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Abstract
Robots could potentially support and assist elderly people in everyday situations. Furthermore, they could also reduce
time constraints of caregivers in nursing homes. In contrast to classical factory settings, an assistive robot cannot be
pre-programmed for every situation because of the diversity of possibly needed tasks and its varying environment. The
robot's ability to learn new behaviors is crucial for the adaption to new environments and the people interacting with
it. But the challenge to develop a robot which has to interact with many different people is also an advantage, in that
the people surrounding it are experts in their �eld and can teach new behaviors directly. Caregivers and even elderly
people could be enabled to teach the robot without the help of a programmer, by generating its high-level behavior
from demonstrations. There are multiple ways of modeling the high-level behavior of a robot in a nursing environment.
Behavior Trees (BTs) can model expressive and reactive behaviors while staying simple and understandable. But the
automatic generation of BTs from demonstration is an area of active research. In this thesis, we propose three ways of
generating BTs from demonstration data. We adapt the approach of Planning and Acting using Behavior Trees (PA-BT)
in two different ways to be used with demonstration data and compare it to our own approach based on topological
action ordering and BT specialization. Furthermore, a small study about teaching a robot is performed and a pruning
algorithm is proposed. Experimental evaluations on a pick and place task show that usable BTs can be generated from
demonstration and that the generated behaviors can reliably reproduce the demonstration data. However, pruning is
necessary to improve readability.

Zusammenfassung
Roboter können ältere Menschen in täglichen Situation potenziell unterstützen und assistieren. Zudem könnten sie die
Arbeitsbelastung von P�egepersonal in Altenheimen reduzieren. Im Gegensatz zu einer klassischen Fabrik-Situation kann
ein Assistenzroboter, aufgrund der Vielfalt an möglicherweise benötigten Aufgaben und seinem sich verändernden Um-
feld, nicht für jede Situation vorprogrammiert werden. Die Fähigkeit, neue Verhalten zu lernen ist daher wichtig für die
Anpassung des Roboters an neue Umgebungen und Menschen, die mit ihm interagieren. Die Herausforderung einen Ro-
boter zu entwickeln, der mit vielen verschiedenen Personen interagieren muss, ist aber auch ein Vorteil, da die Menschen
um ihn herum Expert*innen in ihrem Gebiet sind und ihm neue Verhalten direkt beibringen können. P�egepersonal
und auch Senior'innen könnte es ermöglicht werden, dem Roboter neue Verhalten ohne die Hilfe einer Programmiererin
oder eines Programmierers, mittels Imitationslernen, beizubringen, indem das Verhalten aus Demonstrationen generiert
wird. Es gibt vielfache Arten das Verhalten eines Roboters im Umfeld eines Altenheims zu modellieren. Behavior Trees
(BTs) können expressive und reaktive Verhalten, einfach und verständlich, modellieren. Allerdings ist die automatische
Generierung von BTs aus Demonstrationen ein aktives Forschungsfeld. In dieser Thesis schlagen wir drei Wege zur BT-
Generierung aus Demonstrationen vor. Wir adaptieren den Ansatz Planning and Acting using Behavior Trees (PA-BT) in
zwei verschiedenen Arten, um mit Demonstrationen zu arbeiten und vergleichen ihn mit unserem eigenen Ansatz, der
auf der topologischen Sortierung von Aktionen und der Spezialisierung eines BTs basiert. Zudem führen wir eine Studie,
wie Robotern neue Verhalten beigebracht werden können und schlagen einen Pruning Algorithmus vor. Die Evaluation
unserer Experimente mit der Aufgabe, einen Ball zu nehmen und zu platzieren, zeigen, dass verwendbare BTs aus De-
monstrationen generiert werden können und, dass die generierten BTs die Demonstrationsdaten reproduzieren können.
Allerdings ist Pruning nötig, um die Lesbarkeit zu steigern.
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1 Introduction

1.1 Motivation

In 2018, according to the Bundesagentur für Arbeit in Germany, on average 23,900 job offers for elderly care plus an
additional 15,700 nursing positions could not be �lled [Bundesagentur für Arbeit, 2019, p. 12]. In addition to this
development, an aging effect will change the German demographic profoundly [Allmendinger and Ebner, 2006, p. 227],
leading to even more seniors in need of assistance and less young people to �ll those open positions. Furthermore, these
problems are no individual challenge of Germany, but for many other countries in Europe [Doblhammer and Ziegler,
2006, p. 267] as well. The goal of the KoBo341 project is to �ll this gap and to develop a humanoid robot (see �gure 1.1
(a)), which can assist elderly people in retirement homes. It is a cooperation of Technische Universität Darmstadt, Technical
University of Munich and Rosenheim University of Applied Sciences with the Bundesministerium für Bildung und Forschung

and has a timeframe of 3 years, starting in July 2018. The project takes place in close cooperation with the robot
manufacturer FRANKA EMIKA GmbH and the nursing home Alten- und P�egeheim Lenzheim Garmisch-Partenkirchen.

(a)

?

Ball Placed →

?

Ball Grasped →

?

Ball Found Find Ball

?

Ball Close Approach Ball

Grasp Ball

?

Bin Close Approach Bin

Place Ball

(b)

Figure 1.1.: Figure (a) shows, an o�cial KoBo34 illustration2, depicting the Kobo robot interacting with an elderly person
and helping him to stand up. The project's goal is to develop a humanoid robot, which can assist elderly
people in retirement homes. Figure (b) shows an example Behavior Tree, modeling a behavior for a robot to
pick up a ball. Behavior Trees originally have been developed for modeling behavior of autonomous agents
in video games and are, besides Finite State Machines, a possible way of representing a robot's behavior.

The KoBo34 project identi�ed multiple use cases, in which the robot could assist caregivers and elderly people. In all
these use cases, the robot has to interact with people in a varying environment. Therefore, in contrast to a robot in
a controlled environment, like for example a classical factory setting, it has to be able to change its current behavior
and to learn new skills. Furthermore, it is of signi�cant importance that its high-level behavior is comprehensible to
the people around him and adaptable to its environment. To achieve this, it is important to �nd an intuitive way of
interaction with the caregivers and elderly people, to enable them to teach the robot without a programmer or a trained
specialist. One possible solution could be imitation learning, also called Learning from Demonstration (LfD), where a
policy is learned from examples, provided by a teacher [Argall et al., 2009]. These examples, or demonstrations, are
recorded as state-action pairs and then used to reproduce the demonstrated behavior. If possible, the algorithm can even
learn online, i.e. adapt to new demonstrations, without reasoning over the entire dataset. If an online approach can be
implemented, it would be possible for the teacher, in this case a caregiver or elderly person, to simply correct the robot in
its behavior and to witness an immediate change. Finally, the structure of the behavior has to be easily understandable.
In case, a generated behavior has to be understood in detail, it cannot be overly complicated or even a black box, like for

1 The name KoBo34 is a combination of the german words �Kooperativer Assistenzroboter�, with the inidices 3 and 4, standing for the third

and fourth period of life. The third period of life usually starts with retirement around 65 years and stands for a more active phase, whereas

the fourth period usually is characterized by very old age and the need for medical assistance [Dorsch - Lexikon der Psychologie, 2019].
2 Image taken from: https://www.technik-zum-menschen-bringen.de/projekte/kobo34. Last accessed on Sep 23, 2019.
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example neural nets [Adadi and Berrada, 2018]. For the use in a nursing environment, the executed behavior has to be
deterministic and traceable.
To meet these and other prerequisites set by the KoBo34 project, a suitable high-level behavior representation has to
be found. There are multiple ways of modeling behavior with different advantages and possibilities. Therefore, one
part of this thesis is to show and compare these advantages and differences. Two major behavioral structures and their
capabilites are compared: Finite State Machines (FSMs), which model a behavior with individual states and transitions
in between them and Behavior Trees (BTs), which are single-rooted, directed trees, which send a tick signal from the
root node over control �ow nodes to its leaf nodes that are then executed (see �gure 1.1 (b)). BTs originally have
been developed for the use in arti�cial intelligence for computer games [Isla, 2005]. They are mainly used to increase
modularity, because �individual behaviors can easily be reused in the context of another higher-level behavior, without
needing to specify how they relate to subsequent behaviors� [Bagnell et al., 2012, p. 3] and only recently received
more attention in academia [Colledanchise and Ögren, 2017, p. 4]. Another key advantage of BTs, being a visual
behavior representation, is the possibility for non-programmers to understand and create behaviors, as expressive as
traditionally-written programs [Paxton et al., 2017, p. 4].
This thesis, therefore tries to evaluate if and how BTs could be used for the KoBo34 project and what kind of advantages
they could bring to the project instead of FSMs. Furthermore, different ways of automatically creating BTs by Learning
from Demonstration are evaluated. This is an active �eld of research [Colledanchise and Ögren, 2017, pp. 153-154],
because LfD is not very common for the games industry (i.e. controlling a non-player character (NPC) to teach the desired
behavior). Additionally, a way to create the BTs, as human readable as possible, has to be found. As Colledanchise et al.
state: �Unfortunately, using learning from demonstration approaches the learned BT easily becomes very large, as each
trace is directly mapped into a new sub-BT� [Colledanchise and Ögren, 2017, p. 154]. To increase readability of the
generated BTs, redundant nodes have to be identi�ed and pruned.

1.2 Structure of this Thesis

This thesis is structured in the following chapters:

Chapter 2 summarizes fundamental information about Finite State Machines, Behavior Trees and the automatic expan-
sion of these behavioral representations. Furthermore, an overview over the related work to automatic expansion of
FSMs and BTs is given.

Chapter 3 de�nes the problem statement and compares the capabilities of FSMs and BTs on the basis of 4 use cases.
Finally, it provides the rationale for the use of BTs in further work.

Chapter 4 presents three different approaches for the automatic expansion of Behavior Trees, namely Planning and

Acting using Behavior Trees (PA-BT) with given actions and goal conditions, PA-BT with automatic action and goal state
detection from demonstration data and automatic action sequence creation and BT specialization on demonstration data.

Chapter 5 presents the implementation of the BT framework and the setup for the three approaches for automatic be-
havior generation. Additionally, a short manual for the implemented Graphical User Interface is given.

Chapter 6 evaluates the results of a study taken to �nd out how robot teaching could be performed with elderly people
and shows the experimental results of the three implemented approaches.

Chapter 7 resumes the outcome and discusses possibilities for future work in the automatic expansion of Behavior Trees
via imitation learning.

The Appendix contains the questionnaire and the results of the performed study about ways of robot teaching.
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2 Foundations & Related Work

In this chapter, the fundamental concepts of Finite State Machines (FSMs) [Hopcroft et al., 2014] and Behavior
Trees (BTs) [Colledanchise and Ögren, 2017] will be introduced. These ways of representing behaviors can be used
to model robot behavior. Lastly, an overview is given over the related work to the direct automatic expansion of FSMs
and BTs and possible intermediate structures to generate FSMs or BTs from.

2.1 Finite State Machines (FSMs)

In this section, the formal de�ntion of Finite State Machines (FSMs) is given and the extension to Hierarchical Finite State
Machines is discussed.

2.1.1 Basic Finite State Machines

A FSM is an abstract machine that is de�ned by a �nite set of states S, an initial state s0 ∈ S, a �nite set of possible inputs
Σ and a set of transitions ∆ between these states. Each transition is de�ned by its origin state s ∈ S, the input for this
transition i ∈ Σ and the �nal state after this transition s′ ∈ S. The abstract machine can always only be in exactly one
state at any given time [Hopcroft et al., 2014]. FSMs can be shown either in a transition matrix (see table 2.1) or a state
transition diagram (see �gure 2.1) [Wagner et al., 2006].

To s s'

From

s - i

s' - -

Table 2.1.: A transition matrix of a simple Finite State Machine with start state s and a transition to a second state s′ with
input i. If the current state of the FSM is state s and the input is equal to i, the state changes to state s′. A state
transition diagram of this FSM can be seen in �gure 2.1.

sstart s′
i

Figure 2.1.: A state transition diagram of the same simple Finite State Machine as seen in table 2.1 with start state s and
a transition to a second state s′ with input i. If the current state of the FSM is state s and the input is equal to
i, the state changes to state s′.

There are two types of Finite State Machines: deterministic �nite automaton (DFA) and nondeterministic �nite automaton
(NFA), seen in �gure 2.2 and �gure 2.3. A DFA has always at most one possible move per input i in state s. In contrast to
the deterministic behavior of a DFA, a NFA can have several choices for the next move [Hopcroft et al., 2014].
Since deterministic behavior is a requirement for the robot behavior in this thesis, we will concentrate only on DFAs.

2.1.2 Hierarchical Finite State Machines

The concept of hierarchical Finite State Machines, introduced by David Harel in 1987, extends the concept of FSMs by
adding hierarchical levels [Harel, 1987]. Each state in the top-level FSM can be represented by another lower-level FSM,
as seen in �gure 2.4. While the state of the top-level FSM does not change, the internal state re�nement of the lower-
level FSM can still change. These lower levels can have a history, i.e. when the top-level FSM leaves this state and comes
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s0start

s1

s2

i1

i2

Figure 2.2.: A deterministic �nite automaton (DFA). The DFA has in every state at most one possible transition per input.
In contrast to the NFA seen in �gure 2.3, the state transitions of this abstract machine are deterministic.

s0start

s1

s2

i

i

Figure 2.3.: A nondeterministic �nite automaton (NFA). In contrast to the DFA seen in �gure 2.3, this NFA has multiple
possible transitions in state s0 for the input i. Therefore after receiving input i in state s0 the FSM could be in
state s1 or s2. So the behavior of this FSM is nondeterministic.

back later, the internal state will be retained. Without a history, the lower-level FSMs always restart at the same internal
start state. Fundamentally, the added hierarchy does not reduce the number of states and adds no further computational
capability. In other words, they are equivalent and a transfer between them is possible. But it makes the FSM easier
to read and more intuitive [Girault et al., 1999]. Furthermore, when used for the modelling of robot behavior, already
existing sub-behaviors can be reused, which increases the modularity of FSMs.

s0start
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s2start
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i j

i
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Figure 2.4.: An example hierarchical FSM. The state of the top-level FSM does not change, when the lower level FSM
consisting of s2, s3 and s4, is executed. The lower-level FSM can always start in the same state (in this case s2)
when reached or retain the internal state and resume in the previous state when reached again.

2.2 Behavior Trees (BTs)

Behavior Trees (BTs) have mainly been developed for autonomous agents in computer games [Isla, 2005]. BTs represent
the execution of actions based on conditions and observations in a system via a graphic modeling language [Colledanchise
et al., 2016]. There are some key qualities which distinguish them from the use of �nite state machines to switch in
between tasks. BTs were developed to increase modularity and enable furthermore reactive behavior. Reactiveness is the
ability to easily react to (unforeseen) changes, for example a robot dropping a ball [Colledanchise and Ögren, 2017].
A BT is a directed rooted tree. The leaf nodes are called execution nodes, while all other nodes are called control �ow

nodes. There are two types of execution nodes (Action and Condition), and four categories of control �ow nodes (Se-
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quence, Fallback, Parallel, and Decorator). An overview of all node types and their return values can be seen in table 2.2
which will be explained in more detail further below. The execution of a BT starts at the root node, which generates
signals called ticks with a given frequency. These ticks are sent to its children, which are executed only if they receive a
tick. Every executing child immediately returns either RUNNING if it is still executing, SUCCESS if its goal has been achieved
or FAILURE.

Node type Symbol Succeeds Fails RUNNING

Fallback ? If one child succeeds If all children fail If one child returns Running

Sequence → If all children succeed If one child fails If one child returns Running

Parallel
→→ If ≥ M children succeed If >N - M children fail else

Action text Upon completion If impossible to complete During completion

Condition
text

If true If false Never

Decorator Custom Custom Custom

Table 2.2.: The node types of a BT [Colledanchise and Ögren, 2017] and their return values. When ticked, each node
immediately returns either SUCCESS, FAILURE or RUNNING. Fallback, Sequence, Parallel and Decorator nodes
are called control �ow nodes and forward the tick signal to their children. Action and Condition nodes are
called execution nodes and represent the leaf nodes of the BT.

The Fallback node routes the ticks to its children from left to right. When a child returns FAILURE, the tick is routed to
the next child to the right. While a child returns RUNNING the Fallback node returns RUNNING as well. Only if all children
return FAILURE the Fallback node returns FAILURE as well.

The Sequence node also routes the ticks to its children from left to right. When a child returns SUCCESS, the tick is
routed to the next child to the right. While a child returns RUNNING the Sequence node returns RUNNING as well. Only if
all children return SUCCESS the Sequence node returns SUCCESS as well.

The Parallel node routes the ticks to all its children at the same time. When M children return SUCCESS, the Parallel node
returns SUCCESS as well. When N −M + 1 children return FAILURE (i.e. it is impossible that M children return SUCCESS
afterwards), the Parallel node returns FAILURE as well. In all other cases, it returns RUNNING.

The Action node executes a command. It returns RUNNING while executing, FAILURE if the execution failed and SUCCESS
if the execution succeeded.

The Condition node checks a proposition and returns FAILURE and SUCCESS accordingly. It never returns RUNNING.

The Decorator node can be used to manipulate the return of its single child. For example the return value of the child
could be inverted, a maximum number of ticks or a maximum execution time could be de�ned.

→

?

Ask For
Help

??? ? ?

Ball Found
Find
Ball

Ball Close
Approach

Ball
Ball Grasped Grasp

Ball
Bin Close

Approach
Bin

Ball Placed
Place
Ball

Figure 2.5.: BT encoding the behavior of a simple example [Colledanchise and Ögren, 2017] where a robot �nds a ball,
picks it up and puts it in a bin. The tick signal originates from the root node (in this case a Fallback node)
and is forwarded to its children from left to right. In this case, the tick signal is sent from the root node,
over a Sequence node, another Fallback node and to the Condition node Ball Found. If the robot has not
already found the ball, this Condition node returns FAILURE and the tick signal is forwarded to the Action
node Find Ball. If this Action node returns SUCCESS, the sequence is continued and the tick signal is sent to
the next Condition node Ball Close. If the Action node returns RUNNING, the whole BT returns RUNNING and
the execution of this tick cycle is �nished. If the Action node returns FAILURE, the whole sequence fails and
the root node, being a Fallback node, routes the tick signal to his next child, the Action node Ask For Help.
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The example shown in �gure 2.5 shows the task of �nding a ball, approaching and grasping it, before approaching a
bin to place the ball in it. The sequential behavior is organized via a Sequence node. The root node is a Fallback node,
which routes the ticks to its children from left to right. Therefore, the Sequence node is ticked until it returns SUCCESS or
FAILURE. In the case of a failure of the sequence, the Action node Ask For Help is ticked. The sequence of steps which have
to be performed is organised with Fallback nodes containing pairs of a Condition node and an Action node. Therefore,
the condition is either true or the appropriate action will be performed. In this case, the Action node never returns
SUCCESS but changes the paired condition. This avoids the re-execution of an Action, once it has been executed. Another
way to achieve this, is to use nodes with memory, which are indicated by the addition of a "*" symbol (see �gure 2.6).
Once a node has returned FAILURE or SUCCESS, control �ow nodes with memory remember this and do not re-execute
the action. Since this behavior can be achieved with normal control �ow nodes as well, as seen in �gure 2.7, nodes with
memory can be seen as syntactic sugar.

→ ∗

Action 1 Action 2

Figure 2.6.: Sequence composition with memory. Con-
trol �ow nodes with memory are indicated
by the symbol "*". A control �ow node
with memory does not re-execute all chil-
dren to the left of the running child. In-
stead, it saves the return values of its chil-
dren until the control �ow node �nishes in
either SUCCESS or FAILURE.

→

? ?

Action 1 Done Action 1 Action 2 Done Action 2

Figure 2.7.: BT that emulates the behavior of �gure 2.6
using nodes without memory. If Action 1

has been executed, the Condition nodeAc-
tion 1 Done changes its return value from
FAILURE to SUCCESS. In this case, Action 1

is not executed anymore, because of the
Fallback node Action 1 Done and Action 1

are connected to.

One advantage of Behavior Trees can be seen in the simple example in �gure 2.5. If the Ball is already grasped, the
Sequence node would tick the next Fallback node to approach the bin. If in this case, the robot drops the ball, Ball
Grasped would change to FAILURE and the Behavior Tree would jump back to Grasp Ball. If in this case, the ball is
not close anymore or even out of sight, the Behavior Tree could even jump back to Find Ball. This demonstrates the
reactiveness of Behavior Trees.

Of course, we can only give a short introduction on Behavior Trees as part of this thesis. For further information consult
for example Behavior Trees in Robotics and AI by Colledanchise and Ögren [Colledanchise and Ögren, 2017].

2.3 Related Work

In this section we brie�y summarize the related work to the automatic expansion of FSMs and BTs. Additionally, related
work where FSMs or BTs are expanded via a different intermediate behavioral representation, is discussed.

2.3.1 Automatic Expansion of FSMs

Grollman and Jenkins propose an approach for regression-based Robot Learning from Demonstration for use in a FSM
controller [Grollman and Jenkins, 2010a]. They conclude, that additional information about a task, such as a segmenta-
tion of the demonstration data or the number of subtasks has to be given to fully learn a FSM. To achieve this, the number
of subtasks has to be learned, their individual policies and the transitions between them [Grollman and Jenkins, 2010b].
They propose a learning approach based on Locally Weighted Projection Regression (LWPR) [Grollman and Jenkins,
2008]. They conclude, that learning a general FSM from demonstration is still an open problem. If the demonstration
consists of two or more subtasks, perceptual aliasing (i.e. perceptions which are similar, but demand different actions)
can occur.

Niekum at al. are learning a �nite-state representation from unstructured demonstrations [Niekum et al., 2015]. They
are applying Bayesian non-parametric methods to automatically detect repeated structure represented in the demonstra-
tion and to segment it into known skills. However, this work handles no high-level behavior, which we will try to model
in this thesis.
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2.3.2 Automatic Expansion of BTs

Some approaches to expand BTs automatically already exist, for example described by Colledanchise et al. [Colledanchise
et al., 2016, Colledanchise and Ögren, 2017]. The proposed method Planning and Acting using Behavior Trees is based
on the idea of backchaining and the creation of atomic BTs, which are created to satisfy a speci�c condition as seen in
�gure 2.8. The expansion starts with a BT, only consisting of the goal conditions, which is then executed. If all conditions
are met, the BT is successfully created. If a condition fails, it is replaced by the atomic BT which satis�es the failing
condition. Then the BT is executed again multiple times and all failing conditions are replaced accordingly until the BT
succeeds. To avoid an in�nite number of expansions, every condition is expanded only once. This approach works only
if the BT can be executed multiple times, i.e. there is an existing simulation, in which every action has speci�ed pre- and
post-conditions. Our approach should work on demonstration data instead of a simulation and running the behavior on
the robot multiple times is not a viable option. Furthermore, the goal conditions have to be speci�ed for this approach.
Our own approach should be able to determine the goal conditions independently. Our own approach is actually based
on PA-BT and will be discussed in further detail in section 4.1 and section 4.2.

?

→ →

C11
C12

Action 1 C21
C22

Action 2

C

Figure 2.8.: General format of an atomic BT. The postcondition C can be achieved by multiple Actions with multiple in-
dividual preconditions. In this case, the return value of C can be changed by executing either Action 1 or
Action 2. In this example, each Action has two preconditions (for example: C11 and C12 are preconditions for
Action 1). In case, the postcondition C fails while execution, it is replaced with this atomic BT. Therefore, after
this replacement, either Action 1 or Action 2 (depending on their preconditions) can change the return value
of the postcondition C.

Sagredo-Olivenza et al. propose the concept of Trained Behavior Trees (TBTs) [Sagredo-Olivenza et al., 2017]. A minimal
BT which contains a special trainer node, which is executed and trained by a designer. After the training, a decision tree
is created using the C4.5 algorithm [Quinlan, 2014]. This decision tree is converted into rule clauses, which are then
simpli�ed. A BT with one parallel node is created which has all tasks as children. Each task is connected to the parallel
node via a guard node which ensures the execution of the speci�c task according to the conditions learned in the decision
tree (as seen in �gure 2.9).

→
→

c1
c2

c3

Task 1
Task 2

Task 3

Figure 2.9.: Example of a Trained Behavior Tree created from a decision tree, which has been converted to rule clauses
with conditions c1, c2 and c3. Guard nodes with the corresponding conditions ensure the execution of the
correct task, only when the corresponding condition is true. The root node is a Parallel node, sending the tick
signal to all its children. Therefore, it is even possible that all Tasks are executed at the same time.

One advantage of this approach is that the BT does not have to be executed multiple times for its creation. Unfortunately
the expansion using one parallel node and multiple guard nodes does not take into account all the possibilities of BTs. It
is rather another representation of the created rule clauses.
Another approach, using motif-�nding techniques from computational biology is proposed by Robertson and Watson
[Robertson and Watson, 2015], using the real-time strategy game StarCraft. The goal is to �nd recurring action sequences
in a BT to reduce its size. Therefore a maximally speci�c BT, which is clearly over-�t to the demonstration data, is created
by adding each demonstration as an independent sequence as child of a selector node. This selector node can choose one
child randomly or according to the current state. Common patterns of actions are then found and combined iteratively,
using the Gapped Local Alignment of Motifs (GLAM2) software. A score for the similarity of two sequences is calculated
and every match with a score over a de�ned threshold is combined to a new sequence, until no new common patterns
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are found. This also generalizes the BT. With this approach, it was possible to reduce the number of nodes in an example
BT from 218,832 to 71,294 nodes. Unfortunately, the performance of the newly created tree has not been tested and
compared to the original one. This solution seems to work well with very big BTs and extensive demonstration material.
In contrast, our approach has to deal with a small amount of demonstration data and create small, human-readable and
easily understandable BTs.
Schwab and Hlavacs also propose to identify characteristic sequences [Schwab and Hlavacs, 2015], i.e. (sub-)sequences
that most likely lead to the prede�ned goal. To achieve this, the state space is explored via Monte-Carlo Simulation to
�nd action sequences leading to the goal state. Therefore, a decision-making algorithm f (s), which returns an action
sequence leading to the goal state from state s has to exist and therefore every action with its preconditions and effects on
the state have to be known. Via a n-gram model, built from the created action sequences, the most characteristic action
sequences to achieve the goal state are identi�ed. These are then merged into a BT using evolutionary optimization. A
population of BTs is initialized by randomly combining characteristic sequences which are then crossed over with other
BTs and mutated. To �nd the best BT, the individual behavior is compared to the decision-making algorithm f (s). This
approach could be adapted to the problem of this thesis. Monte-Carlo Simulation would be replaced by demonstration
and the decision-making algorithm f (s) could be a function which returns known action sequences from the recorded
demonstration. Therefore the state space is only represented by states, which were recorded while demonstrating.
Unfortunately, the behavior structure should be computable within reasonable time and computational effort as de�ned
in the prerequisites. An evolutionary approach could lead to a too high computational load.

2.3.3 FSM or BT Expansion from Other Behavioral Representations

There is also the possibility of synthesizing a FSM or a BT from another intermediate representation, which could be
synthesized using the demonstration.
One possible intermediate could be the reactive planning language A Behavior Language (ABL, pronounced "able")
proposed by Weber et al. [Weber et al., 2010, Weber et al., 2011]. An algorithm to create a BT from ABL is even
proposed by Colledanchise and Ögren [Colledanchise and Ögren, 2017]. However, the BT would only be used as an
execution tool for ABL. The ABL structures can return either SUCCESS or FAILURE, and not RUNNING like BT nodes. Also,
hand-made structures have to be used, which makes an automatic creation more dif�cult. Therefore, ABL structures are
not reactive [Colledanchise et al., 2016, p. 2], which is one of the prerequisites of this thesis.
Another behavior representation to expand from could be linear temporal logic (LTL). Kress-Gazit et al. are proposing
a way to synthesize a FSM from LTL formula via a game between the FSM and the environment [Kress-Gazit et al.,
2011], based on the algorithm proposed by Piterman et al. [Piterman et al., 2006]. Only if the FSM wins no matter
what the environment does, the FSM is �nally generated. To deal with the state explosion problem, the FSM is created
by implementing a receding horizon framework. Therefore, only states within reach of the current state are part of the
computation. An open-source python-based implementation is provided. Unfortunately, the LTL formula are seen as
given and there is no mentioning of how to learn these from demonstration, which is a prerequisite of this thesis.
The automatic generation of a FSM from user input and a description of the system is proposed by Maniatopoulos
et al. [Maniatopoulos et al., 2016], using the same game algorithm proposed by Piterman et al. [Piterman et al.,
2006]. To achieve this, the system's capabilities and constraints are modeled in LTL. A non-expert user then only has
to specify a high-level task to generate the FSM which is based on the FlexBE GUI and the Robot Operating System

(ROS). This task-oriented approach differs from our approach, which is based on an unknown system and learning from
demonstration.
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3 Comparison of the Use of Finite State Machines and

Behavior Trees for Highlevel Robot Behavior
In this chapter, the problem statement is de�ned, the use cases de�ned by the Kobo34 project are described and the
rationale for using Behavior Trees is discussed on the basis of the given use cases.

3.1 Problem Statement

The KoBo robot has a �nite set of pre-de�ned, deterministic actions A and a �nite set of conditions C which represent the
state s. For KoBo to learn new behavior, it should be able to learn from demonstration. The demonstration is represented
by a set of transitions ∆ which either consist of an initial state s, an action a and the state s′ after the action took place.

δ = (s, a, s′)

Or, for state changes without an active action which indicate external factors, the transition consists of an initial state s,
an external action e and the state s′.

δ = (s, e, s′)

Our problem can be modeled as a set of actions A, a set of conditions C , a set of transitions ∆.

θ = (A, C ,∆)

The challenge is to automatically generate a behavior structure which reacts to the given states according to the given
demonstration. It should also meet the following prerequisites:

� The behavior structure should be able to work with states stored in demonstration data.

� It should be able to react to inputs and to create outputs.

� It should react to unforeseen external changes as well.

� Behavioral changes at run-time should be possible.

� The behavior has to be deterministic.

� The representation should be easily understandable (i.e. human-readable).

� It should be expressive (i.e. able to express all needed behavior).

� A stable implementation should be offered.

� The structure should be generatable automatically.

� The automatic generation should be computable within reasonable time and computational effort.

� Extensibility and modularity should be enabled.

If the demonstration is not suf�cient to generate a usable behavior structure, one possible solution could be to ask the
demonstrator meaningful questions. But it is important to note that the amount of questions should be kept to an absolute
minimum.

3.2 Use Cases

The KoBo34 project has de�ned four use cases for the robot (Kobo) in cooperation with the Alten- und P�egeheim Lenzheim

Garmisch-Partenkirchen1. In the following section we will describe the different Use Cases and their challenges. Use Case
2 is described in more detail to show the main differences of Behavior Trees and Finite State Machines.

1 https://altenhilfe.rummelsberger-diakonie.de/standorte/garmisch-partenkirchen-lenzheim/ueber-uns/
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3.2.1 Use Case 1: Dinner Scenario

One of the most requested tasks by caregivers is for Kobo to help during dinner. Some elderly people have problems to
take their own food to the tables. The robot could present the menu and ask individuals for their choice, which it will
then order in the kitchen. Finally, it should remember which person ordered which menu item and bring the prepared
dinner trays to the tables in the common room and fetch used ones when the seniors have �nished eating (see also
illustration in �gure 3.1). This would give the caregivers the possibility to spend more time with the seniors at the table
instead of having to serve dinner for everyone.

Figure 3.1.: O�cial KoBo34 illustration for Use Case 1: Kobo helping at lunch. The robot is presenting the menu, takes
orders, brings prepared dinner trays to and removes used ones from the table.

3.2.2 Use Case 2: O�ering Snacks and Drinks

The second use case demands much interaction with the elderly people. Kobo has to offer snacks and beverages to the
seniors in between lunch hours. Its behavior should encourage to drink more and to stay hydrated (see also illustration
in �gure 3.2).
The Behavior Tree seen in �gure 3.3 is modeled after the given KoBo use case. The whole behavior is organized as a
sequence. The robot has to be requested by the caregiver to offer snacks or drinks. If it is not ordered to do so, it will
simply wait for a request. Once requested, it starts by taking a tray and instructions. If his tray is not empty, the Fallback
node will continue with another sequence where the robot �nds an interaction and then offers snacks. One advantage of
Behavior Trees can be seen in the fact, that even in case someone took the last snack without the robot recognizing the
interaction and offering it, the Behavior Tree will fall back to another sequence which is triggered by Tray is empty. In
this case, the robot will automatically return to the caregiver of�ce. In the unforeseen event of the robot losing the tray,
it will automatically return to Take tray from human.
This behavior can also be modeled as a FSM (as seen in �gure 3.4). The individual actions are executed in the corre-
sponding states.
This simple attempt to create a FSM with equal abilities lacks the reactiveness of the BT in �gure 3.3. For example, to
add the ability to end the request at any given state and to send the robot back to Wait for request a new transition from
every other state back to the start state has to be created. The resulting more complex FSM, seen in �gure 3.5, has four
more transitions with the same corresponding input terminate request.
In this scenario the robot could also lose the interaction with a human while offering snacks or drinks. In this case the
Behavior Tree would simply go back to Find interaction with human. If the FSM should cover this case as well, another
edge has to be added. To exactly replicate the reactive behavior modeled in �gure 3.3, several new transitions would
have to be added.
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Figure 3.2.: O�cial KoBo34 illustration for Use Case 2: Kobo serving some snacks and drinks, to encourage people to stay
hydrated.

→

Take instructions
(what snacks, where to go)

Take tray from human? → →

Offering is requested
by caregiver

Wait for request
Tray is empty

Return to
caregiver of�ce

?
Offer

snack/drink

Interaction partner
found

Find Interaction
with human

Figure 3.3.: BT proposed by the Kobo project for Use Case 2: O�ering Snacks and Drinks. The robot waits for a request
by a caregiver. If this request is given, it takes a tray and instructions from a human and searches for an
interaction afterwards. Can an interaction partner be found, it o�ers a snack or drink. If the tray is empty, it
returns to the caregiver o�ce. The request can also be terminated at any time, resulting in the execution of
the actionWait for request again.
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Wait for requeststart
Take
tray

Take
instructions

Find interaction
with human

Offer
snacks/drinks

Return to
caregiver of�ce

received request tray taken

received
instructions

found interaction

tray empty

tray not empty

arrived at
caregiver of�ce

Figure 3.4.: Attempt to recreate the same behavior as shown in the BT in �gure 3.3 as a Finite StateMachine. The di�erent
actions are executed in the individual states. This FSM lacks the reactiveness of the BT, where the request could
be terminated at any time.

Wait for requeststart
Take
tray

Take
instructions

Find interaction
with human

Offer
snacks/drinks

Return to
caregiver of�ce

received request tray taken

received
instructions

found
interaction

tray empty

tray not empty

arrived at
caregiver of�ce,
terminate request

terminate
request

terminate
request

terminate
request

terminate
request

Figure 3.5.: Attempt to add some reactiveness as shown in the BT in �gure 3.3 to the Finite State Machine seen in �g-
ure 3.4. Several transitions have been added to add the ability to end the request at any given state and to
send the robot back toWait for request
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3.2.3 Use Case 3: Helping at the Kiosk

The third use case envisions Kobo helping at the kiosk. The seniors could order Kobo to fetch an item or to carry a heavy
bag (see also illustration in �gure 3.6). This enables seniors with physical disabilities to stay active and keep going to the
kiosk, even if they can't carry their purchases themselves. In this environment, it is important that the robot behavior is
determinstic, because of the interaction with the elderly person it is helping and the other people also shopping at the
kiosk.

Figure 3.6.: O�cial KoBo34 illustration for Use Case 3: Kobo helping at the kiosk. The robot could fetch items, ordered
by elderly people or it could carry a heavy bag for them.

3.2.4 Use Case 4: Kobo Learns

The fourth use case is more abstract than the others and is the key reason for this thesis. It envisions Kobo learning
about the people around him and also learning new tasks. Therefore, it has to be able to learn new behavior from
demonstrations of elderly persons or caregivers without having to ask a programmer. It should also be able to change
an existing behavior while execution. The main reason for this is to enable the addition of new demonstration data.
Thereby, the demonstrator could easily observe Kobo's behavior and correct him if necessary. One possibility for Kobo to
interact with the people around him is also to ask questions, which is discussed in more detail in section 4.1.2.

3.3 Rationale for Using Behavior Trees

The decision, which behavior structure should be used for the Kobo robot, was mainly based on the prerequisites de�ned
in section 3.1. An overview of all prerequisites and whether they are ful�lled by FSMs and BTs can be found in table 3.1.
The demonstration data is modeled as a set of transitions ∆ in which the individual states are represented by a �nite
set of conditions as de�ned in section 3.1. In a Finite State Machine, the individual states are directly represented
by the states of the FSM. Although one FSM state could represent multiple demonstration states. In a Behavior Tree,
the state is represented indirectly by the condition nodes present in the BT. Therefore, the state is only evaluated if a
condition node is ticked in the BT. Ultimately, both representations can work with the given state model. FSMs and
BTs can also both interact with inputs and outputs. The reaction to inputs can be implemented with state changes.
FSMs can also be modeled to output signals with every state transition and BTs can create output via Action nodes. As
shown in section 3.2.2, BTs have the advantage to represent a very reactive behavior with a small number of nodes.
In contrast, reactiveness in FSMs has to be modeled explicitly and creates a high amount of redundant state transitions.
Therefore, readability of the created behavior is diminished. Another important prerequisite is the possibility to exchange
the behavior at run-time. This is easily possible for BTs, if the behavior is changed in between tick signals. A BT always
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evaluates the whole tree for every tick by sending the tick signal through the tree until a return value is generated. If the
BT structure changes after a returned result of RUNNING, the new Behavior Tree is automatically evaluated according to
the current state. It is important to note, that the state for a BT, even for BT expansion, has to be modeled externally
(see also section 4.1.1). In contrast, the state in a FSM is modeled directly in the behavior structure. If the FSM structure
would be replaced while run-time, it has to be ensured, that the last state or an equivalent also exists in the new FSM
and is set to be the initial state. Both structures can model deterministic behavior, if it is enforced. They can also both be
easily understandable and human-readable if the number of states or nodes is kept low. FSMs are suf�ciently expressive
for the needs of the Kobo robot and �BTs are at least as expressive as FSMs� [Colledanchise and Ögren, 2017, p. 39].
Both can be used with a stable implementation: FlexBE2 for FSMs and behaviortree.cpp3 for BTs. As seen in section 2.3,
FSMs and BTs can also be generated automatically and for both representations a solution exists, which would work in
reasonable time and with reasonable computational effort on the Kobo robot hardware. Finally, both structures provide
means of extensibility and modularity. FSMs can be extended by adding new states and transitions and can be modular
via Hierarchical State Machines. BTs can be extended by replacing nodes with new subtrees, which could also function as
modules. However, BTs also have some disadvantages. For example, they need another mindset than for FSMs and the
BT tools are less mature than the software available for FSMs [Colledanchise and Ögren, 2017, p. 43].
In conclusion, we decided to continue our work with Behavior Trees. The lack of reactiveness in FSMs, which could only
be compensated by more complex state machines, con�icts with the de�ned prerequisite of an easily understandable
behavior structure. While BTs can model a highly reactive behavior, the complexity of the behavior representation can be
kept at a minimum. Furthermore, the exchange of the behavior structure while run-time is simpler for BTs, because of
the external state model. State matching for a FSM exchange is more complicated and might possibly even fail in some
cases.

2 http://wiki.ros.org/flexbe
3 https://www.behaviortree.dev/
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Prerequisite Finite State Machine Behavior Trees

Work with given state representation 3The given state corresponds to
states in a FSM (see section 2.1)

3The state is represented by condi-
tion nodes in BT (see section 2.2)

Reaction to inputs/creation of outputs 3FSMs react to and can create out-
puts [Harel, 1987]

3Reaction is possible via action
nodes (see section 2.2)

Reaction to unforeseen external

changes

7 No reactiveness (see section 3.2.2) 3Reactiveness is a key feature of BTs
(see section 3.2.2)

Behavioral changes at run-time 7 States have to be matched to
change behaviors at run-time (see
section 3.3)

3BTs can be exchanged in between
ticks [Colledanchise and Ögren,
2017, p. 94]

Deterministic behavior 3Only if DFA logic is enforced (see
section 2.1.1)

3If all actions are deterministic (as
de�ned in section 3.1)

Easily understandable 3Vague prerequisite, which should
be achievable if the number of states
and transitions is kept low

3Vague prerequisite, which should
be achievable if number of nodes is
kept low [Colledanchise and Ögren,
2017, p. 38]

Expressiveness 3FSMs can model all our needed be-
haviors (i.e. FSMs have been used
until now)

3BTs are at least as expressive
as FSMs [Colledanchise and Ögren,
2017, p. 39]

Stable implementation 3FlexBE 3behaviortree.cpp

Automatic generation 3Is possible (see section 2.3.1) 3Is possible (see section 2.3.2)

Computable within reasonable time

and computational effort

3Computation time depends on the
kind of automatic expansion and
robot hardware

3Computation time depends on the
kind of automatic expansion and
robot hardware

Extensibility and modularity 3This is possible via Hierarchical
FSMs (see section 2.1.2)

3Each subtree can be seen as a mod-
ule [Colledanchise and Ögren, 2017,
pp. 37,38]

Table 3.1.: List of prerequisites for the behavior structure used for the Kobo robot and whether they are ful�lled by FSMs
and BTs. For the de�nition of prerequisites, refer to section 3.1.
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4 Automatic Expansion of Behavior Trees

In this chapter, three different approaches for automatic expansion of Behavior Trees are discussed: Planning and Acting

using Behavior Trees (PA-BT) with given actions and goal conditions, PA-BT with automatic action and goal state detection
in demonstration data and our own approach Automatic action sequence creation and BT specialization on demonstration
data. Furthermore, a pruning algorithm to remove redundant nodes is described.

4.1 Approach 1: PA-BT with Given Actions and Goal Conditions

The �rst approach is based on Planning and Acting using Behavior Trees, already described in chapter 2.3.2. For this
technique a set of actions and a goal condition have to be provided. Every action a has a �nite set of preconditions p
and a �nite set of rami�cations r. For better comparability, this �rst attempt is based on the Ball Example described in
[Colledanchise and Ögren, 2017, pp. 9-10] (see also �gure 2.5). Additionally, for further simpli�cation, the action Ask

For Help has not been modeled. This example models the behavior of a robot which �nds a ball, goes to it, grasps it and
places it in a bin (see also Figure 2.5).

4.1.1 PA-BT with Prede�ned Actions

To provide the PA-BT algorithm with a goal condition and a �rst set of actions, the preconditions and rami�cations of all
actions were hard-coded and can be seen in table 4.1. The goal condition was de�ned to be Ball Placed.

Action name preconditions rami�cations

Find Ball - BallFound

Approach Ball BallFound BallC lose

Grasp Ball BallC lose BallGrasped

Approach Bin BallGrasped BinClose

Place Ball BinClose BallPlaced

Table 4.1.: The hard-coded actions for approach 1 with their preconditions and rami�cations.

The inital state is set as well with all conditions returning FAILURE and is reset for every new generation. The algorithm
initializes the BT with only one condition node of the goal condition (see Figure 4.1). This BT is then executed and if it
fails, the last failing condition is replaced by its corresponding atomic BT.

Ball Placed

Figure 4.1.: The initial BT created by the PA-BT algorithm consisting only of the goal condition.

In this case, the condition node Ball Placed returned FAILURE as speci�ed in the initial state and is therefore expanded
by its corresponding atomic BT which consists of all the actions which have Ball Placed as their rami�cation and their
individual preconditions (see Figure 4.2). In this case, the condition Ball Placed is replaced with a Fallback node with
the replaced condition Ball Placed and a Sequence node as children. The Sequence node has the action Place Ball and its
precondition Bin Close as children. Therefore, if the ball has not been placed yet, the robot checks if it is next to the bin
and if so, tries to place the ball.
This process of expansion is repeated until the BT returns SUCCESS or every condition has been expanded already. To
achieve this, the algorithm keeps a list of all already expanded nodes.
The capability to also deal with multiple goal conditions (see also Section 6.2) was also implemented. The proposed
solution is to change the initial BT to a Sequence node which has all goal conditions as children (see Figure 4.3).
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?

Ball Placed →

Bin Close Place Ball

Figure 4.2.: The BT after the condition Ball Placed has been replaced by its atomic Behavior Tree. The atomic BT consists
of a Fallback node with the replaced condition and a sequence node as children. The sequence node has
the preconditions for an action and the action itself as children. For every action, which has the replaced
condition as rami�cation, a Sequence node with its preconditions and the action itself is created.

→

Ball GraspedBall CloseBall Found Bin Close Ball Placed

Figure 4.3.: Initial BT for PA-BT with multiple goal conditions. All goal conditions are initialized as child nodes of a se-
quence node.

4.1.2 Determination of Preconditions and Rami�cations of Actions

One major question for this �rst approach was, how to gain the knowledge about the given actions. One possibility would
be to enforce that the programmer of the robot has to de�ne every precondition and rami�cation of every action. If this
knowledge about the world and the effects of its actions were given, a BT could be generated following the approach
described in section 4.1.1 by only de�ning the goal conditions. The presence of all actions and their effects on the
environment could be seen as form of simulation. But this would either increase the work of the programmer or limit the
robots possibilities.
It is one key demand for this project that the robot should be able to learn while interacting with elderly people and
caregivers. Therefore, an intuitive way of teaching the robot has to be found. One way of interaction could be the robot
asking for all preconditions and rami�cations of his actions. This could only be a solution with a very small state space
and could be an interaction not appropriate for seniors. In addition, an unexperienced teacher could possibly forget or
de�ne unnecessary goal conditions, which could lead to a different behavior.
To see if these assumptions really hold, a study has been performed. The study consists of three main parts, which can be
found in appendix A.1. The �rst question, intentionally a very open question, is asked to �nd the �rst, intuitive approach
of the study participant, to teach a robot a simple pick and place task. It is important that this question is not in�uenced
by prior knowledge. Therefore, only a symbolic illustration is given (see �gure A.1) for the question: �You want to teach
a robot to place a ball in a bin. How would you describe this to it?�. Additionally, the participant is asked, if he would
have liked further information about the robot to describe this task.
For the second question, the possible actions (Approach Ball, Place Ball, Approach Bin, Find Ball and Grasp Ball) and
conditions (Ball Grasped, Bin Close, Ball Placed, Ball Found, Ball Close) representing the state are given in a shuf�ed
order. This question is asked to see, if people would describe the behavior differently if the set of actions and conditions
is de�ned clearly. Additionally, the participant is asked again, if he was missing any information about the actions and
conditions.
The third and last part is modeled after the PA-BT approach. For the algorithm to work, the preconditions and rami�ca-
tions of every action have to be de�ned to model atomic BTs (see section 4.1.1). Therefore, the study participant is asked
to de�ne all preconditions and rami�cations of all actions with the �ve conditions (Approach Ball, Place Ball, Approach
Bin, Find Ball and Grasp Ball). This question is asked to see how participants react to this kind of description, to further
compare their given de�nition and to see if a usable behavior would have been generated from it. One further question
is asked to �nd out how many questions of the robot would be tolerable for a user for teaching the robot this task. This
question could be helpful to see if an approach would be in an acceptable range of questions.
Lastly, after every main question, the study participant is asked how dif�cult, on a scale of 1 to 5 (5 being very hard), this
particular kind of description has been for her or him. For the results of this study, see section 6.1.

4.2 Approach 2: PA-BT with Automatic Action and Goal State Detection in Demonstration Data

In the following section, our second approach is described. It is also based on PA-BT, but with automatic action detection.
Instead of giving the goal state and all preconditions and rami�cations of all actions, these are detected from given
demonstration data.
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4.2.1 Automatic Action Detection

To detect the preconditions and rami�cations of an action, a pretty straightforward approach was chosen. For precondi-
tion detection, all states si , in which the given action a has been applied, are compared. Only if a condition c j has the
same value in all these states, it seems to be a precondition. To learn the rami�cations of a given action a, for every
(s, a, s′) tuple, differences in between s and s′ are found. Only if a condition c changes its value in every tuple, it seems to
be a rami�cation of action a. If the demonstration was successful, the last state is marked as a goal state. To �nd the goal
conditions, simply the preconditions of all goal states are determined. This is clearly a very aggressive approach which
added several new preconditions. It could certainly be re�ned in future work.

4.2.2 Pruning

The addition of further preconditions made it necessary to implement a simple pruning algorithm. The algorithm
consists of four different algorithms described in Algorithm 4.1 to Algorithm 4.4. The algorithm seen in Algorithm
4.1 starts the pruning for every condition node by recursively checking for every given node, if it has been already
evaluated in another node, in case it is reached by the tick signal. As seen, for example in Figure 4.4. Therefore,
CheckForRedundant(cI D, cv alue, node) is invoked on the condition node and propagated thereafter to its parent nodes.

→
CheckForRedundant(1, True, Sequence)

Condition 1CheckForRedundantChildren(1, True, Condition 1) ? CheckForRedundant(1, True, Fallback)

Condition1

initial CheckForRedundant(1, True, Condition 1)

Action 1

Figure 4.4.: Simple pruning example 1: If Condition 1 connected to the Fallback node is reached by the tick signal, it must
have been evaluated as True before, because the same Condition has to have returned SUCCESS already for
the Sequence node to continue.

The BT is traversed by CheckForRedundant(cI D, cv alue, node) starting at the given condition node in direction of
his parent. The pruning algorithm propagates the ID of the condition and its value to its parent. The par-
ent therefore checks all its subtrees to the left of the subtree, the check for redundancy propagated from, via
CheckForRedundantChildren(cI D, cv alue, node). If the parent is a Fallback or Sequence node, the search for redun-
dancy is propagated directly to its parent. If the parent node is an Inverter, the value of the propagated condition is
inverted as well and the pruning is continued with the next parent node. As seen, for example in Figure 4.5.

? CheckForRedundant(1, False, Fallback)

Condition 1

CheckForRedundantChildren(1, True, Condition 1)

? CheckForRedundant(1, False, Fallback)

InverterCheckForRedundant(1, False, Inverter)

Condition1

initial CheckForRedundant(1, True, Condition 1)

Action 1

Figure 4.5.: Simple pruning example 2: If a Inverter node is reached, the pruning algorithm continues with its parent node
but with the inverted value of the propagated Condition.

If the parent node is a Sequence node, every child to the left of the subtree, the pruning process started from, has to have
returned SUCCESS. Therefore, if the propagated condition has been already evaluated in one child node to the left of the
Sequence node, the given condition node can be pruned. This search is continued recursively until every leaf node has
been reached. If one subtree shows that the propagated condition has already been evaluated, the given condition can be
pruned, because a Sequence node guarantees that all subtrees to the left of the original subtree have been evaluated. If an
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Action node is reached, and its rami�cations contain the propagated condition, this is also a sign that the given condition
can be pruned. If the parent node is a Fallback node, that means that all of its children have to have returned FAILURE
to propagate the tick signal to the given condition. Therefore, if the negation of the given condition has already been
evaluated, the given condition can be pruned. The search is continued recursively as well, but in this case, all subtrees
have to show that the given Condition can be pruned.
It is possible that this pruning algorithm has to be executed multiple times, because effects in subtrees can only become
visible after other nodes have been pruned before. After pruning, nodes with only one child (except Inverters and the
root node) are removed to further simplify the BT.

Algorithm: Pruning of Behavior Trees

Data: an unpruned Behavior Tree BT
Result: a Behavior Tree representing the same behavior as the given one, without unnecessary nodes

foreach condition node c in Behavior Tree BT do
value = cv alue
if typeOf(parentOf(node)) = Inverter then

parent = parentO f (parentO f (node))
value = ¬v alue

else
parent = parentO f (node))

if t ypeO f (parent) = Fallback and CheckForRedundant(cI D,¬v alue, parent) then
Prune (c)

else if t ypeO f (parent) = Sequence and CheckForRedundant(cI D, v alue, parent) then
Prune (c)

Algorithm 4.1: The algorithm used to start pruning. All subtrees, executed before the given node, are checked via
CheckForRedundant if the given node has been evaluated already in all cases. A distinction is made according to
the type of the parent node.

4.3 Approach 3: Automatic Action Sequence Creation and BT Specialization on Demonstration Data

The performed study (see section 4.1.2 and section 6.1) showed that most demonstrators did not focus on clarifying the
state but were more focused on showing the sequence of actions used to achieve the given goal. Therefore, a different
approach was developed to focus more on action sequences. With this focus, the possibility to model loops was sacri�ced,
mainly because it never appeared in the given demonstration data.

4.3.1 Automatic Action Sequence Creation

To �nd the order of actions in demonstration data, all action sequences are extracted from the demonstration data and
topologically sorted. Therefore, a directed graph of all actions is generated with directed edges from every action ai to
its successor ai+1. For example, the topological order of the given action sequences (A,C), (B,C) and (A,B) would result
in (A,B,C) as seen in �gure 4.6. The generation of a topological order is only possible if no cycles exist in the Graph.

A C

B

(a) DAG

A B C

(b) topological order

Figure 4.6.: Directed Acyclic Graph (DAG) of three Actions (A,B,C) with edges (A,C), (B,C) and (A,B). The topological
order (A,B,C) can be seen in (b). The vertices and edges in (b) are unchanged from (a) and have only been
rearranged to illustrate the topological order.
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Algorithm: CheckForRedundant(cI D, cv alue, node): Checking for Redundancy of a Behavior Tree Node
(Ascending)

Data: the ID cI D of the condition which is checked for redundancy,
the value cv alue of the condition which is checked for redundancy and
the node n where the redundancy check propagated from

Result: is_redundant: True if the condition with the ID cI D has been found redundant, False otherwise

if typeOf(parentO f (node)) = Inverter then
return CheckForRedundant(cI D,¬cv alue, parentO f (node))

else if typeOf(parentO f (node)) = Root then
return False

else if typeOf(parentO f (node)) = Fallback then

check every child node to the left of the given node

forall child in childrenOf(parentO f (node)) do
if child = node then

break

else if CheckForRedundantChildren(cI D,¬cv alue, parentO f (node)) then
return True

if no redundancy has been found in the children, check for redundancy one level higher

return CheckForRedundant(cI D, cv alue, parentO f (node))
else if typeOf(parentO f (node)) = Sequence then

check every child node to the left of the given node

forall child in childrenOf(parentO f (node)) do
if child = node then

break

else if CheckForRedundantChildren(cI D, cv alue, parentO f (node)) then
return True

if no redundancy has been found in the children, check for redundancy one level higher

return CheckForRedundant(cI D, cv alue, parentO f (node))

Algorithm 4.2: The algorithm used to check if a redundancy of a given condition can be found via the parent of the
given node. For a condition to be found redundant, it has to be evaluated before in all cases. If the parent node is
an Inverter, the algorithm is executed recursively with the inverted value. The algorithm �rst checks for redundancy
in the children to the left of the given node. If no redundancy is found, CheckForRedundant is executed recursively
on the parent node. A case distinction is made for Fallback and Sequence nodes.

The implementation runs the topological sort algorithm on all vertices if they have not yet been visited. For every edge to
a vertex which has not been visited, the algorithm is executed recursively and �nally the current node is pushed as �rst
element to a stack which is then returned as result. If a topological ordering can be found, there must exist a coherent
order in all of the demonstration data.

4.3.2 BT Specialization

The generated topological order of actions is used to create an initial BT, consisting of a Sequence node with all actions
in the given order as children. Every action a is connected to the Sequence node via a Fallback node that also has every
condition with and without an Inverter before a as children, as seen in �gure 4.7. This initial BT would return SUCCESS
in all cases because every condition is present in its original form as well as its inversion. Therefore, one condition node
in every Fallback node will always return SUCCESS. To specialize the BT, it is run for the �rst time on the �rst state of
the �rst demonstration. If the BT returns SUCCESS it is checked if it also executed the same action sequence. In the �rst
iteration, no action is executed, because for all actions, one condition node to the left of the action, returned SUCCESS.
Therefore, the subtree of the �rst action a1 that was not executed as expected, is updated. Every condition or Inverter
that would return SUCCESS in the state where a1 was expected is removed with the result that in this particular state, the
action a1 would be reached by the tick signal and executed.
If, for the example BT seen in �gure 4.7, Action 1 should have been executed in the state where Conditions 1 and 2 were
true and Conditions 3 and 4 were false, these Conditions (i.e. Condition 1, 2 and the individual subtrees of Inverters
connected to Condition 3 and 4) are removed, resulting in the BT seen in �gure 4.8. After this, the BT is started again
with the initial state of the same demonstration. When Action 1 is now executed, the state is set to the next state in
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Algorithm: CheckForRedundantChildren(cI D, cv alue, node): Checking for Redundancy of a Behavior Tree Node
(Descending)

Data: the ID cI D of the condition which is checked for redundancy,
the value cv alue of the condition which is checked for redundancy and
the node n which ist checked for redundancy

Result: is_redundant: True if the condition with the ID cI D has been found redundant, False otherwise

if typeOf(node) = Inverter then
return CheckForRedundantChildren(cI D,¬cv alue, childO f (node))

else if typeOf(node) = Condition then

if nodeI D = cI D and nodev alue = cv alue then
return True

else if typeOf(node) = Action then

if nodeI D = cI D and nodev alue = cv alue then

forall rami�cation in noderami f icat ions do

if rami f icat ionI D = cI D and rami f icat ionv alue = cv alue then
return True

else if typeOf(parentO f (node)) = Fallback then

only if all child nodes return True, return True as well

forall child in childrenOf(node) do
if ¬ CheckForRedundantChildren(cI D, cv alue, child) then

return False

return True

else if typeOf(parentO f (node)) = Sequence then

if one child node returns True, return True as well

forall child in childrenOf(node) do
if CheckForRedundantChildren(cI D, cv alue, child) then

return True

return False

Algorithm 4.3: The algorithm used to check if a redundancy of a given condition can be found in a child node of
a Sequence or Fallback node. In case the given node is an Inverter, the algorithm is propagated recursively with the
inverted value. If a condition has the same ID and value as given, the condition with the given ID has been found
redundant in this subtree. If an action has the condition with the given ID and value as rami�cation, the condition
with the given ID is found as redundant in this subtree as well. If the given node is a Fallback node, the algorithm
is executed recursively on all children. Only if all child nodes �nd the condition with the given ID as redundant, the
algorithm as well �nds the condition with the given ID as redundant. If the given node is a Sequence node, only
one child has to �nd the condition with the given ID as redundant.

the demonstration. The procedure is repeated until the BT recreates the action sequence of the demonstration. After
this, the algorithm continues with all other demonstrations to specialize the BT to all given demonstration data. If the
demonstration data contains an external action, the state is set accordingly. This algorithm does not support pruning in
between generations. Redundant conditions have to be kept for further specialization steps.
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Algorithm: Prune(node): Remove a node which can be pruned

Data: a Behavior Tree BT in which the prunable node should be removed,
the Behavior Tree node which can be pruned

Result: a Behavior Tree without the pruned node and other unnecessary nodes

if numberOfChildren(parentO f (node)) = 1 then
BT .remove(parentO f (node))

else if numberOfChildren(parentO f (node)) = 2 then

if there is only one neighboring node, the parent node can be replaced with it

BT .replace(parentO f (node) , nodeneighbor)

else
BT .remove(node)

Algorithm 4.4: The algorithm used to remove a prunable node. If the node is the single child of its parent, its
parent is removed as well. If the node has only one neighbor node, its parent is replaced with the neighbor. In all
other cases, the parent node has more than 2 children and therefore, the given node can simply be removed.

→

. . . . . . . . .
?

Inverter

Condition 3

Condition 3

Inverter

Condition 2

Condition 2

Inverter

Condition 1

Condition 1 Condition 4

Inverter

Condition 4

. . . Action 1

Figure 4.7.: Initial BT for BT specialization on demonstration data. Every action is connected to the root Sequence node
via a Fallback node. This Fallback node has all conditions as well as all inverted conditions as children to the
left of the action.

→

. . . . . . . . .
?

Condition 3Inverter

Condition 2

Inverter

Condition 1

Condition 4 . . . Action 1

Figure 4.8.: Example BT after the �rst specialization on demonstration data. All nodes which would return SUCCESS before
the expected action are removed. In this case, Action 1 has to be executed if Condition 1 and Condition 2

are true. Therefore, these condition nodes are removed. Additionally, Condition 3 and Condition 4 have to
be false to execute Action 1. To achieve this, the subtrees with the inverted conditions are removed. The
resulting BT executes Action 1 in the desired state.
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5 Implementation and Setup

To work with Behavior Trees, the stable implementation behaviortree.cpp1 has been chosen. The IAS department and
therefore the Kobo robot is implemented using the Robot Operating System2 (ROS) [Quigley et al., 2009]. An overview
of the implemented system architecture can be seen in �gure 5.1. The BT Generator and its Graphical User Interface
(GUI) is implemented in Python and starts a SimpleActionClient, provided by the actionlib package, which waits
for the BT Server (behavior_tree_cpp) to start. Once this server is started, clients can send goals, containing the
path to a Behavior Tree XML-File, which is then executed via behaviortree.cpp. The BT Server returns the return
value of the executed BT as an integer value: 0 for SUCCESS, 1 for FAILURE and 2 for RUNNING. behaviortree.cpp
executes the tree nodes according to the BT logic. The nodes are all modeled as CustomActionClientTreenodes, which
possess a node type (i.e. Action or Condition), an ID and a unique ID (UID). The ID, de�nes which condition or action
should be evaluated or executed. The UID is for exact identi�cation of a node, for example to replace an exact node or for
debugging purposes. To model the current state, the BT Generator initializes a State Serverwhich is also implemented
as SimpleActionServer. Therefore, the CustomActionClientTreenodes send the node type and the ID of the node as a
goal to the State Server, which returns the value of this node for the current state. In particular, it returns an integer
value representing SUCCESS (0) for a true condition, FAILURE (1) for a false condition and RUNNING (2) for any action. In
our implementation, actions can only return RUNNING, but change the state according to their rami�cations. Therefore, the
BTs have to be modeled to only execute an individual action, if the inverted rami�cations are preconditions. Otherwise,
the BT could get stuck in a loop, where the same action is executed every time. This prerequisite of using explicit success
conditions is a design decision, based on the design principles described by Colledanchise [Colledanchise and Ögren,
2017, pp. 45-46], to improve readability.

BT Server
(SimpleActionServer)

behaviortree.cpp

CustomActionClientTreenode
(SimpleActionClient)

BT Generator
(SimpleActionClient)

State Server
(SimpleActionServer)

rqt
GUI

start BT execution

executes BT nodes

goal (path)

resul t
(BTreturn v alue)

goal

(nodet ype, nodeI D)

resul t (nodereturn v alue)

star t_BT

ini t ial ize state

C++ PYTHON

Figure 5.1.: Overview over the system architecture built on the ROS framework. The implementation is separated into a
C++ and a Python part. The two parts communicate via two Action Servers and individual Action Clients. The
GUI, which starts the BT Generator, is implemented in Python. The BT Generator sends the path to a Behav-
ior Tree to the BT Server which then executes the BT via the behaviortree.cpp framework. Additionally,
the BT Generator can set the current state of the State Server, which is also implemented in Python. The
BT framework executes the BT nodes according to the BT logic. Every BT node is an Action Client which sends
its ID and node type as a goal to the State Server. The State Server returns the value of the Condition
or Action according to the current state. When the BT execution is �nished, the BT Server returns its return
value to the BT Generator.

1 https://www.behaviortree.dev/
2 https://www.ros.org/
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The demonstration data is saved as comma-separated values (CSV). Each line represents one state, with the conditions
ordered by their ID. The truth value of a condition is given as an integer (0 for False and 1 for True) and the individual
values are separated by semicolons. The last value in one line is always the action ID of the action which has been
observed in this state. The action ID 0 implies that a goal state has been reached. The action ID -1 stands for an external
action. The BTs are saved in Extensible Markup Language (XML) following the design used by behaviortree.cpp.
The BT Server is started by the following command: roslaunch bt_server bt_server.launch. The BT Generator is
started via rqt.
The rqt GUI (seen in �gure 5.2) has been implemented for better usability and enables the user to load different BTs and
to test them. The initial state can be set via the State checkboxes. If a demonstration is chosen from the dropdown list,
the preconditions and rami�cations for the found actions and the goal conditions are automatically detected. The goal
conditions can also be set by the Goal Conditions checkboxes. These checkboxes have three states: Unchecked means that
this condition is no goal condition, Partially Checked corresponds to the case, where this condition has to be false in the
goal state, whereas Checked stands for this condition to be true in the goal state. By pushing the button Approach 1: Start

Expansion via PA-BT with given actions and goal conditions, the expansion using the method Planning and Acting using

Behavior Trees is started with the hard-coded action-set seen in table 4.1 and the goal conditions set by the goal condition
checkboxes. Clicking on the button Approach 2: Start Expansion via PA-BT with automatic action and goal condition

detection starts the expansion with the chosen demonstration data, described in section 4.2. The individual expansion
generations are saved in the trees folder of the BT Server. Via Expand via PA-BT with additional demonstration data

a folder with additional demonstration data can be de�ned and a new expansion with the enlarged data set is started
directly. To expand a BT as described in approach 3 (see section 4.3), the button Approach 3: Create BT via Automatic

action sequence creation and BT specialization has to be pressed. For this approach as well, additional demonstration data
can be added via BT specialization with additional demonstration data. In this case, the specialization algorithm continues
to specialize the current BT only with the given additional demonstration data. The path to the current tree is shown
below the goal conditions and this BT can be pruned by clicking on the button Prune current BT (see also section 4.2.2).
The pruned BT is saved as new generation in the trees folder. The last button, labeled Test BT over demonstration data, is
used to test a BT over the demonstration data, chosen from the Demonstration dropdown list. For all demonstrations, the
expected action sequence and the executed actions are compared. If the right action is executed, the state is set according
to the demonstration data. If another action as expected is executed, the test is terminated unsuccessfully. If an external
action is part of the demonstration data, the external action is executed and the state is set accordingly. The results are
saved in the same location as the given BT as a text �le.

Figure 5.2.: The �nal Graphical User Interface (GUI) of the implementation in rqt. BTs can be loaded and tested directly.
Demonstration data can be chosen from a dropdown menu and goal conditions are detected automatically
but can also be changed via checkboxes. BTs can be loaded, tested and expanded via the three approaches
proposed in this thesis: PA-BT with given actions and goal conditions, PA-BT with automatic action and goal
condition detection from demonstration data and automatic action sequence detection and BT specialization.
For the approaches 2 and 3, new demonstration data can be added afterwards. The current BT can be pruned
and tested over the given demonstration data.
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6 Experimental Evaluation
This chapter �rst presents the results of a study conducted to compare the way people would intuitively teach a robot and
further discusses different results with all three proposed approaches. The generated BTs are compared by complexity as
well as the amount of redundant nodes and are tested against demonstration data.

6.1 Study about Ways of Robot Teaching

To �nd an intuitive and appropriate way for elderly people to teach the robot, a study has been performed. There were
8 participants in a range from 21 to 89 years old. There are several possible ways of interaction with a robot to teach it
new behavior. For example, the interaction could be verbal in natural language or by direct or indirect demonstration.
To avoid any in�uence on participant's answers, a very open question has been chosen to begin the study.
The intuitive approach of all participants was to focus on the actions the robot has to perform to achieve its goal. For
example the answer of participant 1: �Extend your right hand down. Open your hand. Close your hand again, so that
you grasp the ball. Lift it and turn in the direction of the bin. Open your hand again and drop the ball�. Only participants
1, 4 and 7 intuitively included conditions for the execution of some actions: �Close your hand again, so that you grasp
the ball� or �And if he �nds the ball, he should grasp the ball with his hand� and �First of all, the robot has to know where
the ball is�. Participant 1 even demonstrated the movements physically. A robot capable of learning from demonstration
could have used this information as well. Participant 6 even tried to change the position of the bin, to simplify the task for
the robot. 5 participants did not need further information about the robot for this kind of description. The information
requested by other participants concerned the movement possibilities of the robot (Participant 2: �I don't know how he
can move.�), its functions (Participant 3) and for example how far the robot can look and how it knows, what a ball is
(Participant 4). The participants who did not need more information also referred to the given illustration. For example,
participant 5: �The picture was suf�cient for me�. On average, participants took 39 seconds for this kind of description
and did not �nd it very dif�cult (≈1,4 on a scale from 1 to 5).
For the second question, a clear set of actions and conditions was given. But even after knowing the exact capabilities of
the robot, some participants did not change their description from the answer given to the �rst question. For example,
participant 1 took several seconds to consider possible changes, but �nally did not change the given de�nition. Even after
clarifying that the robot has no action to stretch out its arm, the participant did not change the description. However,
when asked, if he thought that the behavior would work like that, the participant responded positively. Participant 3, 5,
6, 7 and 8 tried to �nd the logical order of the given actions. Participant 7, for example: �Always like that: Check if it
is already done, if not, do it. And then work through step by step. But somehow backwards�. Only participant 2 and 8
directly included the conditions: �Then, check if the ball is close to you� and �Next, approach the ball, grasp ball, then
check if the ball is grasped�. After asking if the given conditions were relevant as well, almost all participants gave a more
detailed description including the conditions, except participant 6, who was convinced that the robot would reproduce
the given behavior without giving instructions concerning the conditions. Interestingly, the clari�cation of the action and
condition set, spawned more new questions than the more open �rst question. Participant 1, for example, did not see the
need for further information after the �rst question, but asked several questions about the robot's movement capabilities
and its senses, after the second question. Furthermore, the term �Close� had to be clari�ed multiple times, which was
mixed up with �Findable� by some participants. This shows the importance of clear language. In case, the participants
would have to give these information directly to a robot, clear de�nitions of all actions and conditions have to be given.
Additionally, the question was posed, if the robot's actions always succeeded. This would have to be a part of the action
de�nition as well. The introduction of the conditions representing the state also led to the re�ection of other start states:
�I am thinking that the robot could have grasped the ball already. And if you think it through, he could have �nished
already as well�.
This kind of description was found more dif�cult (≈2,7 on a scale from 1 to 5) and it took on average over three times
as long as the �rst one (2 minutes and 18 seconds). Participants got more accustomed to this kind of de�nition. For
example participant 5: �I am beginning to understand this� and �This was kind of extensive now. To always question it
once more�. Some participants even gave a dif�culty level of 4: �Rather 4, because it is very confusing�.
The third question was answered by �lling in a table of preconditions and rami�cations for every action. Therefore,
the given answers will be compared with the action de�nition used to implement approach 1, seen in table 6.1. One
major issue for this kind of description was to explain the concept of preconditions and rami�cations to almost all
participants, like for example participant 5: �Because I had to understand how this works, but then actually, it is quite
easy�. Participants 1, 2, 3, 6 and 8 needed even further clari�cation and some found it hard to de�ne actions like this
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(Participant 6: �Very strange to think like this�). It is worth mentioning that the ages of these participants are in the range
of 56 to 89, whereas the three participants who did not need further explanation, are aged between 21 and 30. For some
participants one major problem was the temporal order of preconditions and rami�cations. It had to clari�ed multiple
times that preconditions were checked before and that the rami�cations were checked after the execution of an action.
Some also did not restrict the preconditions and rami�cations to the given set of conditions. Even after clarifying this,
participant 1 gave �He has to move his arm� as precondition for the action Find Ball. Some participants found it hard to
concentrate only on conditions and continued to give actions as answers. For example, participant 2 when asked directly
for the observations of the robot: �Then he has to stoop�. In contrast, participant 3 even gave new conditions when
asked for the preconditions of the action Approach Ball: �That the path for him to go there is free�, and questioned the
limits of the robot's abilities: �For example, if the ball is lying on a shelf, where he cannot grasp it�. On the other hand,
some conditions were found as implicitly given (Participant 7: �Because, if the ball is in the hand, it cannot be in the bin.
That's what I, as a human, would say.�) or obvious (Participant 2: �I thought that was obvious.�). Some conditions also
were not mentioned, because they were checked in an action before already, like participant 3: �We checked this above
already�. Participants 1, 2, 3 and 8 mixed the actions and either described the next action already or did not see every
action as separated from the others. This had to be explained multiple times, for example for participant 3: �Oh, so that
means that before I go to the bin, I have to check again, did he execute the last function, did he grasp the ball correctly�.
The de�nition of �Close� was also discussed multiple time while answering this question, further showing the need for
the use of very precise language.

Action Preconditions Rami�cations

Find Ball ¬BallFound BallFound

Approach Ball BallFound, ¬BallClose BallClose

Grasp Ball BallFound, BallClose, ¬BallGrasped BallGrasped

Approach Bin ¬BinClose BinClose

Place Ball BallGrasped, BinClose, ¬BallPlaced BallPlaced

Table 6.1.: Table of preconditions and rami�cations for given actions, generating a usable BT. The study participant's
answers were compared with this de�nition.

The de�nition of preconditions and rami�cations, seen in table 6.1, has been used to generate a behavior with the PA-BT
approach. There are multiple differences to the given answers. If a participant did not give any rami�cation for an action,
the concept of rami�cations always was explained once more. But even with this explanation, some participants did not
specify rami�cations for all actions. For example, participant 3 gave no rami�cations or preconditions for the action
Approach Ball. It was dif�cult for some participants to understand the temporal order of preconditions and rami�cations.
Participants 1 and 2, for example, even gave the condition Ball Found as precondition for the action Find Ball and the
condition Bin Close for the action Approach Bin. Almost all participants used negations of the given conditions except
participants 1 and 8. The concept of de�ning the negation of the rami�cation as a precondition was used by some
(for example ¬Ball Placed as precondition for the action Place Ball by participants 2 and 5) but was only used rarely,
except from participants 5 and 7. In contrast, some participants even de�ned the same condition as precondition and
rami�cation (Participant 1: BallFound, BallClose, BinClose, BallPlaced; Participant 2: BinClose, BallGrasped; Participant 3:
BallFound). As described before, the separation of actions was not respected by all participants. Participant 7 for example
de�ned ¬BallGrasped and ¬BallPlaced as precondition for the action Find Ball. This stems from connecting all actions
to one uni�ed task. If the robot only uses this action for this individual task, it is not necessary to try to �nd the ball,
if the ball is already placed in the bin. However, the condition that the robot can only try to �nd the ball if it is not
placed in the bin, may be too restrictive. Participants 3, 4 and 7, for example, de�ned BallGrasped as precondition for
the action Approach Bin. The action to approach the bin is independent of the status of the ball. However, if seen in the
context of the whole behavior, the robot should never approach the bin without the ball in its hand. In case, the robot
executes this action in another context, but still with the precondition Ball Grasped for the action Approach Bin, it would
be necessary to grasp a ball to be able to approach the bin. Participant 2 even de�ned all conditions as rami�cations for
the action Place Ball. This resembles the proposed behavior by Colledanchise et al. [Colledanchise and Ögren, 2017],
already discussed in section 4.1.1. In contrast, participants 3 and 7 de�ned ¬BallGrasped as rami�cation for Place Ball.
This was not modeled in the proposed action set, seen in table 6.1, but could be a reasonable addition. If the robot places
the ball in the bin, it should not be grasping it after the action. When applied to the PA-BT approach, only 4 out of 8
action de�nitions could generate a BT. The proposed de�nitions by participants 1 and 2 could not be used because of
similar conditions as precondition and rami�cation for one action. This con�ict could not be resolved. Furthermore, the
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action sets de�ned by participants 3 and 6 contain actions without rami�cations. Therefore, crucial atomic BTs could not
be generated. The de�nitions by participants 4, 5, 7 and 8 show only minor differences to the proposed action de�nition
and could be used to generate usable BTs, which can be found in the �gures A.2 to A.5. It is notable that the four not
usable de�nitions are by the four oldest participants. In general, this kind of description was found as more dif�cult
(≈3,4 on a scale from 1 to 5) and took over 5 times longer than the second kind of description (13 minutes 32 seconds
on average). Participants described it as cumbersome (Participant 2) and had to get used to it (Participant 8: �5, because
I had something different in my had. Another logic.� or participant 3: �This was quite dif�cult. I think I misunderstood
everything a little bit.�). The participants would accept between 2 and 10 questions by a robot to teach it this task. On
average, they would accept 5 questions.
In summary, it can be said that all participant's descriptions concentrated more on actions than on conditions. Even the
�rst, very open question, was answered with action sequences. This kind of description was found very easy and took
only 39 seconds on average. For the second question as well, most participants concentrated on the actions. Only two
participants directly included the conditions in their description. The more precisely de�ned action set spawned even
more questions about the robot. Furthermore, multiple questions, for example about the de�nition of �Close�, showed
the necessity for a clear language and very precise de�nition of the robot's capabilities. The third question, even more
adapted to the PA-BT approach, was found more dif�cult and took more time. Many participants had to get accustomed to
the concept of preconditions and rami�cations. Only 4 out of 8 de�nitions could be used to generate a usable BT. The fact
that these de�nitions were given by the four youngest participants and that 3 of those did not need further explanation
of the concept, suggests that age could be a factor, but cannot be veri�ed with a small study like this. Furthermore, the
participants would only accept 5 questions by the robot on average for this task.

6.2 Planning and Acting (PA-BT) Approach with Given Actions and Goal Conditions

The proposed Ball Example showed one major difference between hand-modeled BTs and automatically generated ones:
the importance of correct goal conditions. A �rst approach with given actions and the goal condition BallPlaced did not
result in the same BT as proposed by Colledanchise and Ögren [Colledanchise and Ögren, 2017]. In the proposed BT the
robot checks �rst if it has found the ball and executes the action Find Ball accordingly. Afterwards, the robot continues to
check for the Condition Ball Close, Ball Grasped, Bin Close and the last Condition checked is Ball Placed. In contrast, the
automatically generated BT checks for these conditions in reversed order (see �gure 6.1). This difference originates from
a different set of goal conditions. With the generated behavior, the robot checks �rst if the ball has already been placed.
If this is the case, the behavior stops, because the goal condition has already been reached. The generated behavior is
in fact a logical result for this problem. One Sequence node, connected with the action Find Ball could be removed, but
this would not change the resulting behavior. In contrast to this generated behavior, the proposed BT of Colledanchise
and Ögren [Colledanchise and Ögren, 2017] would not be �nished if the Ball is already placed. Instead, the robot would
�rst check if it can �nd the ball, then go to the ball, grasp it, go to the bin and place it again. All condition nodes have to
return SUCCESS for the BT to succeed. This means that all �ve conditions have to be goal conditions. On the other hand,
the automatically generated BT lacks the reactiveness of the proposed one. If the condition Bin Close returns SUCCESS,
the robot will not even check if it has grasped the ball. It would try to execute the action Place Ball but the action would
not have the expected effect on the condition Ball Placed. In this case, the robot would be stuck in a loop, trying to place
a ball it never grasped. This result shows that both BTs don't model a realistic behavior. We approached this problem by
working with demonstration data, which will be discussed in further detail in section 6.3.
Another important insight gained by this �rst generated BT is, that the algorithm should be able to work with multiple
goal conditions. The implementation of this is discussed in further detail in section 4.1. The PA-BT generation starting
with a Sequence node with all goal conditions (see �gure 6.2) is then executed and expanded as before as seen in �gures
6.3 to 6.7.
This approach generates several redundant condition nodes, which can be pruned with the pruning algorithm pro-
posed in section 4.2.2. Generation 5 after pruning (�gure 6.8) of this approach is exactly the same BT as proposed by
[Colledanchise and Ögren, 2017].

6.3 PA-BT with Automatic Action and Goal State Detection in Demonstration Data

There were 5 different demonstration sets created to test the algorithm. The demonstration set ∆1 consists of 32 indi-
vidual demonstrations, where we tried to recreate exactly the behavior of the proposed BT of [Colledanchise and Ögren,
2017, p. 10]. The key idea behind this set was to try to recreate the proposed BT, where only one goal state with Ball

Found, Ball Close, Ball Grasped, Bin Close and Ball Placed is accepted. The set is state space complete, i.e. all 32 possible
states are present. Demonstrations ∆2 are also modeling every possible state, but the approach with this set changed to
model a more realistic behavior. That means that the robot does not try to grasp the ball, if it is already placed. Therefore,
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?

Ball Placed →

?

Bin Close →

?

Ball Grasped →

?

Ball Close →

?

Ball Found →

Find Ball

Approach Ball

Grasp Ball

Approach Bin

Place Ball

Figure 6.1.: Approach 1: BT generated with the PA-BT approach with given actions (seen in table 4.1) and only BallPlaced
as a single goal condition.

→

Ball GraspedBall CloseBall Found Bin Close Ball Placed

Figure 6.2.: Initial BT with all given goal conditions. For this behavior to succeed, all Conditions have to succeed. The
Condition nodes are all children of a Sequence node and are evaluated (i.e. receive the tick signal) from left
to right.

not only one, but 16 goal states exist. To further diversify the demonstration set, two special cases are added as well. In
case, the robot already stands near the bin (i.e. Bin Close is returning SUCCESS), but has to go to the ball �rst, there are
two possible outcomes. The condition Bin Close could stay unchanged, or it could change to FAILURE because the robot
moved too far away from the bin. Finally, ∆2 consists of 34 individual demonstrations. ∆3 and ∆4 are subsets of ∆2. ∆3
consists of 8 demonstrations and ∆4 is even smaller with only two demonstrations. These demonstration sets have been
created to test the ability to generate a Behavior Tree with only very little information available. ∆5 is an extension of
∆2, with added external actions. There are 9 additional demonstrations in which the robot is dropping the ball before
and after going to the bin, the ball is removed from its sight, the bin is moved after approaching it and the robot looses
the ball location. Furthermore, initial external actions, before the �rst action are included. Therefore, ∆5 consists of
43 individual demonstrations. This demonstration set is used to show the capabilities for reactive behavior and for the
expansion of reactive behavior.
The simple condition and precondition detection led to the addition of several implicit preconditions, which were not
present in the �rst model. For example for demonstration ∆1, the precondition detection algorithm added the pre-
condition ¬FoundBall for the Action FindBall. This is logical and necessary, but was not present in the �rst model of
preconditions and rami�cations. Therefore, the generated atomic BTs have been added more condition nodes. The ex-
pansion, seen in �gures 6.9 to 6.14, creates 41 nodes, whereas our �rst approach with a given action set only created
24 nodes (see �gure 6.7). The amount of redundancy is most obvious after pruning this BT (seen in �gure 6.15), which
results in exactly the same structure as in �gure 6.8, which only consists of 16 nodes. This underlines the need for a good
pruning algorithm.
The BT created from ∆2 can be seen in �gure 6.16. It models the desired behavior with 44 nodes, but only 17 nodes
are retained after pruning, which makes it quite easily readable. The condition Ball Placed is checked �rst, because it is
the only goal condition. If this condition is not met, a sequence is started, where it checks �rst if it has grasped the ball
already. If the ball is not grasped, another sequence is executed, which is quite similar to the �rst part of the proposed
BT by [Colledanchise and Ögren, 2017]. The automatic action detection resulted in the same action set for ∆5 as well
and therefore created the exact same BT, seen in �gure 6.16.
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→

Ball Grasped Bin Close Ball PlacedBall Close?

Find BallBall Found

Figure 6.3.: Approach 1: PA-BT with multiple goal conditions: Generation 1. The initial BT, seen in �gure 6.2 has been
expanded. The Condition node Ball Found was replaced with its corresponding atomic BT

→

Ball Grasped Bin Close Ball Placed?

→

Approach Ball

Ball Close

Ball Found

?

Find BallBall Found

Figure 6.4.: Approach 1: PA-BT with multiple goal conditions: Generation 2. The BT of the previous generation, seen in
�gure 6.3 has been expanded. The Condition node Ball Close was replaced with its corresponding atomic BT

The BTs created from ∆3 and ∆4 are more complex. The generation based on ∆3, seen in �gure 6.17, consists of 32
nodes after pruning (53 before pruning) and the BT based on ∆4, seen in �gure 6.18, even consists of 36 nodes (57
before pruning). It is to note that although ∆3 consists of 4 times more demonstrations than ∆4, the difference in the
amount of nodes is only 12.5%. The pruning algorithm removed 37% to 61% of tree nodes. On average, 50% of created
nodes were found to be redundant.
Another evaluation measure was the proportion of the demonstration data, which could be recreated with the given
demonstration data. Therefore, the created Behavior Tree was run and compared with given demonstration data. If the
right action is executed, the state changes to the next demonstration state. Only if the BT executed the exact same action
sequence as in the demonstration, the sanity check is counted as successful. The results of this evaluation can be seen in
table 6.2.

Tested on ∆1 ∆2 ∆3 ∆4 ∆5

Generated from

∆1 32/32 13/34 8/8 2/2 21/43

(100%) (≈38%) (100%) (100%) (≈49%)

∆2 26/32 34/34 8/8 2/2 43/43

(≈81%) (100%) (100%) (100%) (100%)

∆3 11/32 13/34 8/8 2/2 21/43

(≈34%) (≈38%) (100%) (100%) (≈49%)

∆4 6/32 8/34 5/8 2/2 13/43

(≈19%) (≈24%) (≈63%) (100%) (≈30%)

∆5 26/32 34/34 8/8 2/2 43/43

(≈81%) (100%) (100%) (100%) (100%)

Table 6.2.: The results of the sanity checks on di�erent demonstrations for the BTs generated via PA-BT with automatic
action detection. Every result represents how many demonstrations were tested successfully divided by the
amount of demonstrations the BT was tested on.

The �rst observation of table 6.2 is that the generated BTs can always completely recreate the demonstration data they
were generated with. This is very important to create consistent behavior. Another important remark would be that even
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Ball Grasped

Ball Close

Bin Close Ball Placed?
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Ball Close

Ball Found

?

Find BallBall Found

Figure 6.5.: Approach 1: PA-BT with multiple goal conditions: Generation 3. The BT of the previous generation, seen in
�gure 6.4 has been expanded. The Condition node Ball Grasped was replaced with its corresponding atomic
BT
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?

Ball Grasped →

Grasp BallBall Close

?

→

Approach Bin

Bin Close

Ball Grasped

Ball Placed?

→

Approach Ball

Ball Close

Ball Found

?

Find BallBall Found

Figure 6.6.: Approach 1: PA-BT with multiple goal conditions: Generation 4. The BT of the previous generation, seen in
�gure 6.5 has been expanded. The Condition node Bin Close was replaced with its corresponding atomic BT

though ∆1 was created with a different behavior in mind, the generated BT performs very well on ∆3 and ∆4. Further
inspection showed that the automatically detected goal conditions for ∆3 and ∆4 are the same as for ∆1. This means
that the lack of demonstration data could add unintended goal conditions. In contrast, the BTs created from ∆3 and ∆4
perform only very poorly on ∆1. The BTs based on ∆2 and ∆5 are the same and therefore perform equally. Both BTs can
recreate successfully every demonstration with external actions. The BTs generated from ∆1, ∆3 and ∆4 perform even
better on ∆5 than on ∆2. This could be explained by the nature of the demonstrations which were added to ∆2 to create
∆5. Most of these demonstrations favor an execution in which all conditions are true at the goal state, which is the single
goal state for ∆1, ∆3 and ∆4. The BTs show high reactivity, even though they cannot recreate all demonstrations.
One additional prerequisite for the behavior implementation of the Kobo robot was, to be able to add new demonstration
data. This would facilitate to teach the robot even after behavior generation and to re�ne its behavior. With this approach,
the addition of new demonstration data could possibly alter the preconditions and rami�cations of the actions and the
goal conditions. In this case, the behavior generation would have to restart from the beginning, possibly altering the
initial BT and the atomic BTs for expansion. This means that this approach does not enable online learning and behavior
re�nement would take about the same computation time as for initial generation.

6.4 Automatic Action Sequence Creation and BT Specialization on Demonstration Data

The BTs created with this approach are characterized by many unnecessary nodes. They contain signi�cantly more
redundant nodes than with the PA-BT approach. This originates from the specialization approach. The initial BT is the
biggest one and with every specialization, nodes are eliminated. Also, the proposed pruning algorithm of section 4.2.2 is
able to eliminate further redundant nodes. For example, the generated BT for demonstration set ∆1 consists of 36 nodes
before (see �gure 6.19) and 16 nodes after pruning. In fact, after pruning, the generated BT with this approach is also
exactly the same as proposed by Colledanchise and Ögren [Colledanchise and Ögren, 2017].
The generated BT for ∆2 consists of 34 nodes before pruning and 22 nodes afterwards. The BTs which are generated
with this approach tend to form a �at structure, which originates from the sequential approach. The generated BT after
pruning (seen in �gure 6.20) models the inverted preconditions before every action. The action is then only executed,
if no inverted precondition returns SUCCESS, i.e. every precondition is given. The BT specialized on ∆3 consists of 42
nodes before and 22 nodes after pruning. The pruned result is equal to the pruned BT, generated on∆2 (see �gure 6.20).
Finally, the BT generated on ∆4 consists of 44 nodes before and 24 nodes after pruning. In summary, 35% to 56% of
created nodes have been found redundant with this approach. On average 46% of created nodes have been removed.
This emphasizes again the need for pruning.
The BTs generated via BT specialization perform at least as good on the demonstration data, as the BTs generated via
PA-BT (see table 6.3). The BTs generated on ∆1 via PA-BT and BT specialization are equal after pruning (see �gure 6.15)
and therefore perform equally. The BTs generated on∆2 however are not equal (see �gure 6.16 and �gure 6.20) but seem
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Figure 6.7.: Approach 1: PA-BT with multiple goal conditions: Generation 5. The BT of the previous generation, seen in
�gure 6.6 has been expanded. The Condition node Ball Placed was replaced with its corresponding atomic BT
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Figure 6.8.: Approach 1: PA-BT with multiple goal conditions: Generation 5, seen in �gure 6.6, after pruning.

to perform equally on the demonstration data. With this approach as well, the BT expansion on ∆2 and ∆5 are exactly
the same and therefore perform equally. The BT specialization on ∆2 and ∆5 performs better than the PA-BT approach.
It succeeds on 26 of 32 demonstrations of ∆1, which is rather interesting because for the PA-BT approach, the same
goal conditions were detected, but it only succeeded on 11 of 32 demonstrations. It is also to note that the underlying
behavior of demonstration ∆1 is different from the behavior modeled in ∆3, which is a subset of ∆2. Furthermore,
the generated BT, based on ∆3 performs successfully on all demonstrations of ∆2, whereas the equivalent BT generated
using PA-BT only succeeded on 13 of 34 demonstrations. At closer inspection, the BT expanded on ∆3 is also exactly
equal to the BTs based on ∆2 and ∆5. It seems that the restriction on only sequential, loop-free behavior expanded the
capability to generate a useable BT with incomplete demonstration data. The BT generated from ∆4, which only consists
of 2 demonstrations, performs successfully on 29 of 34 demonstrations, whereas the BT created using PA-BT on this
demonstration only succeeded on 8 out of 34 demonstrations. The requirement for demonstration data to contain an
inherent topological order of performed actions already sets the overall structure of the BT and therefore simpli�es the
range of possibilities. The BTs based on ∆2, ∆3 and ∆5 perform successfully on 100% of demonstrations with external
factors. The BT generated from ∆1 with this approach succeeds equally on ∆5 as its equivalent created with PA-BT. In
contrast, the BT based on ∆4, which performed better on ∆2 than its PA-BT equivalent, also performs very well with
added external factors. Out of 9 demonstrations with external actions, 6 could be recreated.
Because this approach cannot deal with loops in the given action sequences, it is rather limited. No topological order
can be found if actions are executed more than once. Also, it only works if a coherent order exists in the given ac-
tion sequences. If the order, in which two actions are executed, can be changed and if this change is present in the
demonstration data, no topological ordering of actions can be found.
In contrast to the approach using PA-BT, this specialization approach would be able to add new demonstration data to an
already existing BT, without reasoning over the full set of demonstration data. The specialization algorithm could simply
run on the new demonstration and check if the given action sequence is executed by the BT. If not, the specialization step
as proposed in section 4.3.2 is executed until the BT also recreates the new demonstration data. This online learning ca-
pability could be used to easily correct an already existing behavior. The demonstrator could interrupt the execution and
show the robot the correct execution. The algorithm could then continue on the current BT with the new demonstration
data to possibly re�ne the behavior.
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Figure 6.9.: Approach 2: PA-BT with automatic action detection on demonstration data∆1: Generation 0.
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Figure 6.10.: Approach 2: PA-BT with automatic action detection on demonstration data∆1: Generation 1.
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Figure 6.11.: Approach 2: PA-BT with automatic action detection on demonstration data∆1: Generation 2.
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Figure 6.12.: Approach 2: PA-BT with automatic action detection on demonstration data∆1: Generation 3.
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Figure 6.13.: Approach 2: PA-BT with automatic action detection on demonstration data∆1: Generation 4.
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Figure 6.14.: Approach 2: PA-BT with automatic action detection on demonstration data∆1: Generation 5.
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Figure 6.15.: Approach 2: PA-BT with automatic action detection on demonstration data ∆1: Generation 5, seen in �g-
ure 6.14, after pruning.
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Figure 6.16.: Approach 2: PA-BT with automatic action detection on demonstration data∆2 : Generation 5 after pruning.
The same BT is created with PA-BT with automatic action detection on∆5
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Figure 6.17.: Approach 2: PA-BT with automatic action detection on demonstration data∆3 : Generation 5 after pruning.
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Figure 6.18.: Approach 2: PA-BT with automatic action detection on demonstration data∆4 : Generation 5 after pruning.
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Figure 6.19.: Approach 3: Automatic action sequence creation and BT specialization on demonstration data ∆1: Gener-
ation 14 before pruning. Pruning of this BT results in the proposed BT by [Colledanchise and Ögren, 2017]
also seen in �gure 6.15.
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Figure 6.20.: Approach 3: Automatic action sequence creation and BT specialization on demonstration data ∆2: Genera-
tion 11 after pruning and on demonstration data∆3: Generation 9 after pruning.
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Tested on ∆1 ∆2 ∆3 ∆4 ∆5

Generated from

∆1 32/32 13/34 8/8 2/2 21/43

(100%) (≈38%) (100%) (100%) (≈49%)

∆2 26/32 34/34 8/8 2/2 43/43

(≈81%) (100%) (100%) (100%) (100%)

∆3 26/32 34/34 8/8 2/2 43/43

(≈81%) (100%) (100%) (100%) (100%)

∆4 21/32 29/34 5/8 2/2 35/43

(≈66%) (≈85%) (≈63%) (100%) (≈81%)

∆5 26/32 34/34 8/8 2/2 43/43

(≈81%) (100%) (100%) (100%) (100%)

Table 6.3.: The results of the sanity checks on di�erent demonstrations for the BTs generated via BT specialization. Every
result represents howmany demonstrations were tested successfully divided by the amount of demonstrations
the BT was tested on.
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7 Conclusion & Outlook

In this thesis, we compared the possibilities of FSMs and BTs to model high-level robot behavior in the context of the
KoBo34 project. First, we de�ned the concepts of FSMs and BTs and then concentrated on the possibility to generate them
automatically from demonstration data. We showed the advantages and disadvantages of both behavioral representations
on the basis of four use cases de�ned by the Kobo34 project and explained our decision to continue to work with BTs.
The main advantage of BTs over FSM is their reactive behavior, without the addition of further nodes. However, BTs
need another mindset than for FSMs and the BT tools are less mature than the software available for FSMs. Then, we
presented three approaches to automatically generate BTs from demonstration. The implementation is based on the
behaviortree.cpp framework which has been implemented for the use with the Robot Operating System (ROS).

The �rst approach is based on Planning and Acting on using Behavior Trees (PA-BT), which generates atomic BTs and
therefore requires the de�nition of goal conditions and a set of actions with preconditions and rami�cations. To further
investigate if this information could be given by a caregiver or elderly person, a study has been performed. This study
showed that participants intuitively concentrated on action sequences and that, especially for older people, the concept
of preconditions and rami�cations had to be clari�ed multiple times. We generated working BTs from 4 out of 8 action
de�nitions given by participants but also showed that this approach was more dif�cult than an action sequence approach
and that it was even impossible to de�ne actions in this manner for some participants.

We therefore developed, for our second approach, a simple algorithm to determine preconditions and rami�cations of all
actions from demonstration data. This set of actions was then also used to generate BTs via the PA-BT approach. Five
sets of demonstrations were created with different state space coverage and also including external actions. Experiments
showed that BTs generated with this approach can always recreate the behavior of the demonstration data, their expan-
sion was based on. However, the generated BTs contain a high amount of redundant nodes, which can be pruned by
our proposed pruning algorithm. On average, this algorithm removed 50% of the created nodes and therefore increased
readability. The generated BTs show reactive behavior and are capable to even react to external actions, although the
demonstrations, their expansion was based on, contained none. Furthermore, the lack of demonstration data can lead to
unintended goal conditions. We implemented the possibility to add new demonstration data after the expansion of a BT,
but this approach is not capable of online learning.

The third approach is inspired by the �ndings of the study and the lack of online learning capabilities of previous
approaches. We developed a way of BT expansion, based on action sequences, which was the �rst intuitive approach
of all study participants. This approach analyzes the topological order of actions sequences from demonstration and
generates an overly general BT, which is then specialized on demonstration data. The resulting BTs can also completely
recreate the behavior found in the demonstration data they are based on, but also contain a high amount of redundancy,
which makes pruning necessary as well. For this approach, the pruning algorithm removed 46% of created nodes on
average. Furthermore, we found that BTs generated with this approach can even outperform BTs expanded with the
second approach on incomplete demonstration sets. They also show the same reactive behavior as the BTs expanded via
PA-BT. However, this approach is more limited than the second approach, because it cannot deal with loops in the action
sequences or actions, which can be executed in different orders.

This thesis could be the basis for some future work. First of all, the current implementation, which is based on two
SimpleActionServers, could be improved. Unfortunately, the communication between the tree nodes and the State Server
currently takes about one second per node evaluation. Therefore, the execution of a complex BT can be very slow. The
reason for this could not be found over the course of this thesis, but we think that it is necessary to improve the speed of
the implementation for more complex scenarios. In that regard, the thesis mostly concentrated on one simple pick and
place task. This task was chosen for its simplicity but does not represent a real use case of the KoBo34 project. Future
demonstration data could be used to generate and test more appropriate behaviors. Furthermore, the demonstration data
for this thesis was created by hand. A way of recording demonstrations will be necessary to test the behavior generation
with non-programmers (i.e. caregivers and elderly people).

The proposed second approach, based on automatic action detection, currently uses a very simple algorithm to detect
the preconditions and rami�cations of all actions. There is certainly the possibility to implement different, more complex
ways of action detection. Future implementations could be based on the work of Amir and Chang [Amir and Chang,
2008] or �Certick�y [�Certick�y, 2014]. The topological ordering, used for the third approach, limits the possibilities of
this approach and could be expanded to deal with alternative action orders and loops. All generated BTs contained
unnecessary nodes, which we have been able to detect and remove with the proposed pruning algorithm. This algorithm
could be re�ned to further simplify the generated BTs and therefore to increase readability.
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Finally, the study we performed only consists of 8 participants. A study with more participants could certainly investigate
the possibilities of robot teaching in more detail. It could either concentrate on elderly people or try to show if there is a
relation between the age of participants and the success rate of the BTs generated from their answers. Furthermore, the
question of readability could be investigated. For this thesis, the readability of a behavioral structure was a very vague
prerequisite, which was treated as equivalent to the complexity of a BT or FSM (i.e. the number of nodes or states and
transitions). However, BTs demand another mindset as FSMs. A future study could directly compare the readability of
these behavioral representations and possibly develop a clearer measure for this currently very vague term. Finally, a
future study could also expand the robot teaching from a verbal approach to a Learning from Demonstration approach
and investigate the generated results and the reaction of the elderly people to this kind of robot teaching.
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A Appendix

A.1 Questionnaire for demonstration evaluation

The following study was done with 8 people in a range from 21 to 89 years old (52 years on average). The participants
were asked for their age to �nd possible relations with the kind of answers given. The German language was chosen
to ensure the possibility to work with elderly people. The headlines of the following subsections were not visible to the
participants and the individual sections were presented one by one.

A.1.1 Free description of behavior

The �rst question is intentionally a very open question. This question is asked �rst, to see the intuitive way of a person
to describe the behavior. Only a symbolic illustration is given (see �gure A.1). Without giving too much information, it is
avoided to in�uence the answer to the following question: You want to teach a robot to place a ball in a bin. How would
you describe this to it? After the description is given, two other questions are posed to �nd out how dif�cult this kind of
description was and if there was a desire to know more about the robot: How dif�cult was this kind of description for
you (1 = very easy, 5 = very hard)? Would you have liked to have any further information about the robot for this task?

Sie möchten einem Roboter beibringen, wie er einen Ball in einen Eimer befördert. Wie würden Sie ihm das erklären?

Figure A.1.: Illustration for the performed study. This illustration shows all elements of the given example to participants,
which should inspire them to describe the robot behavior for placing a ball in a bin.

Wie leicht ist Ihnen diese Art der Beschreibung gefallen (1 = sehr leicht, 5 = sehr schwer)? Hätten Sie sich für diese
Aufgabe zusätzlichen Informationen über den Roboter gewünscht?

A.1.2 Free description with given action set and conditions

For the second question, the possible actions (Approach Ball, Place Ball, Approach Bin, Find Ball and Grasp Ball) and
conditions (Ball Grasped, Bin Close, Ball Placed, Ball Found, Ball Close) representing the state are given. The question is,
if the behavior would be described differently with these informations. After this question, it is asked again, how dif�cult
this kind of description was and if there was any information missing about the actions and conditions.

Dem Roboter stehen folgende Aktionen zur Verfügung:

� Zum Ball gehen

� Ball in den Eimer legen

� Zum Eimer gehen
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� Ball �nden

� Ball greifen

Zusätzlich stehen dem Roboter folgende Beobachtungen zur Verfügung:

� Hat der Roboter den Ball gegriffen

� Ist der Eimer in der Nähe

� Liegt der Ball im Eimer

� Wo ist der Ball

� Ist der Ball in der Nähe

Wie würden Sie ihm die Aufgabe nun schildern?
Wie leicht ist Ihnen diese Art der Beschreibung gefallen (1 = sehr leicht, 5 = sehr schwer)? Gibt es Informationen über
die Aktionen und Beobachtungen des Roboters, die Ihnen für diese Beschreibung eventuell gefehlt haben?

A.1.3 Description of preconditions, rami�cations and goal conditions

The last question is asked to compare how preconditions and rami�cations for actions are de�ned. The exact question is:
Try to give exactly the preconditions which have to be true for the execution of an action. And also give the rami�cations
of the action, the robot can observe. The answers given have been �lled in a table like table A.1 and it was clari�ed
that only the �ve conditions (Approach Ball, Place Ball, Approach Bin, Find Ball and Grasp Ball) presented before can
be rami�cation or precondition. Two follow-up questions are posed. The �rst, how dif�cult this kind of description was,
and the second, to �nd out how many questions of the robot would be tolerable for a user. The exact translation: How
many questions of the robot would you have accepted for this task?

Versuchen Sie zu jeder Aktion genau anzugeben, welche Voraussetzungen für die Ausführung der Aktion erfüllt sein
müssen. Und geben Sie dazu an, welche Auswirkungen diese Aktion auf die Beobachtungen des Roboters hat.

Voraussetzungen Auswirkungen

Ball �nden

Zum Ball gehen

Ball greifen

Zum Eimer gehen

Ball in den Eimer legen

Table A.1.: Table of preconditions and rami�cations for all actions to �ll in. Additionally, all conditions the robot can
observe, have been presented.

Wie leicht ist Ihnen diese Art der Beschreibung gefallen (1 = sehr leicht, 5 = sehr schwer)? Wie viele Fragen des Roboters
würden Sie für solch eine Aufgabe akzeptieren?
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A.2 Study results

The following notes have been taken while interviewing the study participants and according to an audio recording. The
recording is not part of the appendix for data protection reasons.

A.2.1 Participant 1 (Age 60)

The following notes have been taken for participant 1.

Free description of behavior

� �Strecke deine rechte Hand nach unten. Mach deine Hand auf. Schließe deine Hand wieder, dass du den Ball
festhältst. Nach oben heben und drehe dich in Richtung vom Eimer, mache deine Hand wieder auf und lasse den
Ball fallen.�

� Movements have been demonstrated physically: the arm movement of the robot, grasping, turning to the bin and
placing the ball.

� Dif�culty level of this description: 1

� Further information needed: no

� Time taken for this description: 43 seconds.

Free description with given action set and conditions

� Similar description given as for �rst question: �Arm ausstrecken, Arm nach unten, greifen, Arm nach oben, Rich-
tung Eimer, fallen lassen.�

� After explaining the actions in detail, long pauses of re�ection.

� Description was not changed. Even after explaining, that the robot has no direct action to stretch out its arm.

� The Participant responded positive, when he was asked, if he thought that the behavior would work like that.

� Dif�culty level of this description: 2

� Further information needed:

� can the robot walk?

� can the robot see the ball?

� can the robot turn?

� can the robot sense if it has grasped the ball?

� how does the robot know that it has to move its arm to grasp the ball?

� can the robot know how strong it grasps the ball?

� Time taken for this description: 3 minutes, 34 seconds.

Description of preconditions, rami�cations and goal conditions

� The results of this description can be seen in table A.2.

� No BT could be generated from this description, because of con�icting preconditions and rami�cations (for exam-
ple BallFound as precondition and rami�cation for the action Find Ball)

� Even after clarifying that only given conditions can be preconditions or rami�cations, the �rst answer for precon-
ditions of Find Ball was: �Also, er muss seinen Arm bewegen.� and �Dass er sich bewegen kann, der Roboter�.
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� Further clari�cation for the meaning of precondition and rami�cation was needed. Especially the temporal order
(i.e. preconditions before and rami�cations after the action)

� Actions have been mixed up: while describing the preconditions and rami�cations for action Find Ball, walking to
the ball was described already.

� Dif�culty level of this description: 3

� Acceptable number of questions for this task: 4-5

� Time taken for this description: 14 minutes, 18 seconds.

Preconditions Rami�cations

Find Ball BallFound, BallClose BallFound

Approach Ball BallFound,BallClose BallClose

Grasp Ball BallClose, BallFound BallGrasped

Approach Bin BinClose BinClose

Place Ball BallGrasped, BallFound, BinClose BallPlaced, BallFound, BallGrasped

Table A.2.: Table of preconditions and rami�cations �lled in by participant 1.

A.2.2 Participant 2 (Age 89)

The following notes have been taken for participant 2.

Free description of behavior

� �Ich weiß doch nicht, wie der sich bewegen kann. Kann der sich bücken?�

� �Bücken, mit zwei Händen den Ball fassen und dann wieder auf und in den Eimer schmeißen.�

� Dif�culty level of this description: 2

� Further information needed: movement possibilities of the robot

� Time taken for this description: 25 seconds.

Free description with given action set and conditions

� �Schau mal, wo der Eimer ist. Und dann schaue, ob der Ball in deiner Nähe ist. Dann kannst du den Ball
reinwerfen.�

� Dif�culty level of this description: 3

� Further information needed: can the robot turn?

� Time taken for this description: 1 minutes, 42 seconds.
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Description of preconditions, rami�cations and goal conditions

� The results of this description can be seen in table A.3.

� No BT could be generated from this description, because of con�icting preconditions and rami�cations (for exam-
ple Bin Close as precondition and rami�cation for the action Approach Bin)

� The questions were found as cumbersome: �Das ist so ein Umstand.�

� For the rami�cations of FindBall, other actions have been described already: �Dann muss er sich in die Richtung
drehen. Und dann muss er sich bücken.�

� Even when asked directly for the observations of the robot, the participant concentrated on actions: �Dann muss
er sich bücken.�

� �Liegt der Ball im Eimer? Und wenn nicht, dann muss er ihn reintun.�

� While discussing the rami�cations for the action Grasp Ball, the condition of Ball Grasped was not mentioned.
When clarifying this rami�cation, the condition has been mentioned as obvious: �Ich habe gedacht, das wäre
selbstverständlich.�

� Proposed precondition for the action Place Ball: �Ja, der braucht bewegliche Hände.�

� The negation of Ball Placed is proposed as precondition for the action Place Ball.

� Dif�culty level of this description: 3

� Acceptable number of questions for this task: 5

� Time taken for this description: 11 minutes, 6 seconds.

Preconditions Rami�cations

Find Ball BallFound

Approach Ball BallFound

Grasp Ball BallClose, BallFound (BallGrasped)

Approach Bin BinClose BinClose

Place Ball
BallGrasped, BallFound, BinClose,

¬BallPlaced
BallFound, BallClose, BallGrasped, BinClose,

BallPlaced

Table A.3.: Table of preconditions and rami�cations �lled in by participant 2.

A.2.3 Participant 3 (Age 62)

The following notes have been taken for participant 3.

Free description of behavior

� Only two actions have been given. �Grundsätzlich, Ball greifen und dann Ball im Eimer ablegen.�

� �Wenn das so möglich ist, das als Befehl zu geben.�

� Dif�culty level of this description: 1

� Further information needed:

� movement possibilities of the robot

� which functions does the robot have

� Time taken for this description: 41 seconds.
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Free description with given action set and conditions

� �Zuerst wäre Ball �nden, dann zum Ball gehen, dann den Ball greifen, zum Eimer gehen, in den Eimer legen und
dann noch prüfen, ob der Ball im Eimer liegt.�

� �Vergessen habe ich jetzt, ob der Eimer in der Nähe ist.�

� Dif�culty level of this description: 2

� Further information needed: no

� Time taken for this description: 1 minutes, 2 seconds.

Description of preconditions, rami�cations and goal conditions

� The results of this description can be seen in table A.4.

� No BT could be generated from this description, because of missing rami�cations (for example for the action
Approach Ball)

� Further conditions were given: �Es hat sich verändert, dass er jetzt schauen muss, ob der Eimer in der Nähe ist.�

� Actions were mixed up: �Weil, wenn er den Ball hat, er hat den Ball entdeckt, geht er dann denke ich zum Ball,
und greift ihn auch. Oder ist das dann schon die nächste Aktion?�

� Limits were questioned: �Das ist jetzt zum Beispiel, wenn der Ball jetzt auf dem Regal oben liegen würde, wo er
ihn nicht greifen kann...�

� Further preconditions for Approach Ball were given: �Dass der Weg dorthin für ihn frei ist.�

� Preconditions were mixed up with the preconditions of the action Find Ball: �In der Nähe haben wir ja schon
gesagt.�, �Na, das haben wir ja da oben schon geprüft.�

� The de�nition of �Close� was unclear to the participant and had to be clari�ed further.

� Finally, no preconditions and rami�cations for Approach Ball were given.

� The temporal order of preconditions and rami�cations had to be clari�ed.

� �Er muss nah genug am Ball sein, dass er ihn greifen kann�. After asking if there was a condition modeling this:
�Ja, vielleicht Ist der Ball in der Nähe. Aber das haben wir ja da oben schon geklärt.�

� The de�nition of �Close� had to be clari�ed again. �Close� and �Found� were mixed up.

� The separation of actions had to be explained further: �Ach so, also das heißt, bevor ich zum Eimer gehe, muss ich
wieder prüfen, hat er jetzt die letzte Funktion ausgeführt, hat er den Ball richtig gegriffen.�

� When asking for a rami�cation of ApproachBall: �Er kann zum Eimer laufen.� Temporal order of preconditions
and rami�cations had to be clari�ed again. �Er kann jetzt den Ball in den Eimer legen.�

� Had to be clari�ed that actions are always successful.

� Separation of actions was mixed up again: �Voraussetzung ist, dass der Eimer dann in der Nähe ist. Aber er steht
ja dort, steht am Eimer haben wir ja gesagt.�

� The rami�cation ¬BallGrasped for the action PlaceBall was given as well: �Wenn du das jetzt alles so genau,
ausführlich machen willst.�

� When asked for the dif�culty level: �Das war jetzt schon ein bisschen schwierig. Ich hab das wahrscheinlich alles
ein bisschen falsch verstanden.�

� Dif�culty level of this description: 4

� Acceptable number of questions for this task: 3
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� Time taken for this description: 18 minutes, 15 seconds.

Preconditions Rami�cations

Find Ball BallFound, BallClose BallFound

Approach Ball

Grasp Ball BallGrasped

Approach Bin BallGrasped, ¬BinClose BinClose

Place Ball BinClose, BallGrasped BallPlaced, ¬BallGrasped

Table A.4.: Table of preconditions and rami�cations �lled in by participant 3.

A.2.4 Participant 4 (Age 30)

The following notes have been taken for participant 4.

Free description of behavior

� An action sequence has been given. �Er soll auf dem Boden nach einem Ball suchen. Und wenn er ihn �ndet, soll
er den Ball mit seiner Hand greifen und dann sich Richtung Eimer drehen und den Ball in den Eimer werfen.�

� �Also, er schaut erst mal ob er einen Ball gegriffen hat oder nicht. Und wenn nicht, sollte er schauen, ob der Ball in
der Nähe ist. Und dann kann er zum Ball gehen. Und dann kann er den Ball greifen. Und dann muss er schauen,
ob der Eimer in der Nähe ist. Dann kann er zum Eimer gehen und den Ball in den Eimer legen . �

� Dif�culty level of this description: 2

� Further information needed:

� does the robot know what a ball/bin is

� how far can the robot look for the ball

� if he can grasp the ball

� how does the robot know that this bin is the right bin

� Time taken for this description: 27 seconds.

Free description with given action set and conditions

� Dif�culty level of this description: 3

� Further information needed:

� de�nition of �Close�

� do actions always succeed

� Time taken for this description: 1 minutes, 12 seconds.

Description of preconditions, rami�cations and goal conditions

� The results of this description can be seen in table A.5.

� A BT, expanded from the given action set can be seen in �gure A.2
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� When asked about the dif�culty level of this description: �Ja, am Anfang musste ich einfach verstehen, wie das
funktioniert. Und ab dem zweiten hatte ich dann verstanden.�

� Dif�culty level of this description: 3

� Acceptable number of questions for this task: 2

� Time taken for this description: 4 minutes, 43 seconds.

Preconditions Rami�cations

Find Ball ¬BallPlaced BallFound

Approach Ball BallFound BallClose

Grasp Ball BallClose BallGrasped

Approach Bin BallGrasped BinClose

Place Ball BinClose BallPlaced

Table A.5.: Table of preconditions and rami�cations �lled in by participant 4.

?

Ball Placed →

?

Bin Close →

?

Ball Grasped →

?

Ball Close →

?

Ball Found Find Ball

Approach Ball

Grasp Ball

Approach Bin

Place Ball

Figure A.2.: BT generated from the action set given by participant 4, seen in table A.5 with approach 1: PA-BT with given
actions and goal condition BallPlaced.

A.2.5 Participant 5 (Age 27)

The following notes have been taken for participant 5.

Free description of behavior

� �Erstmal soll er sich vor den Ball stellen, dann sich bücken, mit den Armen den Ball in die Hände nehmen, sich
wieder aufrichten und dann Richtung Eimer laufen. Und dann entweder den Ball reinfallen lassen oder am besten
sich auch bücken und den Ball reinlegen.�

� Dif�culty level of this description: 1

� Further information needed: no, �Das Bild hat mir gereicht.�

� Time taken for this description: 24 seconds.
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Free description with given action set and conditions

� �Ich weiß nicht, mir fällt da jetzt irgendwie nicht ein, was man da noch hinzufügen könnte.�

� After clarifying the kind of description: �Okay, also Ball �nden, zum Ball gehen, Ball greifen, zum Eimer gehen,
Ball in den Eimer legen.�

� After explaining that observations can be used as well: �Langsam kapiere ich das auch�

� �Er muss erstmal feststellen, wo er ist. Und dann, er ist in der Nähe. Dann zum Ball gehen, Ball greifen. Dann
macht er diese Beobachtung, dass er ihn jetzt gegriffen hat. Dann zum Eimer gehen und Ball in den Eimer legen.
Und dann stellt er fest, dass er im Eimer ist�

� �Jetzt war es ja schon wahnsinnig ausführlich eigentlich. Also immer das nochmal zu hinterfragen.�

� Dif�culty level of this description: 3

� Further information needed: �Er könnte sich natürlich immer fragen: Hab ich genug Energie?�

� Time taken for this description: 3 minutes, 38 seconds.

Description of preconditions, rami�cations and goal conditions

� The results of this description can be seen in table A.6.

� A BT, expanded from the given action set can be seen in �gure A.3

� �Weil ich irgendwie checken musste, wie das funktioniert, aber dann eigentlich, dann ist es ja einfach.�

� Dif�culty level of this description: 3

� Acceptable number of questions for this task: 3

� Time taken for this description: 12 minutes, 3 seconds.

Preconditions Rami�cations

Find Ball ¬BallFound BallFound

Approach Ball ¬BallClose, BallFound BallClose

Grasp Ball BallClose, ¬BallGrasped, BallFound BallGrasped

Approach Bin ¬BinClose BinClose

Place Ball BallGrasped, BinClose BallPlaced

Table A.6.: Table of preconditions and rami�cations �lled in by participant 5.

A.2.6 Participant 6 (Age 71)

The following notes have been taken for participant 6.
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?

Ball Placed →

?

Bin Close Approach Bin

?

Ball Grasped →

Ball Found?

Ball Close →

?

Ball Found Find Ball

Approach Ball

Grasp Ball

Place Ball

Figure A.3.: BT generated from the action set given by participant 5, seen in table A.6 with approach 1: PA-BT with given
actions and goal condition BallPlaced.

Free description of behavior

� The participant tried to change the environment: �Also ich würde den Eimer vor den Roboter stellen.�

� �Streck deinen rechten Arm aus, bück dich, nimm den Ball, mach eine leichte Wendung nach links und wirf ihn in
den Eimer.�

� When mentioned that the ball could be anywhere: �Dann muss ich dem Roboter sagen: Mach zwei Schritte, oder
drei Schritte, je nach Entfernung.�

� Dif�culty level of this description: 1

� Further information needed: no

� Time taken for this description: 1 minute, 7 seconds.

Free description with given action set and conditions

� The participant was following the logical order of the actions with a �nger: �Also erstmal müssen wir den Ball
�nden, dann gehen wir zum Ball hin, greifen den Ball, gehen zum Eimer, Ball in den Eimer legen.�

� When asked, if the conditions were not relevant: �Also die braucht man jetzt nicht zu sortieren?�

� When asked, if the robot would understand a description without conditions, the participant was convinced that
the behavior would work.

� Dif�culty level of this description: 2

� Further information needed: no

� Time taken for this description: 1 minutes, 29 seconds.

Description of preconditions, rami�cations and goal conditions

� The results of this description can be seen in table A.7.

� No BT could be generated from this description, because of missing rami�cations (for example for the action Find

Ball)
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� The meaning of precondition and rami�cation had to be de�ned multiple times: �Um den Ball zu �nden, da muss
er erst mal wissen, wo der Ball ist. Und wenn er das weiß, dann �ndet er ja den.�

� The precondition Ball Found was given for the action Find Ball, but later erased: �Das da oben ist jetzt ein bisschen
doof. Das passt nicht wirklich dahin. Ja �ndet er dann den Ball?�

� When comparing with all conditions: �Also von denen, passt hier nix hin�

� The precondition ¬BallGrasped was given for the action GraspBall: �Höchstens wäre hier, in dem Fall, indem ich
es verneinend schreibe: Hat den Ball noch nicht gegriffen�

� The de�nition of �Close� was unclear to the participant and it had to be clari�ed that this means that the robot can
interact with the object.

� This kind of description was found strange: �Ganz schön verquer zu denken.�

� Laughing: �Ich glaub, Programmierer wäre nichts für mich. Immer so verquer denken.�

� Dif�culty level of this description: 3

� Acceptable number of questions for this task: 10

� Time taken for this description: 16 minutes, 55 seconds.

Preconditions Rami�cations

Find Ball (BallFound)

Approach Ball BallFound BallClose

Grasp Ball BallClose, ¬BallGrasped BallGrasped

Approach Bin BinClose

Place Ball BallGrasped, BinClose, ¬BallPlaced BallPlaced

Table A.7.: Table of preconditions and rami�cations �lled in by participant 6.

A.2.7 Participant 7 (Age 21)

The following notes have been taken for participant 7.

Free description of behavior

� �Also, der Roboter muss erstmal irgendwie wissen, wo der Ball ist. Und dann geht der dahin. Dann nimmt er ihn
in die Hand und geht zum Eimer, wenn er weiß wo der Eimer ist. Und dann legt er ihn da rein. In den Eimer.
Dann ist er fertig.�

� Dif�culty level of this description: 2

� Further information needed: no, �Das hat mir jetzt irgendwie gereicht.�

� Time taken for this description: 21 seconds.

Free description with given action set and conditions

� The given list of actions and conditions inspired new questions: �Ich komm jetzt halt irgendwie da drauf, dass der
Roboter ja vielleicht schon direkt den Ball gegriffen haben könnte. Und wenn man das weiter denkt, könnte er ja
schon eigentlich ganz fertig sein.�
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� The description was adapted: �Also ich hätte ihn vielleicht sozusagen erst mal gefragt, ob er irgendwie, vielleicht
schon fertig ist oder den Ball schon hat. Ob er vielleicht schon beim Eimer ist. Und immer halt so schauen, ob die
Sachen schon erledigt sind. Die man dann vielleicht gar nicht machen muss.�

� �Immer so ein: Prüfen ob es schon gemacht ist, wenn nicht, machen. Und dann schrittweise durcharbeiten. Aber
irgendwie rückwärts.�

� When asked about the dif�culty level: �Eher 4, weil es voll verwirrend ist.�

� Dif�culty level of this description: 4

� Further information needed: Could the condition Ball Grasped also in�uence other conditions like Ball Found or
Ball Close

� Time taken for this description: 2 minutes, 6 seconds.

Description of preconditions, rami�cations and goal conditions

� The results of this description can be seen in table A.8.

� A BT, expanded from the given action set can be seen in �gure A.4

� The precondition ¬BallPlaced has been given but found as implicitly given by the precondition BallGrasped: �Weil,
wenn der Ball in der Hand ist, kann er ja nicht im Eimer sein. Würde ich jetzt als Mensch sagen.�

� The question if only one ball exists emerged: �Wenn wir sicher sein können, dass es nur einen Ball gibt, muss man
es ihm auch nicht sagen. Man könnte irgendwie sagen: Brich ab, wenn der Ball in deiner Hand ist und im Eimer
ist. Dann ruf um Hilfe.�

� The rami�cation ¬BallGrasped for the action PlaceBall was given as well

� When asked for the dif�culty level: �Also wenn man die Liste hier hat und die einfach sozusagen abarbeiten kann.�

� �Schon viel Denkarbeit irgendwie.�

� Dif�culty level of this description: 3

� When asked for the acceptable number of questions for this task: �Ja, das ist irgendwie komplizierter als man
denkt.�

� �Bei 5 wäre ich schon irgendwie ein bisschen genervt.�

� Acceptable number of questions for this task: 5

� Time taken for this description: 6 minutes, 28 seconds.

Preconditions Rami�cations

Find Ball ¬BallGrasped, ¬BallPlaced, ¬BallFound BallFound

Approach Ball
¬BallGrasped, ¬BallPlaced, BallFound,

¬BallClose BallClose

Grasp Ball
¬BallGrasped, ¬BallPlaced, BallClose,

BallFound
BallGrasped

Approach Bin ¬BallPlaced, BallGrasped, ¬BinClose BinClose

Place Ball BallGrasped, BinClose, (¬BallPlaced) ¬BallGrasped, BallPlaced

Table A.8.: Table of preconditions and rami�cations �lled in by participant 7.
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?

Ball Placed →

?

Bin Close Approach Bin

?

Ball Grasped →

Ball Found?

Ball Close →

?

Ball Found Find Ball

Approach Ball

Grasp Ball

Place Ball

Figure A.4.: BT generated from the action set given by participant 7, seen in table A.8 with approach 1: PA-BT with given
actions and goal condition BallPlaced.

A.2.8 Participant 8 (Age 56)

The following notes have been taken for participant 8.

Free description of behavior

� �Ball nehmen, von rechts nach links in den Eimer geben.�

� After clari�cation that the position of the ball does not have to be as seen on the illustration: �Dann muss man den
halt von einer anderen Stelle nehmen.�

� �Den Ball nehmen, aufheben und in den Eimer geben.�

� Dif�culty level of this description: 1

� Further information needed: no

� Time taken for this description: 27 seconds.

Free description with given action set and conditions

� �Erstmal Ball �nden, dann ist der Eimer in der Nähe, weil den muss er ja erst abchecken. (...) Dann als nächstes
zum Ball gehen, Ball greifen, dann kontrollieren, hat er den Ball gegriffen. Dann zum Eimer gehen. Ball in den
Eimer legen. Liegt der Ball im Eimer und wo ist der Ball, also ist der Ball drin.�

� �Der muss natürlich wissen, wie er seine Gliedmaßen (...), wie er das alles benutzen muss.�

� Dif�culty level of this description: 2

� Further information needed: no

� Time taken for this description: 1 minutes, 24 seconds.

Description of preconditions, rami�cations and goal conditions

� The results of this description can be seen in table A.9.

� A BT, expanded from the given action set can be seen in �gure A.5
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� The de�nition of �Close� had to be clari�ed.

� The precondition BallClose has been given for the action FindBall but erased after the clari�cation of �Close�.

� The meaning of precondition and rami�cation had to be explained: �Diese Begrif�ichkeiten sind mir ein bisschen
unterschiedlich.�

� The condition BallFound was initially not given as precondition for the action ApproachBall, but added after clari-
fying the difference of precondition and rami�cation.

� Furthermore, it had to be explained that the actions have to be de�ned separately. BallFound as precondition for
ApproachBall was seen as already given, because of it being a rami�cation for the action FindBall.

� The condition BallGrasped was initially given as precondition for the action ApproachBin but erased after realizing
that it was not necessary for this action: �Obwohl, zum Eimer gehen, das hat ja nichts mit dem Ball zu tun.�

� The participant was not accustomed to this kind of de�nition: �Das ist eine ganz andere Logik.�

� �Mal kucken, jetzt denke ich bestimmt wieder falsch.�

� �Aber ich musste erst mich losmachen von dem, dass der da hingeht. Da hab ich so ein Bild: der rollt dann da hin,
der holt das dann. (...) Erst �ndet er den Ball, dann geht er zum Ball, dann greift er ihn, aber das sind ja alles
Einzelaktionen. Da musste ich mich erst von losmachen. Das war schwierig.�

� When asked about the dif�culty level for this description: �5, weil ich eine ganz andere Sache im Kopf hatte. Eine
andere Logik.�

� Dif�culty level of this description: 5

� Acceptable number of questions for this task: 7

� Time taken for this description: 10 minutes, 57 seconds.

Preconditions Rami�cations

Find Ball BallFound

Approach Ball BallFound BallClose

Grasp Ball BallFound, BallClose BallGrasped

Approach Bin BinClose

Place Ball BallFound, BallGrasped, BallClose, BinClose BallPlaced

Table A.9.: Table of preconditions and rami�cations �lled in by participant 8.

?

Ball Placed →

Ball Close?

Ball Grasped →

?

Ball Close Approach Ball

Grasp Ball

?

Ball Found Find Ball

?

Bin Close Approach Bin

Place Ball

Figure A.5.: BT generated from the action set given by participant 8, seen in table A.9 with approach 1: PA-BT with given
actions and goal condition BallPlaced.
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