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Abstract— Contact-rich manipulation requires precise force
control, yet many imitation-learning approaches treat visuotac-
tile feedback as a passive observation rather than an explicit
control target. In this work, we present Force-Aware Robotic
Manipulation (FARM), an imitation learning framework that
leverages high-dimensional tactile data to define a force-based
action space. Using a modified version of the handheld Universal
Manipulation Interface (UMI) gripper equipped with a Gel-
Sight Mini tactile sensor, we collect human demonstrations and
deploy them on a matching actuated gripper. During policy roll-
outs, the proposed FARM diffusion policy jointly predicts robot
pose, grip width, and grip force. FARM outperforms several
baselines across high-force, low-force, and dynamic force adap-
tion tasks, demonstrating the advantages of force-grounded,
high-dimensional tactile observations and a force-based control
space. The codebase and design files are open-sourced and
available at https://tactile—farm.github.io.

[. INTRODUCTION

Humans naturally regulate grasp forces through touch,
applying just enough pressure to prevent an object from
slipping [1], [2]. In robotics, the selection of an appropri-
ate grasping force has long been recognized as a crucial
issue [3], especially when handling fragile or deformable
objects, such as fruits or eggs. While tactile sensing provides
vital information regarding slip and forces [4], effectively
leveraging these signals for direct force control remains
challenging.

Imitation learning has emerged as an efficient strategy
for learning robotic manipulation from human demonstra-
tions [5]. However, current tactile-integrated imitation learn-
ing approaches typically treat tactile sensing as a passive
observation modality rather than an active component of the
action space [6]. Consequently, contact forces often remain
an uncontrolled byproduct of kinematic gripper commands.

In this work, we address this gap by introducing Force-
Aware Robotic Manipulation (FARM), an imitation learning
framework that integrates tactile feedback into the action
space, while also leveraging a high-dimensional force-profile
as an observation modality.

Corresponding author: Erik Helmut. Email: erik@robot-learning.de.

IDepartment of Computer Science, Technical University of Darmstadt
2German Research Center for AI (DFKI)  3Centre for Cognitive Science,
Technical University of Darmstadt ~ *Hessian Center for Artificial Intelli-
gence (hessian.Al), Darmstadt

This work has been partially supported by the German Federal Ministry
of Research, Technology and Space (BMFTR) under the Robotics Institute
Germany (RIG) and the French Research Agency, 1’Agence Nationale de
Recherche (ANR), through the project Aristotle (ANR-21-FAI1-0009-01)
and the EU’s Horizon Europe project ARISE (Grant no.: 101135959).

Fig. 1: Data-collection setup. Right: Expert demonstration
using the adapted UMI gripper. Top-left: In-hand RGB view
with ArUco markers for grip width measurement. Bottom-
left: GelSight Mini tactile image and corresponding FEATS
force estimates visualizing contact interactions.

METHOD
A. Gripper Hardware and Data Collection

To bridge the gap between human demonstrations and
robot execution, we utilize two geometrically matched grip-
pers: an adapted hand-held UMI gripper [7] for data col-
lection and a custom-built Actuated UMI gripper for de-
ployment. Both feature an Intel RealSense D405 for in-hand
vision and a GelSight Mini tactile sensor at the fingertip.

During demonstrations, we record in-hand RGB images,
gripper pose (via OptiTrack), and high-resolution tactile
images. We employ FEATS [8] to extract estimates of shear
and normal force distributions from the sensors’ raw tactile
images (see Fig. [I).

B. FARM Diffusion Policy

We extend the diffusion policy introduced by Chi et al. [9],
to include a tactile-informed action space. As shown in Fig. 2]
the FARM diffusion policy is conditioned on a multi-modal
observation O; consisting of:

1) An RGB image, captured by a Intel RealSense D405

camera mounted on the gripper.

2) The grip width, calculated as the Euclidean distance
between the centers of the ArUco markers on the two
fingers.

3) Tactile feedback, represented by a 3-channel image
encoding the full force distributions extracted from
each GelSight Mini tactile image using a pretrained
and fixed FEATS model. Additionally, the total normal
force is included as a scalar value, computed by inte-
grating over the discretized normal force distribution.

4) The gripper pose, consisting of 3D position coordi-
nates and a 6D rotation feature representation [10].
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Fig. 2: FARM diffusion policy architecture. Visual, proprio-
ceptive, and tactile observations are encoded and provided as
input to a 1D temporal CNN with FILM conditioning. The
model predicts action trajectories for end-effector pose, grip
width, and grip force, enabling closed-loop force control of
the gripper during manipulation.

The model jointly predicts a trajectory of end-effector
poses x% 5 target grip widths wg, and target grip forces F4.

C. Policy Deployment and Gripper Control

To deploy learned policies on the Actuated UMI gripper,
we implement a dual-model control strategy that switches
between grip width control and force control based on the
current interaction phase. During phases when there is no
contact, the gripper width will be set with position control.
If both the target force F'¢ and estimated force F., are below
—0.5 N, the system assumes that the robot is in contact with
the object and switches to closed-loop force control.

D. Baselines

To evaluate the contribution of tactile feedback and force
control in our FARM framework, we compare it against three
baseline strategies: a Force-Aware baseline that utilizes only
scalar normal force without FEATS force distributions, a
Tactile-Aware baseline that processes the raw tactile images
directly but lacks explicit force actions, and a Vision-Only
baseline that relies exclusively on the in-hand RGB image
and proprioception with binary gripper commands.

RESULTS

We evaluate the FARM framework against force-aware,
tactile-aware, and vision-only baselines across three real-
world tasks: plant insertion, grape picking, and screw tight-
ening (see Fig. 3] and Fig. [).

Fig. 3: Experimental tasks. (a) Plant insertion: planting into
a soil-filled pot; (b) Grape picking: delicate grasping and
detachment from a toothpick; (c) Screw tightening: using an
Allen key.

EmE FARM (ours) Bmm Force-Aware  EEM Tactile-Aware ~ HEEE Vision-Only

1.04

Success Rate
o ©°
(=] =]

IS
IS

o
N

0.0 -

Plant Insertion

Grape Picking Screw Tightening

Fig. 4: Task success rates. Comparison of FARM against all
baselines across three tasks, evaluated over 20 rollouts per
task.

In the plant insertion and grape picking tasks, FARM (95%
success) and the force-aware baseline (85 — 95%) perform
similarly, suggesting that scalar force signals are sufficient
for tasks with static force demands. The vision-only baseline
crushes the grapes, while the tactile-aware baseline (60%)
frequently drops objects due to lack of direct force control.

The screw tightening task highlights the advantages of
FARM’s high-dimensional force-distribution representation.
It achieved 100% success, while the force-aware baseline
(10%) lacks information about the shear force distribution
needed to maintain tool alignment. Furthermore, the tactile-
aware baseline (40%) fails to reliably interpret the complex
contact state from raw images, and the vision-only baseline
(0%) lacks the tactile feedback to sense screw resistance.
Quantitatively, FARM demonstrates the highest fidelity to
human demonstrations in the force domain, yielding a
Wasserstein-1 distance of 0.75 N, which is significantly
lower than all baselines (ranging 1.66 N — 5.05 N).

CONCLUSION

This work introduces FARM, a visuotactile-conditioned
diffusion policy that treats tactile feedback as both an ob-
servation and an explicit action space. By predicting target
grip forces alongside robot poses, FARM enables delicate,
contact-rich manipulation. Our results demonstrate that high-
dimensional tactile observations, combined with a force-
based action space, significantly outperform passive tactile
or vision-only baselines. Future work will explore bimanual
manipulation, anthropomorphic hands, and flow-matching
objectives to enhance policy reactivity.
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