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Abstract— Intelligent robotic assistants can potentially im-
prove the quality of life for elderly people and help them
maintain their independence. However, the number of differ-
ent and personalized tasks render pre-programming of such
assistive robots prohibitively difficult. Instead, to cope with a
continuous and open-ended stream of cooperative tasks, new
collaborative skills need to be continuously learned and updated
from demonstrations. To this end, we introduce an online
learning method for a skill library of collaborative tasks that
employs an incremental mixture model of probabilistic inter-
action primitives. This model chooses a corresponding robot
response to a human movement where the human intention
is extracted from previously demonstrated movements. Unlike
existing batch methods of movement primitives for human-
robot interaction, our approach builds a library of skills online,
in an open-ended fashion and updates existing skills using new
demonstrations. The resulting approach was evaluated both
on a simple benchmark task and in an assistive human-robot
collaboration scenario with a 7DoF robot arm.

I. INTRODUCTION

The expected demographic change is a major challenge
for society as a significantly growing elderly population
will require substantially increased assistance [1]. Intelligent
robot assistants could improve quality of life, assist in
cooperative tasks and help the elderly maintain their partial
independence while staying in their own homes. However,
such cooperative robot assistants need to be able to adapt to
individual needs and a multitude of tasks at hand, rendering
pre-programming of all possible tasks prohibitively difficult
in practice.

An intuitive way for non-expert users to teach personalized
skills to the robot is required for which Learning from
Demonstration (LfD) is considered a promising approach [2].
In particular, personal cooperative robots require the ability
to learn multiple different tasks and adapt them to varying
contexts. Hereby, the robot should be able to learn to dis-
tinguish between different human intentions and react with
the matching interaction patterns. However, human motions
exhibit a high variability [3]. To model and react to this
variability in human motions, a probabilistic approach to
cooperative skill learning is needed, which takes the varia-
tions in human motions during demonstrations and execution
time into account. Additionally, the ability to incorporate
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Fig. 1. Intelligent robot assistants should learn multiple personalized
cooperative tasks from a continuous and open-ended stream of new demon-
strations. To this end, we propose a novel approach for online and open-
ended learning of a mixture model of probabilistic interaction primitives.
In particular, our approach updates existing cooperative tasks from new
demonstrations and extends the collaborative skill library for new tasks
when needed. Hereby, our model chooses a robot response to an observed
human motion based on prior demonstrations while considering variance in
the demonstrations as well as coupling between human and robot motions.

new demonstrations in an online and open-ended fashion is
desirable.

In this paper, we propose an online learning method
for collaborative skills that employs an incremental mixture
model of probabilistic interaction primitives for online learn-
ing of collaborative skills from demonstrations. Probabilistic
interaction movement primitives (Interaction ProMPs) [4] are
used as a representation of cooperative skills, that can capture
correlations between human and robot movements as well as
the inherent variance. While Interaction ProMPs have already
been used in scenarios with multiple contexts [5], to the
best of the author’s knowledge no method for online and
open-ended learning of multiple Interaction ProMPs from
demonstrations has been proposed. However, for personal-
ized robot assistants it is crucial to open-endedly learn new
tasks and continuously update existing cooperative skills with
new demonstrations. In particular, in such an open-ended
scenario the total number of cooperative tasks cannot be
known beforehand and thus needs to be extended during the
learning process. In this paper, this problem is tackled with
an online learning method to update and extend a library of
cooperative skills. This library allows inferring the human
intention from previous demonstrations and is used to choose
the appropriate robot response to a human motion or request
more demonstrations in case of high uncertainty. The em-
ployed probabilistic movement representation is capable of



representing the abundant variance in demonstrations and can
adapt to variation in human motions during execution. The
resulting approach is able to distinguish between multiple
different interaction tasks, to update existing skills with new
demonstrations and, if necessary, to extend the interaction
library for new tasks. In contrast to prior work on learning a
Mixture of Interaction primitives [5], our new approach does
not rely solely on demonstrations which are available at the
first training time but can integrate new demonstrations and
tasks into the collaborative skill library over multiple training
sessions.

The rest of this paper is organized as follows: First, we
discuss related work in Section II. Next, in Section III,
we provide a short overview on the existing approach of
Batch Learning for a Mixture of Interaction Primitives and
afterwards introduce our novel approach for Online Open-
Ended Learning of a Mixture of Interaction Primitives. In
Section IV we evaluate this new approach on 2D trajectory
data and on a collaborative scenario where a robot assists a
human in making a salad. Finally, we conclude with Section
V and discuss ideas for future work.

II. RELATED WORK

Learning cooperative tasks between humans and robots
from demonstration is a popular approach as it enables also
non-expert users to teach personalized skills to robots [6],
[7], [8], [9]. When learning from demonstrations, the concept
of movement primitives offers a lower dimensional repre-
sentation of trajectories [10], [11], [12], [8]. In particular,
Probabilistic Interaction Movement Primitives (Interaction
ProMPs) [13], [4], [9] offer a probabilistic representation
to model inherent correlations in the movements of two
actors, such as human and robot, from coupled demonstrated
trajectories.

However, to achieve a personalized cooperative robot it
is desirable to learn multiple different cooperative tasks and
decide on their activation depending on the context or on the
human intention [14], [15], [16]. To this end, an approach
that deploys Gaussian Mixture Models (GMMs) and Expec-
tation Maximization to learn multiple Interaction ProMPs
from unlabeled demonstrations has been introduced [5]. This
approach considers batch data, i.e. assuming the availability
of all data points during training. This limits its application
to settings where the number of tasks does not change after
training and no new demonstration trajectories need to be
integrated. Moreover, such batch learning prevents scalability
as the computation time and memory requirements become
infeasible for large skill libraries or datasets [17]. Various
approaches outside the human-robot interaction (HRI) scope
have been addressing these problems.

Initially, the machine learning communities have pro-
posed incremental learning approaches for Gaussian Mixture
Models. Some approaches propose updating a GMM with
complete new model component datasets [18] or assume the
incoming data points to be time-coherent [19]. Incremen-
tal Gaussian Mixture Model learning introduced a way to
continuously learn a GMM from an incoming data stream

while not fixing the number of total components beforehand
[20], [21]. Another two-level approach introduces methods
for splitting and merging of GMM components [22].

Updating of robotic movement representations online from
new demonstrations has also been used for incremental learn-
ing of extensions of GMMs for gesture imitation [17], up-
dating Gaussian Processes from demonstrations and thereby
reducing the movement variance [23] or incremental updat-
ing of task-parameterized Gaussian Mixture Models [24].

While all these works focus on updating multiple existing
movement representations, in a long-term setting adding new
tasks is also important. Approaches that also add new com-
ponents when needed have been proposed in the context of
online updating of task-parameterized semi-tied hidden semi-
Markov models for manipulation tasks [25], learning full-
body movements [26], a bootstrapping cycle for automatic
extraction of primitives from complex trajectories [27] or
robot table tennis [28]. However, while we draw inspiration
from the aforementioned related work, in an HRI scenario it
is additionally desirable to consider the inherent coupling and
variance in human and robot motions in the demonstrations.

III. INCREMENTAL INTERACTION PRIMITIVES

In this Section we introduce a new approach to contin-
uously learn and update multiple cooperative skills from
demonstrations.

Here, demonstrations are given in form of coupled human
and robot trajectories dn = {τh

n , τ
r
n}, where τh

n can e.g.
be a sequence of human wrist positions and τ r

n can e.g.
be a sequence of robot joint positions. To learn multiple
cooperative tasks from these demonstrations in an online
open-ended fashion we introduce a model that is inspired
by the Mixture of Experts architecture [29] and consists of
two intertwined parts. On the one hand, we use the human
trajectories from the demonstrations to train and update a
gating model, which will later be used to decide between
different cooperative tasks. In addition, we train probabilistic
models to generate appropriate robot response trajectories.
Here, we deploy Interaction ProMPs [4], as they are able to
capture the inherent correlation in robot and human motions
from the demonstrations. Figure 2 summarizes our approach
to achieve training of this mixture model in an online and
open-ended fashion.

In the following, we briefly describe the previously pro-
posed batch-based, stationary Mixture of Interaction ProMPs
in Section III-A. Next, we present our novel approach to
learn a mixture model of Probabilistic Movement Primitives
in an online and open-ended fashion in Section III-B. Finally,
in Section III-C we show how the obtained library of multiple
interaction ProMPs and the corresponding gating model can
be deployed in an HRI scenario.

A. Batch Learning for Mixture of Interaction ProMPs

Probabilistic Movement Primitives (ProMPs) [12] repre-
sent demonstrated movements in the form of distributions
over trajectories. In order to obtain this distribution, the
trajectories are first approximated by a linear combination



of basis functions φ. More precisely, a joint position qt at
time step t can be represented as

qt = φT
t w + ε, (1)

where φt contains N basis functions φ evaluated at time
step t, w is a weight vector and ε is a zero-mean Gaussian
noise. The choice of basis functions φ depends on the type
of demonstrated movements.

The weight vector w for each demonstrated trajectory
is computed with Ridge Regression. For multiple recorded
demonstrated trajectories, a Gaussian distribution over the
weight vectors p(w) = N (µw,Σw) can then be obtained
with Maximum Likelihood Estimation. Since the number N
of basis functions is usually much lower than the number
of time steps of recorded trajectories, the distribution p(w)
can be seen as a compact representation of the demonstrated
movements, which accounts for variability in the execution.
In particular, ProMPs offer a representation that allows for
operations from probability theory to specify goal or via-
points, correlate different degrees of freedom via condition-
ing and combine different primitives through blending [12].

An Interaction ProMP [4] is a ProMP that uses a dis-
tribution over the trajectories of at least two interacting
agents. The demonstrations are now given in the form of a
stacked vector for the observed and the controlled agent q =
[qo, qc]T , where qo denotes the demonstrated trajectories
for the observed agent and qc denotes the demonstrated
trajectories of the controlled agent. Respectively, the weight
vector is also represented in an augmented form w̄ =
[wT

o ,w
T
c ]T . Given a set of demonstrations, a distribution

over multiple stacked weight vectors can be obtained just as
previously described such that p(w̄) = N (µw̄,Σw̄). Given a
sequence D of positions of the observed agent (e.g. human),
Interaction ProMPs provide methods to infer a corresponding
(most likely) trajectory of the controlled agent (robot) [4].

The previously proposed batch learning for Mixture of
Interaction ProMPs [5] is an extension to Interaction ProMPs
that allows to learn several different interaction patterns from
unlabeled demonstrations by applying Gaussian Mixture
Models (GMMs), where each mixture component represents
one interaction pattern. The Mixture of Interaction Primi-
tives is hereby learned from batch data and the number of
components needs to be fixed beforehand. In the case of K
different interaction patterns, the distribution over the weight
vectors w̄ is

p(w̄) =

K∑
k=1

p(k)p(w̄|k) =

K∑
k=1

αk N (w̄|µk,Σk), (2)

where αk is the k−th mixture weight that can be prior (if not
learned) or posterior (if learned from given data), µk is the
mean and Σk the covariance matrix of the k-th component.

The parameters of the GMM are hereby learned in the
weight space using the Expectation Maximization (EM)
algorithm. However, since this approach assumes that all
demonstrations are available at the learning time the number
of components K remains fixed after learning. This means
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Fig. 2. We introduce a novel approach for online and open-ended learning
of a mixture model for cooperative tasks. During training, demonstrations
are given in form of trajectories of a human demonstrator τh and corre-
sponding trajectories of a robot arm τ r , that are obtained via kinesthetic
teaching. From these demonstrations, we update or extend our library for
cooperative tasks that consists of a gating model and multiple corresponding
Interaction ProMPs. During runtime, the gating model decides on activation
of particular Interaction ProMPs that we subsequently adapt to the variance
in the observed motion. If the gating model is too uncertain about activation
of Interaction ProMPs the robot can request more demonstrations.

that the parameters of the GMM need to be computed using
all the previous demonstrations in case a new demonstration
is available. Moreover, a GMM with a fixed number of mix-
ture components cannot cope with new interaction patterns.

B. Online Open-Ended Mixture of Interaction ProMPs

We propose a new method to achieve online learning
of cooperative tasks in an open-ended fashion. Hereby,
demonstrations are given in the form of robot and human
trajectories {τ r, τh}. First, we compute a corresponding
representation with weight vectors as introduced in Section
III-A. Here, we consider that the human trajectory is of
dimensions Dh × T where Dh is the degree of freedom of
the observations (e.g. in case of observing the wrist position
Dh = 3) and T is the number of time steps and the robot
trajectory is of dimensions Dr ×T where Dr is the degrees
of freedom of the robot (e.g. Dr = 7 in case of a 7DoF
robot arm). For N basis functions φ we compute the matrix
Φ = [φ0, ...φt, ...,φT ] with dimension N ×T . In this work,
Gaussian basis functions evenly spaced along the time axis
are an appropriate choice due to the stroke-based movements.
We then compute the weight vectors as a lower dimensional
representation of the trajectories where we first compute the
weight vectors for each dimension w̃ as

w̃h
1

...
w̃h

Dh

w̃r
1

...
w̃r

Dr

 = (ΦΦT + βI)−1Φ

[
τh
τr

]
, (3)

where β is a factor for Ridge Regression and I is an
identity matrix. In experimental evaluation, we found that



Algorithm 1:
input: Σg

init = I, Tnov, vmin;
while new data τh

n ,τ r
n do

compute wh
n,wr

n from τh
n ,τ r

n Eq (3),(4);
compute p(wh

n|k) ∀k according to Eq (5).;
if p(wh

n|k) < Tnov ∀k then
add new component Eq. (9);
k++;

else
compute p(k|wh

n) ∀k;
update model parameters ∀k Eq.(6), (7), (8);
if vk > vmin then

check merge and if any merge Eq. (10);
end

end
end

normalizing the trajectory data within a fixed range before
transforming it into the weight space yields overall better
result. Subsequently, we compute the stacked weight vectors

wh = [w̃h
1 , ..., w̃

h
Dh

] and
wr = [w̃r

1, ..., w̃
r
Dr

]. (4)

From these demonstrations, now represented in form of
{wr,wh}, we learn the two intertwined parts of our model:
The gating model that decides on the cooperative tasks based
on human motions and multiple corresponding Interaction
ProMPs that can subsequently generate a corresponding
robot response. For the gating model we train a Gaussian
Mixture Model (GMM) only on the weights of the human
trajectories wh, as at runtime only the human motion will be
observed when the system needs to decide on the particular
cooperative task and the response of the robot. In parallel to
the gating model, the corresponding Interaction ProMPs are
trained with the augmented weight vector w̄ of human and
robot trajectories to model the correlations in the motions.

We assume that new training data needs to be integrated
continuously and that we do not know beforehand the
number of different collaborative tasks that might be shown
to the robot during long-term training. To this end, we
use Incremental Gaussian Mixture Models [20] to achieve
the continuous integration of new demonstrations. Here, we
update the gating model and the parameters of the Interaction
ProMPs in an Expectation Maximization fashion.

In the Expectation step we compute the responsibilities
λkn of the existing cooperative task k for a new demonstra-
tion {wh

n,w
r
n}, that is the probability of a new demonstration

to belong to an already known cooperative task

λkn := p(k|wh
n) =

p(wh
n|k)p(k)

p(wh
n)

=
αkN (wh

n|µ
g
k,Σ

g
k)∑K

j=1 αjN (wh
n|µ

g
j ,Σ

g
j )
,

(5)

where µg
k and Σg

k are respectively the mean and covariance
matrix of the k-th component of the gating and αk are
the mixture component weights. In the Maximization
step, we use the responsibilities to recursively update the

parameters of the gating model as well as the parameters
of the already learned Interaction ProMPs. For each already
learned Interaction ProMP k we first compute

vk =vk + 1, sk = sk + λkn,

γk =
λkn
sk

, γ̃k = γk + exp (−sk)λkn, (6)

where vk is the age of the k-th component and sk represents
the trajectories the component already modeled well. We then
update the parameters of the gating model

µg
k =µg

k + γk(wh
n − µ

g
k),

Cg
k =(1− γ̃k)Cg

k + γ̃k(wh
n − µ

g
k)(wh

n − µ
g
k)T−

(γ̃k − γk)(µg
k − µ

g,old
k )(µg

k − µ
g,old
k )T ,

αk =
sk∑K

j=1 s(j)
, (7)

where the formulas correspond to the formulas in the
incremental GMM [20], except that we introduce γ̃k to
achieve that during the first demonstrations the covariance is
shifted faster away from the (possibly wrong) initialization.
Additionally, we compute the updated parameters of the
corresponding Interaction ProMPs

µe
k =µe

k + γ(w̄n − µe
k),

Ce
k =(1− γ̃k)Ce

k + γ̃k(w̄n − µe
k)(w̄n − µe

k)T−
(γ̃k − γk)(µe

k − µ
e,old
k )(µe

k − µ
e,old
k )T , (8)

where µe
k is the mean of the k-th Interaction ProMP and

Σe
k is the covariance matrix of the k-th Interaction ProMP.

Whenever p(wh
n|k) is below a threshold Tnov for all existing

K components we initialize a new component with

µg
K+1 =wh

n, Σg
K+1 = Σg

init,

µe
K+1 =wn, Σe

K+1 = Σe
init,

vk =1, sk = 1, (9)

If a component has reached a certain age vk > vmin

we check also for merging of components to ensure that
no unnecessary components are maintained. Therefore, we
compute the probability of the mean of a cluster j to
belong to a cluster i as p(µj |i) = N (µj |µi,Σi) and
decide on merging if p(µj |i) > Tnov. Once we decide on
candidates i, j for merging we recompute the joined mean
and covariance

µij =
siµi + sjµj

si + sj

Σij =
s2iΣi + s2jΣj + (siµi + sjµj)siµi + sjµ

T
j

(si + sj)2

− µijµ
T
ij . (10)

Algorithm 1 summarizes our approach for online learning
of a gating model and multiple Interaction ProMPs.



yyyy

x x x x xxx

1 demonstration                    3 demonstrations                     4 demonstrations                    6 demonstrations                  20 demonstrations                 27 demonstrations                    100 demonstrations

y

x

y y

x x x x x x

timesteps                                                                   timesteps                                                                    timesteps                                                                  timesteps                                                                     timesteps                                                                    timesteps                                                                    timesteps 

Fig. 3. We evaluate our approach first on a task of learning ProMPs of multiple hand-drawn letter trajectories when the demonstrations are provided
incrementally and no batch data are stored. The intermediate results during the training of the ProMP library are shown in the upper row while the
accumulated demonstrations are shown in the lower row. In the upper row, the shaded area represents two times the standard deviation while the solid
lines show the mean and the demonstrated trajectories are shown as gray lines. Here, our approach successfully updates existing components with new
demonstrations and adds new components when required. In particular, for more demonstrations per letter, the influence of the initial covariance matrix
diminishes and the components covariance converges to the covariance of the demonstrations.

C. A Skill Library for Collaborative Tasks

To demonstrate the use of the learned probabilistic mixture
model for cooperative tasks we assume we are now observing
the human and obtain an observation wh

∗ . To determine the
most probable cluster given the observations we need to
model the posterior of the cluster given the observation

p(k|wh
∗ ) = λk∗ (11)

where λk∗ is the responsibility of the k-th cluster for the
observation wh

∗ as defined in Equation (5).
For a given observation wh

∗ we can now infer the most likely
Interaction ProMP k∗ using our probabilistic gating model

k∗ = arg max
k

p(k|wh
∗ ). (12)

If the responsibility of all components is smaller than the
novelty threshold Tnov the robot does not execute a response
but asks the user for new demonstrations that get subse-
quently included in the library as described in Section III-B.
Otherwise, we condition the chosen Interaction ProMP on the
observed trajectory to infer the corresponding robot response.
Therefore, the observation o is used to obtain a posterior
distribution over the weights. The posterior is again Gaussian
with mean µnew and covariance matrix Σnew

Λ = Σk∗Ht(Σo +HT
t Σk∗Ht)

−1

µnew = µk∗ + Λ(o−HT
t µk∗)

Σnew = Σk∗ −ΛHtΣk∗ , (13)

where Σo = Iσo is the observation noise and Ht is the
observation matrix as defined in [4]. More details can be
found in [9]. To obtain a corresponding robot motion we
execute the mean robot trajectory of this posterior.

IV. EXPERIMENTAL EVALUATION

We evaluate our approach on 2D trajectory data and
on a collaborative scenario with a 7DoF robot arm. For
both, we show the qualitative applicability and evaluate the
quantitative convergence w.r.t. to a baseline. In addition, we
demonstrate that the proposed approach can learn personal-
ized libraries for collaborative tasks for different persons and
report successful task completion via the decision accuracy
of our gating model.
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Fig. 4. (a) The demonstrations in the first experiment are given in the form
of multiple hand-drawn letter trajectories. (b) We compare our approach
against an EM approach, where for both we compute the KL-divergence to
a baseline solution from labeled data. For increasing number of samples per
letter our approach converges against the EM solution, while additionally
being able to continuously integrate new demonstrations. (c) For fewer
samples per letter the covariance of the components in our approach is
governed by the initial covariance. For increasing number of samples per
letter the covariances converge to the underlying data covariances and result
in comparable results to the EM approach.

A. 2D trajectory data

For the 2D trajectory data experiment, demonstrations
are given in the form of multiple hand-drawn letters, as
illustrated in Figure 4 (a). Here, we learn a library of
Probabilistic movement primitives in an incremental fashion.
The system never has access to the whole training dataset at
once, but only one new unlabeled demonstration is provided
at each update step. The general procedure is shown in Figure
3, where the upper row shows the x-dimension of the learned
library and the lower row the accumulated demonstrations.
Initially, a single ”a” is demonstrated and the first skill is
added, with the initial covariance Σinit. Afterwards, addi-
tional ”a”s are demonstrated, recognized and used to update
the mean and covariance of the corresponding cluster. Once
a new demonstration, i.e. the letter ”m”, is recognized to not
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Fig. 5. (a) We evaluate our approach in a collaborative scenario where a robot (A) assists a human (B) in making a salad. Hereby the robot can hand
over the board (D) the dressing (C), a tomato (F), the bowl (E) or assist with a standup motion. (b) The demonstrations are recorded as human and robot
trajectories where the robot is moved in kinesthetic teaching mode and the wrist trajectory is tracked with a motion capturing system. (c) We again compare
the KL-divergence of both our approach and an EM approach to a baseline from labeled data. For an increasing number of demonstrations per task our
approach converges to the EM solution but requires less recomputation and memory as new demonstrations arrive.
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Fig. 6. For a human test subject (subject 1) we recorded 15 demonstrations per task. The trajectories are shown from a top-down view (a) and from a
front view (b). On the demonstrations, we train a collaborative task library, where we do not provide all demonstrations as batch data but incrementally
add more demonstrations. (c) shows the resulting gating model, which corresponds to the human trajectory part of the Interaction ProMPs. The shaded
area represents two times the standard deviation while the solid lines show the mean. The demonstrated trajectories are depicted as gray lines.

belong to the existing cluster a new cluster is generated. With
an increasing number of samples, the variance converges
to the variance of the demonstrations as the impact of the
initialization covariance decreases. The final skill library con-
sists of five clusters representing the different letters. Please
note that in this experiment µg

k,Σ
g
k = µe

k,Σ
e
k. We evaluate

the approach in a collaborative setting later in Section IV-
B. To demonstrate that the library learned with our new
approach using the incremental processing of demonstrations
converges to the solution of EM with batch learning, we
compare the resulting skill libraries first qualitatively as
shown in Figure 4 (c) and quantitatively using the Kullback-
Leibler Divergence to a baseline as shown in Figure 4 (b).
Qualitatively speaking, our approach (Figure 4 (c), upper
row) represents all different letters as individual clusters and
the trajectory means of the mixture model components match
the means learned with EM in batch mode (Figure 4 (c),
bottom row). While for fewer samples per letter the trajectory
covariances learned with our approach are dominated by
Σinit, with increasing number of samples per letter the
trajectory covariances converge to the covariances of the EM
solution as the influence of the initial covariance decreases.
The same behavior can also be observed in the quantitative
comparison. Hereby we compute the Kullback-Leibler (KL)
divergence of our approach and EM to a baseline, computed
with Maximum Likelihood estimation from labeled data. The
KL-divergence of our approach is averaged over 100 trials,
where the order of demonstrations is randomly permuted.
In the batch EM case, we provided the method with the
correct number of components, while in our approach the

timesteps timestepstimesteps

q2 q4 q6

Fig. 7. Once trained with demonstrations our model can subsequently
be used to produce a corresponding robot response to an observed human
trajectory. Therefore, first the gating model decides which of the Interac-
tion Primitives (light gray) to activate (green). The activated primitive is
subsequently adapted to the variance in the observed human trajectory via
conditioning (dark gray). The plots show joints q2, q4 and q6 of the robot
arm where the shaded area represents two times the standard deviation while
the solid lines show the mean.

algorithm had to find the correct number of components by
itself. Figure 4 (b) shows that the KL-divergence between the
solution of our approach and the baseline is large for fewer
samples and decreases with increasing number of samples.
The high variance in the KL-divergence for few samples is
expected as the KL-divergence is sensitive to the entropy
of the ground truth model, which clearly depends on the
selected demonstrations. The variance also shrinks as the
entropy converges for multiple samples. The experiments
show that our novel approach achieves results comparable
to those of an EM approach. However, in contrast to EM,
our approach does not require all data in batch mode but
can incrementally learn and update its models from new
demonstrations in an online and open-ended fashion.



B. Learning Cooperative Tasks with a Robotic Arm

In this experiment, the proposed approach is tested in a
collaborative scenario, where a robot is supposed to assist
an elderly person in making a salad. The robot assists the
person by first observing and recognizing the human action
and second determining, adapting and executing an assistive
response based on prior demonstrations. For the salad sce-
nario, shown in Figure 5 (a), five different cooperative tasks
are required, namely:

• Board: The robot hands over the cutting board after the
human grasped the knife.

• Tomato: The robot passes the tomato when the human
reaches for the tomato.

• Bowl: The robot passes the salad bowl when the human
reaches for the bowl.

• Dressing: The robot gets the salad dressing from the
shelf after the human reached for the dressing.

• Standup: The robot supports the standup motion
Each of the cooperative tasks is demonstrated separately

and multiple times. The robot response is shown using
kinesthetic teaching, while the human action is recorded
using motion capturing markers on the wrist. This teaching
procedure is shown for the bowl task in Figure 5 (b).

In an initial experiment, 15 demonstrations are recorded
for every task with a human test subject (subject 1). The
resulting human trajectories are shown in top-down and front
view in Figure 6 (a), (b). From the demonstrations our
approach learns a library for cooperative skills consisting
of a gating model and multiple corresponding Interaction
ProMPs. Hereby, the demonstrations are not provided as
batch data but incrementally and the data are not stored.
An example of the gating model for the human trajectories
(which corresponds to the human part of the Interaction
ProMPs) is shown in Figure 6 (c). The five different skill
clusters are clearly visible. Figure 5 (c) shows that similarly
to the letter experiment, the averaged KL-divergence w.r.t. to
the ground truth solution learned from labeled data decreases
with the number of demonstrations per task and is for more
demonstrations per task comparable to the EM solution,
while it requires fewer computations and memory.

In the interactive setting, the robot determines and adapts
its response to the human movement based on prior demon-
strations. Such an adapted robot response is shown for the
bowl task in Figure 5 (b) in the bottom. The adaptation of
the robot response is achieved by conditioning the Interaction
ProMP on the observed human wrist trajectory as described
in Section III-C. An example of such an adaptation can be
seen in Figure 7, for the tomato task.

To further demonstrate the applicability and robustness
of the proposed approach, we conducted more experiments
with different subjects and identical hyperparameters. For
each subject individual demonstrations are recorded and a
corresponding personalized skill library is incrementally
learned. To evaluate the performance, the classification
accuracy for recognizing the correct cooperative task is
evaluated by k-fold cross-validation. For subject 1 we use

a training set of 10 demonstrations per task and test on
5 demonstrations per task, while all other subjects use 4
demonstrations per task for training and 1 demonstration
per task for testing. The classification results averaged
over 100 test and train sets are shown in Table 1. The
first value corresponds to the percentage of successful
classifications, the second to the percentage of wrong
classifications (such as classifying tomato as bowl) and the
third to the percentage of classifications as unknown. The
results reveal that even though our approach works well
for six of the subjects the classification accuracies for the
other 4 subjects vary between tasks. In particular, for the
board task subject 3, 7 and 9 have some movements with a
high variance to the training set that are therefore classified
as unknown. However, the classification as unknown does
not yield a wrong robot response and the robot would
only ask for a new demonstration. Only for subject 10
the robot misclassifies the stand-up skill. In addition to
the classification accuracy, Table 2 shows the number of
learned components for the individual subjects to provide
some insights about the personalized skill libraries. Here,
depending on a variance of the subject’s movement a single
skill can be represented by multiple clusters since we used
the same hyperparameters for all subjects and did not tune
them individually. Additional clusters do not cause wrong
classifications but can lead to unknown classification as
shown for subjects 3, 7 and 9. The results for subject 10
illustrate that the wrong classifications for the standup task
for this subject were caused by too few learned clusters.
In all the experiments we assumed a fixed observation
time of the human motion, after which the gating model
decides on a particular cooperative task. For future work we
consider to replace this fixed observation time with a more
flexible observation time to allow for temporal correlation
between human and robot motions.

V. CONCLUSIONS

In this paper, we introduce a novel approach to learn a
mixture model of probabilistic interaction primitives in an
online and open-ended fashion. In contrast to prior work
which focussed on batch learning of Mixture of Interaction
Primitives, our approach is able to update existing interaction
primitives continuously from new data and extend a coopera-
tive tasks library with new interaction patterns when needed.
Experimental evaluation on a collaborative scenario with a
7DoF robot arm showed that our approach is able to learn
multiple different collaborative tasks from unlabeled training
data and generate corresponding robot motions, based on
prior demonstrations. Evaluations with 10 human subjects
showed that our approach successfully learned a personalized
collaborative library for the majority of subjects.

However, since the experiments on different subjects indi-
cate that motion data do not work equally well for all subjects
and tasks, we are currently investigating how to include other
modalities such as gaze direction or voice commands in
our gating model. Another interesting line for future work
is to train a cooperative tasks library across subjects to



TABLE I
CLASSIFICATION ACCURACY

board tomato dressing standup bowl
subject1 1.0 1.0 1.0 1.0 0.99 (0|0.01)
subject2 1.0 1.0 1.0 1.0 1.0
subject3 0.85 (0|0.15) 1.0 1.0 0.72 (0|0.28)) 1.0
subject4 1.0 1.0 1.0 1.0 1.0
subject5 1.0 1.0 0.99 (0.01|0) 1.0 1.0
subject6 1.0 1.0 1.0 1.0 1.0
subject7 0.77 (0|0.23) 1.0 0.88 (0|0.12) 1.0 1.0
subject8 1.0 1.0 1.0 1.0 1.0
subject9 0.84 (0|0.16) 1.0 1.0 1.0 1.0
subject10 1.0 1.0 1.0 0.77 (0.23|0) 1.0

TABLE II
NUMBER OF CLUSTERS AFTER TRAINING

4 5 6 7
subject1 0 1.0 0 0
subject2 0 1.0 0 0
subject3 0 0.23 0.77 0
subject4 0 1.0 0 0
subject5 0.01 0.72 0.23 0.04
subject6 0 1.0 0 0
subject7 0 0.85 0.15 0
subject8 0 1.0 0 0
subject9 0 0.78 0.22 0
subject10 0.23 0.77 0 0

achieve better transfer to new subjects. In particular, we are
investigating how the number of demonstrations per new
subject can be reduced when reusing prior demonstrations
from other subjects. Moreover, since for now the Interaction
ProMPs in the cooperative tasks library are solely learned
from demonstrations an important component for future work
is to enrich and improve the trajectories of the robot, for
example, by using reinforcement learning.
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