ ÛN ⊆ N \ UN

(3.13)

The sets ÛN and ÛM are called the first cover of the tangent space.

3.3.1 Modeling fθ with Bounded Flows

In the LieFlows method fθ(x) is modeled with neural ODEs. Neural ODEs are invertible
neural networks, that are used to model diffeomorphisms by taking a point x and setting
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Φ

first cover of the tangent space
M

UM ÛM ÛN UN

N

M\ UM N \ UN

LogMap fθ ExpMap

identity map

Figure 3.4: Modeling Φ : M → N with Lie groups. This enables us to define the diffeo-
morphism fθ on Euclidean manifolds with stability guarantees.

it as the initial point of the dynamic system x(t0). Movement on the vector field encodes
the diffeomorphic map5. This movement is calculated by forward Euler integration.

ẑ = fθ(x̂) = x̂+

∫ 1

0
α(x̂)ψ(x̂) (3.14)

where

α(x) the constraint or scaling function, forcing continuity at the boundary of UM

ψ(x) arbitrary Lipschitz continuous vector field

The scaling function α(x) prevents fθ from moving values out of the set of the image and
preimage and vice versa. This is done by choosing the scaling function α(x) = 0 for x
near values in M\ UM, this way the ODE representing fθ becomes the identity at the
boundaries and diffeomorphic in between. The vector field ψ(x) is represented with a
parametrized neural network trained to learn the mapping.

5Important to note is that this is not connected in any way with the stable vector field used in the latent
dynamics, it is used solely to model the diffeomorphism
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3.3.2 Stable Latent Space Dynamics as Movement Primitives

Consider the simple dynamic system:

ż = g(z) =

{

−LogMap
zH

(z) if z ∈ UN

0 if z ∈ N \ UN

(3.15)

By selecting the points in M\UM, sources can be favorably placed on the manifold, since
the flow constraint α(x) makes Φ the identity in these points. The point zH becomes
the sink. Additionally, workspace limits can be imposed by putting them in M \ UM.
For rotational dimensions, we assign ±π ∈ M \ UM, making these orientations sources.
Dynamic systems can be augmented with parameters, that are dependent on z and are
predicted by a neural network during execution[23]. It is important, however, to ensure
the integration of those predictors in a way that retains the stability of the dynamic system.

In Lie groups, vector fields are always defined with respect to an origin. In LieFlows, the
origin of the tangent space is always shifted to 0n, in the task space it is set to the target
transformation of the skill. The LogMap inside Φ normalizes x so that x̂H = 0. This
normalization is reversed in the pullback (see Figure 3.5).

This thesis uses the notation x for coordinates in task space. The notation z is chosen for
coordinates in latent space. Coordinates in the first cover of the tangent are denoted with
a hat x̂, ẑ. Coordinates in the tangent space representation encoding velocities from the
dynamic system are denoted with dots ẋ, ż.

3.3.3 Defining fθ on SE(3)

Here we show an exemplary definition of α(x) that can be used to model fθ on SE(3).
Other solutions are possible, we discuss them in chapter 4. Constraining the flow depends
on the type of information to represent. We split the scaling function into a positional and
a rotational one.

α(x) = αpos(x
(0,3))αori(x

(3,6)) (3.16)

Positional dimensions X, Y, and Z may be constrained to a certain workspace interval. To
do this, α(x) is chosen such that it becomes zero at the workspace limits and differentiable
in between.

αpos(x
(n)) = 0 if x(n) ∈ x

(n)
lim for all n ∈ {x, y, z}
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Orientations are represented in the sets ÛM = ÛN = {x ∈ R
3, ‖x‖ < π}. The scaling

function must guarantee α(x) = 0 if ‖x‖ = π, which can be done multiple ways. It could
be defined like this:

αrot(x) = max

(

0, 1−
(x

π

)2
)

(3.17)

This enforces fθ to be the identity map at rotations with amount π. The function fθ must
be constructed according to the set M\ UM. Roots of fθ denote elements in M\ UM.

Combined with the dynamic system from subsection 3.3.2 it is ensured, that the boundaries
of the intervals are projected back to the task space as a source. Note, that the mapping Φ
can move the stable point of the dynamic system since the position of this sink in the vector
field is a result of the training process. The vector field in task space is asymptotically
stable, however. If we chose xH ∈ M \ UM the sink would be projected to xH in the task
space. The scaling function would have to be constructed accordingly.

3.3.4 Movement Segmentation

Representing motion with the LieFlow method imposes certain constraints on the types of
movement sequences that can be represented. This is dependent on the characteristics of
the latent dynamics and the structure of Φ especially with respect to the flow constraint
and the Lie group representing the robot state. Since the vector field induced to the task
space is a functional relation, each unique point in the state space can map to exactly one
tangent vector. This rules out movements that traverse the same point in space more than
one time with different velocity vectors. To represent movements like this with LieFlows,
they have to be segmented to separate phases by time into multiple skills. Each skill is
then represented by its own vector field. Additional logic has to be deployed keeping
track of the state space and the progress of the task execution to switch to different states
at appropriate times. Incorporating neural networks that enable the learning of speed
parameters to drive the movement primitives, can reduce the morphing complexity that
the diffeomorphic map needs to represent. The neural ODE does not need to contract the
latent space as much to represent different speeds.
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3.4 Training a Control Policy using the LieFlows Method

The training dataset consists of state action pairs. Since LieFlows is a form of behavioral
cloning, we train ψ(x) such that the loss between the actual velocities from the demon-
stration and the movement predicted by the vector field in the same point is minimized.
We use n state action pairs taken from demonstration movements as ground truth.

D =

[

x

ẋ

]n

(3.18)

We search a mapping Φ minimizing the loss between the ground truth action and the
stable vector field prediction.

min
Φ

‖ẋ− dΦ∗
x(g(Φ(x)))‖

2
2

s.t. Φ is a diffeomorphism
(3.19)

The diffeomorphic property of Φ needs to be ensured by the construction of the scaling
function.

Algorithm 1 Behavioral Cloning with LieFlows
1: function train(svf, θ0, E,D) ⊲ svf is the model to train
2: ⊲ with svf(xk, θi) = dΦ∗

x(g(Φ(x)))
3: ⊲ θ0 are the initial parameters
4: ⊲ the number of epochs E
5: ⊲ demonstrations D
6: for i = 0 to E do

7: xb, ẋb ∼ D ⊲ sample from data set
8: loss(θi) =

1
B

∑B
k=0 ‖ẋk − svf(xk, θi)‖

2
2

9: θi+1 = θi + α∇θloss(θi)
10: end for

11:

12: return θ∗ ⊲ parameters of best model
13: end function

The training process is described by Algorithm 1.

25



3.5 Robotic Environment

The Telemax robot was modified by the SIM group at TU Darmstadt to enable control
using a ROS interface. Robot OS (ROS) can be described as a middleware specialized for
robotic tasks. It is composed of a set of software tools installed on top of the Ubuntu Linux
distribution. The ROS environment enables the integration of sensors such as cameras
with depth sensors, LIDAR, joint state information, radiation, and chemical sensing with
control logic that can actuate the robot using the same platform.

Since the robot is an old model that does not support trajectory control from the factory
yet, a simple P controller has been developed at SIM to control the robot using the native
joystick-based control interface exposed by the robot for communicating with the control
tablet. During normal operation, this interface is used to send control commands from
the handheld control unit to the robot’s internal joint controller. This retrofitted controller
utilizes this interface to expose a trajectory control interface to ROS which is exposed
via topics. Trajectories are transmitted by sending JointTrajectory messages. The robotic
environment has been integrated into the Webots simulator, this way the learned policies
can be tested in simulation in a realistic environment.

The scenario inside the Webots simulation is modeled after a physical practice room
present at Kerntechnische Hilfsdienst GmbH near Karlsruhe. This place is used as a
training ground for robot teleoperators and formed the base scenario to develop and
test robotic AI assistance systems in the scope of the KIARA project. The perceptions
of the robot are combined and reconstructed into a 3D scene that visualizes the spatial
positioning of the robot in its environment. This is done with a software module inside
of ROS called RViz. This 3D Visualizer uses different ROS sensor topics to get, assemble,
and render information about the scene. Integrated into this visualization environment
are certain UI features to control the robot. There is a Waypoint tool to plan and execute
movement trajectories for the robot base, as well as different camera views, snapshot
features, and options to activate different sensor visualizations. RViz depicts the world
from the view of the robot, while Webots shows the 3D simulation environment that
represents the "true state" of the environment. The map consists of stairs, valves, tables,
and doors that all can be operated in simulation.
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3.5.1 Control Scheme

The stable vector field method is used to calculate velocity commands given a current
robot state in task space. This results in state-action pairs that form the basis of the control
policy. The velocity vector predicted by the SVF is integrated with the control interval ∆t,
set as the waypoint at the next timestep t+ 1, and sent to the robot’s trajectory controller.
Since the Telemax robot has a stiff, noncompliant controller that is unable to profit from
reactivity, we formulate a simple control policy. This control scheme generates a trajectory
by generating via points of the frequency 1

∆t
Hz.

x
(t+1)
des = x

(t)
des +∆tẋ

(t)
des

ẋ
(t+1)
des = svf(x

(t+1)
des )

(3.20)

A reactive control policy is based on the measured robot state instead.

x
(t+1)
des = x(t) +∆tẋ(t)

ẋ
(t+1)
des = svf(x

(t+1)
des )

(3.21)

If trained policies were to be deployed onto a different, compliant robot, this policy could
be used.

Since the trajectory controller on the robot is joint-based, we do operational space con-
trol[11] by differential kinematics to calculate and control the target state in joint space.

3.6 Problem Statement

We want to extend the LieFlows method to enable precise positioning and cyclic motion.
To do this, we need to examine how to change the different parts of the method, we need
to find good flow constraints α(x) for these movement tasks and find latent dynamics
representations g(z) that can reproduce these new movement types. We want to control
the gripper of the robot, so we need to adapt the mapping Φ to enable the control of an
additional dimension. Since additional dimensions can not be represented by the special
Euclidean group SE(3), an extended representation is needed. The movement primitives
are augmented with state-dependent velocity multipliers which are predicted by neural
networks.
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Figure 3.5: Reactive operational space control scheme using the LieFlows method

min
θ

‖ẋ− svf(x, θ)‖22

with svf(x, θ) = dΦ∗
θx ◦ gθ ◦ Φθ(x)

s.t. Φ is a diffeomorphism

(3.22)

We consider two scenarios. First, we try to modify the learning architecture with respect to
g(x) and α(x) for precise positioning movements including one extra dimension controlled
by the stable vector field. Secondly, we search a cyclic movement primitive gcycle(x) and a
flow constraint α(x) yielding stable execution of cyclic motion.
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4 Methodology

We propose an extension to the learning architecture for two classes of tasks. These
adaptations are designed to enable the precise execution of point-to-point movements
with an additional degree of freedom and introduce circular movements to the LieFlows
method. Currently, the flow constraint α(x) has been used to enforce sources at the
boundaries for rotations at the antipodal point inside the Φ function.

Precise positioning requires asymptotical stability around the target pose xH . We tweak
the flow constraint to enforce a sink at the target pose xH . We add a movement primitive
that involves a slowing of the movement when the target is approached. Since we want
to represent movements, where movement in the configuration space may only happen
partially at times, pose rotation while staying at the same position for example, the
movement primitive is augmented with a predictor of attraction speeds depending on the
configuration of the robot in task space. To control one extra dimension, the representation
of the task and latent space as well as the the tangent space vector field must be adapted for
this extra degree of freedom. Representing the control velocities, as well as the first cover
of the tangent space requires this dimensionality extension to integrate nicely with lie
groups. Especially the diffeomorphic function fθ needs to work with a new representation
including the extra dimension.

To enable cyclic motions we define a limit cycle movement primitive in latent space with a
corresponding flow constraint matching this class of tasks. To improve the expressiveness
of the learning architecture, we also augment the limit cycle dynamics by including neural
networks trained to predict attraction speed.
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4.1 Precise Point to Point Movements

4.1.1 Extend SE(3) to represent additional Degrees of Freedom

We extend the SE(3) manifold, which already represents the position and orientation of
the end effector by a single scalar value r ∈ I , I := {x|jlower ≤ x ≤ jupper, x ∈ R} with
jlower and jupper denoting the lower and upper joint limits for the gripper. In the case of
our robot, this amounts to the range [0, 0.2]. This results in the following definition of our
manifold:

SE(3)R1 := { [x, r] : x ∈ SE(3), r ∈ I } (4.1)

The LogMap and ExpMap functions are modified to accommodate the additional dimen-
sion the SE3 manifold is extended by. This definition includes shifting the coordinate
system to the target frame xH according to the control scheme highlighted in Figure 3.5.

logmapSE(3)R1(x) =
[

logmapSE(3)(x
(0,6),x

(0,6)
H ),x

(6)
H − x(6)

]

, x,xH ∈ SE(3)R1

(4.2)
where

x is a state of the robot

xH target transformation, origin in the first cover of the tangent space

Since SE(3) is a lie group, and R is also a Lie group, we can treat SE(3)R1 like Lie group.

4.1.2 Constraining the Flow

We want the vector field to be stable at the target xH so that executing it on the robot
causes the end effector frame to converge to the configuration xH with arbitrary precision.
Therefore the latent dynamics need to be stable in 0 and Φ needs to be constructed so
that xH lies in the set mapped by the identity function. We constrain the flow separately
for position and rotation.

ẑ = fθ(x̂) = x̂+

∫ 1

0
αpoly(x̂)ψθ(x̂) (4.3)
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with
β(z) = exp (nn(z)) + ε (4.7)

The attraction speed is dependent on the distance, we choose the tanh(x) function to limit
the maximum speed of the attraction and to slow the movement down near the target.
Using tanh is practical since it is differentiable and strictly monotonically increasing.
The additional term β(x) is added as a mechanism by which the training process is
able to fine-tune the attraction speeds for different components of the spatial manifold
controlled by the dynamical system. This term consists of a neural network prediction
that’s exponentiated to obtain a positive, strictly monotonically increasing mapping of
the network prediction that retains stable attraction. We bias this prediction by ε > 0
such that the movement speed described by this attractor is never zero6. This guarantees
movement of a minimal speed described by this constant. This construction allows learning
the attraction parameters by a black box since the prediction can not make the dynamics
unstable. We set n to the dimensionality of the tangent space of the manifold, for precise
positioning on SE(3)R1, n = 7.

Rotations of the amount of±π are projected to sources by αori while positional components
are projected to the manifold as a sink at the target pose xH . Since the origin xH is shifted
to 0 in the first cover of the tangent space, the latent dynamics gtanh is stable in 0, and
the scaling functions αpos and αori produce the identity mapping at 0.

4.2 Circular Movements

As fθ is defined on the SE(3) manifold the scaling function α(x) needs to satisfy criteria
similar to the ones discussed in subsection 3.3.3. Cyclic movements have no stable point,
they are defined with respect to a cycle (i.e. a set of states that is taken repeatedly). Stable
dynamic systems that converge to such cycles are called stable limit cycles.

4.2.1 Constraining the Flow

We use the scaling functions laid out in Equation 4.4 to construct a polynomial flow
constraint.

αpoly(x) =

[

αpos(x
(0,3))

αori(x
(3,6))

]

, for x ∈ R
6 (4.8)

6Allowing zero would create unwanted equilibrium points

32



This constraint pins the center point inside the limit cycle and makes it the identity
transformation. Training the model will not cause a static offset in the flow model Φ. The
center of the flow at xH is guaranteed to become a source.

4.2.2 Dynamic System

We model a stable limit cycle of radius one in two dimensions with a differential equation.
Since we want to represent non-cyclic (point-to-point movements) in the remaining
dimensions we extend the missing dimensions of the dynamics with tanh attractors. This
way the dynamics are defined on 6DOF.

gcycle(z) =

{

eβ · tanh(d− 1) cos(φ)− d · eω · sin(φ)

eβ · tanh(d− 1) sin(φ)− d · eω · cos(φ)

ż = glcd(z) =

{

gcycle(z
(0,2))

eγ · tanh(z(2,6))

(4.9)

with

d = ‖z(0,2)‖, The distance to the origin

φ = atan2(z(1), z(0))




β

ω

γ



 = nnθ(z), β ∈ R, ω ∈ R, γ ∈ R
4

β the speed the limit cycle is approached

ω the rotation speed of the cycle

γ the attraction speed for the remaining dimensions7

Together with the scaling functions, we impose a source at zero for the two dimensions
laying on the limit cycle and the boundaries (±π) of the rotation in the latent space. The
remaining dimensions are defined using tanh attractors, this way they have sinks at zero.

7one is positional (z dimension), the three remaining are the rotational dimensions from the latent space
mapping of the SE(3) Lie group
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5 Experiments

We apply the new architectures to two new tasks. The door opening task will be modeled
by the architecture introduced for precise positioning movements. The task is partitioned
into two skills with identical configurations and is described in section 5.2.

The architecture modeling cyclic movements is applied to train the swiping task. It is
trained as a single skill using a limit cycle as movement primitive to drive the motion and
described in detail in section 5.3.

We develop a user interface plugin that integrates into a control environment developed
by Team Hector of the SIM group at TU Darmstadt[13]. The plugin integrates into the
ROS program RViz. A detailed description of the plugin can be found in section 5.4.

5.1 Data Preparation

The demonstration data is a list of m example trajectories of length n, each defined by
transformations at time t.

Dtask = [d]m, d = [x]n, d(t) = xt =

[

R t

0⊺ 1

]

(5.1)

These trajectories are then converted to the first cover of the tangent space and filtered
using a Savitzky Golay filter with window size 25 and a polynomial degree of three,
resulting in smooth trajectories.

Dfilt = [savgol(d)] (5.2)

Since the demonstration trajectories are given without velocity information we obtain
the derivative by filtering the trajectories position data using the same filter. This gives
a smooth estimate of the velocity information. If the demonstration trajectories include
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velocity information, filtering may be skipped, depending on the amount of noise in the
data.

5.2 Door Opening

Opening a door works best by grabbing its handle. A robot arm needs a gripper to do this,
with a control policy including a representation for the gripper. The SE(3) Lie group has
been extended in the point-to-point architecture for this reason.

We assume the door handle position to be known. Also, since the training data is taken
from a single door being opened, the radius of the handle with respect to the door hinge
is assumed to be identical to the demonstrations and constant. The policy is trained
with a constant handle rotation angle needed to unlock the door in mind. We assume
the real-world door to have the same dimensions as the door used for generating the
demonstrations. The skills learn the grabbing, twisting, and pulling motions.

5.2.1 Segmentation of the Movement

The door opening movement can be generally dissected into five specific sections.

1. Opening the gripper

2. Move the end effector to the door handle

3. Close the gripper to grab the handle

4. Turn the handle in an arc to unlock the door

5. Pull open the door

Since very precise positioning near the door handle is needed, we segment the movement
into two separate skills at the time when the gripper hovers near the door handle. The first
skill will (theoretically8) reach arbitrary precision with respect to the target frame around
the door handle. This is due to the stability guarantees granted by the construction of the
stable vector field. In the second skill the grabbing, twisting, and pulling will happen. This

8Precision on a real system will be limited due to the sim-to-real gap, caused by errors in the low-level
trajectory control system
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Figure 5.6: Swiping skill in simulation. The hover points are approached with tanh dy-
namics and are not part of the swiping skill.

noise in the reconstructed surface normal, depending on the location and makeup of a
surface in the real environment. Extending the application of the launcher to this surface
selection scheme would require further preprocessing tricks, for example, heavy smoothing
of the sensor data or (user-defined) quantization of specific degrees of freedom in the
rotation manifold. The plugin is written in C++ and built using the catkin build system
that is part of ROS.

Figure 5.7 illustrates the layout of the RViz UI with our tools integrated, the gray arrow
being a preview of the target position traytrace.
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5.4.1 Target Publication with TF2

The plugin publishes the target of the swiping motion as a static transformation using the
TF2 library[10]. The transformation is published at

/tf2_static/swipe_target

as an TransformStampedMessage. The swipe target xtarget is picked by raytracing the scene
to get the picked point from the RViz 3D environment model. The rotational orientation
is based on the robot base and turned such that the z axis points upward while the x axis
points directly away from the robot9.

xtarget =

[

RrobotRxyz(0, 0, φ) traytrace
0⊺ 1

]

(5.3)

with

φ = atan2(yraytrace − yrobot, xraytrace − xrobot)

x =





x

y

z





Rxyz(ψ, θ, φ) the rotation matrix from cardan angles with the order xyz

This way the oval shape of the swiping motion is correctly aligned to the robot base.

5.4.2 Interfacing with the Control Policy

The control policy provides a TriggerService that can be accessed to start the skill.

/start_swipe_skill

9the coordinate system is right-handed
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Figure 5.9: Demo station to test UI interaction for the swiping skill

deemed important to keep user interfaces simple and only expose the necessary details to
the operator. The simple point-and-click interface for probe-taking by swiping was well
received.

A notable wish expressed by the teleoperators present at the KIARA presentation is
the ability to add features by the end user. This fits nicely with our demonstration-
based machine learning learning method. Motion capture systems have become cheap
and capable [5][8][15], making it possible for end users to create and supply their
own demonstration movements for training. Applying the method still requires domain
knowledge, however. Movement segmentation needs to be done manually by a domain
expert who understands the learning architecture, to choose the correct segmentation,
flow constraints, and movement primitives.
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6 Conclusions

We extend the work of the ImitationFlow and Stable Vector Fields on Lie groups (LieFlows)
method [23][22] and employ it for two new tasks. We showed that the swiping task
can be learned in a sufficiently precise manner. The door-opening task needs further
improvement, however. Precisely positioning the end effector works fine at the target
position, yet the end effector does not stay stationary when closing the gripper away
from it. Interviews with real-world operators of disaster response robots confirmed the
usefulness of our approach to (semi-) autonomous assistance functions.

This work can be extended in multiple ways: Task space trajectory tracking is currently
done using very simple operational space control. Depending on the initial position of the
robot it is possible, that the vector field pushes the robot towards a joint limit. Adding
nullspace control in the case of deployment on a 7DOF robot or adding control mechanisms
in joint space to avoid collisions and joint limits would help make policy execution robust
with respect to the starting position so that the configuration of the robot during skill
execution is independent on its initialization. The version of the Telemax robot deployed
at the SIM lab is lacking a precise controller due to a missing software and hardware
upgrade, therefore we could not evaluate the policies trained for positioning without
considerable risk.

Further examination is needed to learn why the door-opening task does not converge to a
better model during training. Experimenting with different flow constraints is an obvious
starting point for this. Generalization of the skill with respect to different door geometries
is not incorporated yet, since handle position with respect to the door hinge is assumed
to be consistent between demonstration movements and the deployment scenario. This
could be done by introducing an additional parameter into the learning process encoding
the distance between the handle and the hinge. Also, the door-opening task is currently
defined with the assumption of a static base that doesn’t move during the execution of
the skill. Since real doors often use retaining springs that keep them closed when not
used simply pulling the door open does not work for every door. Discussions with people

47



working as teleoperators made it apparent, that the task of opening a door can be very
involved, including the operation of the flippers to keep the door in place while the robot
arm is repositioned and a complete repositioning of the base. In practice, it’s useful to
keep doors open that have been opened. There are specialized door wedges designed by
these task forces to lock the doors once opened. Combining these aspects to create a fully
autonomous door-opening routine can be approached by extending the manifold used for
pose representation. By adding the robot base as a SE(2) coordinate to the state LieFlows
can be applied to train a more comprehensive skill.

Augmenting the operational space controller with additional safety layers like collision
avoidance logic, will be useful for this extension of the door-opening skill as well. Since
the robot will be able to move in a larger space, the risk of self and environment collision
increases. Therefore a more careful control scheme will be needed at some point. As
we have seen in subsection 3.3.4, some tasks have to be segmented into multiple skills.
Analyzing a set of demonstrations and pre-processing them accordingly by time-dependent
segmentation would generalize this method to arbitrary demonstration movements. This
removes the need for a domain expert to set up the training configuration and annotate
the skill boundaries manually.
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Appendix

Figure 6.1: Trajectories demonstrating erratic behavior exhibited by skill trained with δ
being too low. This creates a sphere that is unaffected by the diffeomorphic
mapping Φ
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