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Abstract— In many environments, robots have to handle
partial observations, occlusions, and uncertainty. In this kind
of setting, a partially observable Markov decision process
(POMDP) is the method of choice for planning actions. How-
ever, especially in the presence of non-expert users, there are
still open challenges preventing mass deployment of POMDPs in
human environments. To this end, we present a novel approach
that addresses both incorporating user objectives during task
specification and asking humans for specific information during
task execution; allowing for mutual information exchange. In
POMDPs, the standard way of using a reward function to
specify the task is challenging for experts and even more de-
manding for non-experts. We present a new POMDP algorithm
that maximizes the probability of task success defined in the
form of intuitive logic sentences. Moreover, we introduce the
use of targeted queries in the POMDP model, through which
the robot can request specific information. In contrast, most
previous approaches rely on asking for full state information
which can be cumbersome for users. Compared to previous
approaches our approach is applicable to large state spaces.
We evaluate the approach in a box stacking task both in
simulations and experiments with a 7-DOF KUKA LWR arm.
The experimental results confirm that asking targeted questions
improves task performance significantly and that the robot
successfully maximizes the probability of task success while
fulfilling user-defined task objectives.

I. INTRODUCTION

Robot support is well-established in industrial applica-
tions, where the environment is precisely monitored and fully
observable. In contrast, in everyday environments, robots
have to handle much more diversified operating conditions
including partial observability and unknown object proper-
ties.

A partially observable Markov decision process
(POMDP) [12] is a common model for task planning which
takes uncertainty in both robot actions and observations
into account. However, designing a POMDP for a new
robotic task is not straightforward and the computational
complexity has been limiting the application of POMDPs.

In human environments, users should have the opportunity
to get involved in robotic task planning, as they may have
preferences regarding the outcome. In addition, humans are
likely to perceive or possess additional information about the
environment that is inaccessible to the robot’s sensors [28].
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Fig. 1. Utilizing human feedback can be beneficial in tasks where a robot
has to deal with partial observations and uncertainty. In addition, users
should be able to communicate their objectives on the task outcome to the
robot. Our approach addresses both challenges: We propose a novel POMDP
algorithm that allows for intuitive user-defined objectives. Moreover, we
introduce targeted queries that enable the robot to ask for specific sub-state
information such as the weight location inside a specific box.

Therefore, an approach that incorporates both human prefer-
ences during task specification and human input during task
execution is desirable.

Our main research question is: How can we leverage
human expertise efficiently for planning under uncertainty
in both task specification and execution? Our approach to
solve this question is of twofold nature to account for both,
an intuitive way for non-expert users to define task objectives
and the ability for the robot to ask for human knowledge in
uncertain situations.

First, our approach provides humans with an intuitive
way to define their goals for the task. As non-expert users
cannot be assumed to be familiar with technical details of
POMDPs, we introduce a system for objective definitions
based on object properties. Therefore, we define a set of
logic sentences users may choose from through a graph-
ical user interface. To solve the resulting offline planning
problem, we introduce Logical Particle Based Policy Graph
Improvement (LPPGI), a novel algorithm which is based on
the policy graph improvement (PGI) algorithm [20]. This
algorithm maximizes the expected probability of satisfying
logic objectives beyond the traditional total sum of rewards
objective.

Second, our approach enables the robot to ask a human
for specific information during task execution. To this end,
we incorporate targeted queries in a POMDP, which allow



the robot to inquire about objects’ properties in the current
world state. The robot may select from different questions in
order to receive the piece of information that is most relevant
for completing the task.

We demonstrate our approach in a box stacking task in
both simulation and experiments with a 7 DoF robotic arm,
as illustrated in Figure 1. In particular, we show that this
task can be simplified by allowing the robot to ask targeted
queries and we demonstrate how non-experts can specify
different objectives through a user interface.

II. PRELIMINARIES & RELATED WORK

In this section, we briefly recapitulate the formal definition
of POMDPs as well as solving approaches and remaining
challenges. In subsection II-B, we focus on related methods
for interaction between human users and (robotic) agents in
the POMDP context.

A. Partially Observable Markov Decision Processes

Markov Decision Processes (MDPs) [2] provide a princi-
pled way of modeling an agent interacting with its surround-
ing environment. POMDPs (Partially Observable MDPs)
are an extension to MDPs that take uncertainty in state
observations into account. A POMDP is defined as a tuple
〈S,A,O,Γ,Ω, R, b0〉 [12] of states S, actions A, observa-
tions O, and the following:
• Transition probability Γ = P (s′|s, a) : S × A → S

denoting the probability for a transition to state s′ after
performing action a in state s,

• Observation probability Ω = P (o|s′, a) : S × A → O
denoting the probability of observing o after executing
action a and ending in the next state s′,

• Reward function R(s, a) : S × A → R specifying the
immediate reward at state s when choosing action a.

The goal is to compute a policy π∗ which maximizes the
total expected discounted reward

π∗ = arg max
π

E

[
T∑
t=0

γtR(st, at)|π

]
(1)

where π denotes the policy, t the time step, T the optimiza-
tion horizon, and 0 < γ ≤ 1 is the discount factor. Moreover,
a POMDP has an initial belief distribution b0(s) that models
the agent’s initial knowledge about the world state. The belief
b(s) is updated with new observations at every time step t.
In POMDPs, the belief is a sufficient statistic for optimal
decision making and can be computed from past actions and
observations. More details regarding the belief update can be
found, for example, in [25].
Many different algorithms for POMDP optimization have
been proposed, both exact [27], [30] and approximate [25],
[26], [31], [19]. However, large POMDPs remain hard to
solve, as finite-horizon planning problems are PSPACE-
complete [21], and infinite-horizon POMDPs are even un-
decidable [16]. For more details on POMDPs, readers are
referred to [12], [25].

B. Related Work

POMDPs have been used for planning under uncertain
conditions in many different robotic contexts, notably in
human environments [29], [10], [22]. However, when humans
are a common part of the environment, new requirements
and opportunities for POMDPs arise. Users desire to adapt
tasks according to their preferences [29], [13], [9] and may
provide crucial information to robotic agents [3], [8], [1]. In
the following, we present existing strategies for interaction
between users and robots, while focusing on improving task
performance by querying the user and ways of customizing
the task goal. Furthermore, we discuss computational meth-
ods for solving POMDPs.

One strategy for the robot to improve its planning perfor-
mance is to ask a human user for information. This approach
is well established e.g. in reinforcement learning [5]. In a
POMDP model, information can be included by updating
the reward function [3], the observation function [4], or
the transition model [8]. Yet, these methods require a large
amount of human feedback. Instead, new information can
also be directly incorporated into the current belief state.
Armstrong et al. [1] introduce an additional action aoracle
asking about the current state of the system, which is used
to reset the belief state. This belief update can also take
uncertainty about the oracle’s correctness into account [23].

However, providing complete state information can be
cumbersome or even infeasible for human users. While it
is relatively straightforward to extend a POMDP model by
adding query actions targeting specific state properties, opti-
mizing the resulting POMDP policy is challenging. Asking
targeted questions requires a number of information gather-
ing actions, resulting in a large action space. We show that an
appropriate POMDP algorithm can plan targeted queries in
practice, and that targeted queries can significantly increase
performance in a robotic application while minimizing user
effort.

A second direction for improving interaction between
users and robots is to let human users express their objectives
for a robotic task in a natural way. To learn user intentions,
[29], [13], [9], [17] gather human goal specifications from
feedback during task execution. However, these methods
require a user to be attentive and to interfere several times
during task execution. The direct approach of letting the
user define the reward function requires potentially untrained
users to define and balance rewards and costs for different
states. A more natural way for users to specify task objectives
is through logic sentences describing desired state properties,
while the robot maximizes the probability of satisfying those
objectives. Existing logic based POMDP formulations try to
maximize the reward [24] or satisfy logic sentences fully [6].
Instead, our approach assumes a probabilistic Markovian
dynamics and observation model but aims to maximize
the probability of satisfying all logic sentences. [7], [14]
maximize the probability of a POMDP system to always
remain in a desired part of the state space.

We investigate a more general problem where a user can



POMDP 
Optimization

Policy 
Execution Targeted Queries

P
la

n
ni

ng
E

xe
cu

tio
n

Agent User

Environment

Task Model

User Objectives 

query

answer

Fig. 2. Our new approach on interactive planning under uncertainty
enables user-friendly objective definition using LPPGI for offline planning,
and information retrieval during task execution through targeted queries
answered by the user.

specify any kind of task requirements for any subset of time
steps. We propose a new algorithm based on Policy Graph
Improvement (PGI) [20] and the Particle based PGI [19]
(PPGI) algorithm. PGI [20] optimizes POMDPs through
iterative improvement of a fixed-size policy graph, allowing
for linear scaling of the optimization time. PPGI [19] also
scales to large state spaces [18], which are common in
robotic tasks. In Section III, we introduce a novel algorithm
based on PPGI that maximizes the probability of logic
sentence success in large state spaces. In contrast, earlier
work related to maximizing the success probability [7], [14]
relies on algorithms working only in small to moderate size
state spaces.

III. INTERACTIVE PLANNING UNDER UNCERTAINTY

In this section, we present a novel approach for utiliz-
ing human input during both specification and execution
of robotic tasks under uncertainty. We introduce a new
algorithm, Logical Particle based Policy Graph Improvement
(LPPGI), and discuss how it allows for the definition of
user objectives in the form of logical sentences, referred to
as preferences in the following. In addition, we introduce
targeted queries enabling the robot to request information
about sub-state properties from a user. We then define
a POMDP model applicable to robot manipulation tasks.
Figure 2 depicts both parts of the proposed approach.

A. Logical Particle Based Policy Graph Improvement

In this section, we present the novel Logical Particle based
Policy Graph Improvement (LPPGI) algorithm. Similar to
PGI [20], LPPGI iteratively improves a policy graph of
fixed size but in contrast to PGI, it computes a policy that
maximizes the expected probability of fulfilling predefined
preferences, given as a boolean function Ct(s, a).

Most POMDP solvers compute policies by optimizing
the expected reward, as defined in (1). In contrast, LPPGI
searches for a policy π∗ that optimizes the expected proba-

Fig. 3. In a policy graph, each node (gray) defines an action and edges
represent particular observations that lead to the next node. Similar to
Particle based Policy Graph Improvement (PPGI), Logical PPGI (LPPGI)
improves the policy graph in two phases: During the forward pass, the
algorithm samples a subsequent state s′ and an observation o for each
state particle (blue) at each time step following the current policy. In
the backward pass, the algorithm optimizes for each policy graph node
a policy that consists of the best action and of the best next node for each
observation. While PPGI maximizes the expected reward, LPPGI maximizes
the probability of satisfying predefined preferences.

bility of fulfilling user preferences

π∗ = arg max
π

E

[
T−1∏
t=0

Ct(st, at)|π

]
, (2)

where T denotes the planning horizon and the user prefer-
ences are encoded by a predefined boolean function Ct(s, a).
We call the optimization problem in (2) a maximum success
problem. It is related to maximizing the probability of the
system remaining in a safe part of the state space [7], [14]
for the duration of the complete task, but, in the maximum
success problem, Ct(s, a) can be time step specific.

In the maximum success problem, the sufficient statistic
can be represented as an improper probability distribution,
that is, b̂t(s) is the probability that the system is in state
s given previous observations and given that all previous
constraints are satisfied [14]. In more detail, we define
b̂0(s) = b0(s), b̃t(s) = b̂t(s)/||b̂t||1, and

b̂t+1(s′|b̂, a, o) = ηoP (o|s′, a)
∑
s

Ct(s, a)P (s′|s, a)b̂(s),

(3)
where ||b̂t||1 is at each time step t the expected probability
of having satisfied Ck(s, a) in previous time steps k <
t, ηo = 1/

∑
s,s′ P (o|s′, a)P (s′|s, a)b̃(s) is a normalizing

constant, b̂(s0) denotes the initial belief, and b̂t+1(s′|b, a, o)
denotes the updated belief for the next state s′. When setting
VT (b̂) = ||b̂||1, that is, setting the next to last time step
value function to the probability of satisfying all constraints,
the value function V follows from Bellmann’s optimality
principle as

Vt(b̂) = max
a

∑
o,s,s′

P (o, s′|s, a)b̃(s)Vt+1(b̂t+1(·|b̂, a, o))

 .
(4)

Our derivations for (3) and (4) are similar to those in [14],
except that in [14] the derivations are intended for more



general hybrid controls and are assuming an observation
space identical to the state space.

Now, in order to compute policies for complex real world
problems, we derive a policy graph algorithm as depicted in
Figure 3. Similarly to the PGI algorithm, we use a fixed size
policy graph with T layers of nodes q. At layer t, at policy
graph node q the policy executes the action a according to
the transition probability Pt(a|q) and transitions to the next
layer node q′ depending on the made observation o according
to Pt(q′|q, o). Pt(a|q) and Pt(q′|q, o) are deterministic. The
value function Vt(s, q) depends on the policy graph node
instead of the belief. The algorithm iterates between forward
and backward passes. During the forward pass, we simulate
the current policy and update the belief according to Eq. (3)

b̂t+1,q′(s
′) =

∑
q,o,a,s

Ct(s, a)P (o, s′|s, a)Pt(a|q)Pt(q′|q, o)b̂t,q(s),

where b̂t,q(s) denotes the belief at time step t in node q.
Note that we do not need normalization ηo due to summing
over all observations. In the backward pass, we update the
policy by maximizing Eq. (4) as follows.

For the next to last time step T we set VT (s, q) = 1
and recursively compute for each graph node q and each
observation o at time step t the best next layer graph node

qt+1(a, o, q) = arg max
q′

∑
s,s′

(
Ct(s, a)b̂t,q(s)

P (o, s′|s, a)Vt+1(s′, q′)
)
.

The best action a∗t,q is then computed as

a∗t,q = arg max
a

∑
s,o,s′

(
Ct(s, a)b̂t,q(s)

P (o, s′|s, a)Vt+1(s′, qt+1(a, o, q))
)
.

Next, we compute the updated value function

Vt(s, q) =
∑

a,s′,o,q′

Ct(s, a)P (s′, o|s, a)Pt(q
′, a|q, o)Vt+1(s′, q′),

where in Pt(q′, a|q, o) = Pt(a|q)Pt(q′|q, o) we set

Pt(a = a∗t,q) = 1, Pt(q
′ = qt+1(a∗t,q, o, q)|q, o) = 1.

Figure 3 provides an overview of the forward and the
backward pass. To scale to large state spaces, similarly to
PPGI, we use particle filtering in LPPGI to approximate
probability distributions. Algorithm 1 provides the pseudo
code for LPPGI.

B. LPPGI for User Friendly Objective Definition

For non-expert human users, the design of complex reward
functions in partially observable tasks is not trivial. To enable
a more intuitive way of interaction during task specifica-
tion we propose to use LPPGI to incorporated user-defined
preferences, in form of object specific logic sentences, in a
POMDP model. Formally, we define the m-th logic sentence
part cm(s) as

cm(s) :=
[
∀ objn ∈ s : pi(objn) = α =⇒ pj(objn) ∆ β

]

Algorithm 1: LPPGI

π = LPPGI(b0(s), π0)
while No convergence and time limit not exceeded
do
b =ParticleForwardPass(b0(s), π)
π =ParticleBackPass(b)

end

π =ParticleBackPass(b)
for Time step t = T − 1 to 0 do

foreach Policy graph node qt at layer t do
foreach Action a do

Va,o,q′ = 0,Va,o = 0 for all o, q′

for i = 1 to N do
si∼bqt(s),s′i∼P (s′|si,a),
oi∼P (o|s′i, a)
Ca = Ct(si, a)
foreach Next node q′ do
Va,oi,q′=Va,oi,q′+Ca

Sim(s′i,t+1,q′,π)
end

end
foreach Observation o do

qt+1(a, o, qt) = argmaxq′ Va,o,q′

Va,o = Va,o,qt+1(a,o,qt)

end
Va = (

∑
o Va,o) /N

end
at,q = argmaxa Va

end
end

V =Sim(si, t, q, π)
V = Ct(si, at,q)
for Time step t to T − 1 do

s′i ∼ P (s′|si, at,q), oi ∼ P (o|s′i, at,q)
q′ = qt+1(at,q, oi, q), V = V Ct+1(s′, at+1,q′)
q = q′, si = s′i

end

b =ParticleForwardPass(b0(s), π)
b0,0(s) = b0(s)
for Time step t = 0 to T − 1 do

Set bt+1,q′(s
′) to an empty set for all q′

foreach Policy graph node q at layer t do
for i = 1 to Nt,q do

si∼bt,q(s)
if Ct(si, at,q) then

s′i∼P (s′|si, at,q), oi∼P (o|s′i, a)
q′ = qt+1(at,q, oi, q)
Add state s′i to bt+1,q′(s

′)
end

end
end

end

with ∆ ∈ {>,≥, <, ,≤,=, 6=}. Here, the first part, ∀ objn ∈
s : pi(objn) = α, of the definition selects objects with



the i-th property equal to α whereas the second part,
pj(objn) ∆ β, defines a constraint on the j-th property
of the selected objects. Similarly, it is possible to express
preferences that only have to be fulfilled by only one object,
such as “at least one blue box must be positioned above
height 3”, i.e.,

cm(s) :=
[
∃ objn ∈ s : pi(objn) = α ∧ pj(objn)∆ β

]
.

As prior work on web query interfaces [11] indicates that
users employ logical conjunctions more than disjunctions or
negations, we define Ct(st, at) as a conjunction of these
logic sentence parts. The resulting boolean function for the
LPPGI algorithm as introduced in Section III-A can then be
computed as

Ct(st, at) :=

{
1 if t ∈ [τmin,m, . . . , τmax,m] =⇒ cm(st) ∀m
0 else

where τmin, m and τmax, m characterize the time interval
during the task for which logic sentence part cm(s) has to be
fulfilled. The part can either be continuously active or only
at certain times. A logic sentence solely holding for terminal
states is a special case of this formulation.

In a discounted reward POMDP, the discount factor em-
phasizes short term rewards and induces a cost on postponing
actions. However, selecting a good discount factor often
requires deeper expertise. For the user-friendly objective
definition, we allow the user to set a hard limit on the total
number of time steps instead. As the maximum number of
time steps in a trial is an intuitively understandable property,
non-expert users should be capable of selecting meaningful
values.

C. Targeted Queries

Some object properties in real world robotic tasks may be
easily accessible to a human user but not to the robot’s sen-
sors. This could be the case if the user has prior knowledge or
if the robot’s sensory modalities are limited. In our approach
for interactive planning under uncertainty, we, therefore, pro-
vide the robot with the opportunity to ask questions. Previous
approaches define an oracle action [1], [23], asking for the
complete current world state. In contrast, our approach only
queries specific states of a specific object. Hereby, we allow
the robot to request crucial information in risky situations
and minimize the effort for human users. We define several
targeted query actions aquery alongside other POMDP actions.
Hereby, the robot can ask for specific information, as we
define targeted queries as actions aquery =< objn, pj >,
i.e., the robot may select one property pj of one specific
object objn for its inquiry. For now, we assume the user’s
answer to always be correct, however, including uncertainty
on this answer is also possible with our chosen POMDP
approach. Moreover, a hard limit on the number of queries
can be selected. If this limit is reached, the agent can not
query the human user anymore but must rely on its own
information gathering actions for additional information gain.

D. POMDP Model for Object Manipulation

In this section, we introduce the POMDP model that
is used in the experimental evaluations. In general, this
model can be applied to various contexts of manipulating
multiple objects sequentially. Similarly to the POMDP model
in [19], our model defines an object by its properties:
obj := p1 × · · · × pJ . A state s consists of N objects:
s = {obj1, . . . , objN} while pi(objn) denotes the property i
of object n.

The model can be used in connection with rewards or
in connection with user-defined preferences as introduced in
Section III-B.

In case of rewards, rewards are only collected in goal states
G for which the manipulation task is completed:

R(s, a) =

{
1 if s ∈ G
0 else

.

There is no further support or punishment for other states.
Thereby, we avoid reward balancing as untrained users might
not be able to select meaningful reward values for different
states. We also define failure states: If such a state is reached,
the trial is over, and there is no reward.

IV. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation
of the proposed approach. As an example application, we
choose a box stacking task with potential human interaction
and partial observability due to unknown weight distribution
in the boxes. This example represents robot manipulation
tasks involving objects with potentially unknown properties,
such as assembly or household tasks. In the following, we
define the box stacking task and then present our experimen-
tal results for policy planning.

A. Object Manipulation Under Uncertainty: Box Stacking

In this task, a robot builds a tower out of a given set of
paper boxes. Due to hidden weights, the centers of mass
of the boxes are unobservable for the robot. The weights
are realized by a coin as depicted in Figure 5(b). The
robot can only determine a box’s weight position by placing
the box on top of the tower and by observing whether or
not it stays on top. Such a robot movement is shown in
Figure 4. Alternatively, the robot may use targeted queries
as introduced in Section III-C to ask about the weight of a
specific box. We assume that humans have prior knowledge
of the weight positions since they can open the boxes.

The boxes in our setup have different fixed properties in-
cluding length l, height h, and position of the hidden weight,
w. A state consists of all available boxes bi, S = {b1, . . . bB},
and each of the boxes is defined by its properties, i.e. bi =
〈l, h, w, x, z〉, where x denotes the horizontal position of the
box and where z designates the height from the table. For
example, with 5 boxes this results in a large state space of
933, 120 states (combination of box- and weight positions).

Agent actions are defined as a =< i, x >, specifying a
box i and its new position x on top of the tower w.r.t. the box



Fig. 4. We demonstrate our approach on a 7 DoF robot arm. A planned action performed by the robot consists of several steps, i.e., the robot grasps the
selected box, moves it towards the tower, positions it according to the action, and releases the box.

Fig. 5. (a) Users can define objectives in form of logical sentences through
a graphical user interface. (b) The boxes’ centers of mass are unobservable
for the robot due to hidden weight locations in form of a coin inside the
box. (c) Box stacking simulation with a limited maximum falling height
(red). The trial is over if a box falls from higher than this limit.

underneath (we discretize position values to keep the size of
the action state space feasible). Additionally, the robot may
move boxes back to their origin. At each time step the robot
may also ask a targeted query aquery =< i,weight > about
the weight position of box i. Tower stability is determined
by calculating the position of the center of mass on each
level of the tower. Boxes that fall down are assumed to be
moved back to their initial position. Observations express the
number of boxes toppling during or after the execution of an
action. All transitions and observations are assumed to be
deterministic. If rewards are used, a reward is only received
in a terminal goal state if the tower structure contains all
boxes. In addition, a trial is over if a box falls from higher
than a fixed height limit. This limitation motivates informa-
tion gathering on a lower height level before stacking boxes
high. Experiments start with a single box of size 1 located in
the middle of the designated construction area as the tower
foundation. The initial belief b0 is a uniform distribution over
possible weight configurations for the system of boxes. We
provide a graphical user interface, as shown in Figure 5(a),
for user preference definition.

B. Experiments and Results

We perform three series of experiments with offline
POMDP planning. First, we evaluate whether POMDPs are
appropriate for such a manipulation task. Then, we analyze
in which situations querying a human simplifies the task.
Additionally, we demonstrate how to solve the task when
using LPPGI for objective definitions on a real robot.

1) Stacking Without a Human: In the first set of experi-
ments, we investigate if our manipulation task benefits from a
POMDP model in comparison to an MDP or QMDP model.
For details on the QMDP algorithm the interested reader
is referred to [15]. We compute 15 POMDP policies by
applying the PPGI algorithm with a constant policy length

Fig. 6. (a) We compare MDP, QMDP (with value iteration) and POMDP
(with PPGI) on the box stacking task. Both the MDP and the QMDP
take significantly more actions because they do not account for partial
observability or do not take information gathering into account, respectively.
(b) The difference becomes even more obvious when a maximum falling
height of 1 is introduced and the QMDP’s success rate drops.

and width of 15. For evaluation, we simulate each policy
1000 times with state particles randomly sampled from a
prior belief. In the QMDP and MDP case, policies are
computed deterministically via value iteration. A discount
factor of 0.9 serves as an incentive for limiting the number
of execution steps. The simulation confirms that the POMDP
planning process works well for up to five unknown boxes
in a reasonable amount of time (on average 40 sec for 5
boxes). Repeated executions of the planning task lead to
almost identical policies admitting a low standard error. The
MDP does not take partial observations into account during
execution and therefore highly depends on the initial state
assumption. That is why we allow the MDP to start again
with a different initial state assumption after the optimal
number of actions was executed. However, Figure 6(a)
shows that the MDP requires significantly more actions for
successful tower completion since it is unable to model
the belief during execution. QMDPs do account for partial
observability and therefore achieve better results. However,
unlike POMDPs, QMDPs do not gather information, and
therefore are outperformed as well. The difference becomes
obvious if a maximum falling height of 1, as sketched in
Figure 5(c), is introduced and memorizing weight positions
gains importance. Figure 6(b) illustrates that in this case
the POMDP has a significantly higher success rate than
the QMDP. Overall, these results indicate that the POMDP
model is well suited and necessary for the tower stacking
task.

2) Stacking With a Human Answering Questions: In the
following experiments, we evaluate the effect of targeted
queries and compare them to oracle actions [1]. Experiments
contain a fixed number of 5 boxes and the maximum falling
height varies.

As illustrated in Figure 7(a), targeted query actions, as well
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Fig. 7. (a) The opportunity to request information from the user in form
of oracle actions or targeted queries significantly increases the success rate,
in particular for lower maximum falling heights. (b) While oracle actions
always provide full state information and therefore require user queries
for all boxes, targeted query actions adapt the number of user interactions
according to the maximum falling height. (c) In the case of targeted queries
the robot balances between its own box stacking actions for information
gathering and information retrieval from the human. This leads to a slight
increase of robot actions compared to the oracle actions.

as oracle actions, exhibit a significant increase in task rate, in
particular in combination with a low maximum falling height.
This is expected since in these cases the center of mass of
each box has to be determined before the actual stacking can
start. In settings with higher falling limits, it is less expensive
to determine a weight position with exploratory actions as
those potentially lead to tower growth. It is desirable for
task performance that only necessary questions are being
asked. While the oracle action always provides the full state
information, targeted queries only ask for one specific box’s
properties. As depicted in Figure 7(b), the number of used
targeted queries adapts to different maximum falling heights.
The planning algorithm balances well between information
gain and task progress, rendering the process significantly
less cumbersome for users. As can be seen in Figure 7(c),
this leads to a slightly higher number of robot actions
being performed in experiments with targeted queries due
to exploratory robot actions.

In addition, the experiments show that planning does not
require significantly more effort, even though the size of the
action space is increased in case of targeted queries.

3) Robot Experiments: While the presented experiments
focused on the evaluation of single components in simula-
tion, we now demonstrate targeted queries and user prefer-
ence planning on a real robot. The robot hardware consists
of a 7 DoF Kuka LWR robot arm and a DLR Hit Hand
II as well as an Optitrack system with 6 cameras tracking
the boxes and providing observations. These components
and the POMDP planner are connected through ROS. We
employ four paper boxes of different sizes as shown in
Figure 8(a). The maximum falling height is set to 1 and
provide the opportunity for one targeted query action. In
addition, the position of the blue box in the tower is defined
through user preferences to be at different specific heights.
For each predefined position of the blue box, we repeated
the experiment 10 times. The robot successfully optimizes
plans for building towers, and fulfills all user preferences.
As shown in Figure 8, the robot adapts its use of targeted

(a)                                                                                (b)

(c)

Fig. 8. (a) Through user objective definition, the blue box is requested
to be at four different positions in the completed tower structure, resulting
in four experiments. The share of successful trials decreases as balancing
an increasing number of boxes on top of the smallest one becomes more
and more demanding. (b) The algorithm adapts the use of targeted queries
to the task planning difficulty. (c) The execution steps increase as more
information gathering actions become necessary for lower tower locations
of the blue box.

queries to the task difficulty (more information is required if
the smallest box has to be placed at a lower position). Even
though construction is not always successful due to material
shortcomings and tracking noise, in the majority of trials the
robot successfully builds a tower according to user-defined
preferences and by incorporating information from targeted
queries.

V. CONCLUSIONS

In this work, we propose a new POMDP based ap-
proach for robotic tasks in complex uncertain environments
involving interaction with a non-expert human user. Our
contributions are of two-fold nature: First, we show that
requesting specific information about the task using targeted
queries is beneficial for task success. Second, we define logic
sentences through which users can express preferences about
the manipulation task’s outcome prior to task planning. To
this end, we introduce a novel algorithm maximizing the
probability of satisfying these logic sentences.

Empirical evaluations of a box stacking task, in simulation
and with a real robot, demonstrate that our approach succeeds
in determining task plans that fulfill the user’s specifications.
Additionally, the experimental results show that targeted
queries can improve the robot’s performance significantly
compared to self-sufficient information gathering. Further-
more, user effort can be minimized if only partial state
information is required in queries.

While in this work LPPGI was solely used for offline plan-
ning, future applications may benefit from online replanning,
for example, based on user query input. We plan future user
studies with non-experts to further evaluate the suitability
of the proposed user-friendly objective definitions for task
specification as well as to evaluate how human subjects
respond to different levels of robot queries. In addition,
user input can be prone to uncertainty. Incorporating this
uncertainty into the POMDP model is another line of possible
future work. Furthermore, we consider testing our model on
a broader variety of manipulation and assembly tasks.
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