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Abstract— Contact-rich manipulation requires precise force
control, yet many imitation-learning approaches treat visuotac-
tile feedback as a passive observation rather than an explicit
control target. In this work, we present Force-Aware Robotic
Manipulation (FARM), an imitation learning framework that
leverages high-dimensional tactile data to define a force-based
action space. Using a modified version of the handheld Universal
Manipulation Interface (UMI) gripper equipped with a Gel-
Sight Mini tactile sensor, we collect human demonstrations and
deploy them on a matching actuated gripper. During policy roll-
outs, the proposed FARM diffusion policy jointly predicts robot
pose, grip width, and grip force. FARM outperforms several
baselines across high-force, low-force, and dynamic force adap-
tion tasks, demonstrating the advantages of force-grounded,
high-dimensional tactile observations and a force-based control
space. The codebase and design files are open-sourced and
available at https://tactile-farm.github.io.

I. INTRODUCTION

Humans naturally regulate grasp forces through touch,

applying just enough pressure to prevent an object from

slipping [1], [2]. In robotics, the selection of an appropri-

ate grasping force has long been recognized as a crucial

issue [3], especially when handling fragile or deformable

objects, such as fruits or eggs. While tactile sensing provides

vital information regarding slip and forces [4], effectively

leveraging these signals for direct force control remains

challenging.

Imitation learning has emerged as an efficient strategy

for learning robotic manipulation from human demonstra-

tions [5]. However, current tactile-integrated imitation learn-

ing approaches typically treat tactile sensing as a passive

observation modality rather than an active component of the

action space [6]. Consequently, contact forces often remain

an uncontrolled byproduct of kinematic gripper commands.

In this work, we address this gap by introducing Force-

Aware Robotic Manipulation (FARM), an imitation learning

framework that integrates tactile feedback into the action

space, while also leveraging a high-dimensional force-profile

as an observation modality.
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Fig. 1: Data-collection setup. Right: Expert demonstration

using the adapted UMI gripper. Top-left: In-hand RGB view

with ArUco markers for grip width measurement. Bottom-

left: GelSight Mini tactile image and corresponding FEATS

force estimates visualizing contact interactions.

METHOD

A. Gripper Hardware and Data Collection

To bridge the gap between human demonstrations and

robot execution, we utilize two geometrically matched grip-

pers: an adapted hand-held UMI gripper [7] for data col-

lection and a custom-built Actuated UMI gripper for de-

ployment. Both feature an Intel RealSense D405 for in-hand

vision and a GelSight Mini tactile sensor at the fingertip.

During demonstrations, we record in-hand RGB images,

gripper pose (via OptiTrack), and high-resolution tactile

images. We employ FEATS [8] to extract estimates of shear

and normal force distributions from the sensors’ raw tactile

images (see Fig. 1).

B. FARM Diffusion Policy

We extend the diffusion policy introduced by Chi et al. [9],

to include a tactile-informed action space. As shown in Fig. 2

the FARM diffusion policy is conditioned on a multi-modal

observation Ot consisting of:

1) An RGB image, captured by a Intel RealSense D405

camera mounted on the gripper.

2) The grip width, calculated as the Euclidean distance

between the centers of the ArUco markers on the two

fingers.

3) Tactile feedback, represented by a 3-channel image

encoding the full force distributions extracted from

each GelSight Mini tactile image using a pretrained

and fixed FEATS model. Additionally, the total normal

force is included as a scalar value, computed by inte-

grating over the discretized normal force distribution.

4) The gripper pose, consisting of 3D position coordi-

nates and a 6D rotation feature representation [10].

https://tactile-farm.github.io
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Fig. 2: FARM diffusion policy architecture. Visual, proprio-

ceptive, and tactile observations are encoded and provided as

input to a 1D temporal CNN with FiLM conditioning. The

model predicts action trajectories for end-effector pose, grip

width, and grip force, enabling closed-loop force control of

the gripper during manipulation.

The model jointly predicts a trajectory of end-effector

poses xd

EE
, target grip widths wd, and target grip forces F d

z
.

C. Policy Deployment and Gripper Control

To deploy learned policies on the Actuated UMI gripper,

we implement a dual-model control strategy that switches

between grip width control and force control based on the

current interaction phase. During phases when there is no

contact, the gripper width will be set with position control.

If both the target force F
d
z

and estimated force F̂z are below

−0.5 N, the system assumes that the robot is in contact with

the object and switches to closed-loop force control.

D. Baselines

To evaluate the contribution of tactile feedback and force

control in our FARM framework, we compare it against three

baseline strategies: a Force-Aware baseline that utilizes only

scalar normal force without FEATS force distributions, a

Tactile-Aware baseline that processes the raw tactile images

directly but lacks explicit force actions, and a Vision-Only

baseline that relies exclusively on the in-hand RGB image

and proprioception with binary gripper commands.

RESULTS

We evaluate the FARM framework against force-aware,

tactile-aware, and vision-only baselines across three real-

world tasks: plant insertion, grape picking, and screw tight-

ening (see Fig. 3 and Fig. 4).

(a) (b) (c)

Fig. 3: Experimental tasks. (a) Plant insertion: planting into

a soil-filled pot; (b) Grape picking: delicate grasping and

detachment from a toothpick; (c) Screw tightening: using an

Allen key.
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Fig. 4: Task success rates. Comparison of FARM against all

baselines across three tasks, evaluated over 20 rollouts per

task.

In the plant insertion and grape picking tasks, FARM (95%

success) and the force-aware baseline (85 − 95%) perform

similarly, suggesting that scalar force signals are sufficient

for tasks with static force demands. The vision-only baseline

crushes the grapes, while the tactile-aware baseline (60%)

frequently drops objects due to lack of direct force control.

The screw tightening task highlights the advantages of

FARM’s high-dimensional force-distribution representation.

It achieved 100% success, while the force-aware baseline

(10%) lacks information about the shear force distribution

needed to maintain tool alignment. Furthermore, the tactile-

aware baseline (40%) fails to reliably interpret the complex

contact state from raw images, and the vision-only baseline

(0%) lacks the tactile feedback to sense screw resistance.

Quantitatively, FARM demonstrates the highest fidelity to

human demonstrations in the force domain, yielding a

Wasserstein-1 distance of 0.75 N, which is significantly

lower than all baselines (ranging 1.66 N – 5.05 N).

CONCLUSION

This work introduces FARM, a visuotactile-conditioned

diffusion policy that treats tactile feedback as both an ob-

servation and an explicit action space. By predicting target

grip forces alongside robot poses, FARM enables delicate,

contact-rich manipulation. Our results demonstrate that high-

dimensional tactile observations, combined with a force-

based action space, significantly outperform passive tactile

or vision-only baselines. Future work will explore bimanual

manipulation, anthropomorphic hands, and flow-matching

objectives to enhance policy reactivity.
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