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Dorothea Koert1,2, Joni Pajarinen1,3, Albert Schotschneider1, Susanne Trick2,4,
Constantin Rothkopf 2,4,5 and Jan Peters1,2,6

Abstract—In order to operate close to non-experts, future
robots require both an intuitive form of instruction accessible
to laymen and the ability to react appropriately to a human
co-worker. Instruction by imitation learning with probabilistic
movement primitives (ProMPs) allows capturing tasks by learn-
ing robot trajectories from demonstrations including the motion
variability. However, appropriate responses to human co-workers
during the execution of the learned movements are crucial for
fluent task execution, perceived safety, and subjective comfort.
To facilitate such appropriate responsive behaviors in human-
robot interaction, the robot needs to be able to react to its
human workspace co-inhabitant online during the execution of
the ProMPs. Thus, we learn a goal-based intention prediction
model from human motions. Using this probabilistic model,
we introduce intention-aware online adaptation to ProMPs. We
compare two different novel approaches: First, online spatial
deformation, which avoids collisions by changing the shape of the
ProMP trajectories dynamically during execution while staying
close to the demonstrated motions and second, online temporal
scaling, which adapts the velocity profile of a ProMP to avoid
time-dependent collisions. We evaluate both approaches in exper-
iments with non-expert users. The subjects reported a higher level
of perceived safety and felt less disturbed during intention aware
adaptation, in particular during spatial deformation, compared
to non-adaptive behavior of the robot.

Index Terms—Human-Centered Robotics, Learning and Adap-
tive Systems, Human Factors and Human-in-the-Loop

I. INTRODUCTION

IN contrast to classical robotic domains, where robots
usually operate at a safe distance from humans, future

robot applications such as elderly assistance or interactive
manufacturing aim to bring robots closer to everyday contact
with humans [1]. In this context learning from demonstra-
tion [2] and the concept of movement primitives [3], [4],
[5] offer a promising approach for non-expert users to teach
new tasks to robots. In particular, probabilistic movement
primitives (ProMPs) [5] can capture the inherent variability in
the demonstrated motions. However, when a robot is supposed
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Fig. 1. We learn probabilistic movement primitives for a pick-and place task
via kinesthetic teaching (upper row). When executed in a shared human robot
workspace as shown in row 2-4 the learned motions need to be adapted online.
To this end, we propose a novel approach for human aware execution of
ProMPs by incorporating goal directed predictions of human motions (green)
with two novel approaches for online adaptation of ProMPs, namely spatial
deformation (third row) and temporal scaling (last row). We compare those
two approaches to non reactive ProMP execution (second row).

to share a workspace in close proximity with a human,
special requirements for online adaptation of learned robot
motions arise. While ProMPs have been already extended for
collaborative tasks [6] and offline planning methods with static
obstacles [7], [8] exist, to the best of the authors’ knowledge
no method for online human aware adaptation of ProMPs
in shared workspaces has been introduced so far. Such an
approach needs to be able to react online to dynamic changes
in human intentions and motion goals. To avoid extensive
replanning and the resulting inconsistency of robot motions,
it is desirable to predict behavior changes of humans in
advance. As human behavior might differ between situations
and subjects it is desirable to learn both movement goals and
motion behavior of humans from observations and in an online
manner. Such motion models can predict potential collisions
between the human and the robot in advance and adapt the
robot’s movements accordingly.

The contribution of this work are two novel approaches
for intention aware online adaptation of ProMPs and their
evaluation with non-expert users.

The two approaches are inspired by time-dependent human
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collision avoidance behaviors, namely change in path direction
and change in path velocity as also observed e.g., in pedestrian
motions [9], [10]. Our first approach optimizes the shape of
the ProMP for spatial obstacle avoidance, taking into account
information from the demonstrations, and follows a similar
approach as [8]. However, while [8] only proposed offline
optimization our approach runs online and is able to react
to dynamically changing human motions. The second novel
approach optimizes the velocity profile of the ProMP to
achieve obstacle avoidance while the motion path remains
unchanged. For predicting human motions, both of the new
online ProMP adaptation techniques use a goal-directed prob-
abilistic prediction model learned from observations.

Commonly in pure motion planning the reaction of a human
to the robot’s motions is not the focus of investigations as
long as collisions with the human are avoided. However, in
human aware motion adaptation human presence gives need to
also investigate how different types of robot motions influence
a human working in the same workspace [11], [12], [13].
Therefore, we conducted a user study with non-experts to
evaluate the effects of our spatial and temporal motion adap-
tation approach on human task performance and subjectively
perceived levels of comfort, safety and predictability of the
robot’s motions.

The rest of the paper is structured as follows: Section II,
presents related work. Section III summarizes the concept
of ProMPs and introduces our novel approaches for online
adaptation of ProMPs to dynamic obstacles and a probabilistic
model for predicting goal directed human motions. Section IV
presents results from a user study where we evaluated both
online adaptation approaches and the prediction model on a
pick and place task. In Section V, we draw conclusions from
the experiments and discuss possible future work.

II. RELATED WORK

Efficient and safe coexistence of robots and humans has
been a longstanding robotics challenge [14], [15]. In particular,
when a human is in close proximity to the robot the situation
differs from classical motion planning due to the human
being highly dynamic and possibly reacting subjectively to
different ways the robot moves [11], [16], [13]. While earlier
approaches to human robot collaboration often consider safety
zones or velocity limits [14], [17] more recent research inves-
tigates ways to generate human aware robot motions in close
proximity and shared workspaces [18], [19], [20], [21], [22].
Mainprice et al. proposed a Gaussian Mixture Model (GMM)
for predicting human motions and used constrained stochastic
trajectory optimization to spatially deform robot trajectories
[23], [18].

Additionally, approaches for online trajectory deformation
based on physical input signals from a human [20], human
comfort and ergonomic postures [21], or optimizing human
robot handovers have been presented [24], [22]. These ap-
proaches mainly focus on deformation of trajectories. Adapt-
ing the motion speed has been used in human-robot interaction
to decrease potential impact force [15], slow down the robot
when a human enters a monitored area [17], for online obstacle

avoidance of two robots in a cooperative setting [25], and for
time-dependent collision avoidance in navigation tasks with
mobile robots [26], [27], [28].

For more efficient human robot co-working or collaboration
and to avoid the need for extensive replanning, early prediction
of human intentions is crucial. In particular, predicting human
motion goals and reaching motions has been exploited in the
literature [29], [30], [26]. Recently, also Gaussian Mixture
models [31] or probabilistic movement primitives [32] have
been used for early intention prediction of human motions. In
collaborative assembly, [33] controls the velocity of a robotic
system along a linear axis dependent on potential collisions
with co-workers.

Recent studies with non-expert users report the benefits
of such human aware planning approaches for mobile robots
[27], [28] and in shared workspaces with robot manipulators
[11]. They also report the contrast between legibility and
predictability in motions [13] and effects of motion speed
and predictability [16]. However, non-expert user studies on
different online replanning behaviors are rare in the literature,
but important to better understand human responses to robot
motions.

Contrary to many of the previously mentioned methods,
our approach incorporates movement primitives which we
will discuss in the following. Movement primitives [3], [4],
[5] provide a lower dimensional representation of trajectories
and an intuitive way for non-experts to teach new tasks to a
robot by demonstrations. In particular, Probabilistic Movement
primitives offer a framework to capture the inherent variability
of the motions [5].

For dynamic movement primitives the use of repellent
forces was proposed for obstacle avoidance [34], [35], and
for dynamic systems approaches the use of potential fields
is presented in [36]. Saverino proposes human-aware motion
reshaping using dynamical systems [37], where the robot
adapts velocity and its motion goal online dependent on human
motion. In particular, they also introduce a RGBD camera
based approach for fast and efficient distance computation
to the human. However, they do not incorporate prediction
models for human motions and do not conduct user studies
on perceived subjective safety or comfort.

ProMPs have been extended to collaborative tasks [6] and
offline trajectory planning [7]. However, the computationally
expensive sample based Kullback-Leibler Divergence in [7]
prevents online replanning. Colome et al. [8] proposed a
demonstration free version of ProMPs and use the Maha-
lanobis distance to the demonstrations for static obstacle
avoidance without online replanning. However, in a setting
with a human present, dynamic obstacle avoidance, which is
capable of human aware online replanning, is crucial.

III. INTENTION AWARE ONLINE PROMP ADAPTATION

We propose two novel approaches for online intention
aware adaptation of ProMPs, namely spatial deformation and
temporal scaling. In both cases, we first learn a goal-directed
motion model from observations of human task execution
and use this probabilistic prediction model to online adapt
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ProMP trajectories afterwards. For spatial deformation, we
online deform the current path of the robot to avoid dynamic
obstacles while staying close to demonstrated distributions.
For temporal scaling, we solely adapt the velocity profile of the
ProMP while staying on the original path. Figure 2 illustrates
the different components of our approach.

We first recap on ProMPs and then present our two ap-
proaches for online adaptation of ProMPs to dynamic obsta-
cles, namely spatial online deformation and temporal scaling
of the ProMP. Moreover, we introduce our probabilistic model
for goal-based prediction of human motions.

A. Probabilistic Movement Primitives

Probabilistic Movement Primitives (ProMPs) [5] provide a
lower dimensional representation of trajectory distributions.
The trajectory distribution is obtained from an approximation
of demonstration trajectories by a linear combination of basis
functions φ. In particular, the representation for a joint or
Cartesian position xt at time step t is given as

xt = φ(t)Tw + ε, (1)

where w is a weight vector, φ(t) consists of N basis functions
φ evaluated at time step t, and ε is zero-mean Gaussian noise.
A common choice for the basis functions are radial basis
functions. Here we used 7 radial basis functions per dimension.
Using Ridge Regression, one obtains the weight vector w for
each demonstrated trajectory.

To account for the variability in the demonstrations a Gaus-
sian distribution over the weight vectors p(w) = N (µw,Σw)
is obtained with Maximum Likelihood estimation. Using a
normalized representation of time is common in ProMPs.
Hereby, a phase variable z is defined as z = αt with
0 < z < 1, where t represents time and α a scaling factor that
is related to the execution speed of the movement primitive.
More details on ProMPs can be found in [5].

B. Online Spatial Deformation of ProMPs

We propose online spatial adaptation of ProMPs by opti-
mizing the current weight vector of the ProMP which results
in spatial deformation of the resulting trajectory. To this end,
we propose a constrained optimization problem to obtain an
updated weight vector w that minimizes the Mahalanobis
distance to the original ProMP weight distribution p(w) and
constrain the minimal distance to obstacles as well as sudden
changes in the resulting trajectory

arg min
w

(w − µw)Tdiag(Σ−1w )(w − µw)

s.t. εo > ∆(φt−1,φt,w,Ot) ∀t,
εw > (φtw − φtwcurr)

T(φtw − φtwcurr), (2)

where εo denotes the bound for the minimal distance to an
obstacle, Ot denotes a vector of obstacles at time t, ∆ denotes
the minimum distance of the discretized robot trajectory to the
obstacle vector, which we discuss in more detail later, and εw
limits the change of the weight vector in the current position
of the trajectory.
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Fig. 2. We propose two novel approaches for online human aware adaptation
of ProMPs, namely spatial deformation and temporal scaling. Therefore we
learn a goal-directed probabilistic prediction model from observing human
motions and use predictions from this model to online adapt ProMPs, which
are originally learned via imitation learning.
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Fig. 3. (a) When only the diagonal of the covariance is used for optimization
the trajectory stays closer to the ProMP’s mean in regions unaffected by the
obstacle. When using the full covariance matrix, the optimized trajectory will
stay closer to the correlation of the demonstrations. (b) It is advantageous to
not only compute obstacle distances for discretized points but of connections
between points to enable a more sparse discretization.

For the Mahalanobis distance, we use the diagonal of
the covariance matrix of the weight distribution, as a high
correlation between the weights prevents the trajectory from
only deforming in regions affected by obstacles. When using
the full covariance the optimized trajectory stays closer to
the correlations in the demonstrations which may be also
desirable in certain applications. However, in our application
the optimized trajectory should stay close to the mean in areas
unaffected by obstacles. This is also illustrated in Figure 3 (a).

Using the Mahalanobis distance to stay close to the demon-
strated distribution has also been proposed in [8] for offline
trajectory optimization. However, [8] uses it as a constraint
while we use it as the objective of the optimization problem.
As we run the optimization online, we additionally constrain
the possible changes in Cartesian or joint space resulting
from a change in the weight vector to avoid jumps in the
trajectory. To compute the closest distance of the resulting
trajectory to obstacles, we discretize over time. However, a
sparse discretization over time can be problematic as illustrated
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Fig. 4. (a) Depending on the choice of the parameters the generalized sigmoid
function results in smooth slowing down (dark blue), rapid stopping (green)
or accelerating behavior (light blue) along the path. (b) For a given desired
stop phase zstop and a given optimal deceleration duration we can compute
the parameters of the resulting deceleration profile.

in Figure 3. Therefore, we compute the minimum distance
of the connecting line between two subsequent time steps
to the obstacles, as also proposed in [38] for stochastic
trajectory optimization. We compute the minimum distance
dmin(φt−1,φt,w,o) to an obstacle o as the minimum dis-
tance between the line connecting the two subsequent trajec-
tory points t− 1 and t and the obstacle:

dmin(φt,φt−1,w,o) =
|v1 × v2|
|v1|

,

v1 = φtw − φt−1w, v2 = φt−1w − o, (3)

where × denotes the cross product and | · | denotes the
Euclidean norm. We compute the minimum over all obstacles
at time step t as

∆(φt−1,φt,w,Ot) = min
o∈Ot

(dmin(φt−1,φt,w,o)). (4)

This allows for a more sparse discretization which results
in more efficient computation. Figure 3 (b) illustrates the
advantages over computing point-wise distances. To increase
efficiency we utilize knowledge from the demonstrations: we
initialize the optimization of the spatially deformed trajectory
with a demonstrated trajectory that has the maximal distance
to the obstacle compared to other demonstrations.

C. Online Temporal Scaling of ProMPs

Instead of modifying the chosen path direction, a common
technique for humans to avoid time-dependent collisions with
dynamic obstacles is to adapt the velocity along the robot’s
path [9], [10]. To achieve adaptive online velocity scaling of
ProMPs we propose the use of a generalized logistic function
σ(z̄) to compute the phase velocity δz for a given phase z:

σ(z̄) = δz0 +
δzN − δz0

1 + (1/εstart) exp(m(z̄c − z̄))
, (5)

where z̄ is the phase scaled to [0, 100] this is z̄ = 100z, δz0 is
the starting phase velocity, δzN is the resulting end velocity,

m controls the slope of the velocity change and z̄c denotes
the phase where the velocity change starts, which is the point
when the resulting σ(z̄c) deviates by a predefined small value
εstart from δz0. This function can encode smooth deceleration
and acceleration profiles depending on the chosen parameter
values as illustrated in Figure 4. The phase velocity δz is then
computed as

δz = δzmaxσ(z̄), (6)

where δzmax denotes the upper limit for the phase velocity.
Once we detect potential collisions with obstacles along the
path we compute the phase of collision z̄stop with an obstacle
from a discretized phase vector and subsequently adapt the pa-
rameters of the generalized logistic function for a deceleration
dependent on the slowing down phase duration

γ = z̄stop − z̄c, (7)

where z̄stop is the point in time where the phase velocity
decreases below a predefined small value εstop, resulting in
the robot stopping. Here we used εstop = εstart = 0.1. For
a given z̄stop and the current phase z̄n we can compute γ by
solving the constrained optimization problem

arg min
γ

(γ − γopt)2, s.t. z̄stop − γ > z̄n, (8)

where γopt denotes a desired optimal slowing down duration,
that needs to be chosen a priori. Given the optimized γ∗ we
can compute from Equation (7) the phase where the velocity
change starts z̄∗c = z̄stop − γ∗. Next, we compute the slope
m∗ by solving Equation (5) for m, plugging in the knowledge
we already have about the slowing down parameters

σ(z̄stop) = εstop, δz0 = 1 δzN = 0 (9)

m∗ = log(
εstopεstart
1− εstop

)/(−γ∗), (10)

and use m∗ and z̄∗c to update the velocity profile. This results
in a smooth slowing down of the ProMP if an obstacle is
predicted in advance to be on the path and in a hard stop if
the obstacle crosses the path unexpectedly. Once the robot has
no potential collisions along the path anymore, we adapt the
sigmoid function to accelerate again to the original speed.

D. Probabilistic Model for Human Trajectory Prediction

To avoid the need for extensive online replanning and
to ensure consistency in the robot motions we additionally
propose a probabilistic model for human intention and trajec-
tory prediction. This model can run online and learns human
motion goals and transition probabilities between them from
observations. The model consists of a goal tracker, which
extracts human motion goals from observations using an
incremental Gaussian Mixture model and a belief tracker that
computes probabilities of currently active goals and transitions
between them from a history of previous observations.

1) Goal Tracker: We propose an online and open ended
approach to learn a distribution over possible Cartesian move-
ment goal positions from human wrist trajectories. Hereby,
a goal tracker extracts potential motion goals g from human
motion data by learning a Gaussian Mixture model (GMM)
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over zero velocity points pi. The distribution p(g) over goals
g is represented as

p(g) =

K∑
k=1

αk N
(
g |µgk,Σ

g
k

)
(11)

where αk denotes the prior, K denotes the total number of
goals, µgk is the mean and Σg

k is the covariance of the k-th
component respectively. We assume uninformed priors in our
model such that αk = 1/K.
In an online setting, the total number of motion goals is
not known a priori. Therefore, we propose to learn the
model incrementally using an incremental Gaussian Mixture
model [39]. Hereby, we first extract potential goal points pi
from observations of the human wrist position. The potential
goal points are zero velocity points that are points where the
change in wrist position stays below a predefined threshold
for a certain amount of time. Once a new potential goal point
is detected the subsequent Expectation Maximization like
algorithm computes in the Expectation step the responsibilities
of each goal for a new potential goal point pi. This is the
probability of the point belonging to an existing mixture
component

p(gk|pi) =
p(pi|k)p(gk)

p(pi)
=

αk N
(
pi |µgk,Σ

g
k

)∑K
j=1 αj N

(
pi |µgj ,Σ

g
j

) .
These responsibilities are then used to update the existing

models and their parameters in the Maximization step:

sk =sk + p(gk|pi), vk =
p(gk|pi)
sk

,

µgk =µgk + vk(pi − µgk),

Σg
k =(1− vk)Ck + vk(pi − µgk)(pi − µk)T−

(ṽk − vk)(µgk − µ
g,old
k )(µk − µg,old

k )T,

where sk can be interpreted as a measure for the amount of
data the component already modeled well, and vk is an update
weight. If all likelihoods p(pi|k) are below a threshold Pnew
a new component is initialized according to

µk+1 = pi, Σk+1 = Σinit, sk+1 = 1.0 (12)

We additionally check the goals for minimal support to regard
outliers and delete mixture components if they did not reach
a threshold smin

k after a certain lifetime.
The GMM is subsequently used by the belief tracker to

track activation of goals and predict human trajectories.
2) Belief Tracker: Similar to the approach of goal directed

motion prediction in [26] we introduce a probabilistic model
to track the current goal of human motions. Based on a given
sequence of observed human wrist positions ot = (xht , y

h
t , z

h
t )

we can update our belief over goals of the human bt(gk), this is
the belief towards which goal the human is currently reaching
to. For this, we use Bayes Theorem to compute the updated
belief over goals

bt+1(gk) = p(g|ot, bt) =
p(ot|gk, bt)bt(gk)∑
j p(ot|gj , bt)bt(gj)

, (13)

where we compute p(ot|gk, bt) by assuming noisy goal
directed movements of the human as also proposed in [26]

p(ot|gk, bt) = N (ot|ôk, Iσk), with (14)

ôk = ot−1 +
gk − ot−1
|gk − ot−1|

vh∆t,

where I is the identity matrix, σk denotes noise along the
trajectory towards a goal, vh denotes the current estimated
human velocity and | · | denotes the Euclidean norm.

Additionally, we learn the transition probabilities of a goal
given a sequence of prior goals G from the observations

p(gk|G) =
#gk|G∑
j #gj |G

, (15)

where #gk|G denotes the number of occurrences of goal k
given the sequence of goals G. Since the robot’s behavior may
influence the transition probabilities of the human between
goals, so that it can change compared to human task execution
without a robot, we propose to update these probabilities
online using exponential decay for a new occurrence of goal
k given the history of goals G

p′(gk|G) = p(gk|G)(1− β) + β

p′(gj |G) = p(gj |G)(1− β) ∀ j 6= k, (16)

where β ≤ 1 denotes the decay factor.
We represent the predicted distribution over human tra-

jectories with M particles, where each of these particles
is initialized with a goal sampled according to p(g). The
particle is propagated S time steps into the future towards this
goal according to the probabilistic motion model in Equation
(14), and in case it reaches this goal a new goal is sampled
according to the transition probabilities. The resulting vector of
predictions can then be used as an obstacle vector for intention
aware online adaptation of ProMPs as introduced in Section
III-B and III-C.

IV. EXPERIMENTAL EVALUATION

In this section, we introduce the experimental setup and
present results from evaluations with non-expert users.

A. Experimental Setup

We evaluate our proposed methods on a pick and place
task in a shared workspace as shown in Figure 5 (a) with
25 non-expert subjects. The task of the subjects (seated at A)
is to assemble parts collected from D and E. The assembly
area is at B and assembled parts should be delivered to C.
The order in which the human takes D and E can be chosen
freely and the subjects’ motions are tracked via motion capture
(G). The robot delivers parts from F to E, refilling the parts
at E, for which two task space ProMPs (from F to E and
from E to F) were learned from kinesthetic teaching as shown
in the upper row of Figure 1. During spatial deformation
we kept the orientation fixed. The demonstrations did also
include trajectories that avoid potential positions of the human
in the robot’s workspace. After a task familiarization phase
each subject performed the task under 4 different conditions
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Fig. 5. (a) We evaluate the proposed approaches for intention aware online adaptation of ProMPs on a pick and place task. The human (A) assembles parts
from D and E in area B and delivers them to C, while the robot refills the parts in E from F. (b) First we record motion data from the human wrist position
while the robot is not moving. (c) We incrementally learn a GMM over motion goals using zero velocity points as goal candidates.

(modes). In the first mode the human executed 10 repetitions
of the assembly task without the robot moving. From this data,
as shown in Figure 5 (b), the initial motion model including
motion goals and transition probabilities between goals was
learned. In the next three modes the human performed 15
repetitions of the assembly task while the robot moved in
three different ways that we will refer to as N (no adapta-
tion, Figure 1 second row), D (spatial deformation, Figure 1
third row) and T (temporal scaling, Figure 1 last row). We
recorded human and robot trajectories and additionally the
subjects answered questionnaires after each experiment and
three questions comparing the different adaptation modes at
the end of all experiments.

B. Learning Motion Goals

When the human performed the task without the robot we
recorded the wrist position of the subjects to learn motion
goals and transition probabilities and average stay durations
at the goals. Figure 5 (c) shows how a GMM is build
incrementally for the motion goals. We compare the mean of
the learned goals for all subjects with the measured positions
of the goals. Table I shows that for all subjects the remaining
error is below 5cm. This error can be caused due to individual
placements of the motion capture markers on the subjects’
hands and different distributions of the parts in the boxes. The
learned motion goals were subsequently used for trajectory
predictions as shown in Figure 6 (b).

C. Intention Aware Online Adaptation of ProMPs

We evaluated human response to three different robot adap-
tation behaviors, namely no adaptation of the ProMPs (mode
N), online spatial deformation (mode D) and temporal scaling
(mode T), both according to predicted human trajectories. We
randomized the order of the modes and the subjects were not
told how or if the robot would respond to them. During the

TABLE I

Average error of learned goals [cm]
Goal 1 4.3 ± 1.6
Goal 2 4.2 ± 1.4
Goal 3 3.9 ± 1.3
Goal 4 3.8 ± 1.5

experiments, we recorded trajectories of the human and the
robot and additionally, the humans answered a questionnaire
after each individual mode. The questionnaire consisted of five
questions:
Q1: ”The robot adapted its movements to me”,
Q2: ”I felt disturbed by the movements of the robot”,
Q3: ”The behavior of the robot was predictable for me”,
Q4: ”I felt uncomfortable due to the robot’s movements”,
Q5: ”I trusted the robot not to hurt me”.
For all questions, we evaluated approval on a 5 point Likert
scale. The subjects also took notes on how they would describe
the robot behavior after each mode. Additionally, the subjects
were asked to answer three comparison questions, in the end,
on which of the modes made them feel 1) most uncomfortable,
2) most safe and 3) least disturbed.

We evaluated idle times of the human and robot, average
trajectory length and time per assembly of the human, and
number of finished pieces of the robot. Figure 6 (a) shows
the results. After removing one outlier subject, who tested
the robot extensively such that idle times deviated from the
other subjects, we ran non-parametric ANOVA with Kruskal-
Wallis and a posthoc Conovers test, since the data showed
no normal distribution according to the Shapiro-Wilk test. We
chose a significance level of α = 0.05 which is common in the
literature [11]. The tests show that the human idle time was
significantly higher when the robot was present compared to
the no robot mode (p<0.0004). The average idle time was
higher in the temporal mode than in the spatial mode and in
the unreactive mode. In the experiments we noticed that it
was after some time very easy for the subjects to adapt their
own task rhythm to the constant rhythm of the robot in the
unreactive mode. The robot idle times at the non responsive
mode result from the grasping time of the hand. The total
trajectory length per assembly of the human shows that in the
first experiment without the robot the average length was lower
in the modes where the robot was present. As for all subjects
the experiment without the robot was the first experiment, this
can be explained by task adaptation of the human after the first
experiment. The behavior of the robot did not influence the
average trajectory length. In combination with the idle times
this shows that the human rather stopped and waited for a
situation to clarify instead of spatially evading the robot in
the experimental setting. The data shows that the number of
finished pieces is significantly lower in the temporal mode
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Fig. 6. (a) During the user study, we recorded and evaluated motion data from the subjects and the robot for the different adaptation modes, namely no
reaction (N), spatial deformation (D) and temporal scaling (T). (b) Using a probabilistic goal directed motion model,that was learned from observation, the
belief over the goals and the predictions (green) change given an observed human trajectory (yellow) and the current position (black star).
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Fig. 7. (a) The subjects answered comparison questions on in which mode (no reaction (N), spatial deformation (D) and temporal scaling (T)) they felt 1)
most uncomfortable due to the robot’s movements, 2) most safe and 3) most undisturbed. (b) The subjects additionally answered a questionnaire after each
experiment mode where we evaluated 5 questions that were answered on a 5 point Likert scale. The results are visualized as box plots including the median
(black horizontal line), interquartile range (box), 1.5 whiskers (fine black lines), and outliers (black circles).

(p<0.00002). The human always finished 15 pieces as this
marked the end of the experiment. The mean assembly time
of the humans was smallest in the spatial deformation mode,
however no statistical significance was found (p = 0.96).

Figure 7 (a) shows the result of the subjective comparison
of the three modes. The upper row shows that 32% of the
subjects felt most uncomfortable in the unresponsive mode,
52% percent felt most uncomfortable during temporal scaling
and 4% during spatial deformation. 8% reported that they
never felt uncomfortable. When looking at these two groups
individually it shows that the ones that felt uncomfortable
with the unresponsive robot in particular felt safe at tempo-
ral scaling and the ones that felt most uncomfortable with
temporal scaling felt most safe during spatial deformation. In
general, subjects reported that they felt more undisturbed at
spatial deformation. In the experiment notes subjects reported
that during the temporal scaling mode they felt the robot’s
productivity decreased when the robot needed to stop because
of them and this ”ineffective task execution” made them
feel uncomfortable. Additionally, subjects reported the robot
stopping in too close distance to a goal disturbed them.
However, another group of subjects reported that they found
the motions of the robot to be very controlled, safe, and
reactive when it was in temporal scaling mode. Figure 7 (b)
shows the subjective answers to the questions on the single
modes. We ran a non parametric ANOVA using Kruskal Wallis
test and posthoc Conover’s test on this data. The test showed
that all subjects found the robot significantly more adaptive
in temporal scaling and spatial deformation mode compared
to no reaction (p=0.0002). Subjects also felt significantly
less disturbed in spatial deformation mode compared to no

reaction (p=0.032) and they found the robot significantly
less predictable in temporal scaling mode compared to no
reaction (p=0.012). When only considering the subjects that
felt most uncomfortable at temporal scaling mode the subjects
found the robot significantly more unpredictable in temporal
mode than in spatial or non reactive (p<0.048), and felt
significantly more uncomfortable in temporal scaling than in
spatial deformation mode (p=0.02). In average the robot was
perceived less adaptive in the temporal mode. On the other
hand subjects that felt most uncomfortable in the non reactive
mode found in average the temporal mode more adaptive than
the spatial deformation mode. In terms of comfort and safety
no statistical significance can be found between the modes
when looking at data of all subjects.

The results of this user study already provide valuable
insights on human reactions to online adaptation of ProMPs.
However, for future studies a wide variety of experimental
settings should be evaluated in order to get more generaliz-
able insights. In particular, also different slowing down and
speeding up behaviors in the temporal scaling mode should
be compared, as in the experiments we noticed that to abrupt
slowing down or speeding up may irritate the users.

V. CONCLUSIONS

We presented two novel approaches for intention aware on-
line adaptation of ProMPs, namely online spatial deformation
and temporal scaling. We evaluated both approaches on a pick
and place task with 25 non-expert subjects where we analyzed
motion data as well as questionnaires on subjective comfort
level and perceived safety. The subjects reported a higher level
of perceived safety and felt less disturbed during intention
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aware adaptation, in particular during spatial deformation.
The results indicate that human responses to different kinds
of robot behavior do not necessarily generalize across all
subjects. In particular, temporal scaling was perceived by one
group of subjects as disturbing and unpredictable but as safe
and predictable by another group.

Subjects in general felt uncomfortable and got annoyed
if they found the robot behavior unpredictable or if they
did not understand why a certain robot response was occur-
ring. Therefore, incorporating more communication including
motion cues and/or visual feedback should be investigated.
Additionally, the experiments revealed that different subjects
preferred different robot behaviors. For future work, we plan
to investigate how to derive a hierarchical model from these
insights that would online classify user types and adapt robot
behavior accordingly. Moreover, combinations of spatial and
temporal ProMP adaptation could be investigated. Extending
the prediction model to incorporate more complex human
trajectory behavior and additional intention cues such as gaze
direction and body posture is another line for future research.

REFERENCES

[1] B. Alenljung, J. Lindblom, R. Andreasson, and T. Ziemke, “User
experience in social human-robot interaction,” International Journal of
Ambient Computing and Intelligence (IJACI), vol. 8, no. 2, 2017.

[2] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters,
et al., “An algorithmic perspective on imitation learning,” Foundations
and Trends R© in Robotics, vol. 7, no. 1-2, 2018.

[3] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, 2013.

[4] S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and
generalizing a task in a humanoid robot,” IEEE Transactions on Systems,
Man, and Cybernetics (Cybernetics), vol. 37, no. 2, 2007.

[5] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Using probabilistic
movement primitives in robotics,” Autonomous Robots, vol. 42, no. 3,
2018.

[6] G. J. Maeda, G. Neumann, M. Ewerton, R. Lioutikov, O. Kroemer,
and J. Peters, “Probabilistic movement primitives for coordination of
multiple human–robot collaborative tasks,” Autonomous Robots, vol. 41,
no. 3, 2017.

[7] D. Koert, G. Maeda, R. Lioutikov, G. Neumann, and J. Peters, “Demon-
stration based trajectory optimization for generalizable robot motions.”
in Humanoids, 2016.
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