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Abstract

Robots still struggle to regulate grasp forces in contact-rich manipulation tasks, especially
when handling fragile or deformable objects. Existing imitation learning approaches
often treat tactile feedback only as an additional observation, leaving applied forces
as an uncontrolled consequence of gripper commands. In this work, we introduce a
Force-Aware imitation learning framework that integrates tactile sensing directly into
the action space. Using a GelSight Mini sensor together with the FEATS model for force
estimation, we collect demonstration data with a modified UMI gripper. We then deploy
the learned policies on a newly developed actuated-UMI gripper with matching geometry.
The proposed Force-Aware diffusion policy jointly predicts robot pose, grip width, and
grip force. At execution time, a dual-mode controller switches between position control
of the grip width and closed-loop force control. We evaluate the approach on two tasks
with contrasting force demands. The Force-Aware diffusion policy achieves higher success
rates than Vision-Only or Tactile-Aware baselines. It also produces force profiles closer to
human demonstrations, measured with the Wasserstein distance. These results show that
explicitly modeling and controlling forces improves robustness in both high- and low-force
scenarios. The framework highlights the role of tactile sensing not just as context but as a
control target, enabling more adaptive and contact-aware robotic manipulation.
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Zusammenfassung

Roboter haben nach wie vor Schwierigkeiten, Greifkräfte in kontaktintensiven Manipula-
tionsaufgaben zuverlässig zu regulieren, insbesondere beim Umgang mit zerbrechlichen
oder verformbaren Objekten. Bisherige Imitationslernansätze nutzen taktiles Feedback
meist nur als zusätzliche Beobachtung, wodurch die aufgebrachten Kräfte eine unkon-
trollierte Folge von Greiferkommandos bleiben. In dieser Arbeit wird ein Force-Aware
Imitationslern-Framework vorgestellt, das taktiles Feedback direkt in den Aktionsraum in-
tegriert. Mithilfe eines GelSight-Mini-Sensors in Kombination mit dem FEATS-Modell zur
Kraftschätzung werden Demonstrationsdaten mit einem modifizierten UMI-Greifer erfasst.
Die gelernten Steuerungsstrategien werden anschließend auf einem neu entwickelten,
aktuierten UMI-Greifer mit gleicher Geometrie ausgeführt. Die vorgeschlagene Force-
Aware Diffusion Policy sagt Roboterpose, Greifweite und Greifkraft gleichzeitig vorher.
Während der Ausführung wechselt ein Dual-Mode-Regler zwischen der Positionsregelung
des Greifabstandes und dem geschlossenen Kraftregelkreis. Dieser Ansatz wird an zwei
Aufgaben mit unterschiedlichen Kraftanforderungen evaluiert. Die Force-Aware Diffusion
Policy erreicht höhere Erfolgsraten als die Vision-Only- und Tactile-Aware-Baselines und
erzeugt Kraftprofile, die den menschlichen Demonstrationen näherkommen, gemessen
mit der Wasserstein-Distanz. Die Ergebnisse zeigen, dass das explizite Modellieren und
Regeln von Kräften die Robustheit sowohl in Szenarien mit hohen als auch mit niedrigen
Kräften verbessert. Das Framework verdeutlicht die Rolle des taktilen Feedbacks nicht nur
als Kontext, sondern als direktes Regelziel und ermöglicht dadurch eine adaptivere und
kontaktbewusstere robotische Manipulation.
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1 Introduction

Humans naturally regulate grasp forces through touch, applying just enough pressure to
prevent an object from slipping [27], [26]. This capability relies on rich tactile feedback
and adaptive grip force control, and while it comes effortlessly to people, replicating
it in robots remains a challenging problem [28], [9]. The selection of an appropriate
grasping force has long been recognized as a crucial issue in robotics [5]. Especially when
handling fragile or deformable objects, such as fruits or eggs, it is essential to employ the
appropriate grasping force to minimize the risk of slippage or breakage. Tactile sensing
has emerged as a key technology for safer and more intelligent grasping, as it enables slip
detection and inference of shear and normal forces to guide grip force control [14].
Imitation learning has gained traction as a way to transfer human manipulation skills to
robots by leveraging demonstrations [38]. Building on this, recent advances have begun to
incorporate tactile feedback into robotic grippers. However, in most of these approaches,
tactile sensing is treated primarily as an additional observation modality, useful to get
additional information for resolving visual occlusion or detecting contact state, but not as a
signal that directly shapes the action space [49]. As a result, tactile feedback influences the
robot only indirectly through its effect on the observation embedding, while the applied
forces themselves remain an uncontrolled consequence of gripper commands.
What remains largely missing is an imitation learning framework in which tactile feedback
is not only perceived but also explicitly represented in the action space. Such a formulation
would allow the policy to target and regulate the tactile interaction it intends to produce,
rather than leaving contact forces as an emergent side-effect of kinematic and gripper
control.
In this work, we address this gap by introducing a Force-Aware imitation learning frame-
work that integrates tactile feedback directly into the action space. We leverage the
GelSight Mini [18], a high-resolution vision-based tactile sensor, together with Finite
Element Analysis for Tactile Sensing (FEATS) [21] for estimating normal contact forces
during human demonstrations. These demonstrations are collected using an adapted
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hand-held UMI gripper [11] and then transferred to the actuated-UMI gripper with match-
ing geometry and kinematics for deployment. At execution time, actions are regulated
through a dual-mode controller that switches between position control of the grip width
and closed-loop force control, depending on whether contact is present or not, ensuring
stable behavior across both conditions.
The main contributions of this work are as follows:

• We propose the Force-Aware diffusion policy, which predicts robot pose, target grip
width, and target grip force jointly, with force represented both in the observation
space and as an explicit action, yielding temporally consistent, force-aware action
sequences.

• We design and build the actuated-UMI gripper, enabling direct transfer of demonstra-
tions collected with the adapted hand-held UMI gripper equipped with a GelSight
Mini sensor.

• We introduce a dual-mode control scheme that mitigates the well-known instability
of force control in the presence of discontinuous contacts [8], by switching between
position control of the grip width before contact and closed-loop force control once
contact is established.

• We evaluate the proposed framework on two contrasting real-world tasks: a high-
force Plant Insertion Task and a delicate, low-force Grape Extraction Task. The
results show that explicitly modeling and controlling force improves task success
and produces force profiles that are more closely aligned with expert demonstrations
than Vision-Only or Tactile-Aware baselines. In addition to reporting success rates, we
also introduce a distributional evaluation metric based on the Wasserstein distance
between human and robot force trajectories, providing a more fine-grained measure
of similarity.
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2 Foundations

Intelligent robotic manipulation comprises the ability to perceive, learn, and generalize
across complex physical interactions. This chapter provides an overview of the core
concepts underlying this work. Tactile sensing is introduced as a method that enables
robots to gather information about physical interactions through touch. Imitation learning
is presented as a framework that enables robots to acquire new skills by learning directly
from expert demonstrations. Diffusion models are subsequently covered as a class of
generative models that have recently been applied to policy learning. Together, these
sections establish the background required for the following chapters.

2.1 Tactile Sensing

Our hands are not just tools, they are the critical interface to the world, the connection
through which we engage, create, and shape our daily lives. We cannot be responsive
and interactive with our environment without being able to feel it [13]. Touch provides
certainty and confidence, it speeds up our actions and offers instant feedback on how we
are interacting with an object. Unlike humans, robots typically lack a native sense of touch.
Replicating this capability in robots, enabling them to truly “feel” helps in understanding
the interaction behavior of a real-world object. It provides insights on the object’s weight
and stiffness, the surface texture, the deformation upon contact, and its movement under
external forces [14].
To date, a wide range of tactile sensors have been developed, including resistive [54],
capacitive [47], magnetic [4], as well as vision-based tactile sensors that use either
conventional RGB cameras [29], [30], [31], [51] or event-based cameras [15]. In this
work, the GelSight Mini tactile sensor [18] is employed to explore how force-aware
grasping policies can be learned from human demonstrations.
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2.1.1 GelSight Mini Tactile Sensor

The GelSight Mini tactile sensor is a compact, vision-based tactile sensor capable of
capturing high-resolution surface details, including the 3D shape and texture of the
surface. Its spatial resolution is reported to be well beyond that of human touch [18].
The GelSight Mini operates by using an RGB camera to record the deformation of a soft
silicone gel during contact. The gel is mounted on a glass surface and illuminated from
three sides using red, green, and blue LEDs (cf. Fig. 2.1). This setup enables photometric
stereo, a computer vision technique for estimating the surface normals by observing an
object under different lighting conditions [51].
Different gel types are available for the GelSight Mini. Some variants embed visual markers
into the gel (cf. Fig. 2.1), thereby improving the ability to track surface deformation
and indentation motion by offering more visual features. Others use a clear gel surface
without embedded markers.
Compared to other tactile sensing technologies, such as capacitive tactile sensors or
force/torque sensors, the GelSight Mini stands out for its simplicity, affordability, and
high spatial tactile resolution. The sensor captures images at 25Hz, enabling real-time
usage in closed-loop control tasks. These attributes make the GelSight Mini an appealing
entry point into high-fidelity tactile sensing.
However, despite images being rich in visual information, they lack direct, interpretable
physical measurements. The raw visual data does not inherently convey metrics such as
force or pressure. One proposed solution involves a machine learning approach for the
estimation of shear and normal forces from the observed gel deformations.

2.1.2 Force Estimation from GelSight Mini Images

To bridge the gap between raw visual output of the GelSight Mini sensor and physically
interpretable quantities, a learning-based framework called FEATS has been proposed
[21]. FEATS estimates spatially resolved force distributions directly from raw images
captured by the GelSight Mini sensor.
Traditional approaches for extracting force-related information from vision-based tactile
sensors often rely on marker displacement methods or reconstructing the surface depth
maps via photometric stereo. Nonetheless, these methods are typically limited by the

4



(a) (b)

Figure 2.1: The GelSight Mini tactile sensor and its internal components. In (a), the
GelSight Mini is shown in its assembled state, as used during operation. With
the gel removed in (b), the internal components are revealed. The camera is
positioned in the center, surrounded by three LEDs (red, green, and blue) that
provide illumination for capturing the surface deformation of the gel.

number of markers or fail to fully account for the nonlinear material behavior of the soft
elastomer.
In contrast, FEATS directly learns the mapping from RGB images to shear and normal
force distributions using a U-net model [40]. Training data is collected through a series
of indentation experiments using a CNC milling machine. This setup enables precise
positioning of the GelSight Mini sensor against a variety of 3D-printed indenters. For
each real-world indentation, a corresponding Finite Element Analysis (FEA) simulation is
conducted using the CalculiX solver (cf. Fig. 2.2).
To accurately model the soft elastomer gel of the GelSight Mini, a hyperelastic Neo-
Hookean material model is used in the FEA simulations. The model parameters are
calibrated by minimizing the error between simulated forces and measurements obtained
from an external force/torque sensor. The calculated underlying force distributions are
then projected into the coordinate system of the GelSight Mini, i.e., into an image plane.
Within the image boundaries, the force distributions are binned into a fixed-resolution
grid to serve as force distribution labels.
The resulting model is trained in a supervised way, taking the raw tactile images as input
and predicting the corresponding shear and normal force distributions. In essence, FEATS
approximates the output of computationally expensive FEA simulations with a neural
network. Unlike FEA, FEATS does not require a precise geometrical description of the
contact configuration. This makes FEATS suitable for real-time applications, as only the
raw sensor image is required at runtime.
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Finite Element AnalysisData Collection Labels

Raw Image U-net

Predictions

Figure 2.2: FEATS overview from data collection to force distribution prediction. Starting
from data collection with a CNC milling machine, FEA is employed for label
generation, i.e., calculating the corresponding “ground truth” force distribu-
tions. A U-net model is trained to predict shear and normal force distributions
from raw tactile images during inference. (Figure from Helmut et al. [21])

FEATS has been shown to generalize well across different indenter shapes and even
across different GelSight Mini sensors, making it a robust and practical solution for force
estimation in contact-rich robotic tasks.

2.2 Imitation Learning

Imitation is based on one of the most natural and intuitive ways for humans to acquire
new skills by observing and copying others. Consider, for example, the process of a young
child learning how to fold a paper airplane. The child watches their older sibling execute
a series of folding steps, without formal instructions or understanding of why each step
works. There are no explicit rules being taught and no external reward is given for success.
Over time, through repeated imitation, the child gets better at folding paper planes that
actually fly well. The key point is that the child is not learning by being told what to do,
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nor by evaluating success or failure in a structured way. Instead, the child learns purely
by mimicking the observed behavior.
The concept of imitation learning refers to the idea of learning how to solve a task by
observing expert demonstrations. Rather than learning through exploration or trial and
error, it focuses on reproducing behavior. The objective of imitation learning is to efficiently
acquire a desired behavior by imitating an expert’s actions [38]. It is a powerful approach
for designing autonomous behavior, particularly in robotics and physical systems where
manually programming every action or crafting a reward function is difficult or impractical.
The reward function is indirectly described by the expert demonstrations.
As described in Osa et al. [38], imitation learning is often formulated in the context of
sequential decision making, where the environment is modeled as an Markov Decision
Process (MDP). An MDP is a process that satisfies the Markov property, which assumes
that the next state st+1 depends only on the current state st in a Markov chain. It is
defined as a tuple (S,A, P, γ,D,R), where S is a finite set of states, A is the set of actions
or control inputs, P is the transition probability function, and γ ∈ [0, 1) is the discount
factor that balances short- and long-term rewards. D denotes the initial-state distribution
from which the starting state s0 is drawn, and R : S → R defines the reward function
that assigns a scalar value to each state.
In the context of imitation learning, however, the reward function R is typically unknown
or unused. The goal of imitation learning is to learn a policy π that reproduces the behavior
of one or multiple experts who demonstrate how to perform the task. A policy π defines
a mapping from states to actions. It can be deterministic, where actions are selected as
a = π(s), or stochastic, where actions are drawn from a distribution a ∼ π(a | s). In
robotics, the learned policy takes the role of a controller by computing the control inputs
based on the current state of the system.
Demonstrations from the expert are typically collected as a dataset D = {(si, ai)}

N
i=1,

consisting of sequences of state-action pairs. Using the collected dataset D, a common
objective of the imitation learning problem is to learn a policy π∗ that minimizes the
divergence between the expert’s behavior and the learned behavior

π∗ = argmin
π

Div(q(φ), p(φ)), (2.1)

where q(φ) and p(φ) represent the distributions over the features induced by the expert’s
policy and the learner’s policy, respectively, and Div denotes a divergence measure between
these distributions. Different imitation learning approaches vary in how they define and
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optimize the policy. The most prominent methods include Behavioral Cloning (BC) and
Inverse Reinforcement Learning (IRL). BC [3] treats imitation learning as a supervised
learning problem by learning a reactive policy that maps observed states to actions based
on expert demonstrations. It does not rely on explicit goals or reward functions, but
instead mimics the expert’s behavior directly through state-action rules. IRL [37], in
contrast, seeks to recover the expert’s reward function, which often provides a more
compressed description of the behavior. The reward function can then be used within
reinforcement learning to learn a policy.
While BC can have difficulty representing multimodal action distributions, IRL is more
complex, computationally demanding, and underdetermined because multiple reward
functions can explain the same behavior. These limitations have motivated exploration
of alternative approaches for imitation learning, including the use of generative models.
Building on this idea, recent work on diffusion policies employ diffusion models for
visuomotor policy learning [10].

2.3 Diffusion Models for Policy Learning

Diffusion policies frame robot control as a conditional denoising process, gradually trans-
forming noise into action trajectories. These policies have been shown to express multi-
modal action distributions, maintain robustness when scaling to high-dimensional action
spaces, and benefit from stable training. Rather than predicting only the next action, diffu-
sion policies generate sequences of future actions, improving temporal action consistency
and avoiding short-sighted planning. These properties have made diffusion policies a
popular choice for imitation learning tasks [10].

2.3.1 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPM), or simply diffusion models, are a class
of deep generative models introduced by Ho et al. [22]. The core idea is twofold. First,
a forward diffusion process defines a Markov chain that gradually adds small amounts
of Gaussian noise to the data in the opposite direction of sampling until the sample is
“destroyed”, i.e., becomes indistinguishable from simple isotropic Gaussian noise. Second,
a neural network is learned to reverse the diffusion process, which removes noise step by
step and reconstructs a clean data sample.
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Formally, and following the notation summarized by Chi et al. [10], given a sample xK
drawn from Gaussian noise, the DDPM performs K denoising iterations to recover the
desired noise-free sample x0. Each reverse diffusion step takes the form

xk−1 = α(xk − γεθ(xk, k) +N (0, σ2I)) (2.2)

where εθ is the noise-prediction network parametrized by θ, N (0, σ2I) is the added
Gaussian noise at every step, and α, γ, σ are functions of the iteration step k, referred to
as the noise schedule.
Training of the DDPM proceeds by drawing a clean sample x0 from the dataset, selecting
a random denoising iteration step k, and adding noise εk to produce a corrupted sample.
The DDPM then predicts the added noise. The final objective is a simple mean-squared
error:

L = MSE(εk, εθ(x0 + εk, k)) . (2.3)

In practice, once trained, diffusion models generate “new” data by starting from random
Gaussian noise and applying the learned denoising steps iteratively. Despite their simplicity,
these models provides the foundation for diffusion policies.

2.3.2 Diffusion for Visuomotor Policy Learning

Although DDPMs are typically applied to image generation, Chi et al. [10] extend them to
the problem of visuomotor policy learning. This requires two central modifications to the
original formulation: (i) changing the representation of the output x from images to robot
action sequences and (ii) conditioning the denoising process on the robot’s observations Ot.
The remainder of this subsection summarizes their approach.

Closed-Loop Action-Sequence Prediction

In robotics, predicting only a single action is often insufficient, as this can result in unstable
behavior. To address this, diffusion policies predict entire sequences of actions, thereby
encouraging temporal consistency. Specifically, at time step t, the policy processes the
most recent TO observations (observation horizon) and predicts a sequence of Tp actions
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(prediction horizon). From this sequence, Ta actions (action execution horizon) are
executed before re-planning. Typically, Ta is chosen to be smaller than Tp.
This formulation balances temporal consistency and responsiveness. Actions remain
coherent over the prediction horizon, while re-planning enables adaptation to unexpected
observations. Moreover, it naturally supports receding horizon control [36], where the
next prediction is warm-started with the unexecuted actions from the previous prediction,
further improving action smoothness.

Conditioning on Observations

Diffusion policies model the conditional distribution p(At | Ot), where At denotes the
actions to be predicted and Ot the current observation history. This contrasts with Janner
et al. [24], who model the joint distribution p(At,Ot). Conditioning the actions directly
on observations avoids the need to infer future states, leading to faster inference and more
accurate action prediction. Formally, the reverse diffusion step from Eq. 2.2 is modified to

Ak−1
t = α(Ak

t − γεθ(Ot,Ak
t , k) +N (0, σ2I)) (2.4)

where εθ is the noise-prediction network conditioned on both the observations Ot and
current denoising step k. The training loss remains a mean-squared error:

L = MSE(εk, εθ(Ot,A0
t + εk, k)) . (2.5)

By excluding observations Ot from the output of the denoising process and using them
only as conditioning input, inference becomes significantly faster and more suitable for
real-time control. This design also facilitates end-to-end training of the vision encoder.

Network Architecture

Chi et al. [10] evaluate two network architecture types for the noise prediction network εθ:
Convolutional Neural Networks (CNNs) [41] and Transformers [46] (cf. Fig. 2.3). In this
work, we focus exclusively on the CNN-based variant.
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Figure 2.3: Diffusion policy overview. a) General formulation: the policy is conditioned on
a sequence of recent observations and predicts a sequence of future actions.
b) CNN-based variant: observation features are applied to the network through
FiLM conditioning, and the action sequence is generated by iterative denoising.
c) Transformer-based variant: in each decoder block, observation features
are integrated using multi-head cross-attention. (Figure from Chi et al. [10])

The CNN-based diffusion policy builds on a 1D temporal CNN introduced by Janner
et al. [24], with several modifications. Some of these modifications include condition-
ing action generation on observation features Ot using Feature-wise Linear Modula-
tion (FiLM) [39] and the current denoising step k. Additionally, only the action trajectory
is predicted instead of the concatenated observation-action trajectory, and the goal state
conditioning is removed.
For visual encoding, a ResNet-18 network is employed to process raw camera images.
Separate encoders are employed for each camera view, and their feature outputs are
concatenated to form the observation embedding Ot. This embedding is then applied
channel-wise to every convolution layer of the noise-prediction network through FiLM.
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3 Related Work

Tactile sensing is a key modality in advancing contact-rich robotic manipulation [6],
[14], [13], [33], complementing vision by providing information about forces [21], [16],
[42], texture [7], [34], and slip [9], [52], [15]. Tactile feedback is increasingly being
integrated into learning-based manipulation frameworks. In particular imitation learning
has emerged as a common paradigm where tactile sensing is used to enhance the obser-
vation space to improve performance in contact-rich manipulation tasks [17]. Building
on this trend, prior work can broadly be divided into two categories: approaches that
use tactile feedback as part of the state representation, and approaches that incorporate
tactile sensing directly into the action representation.

3.1 Tactile Sensing for State Representation

Most existing work only uses tactile feedback as an additional observation modality to
inform actions rather than as a direct control signal. In these approaches, tactile sensing
enriches the state space but does not explicitly shape the robot’s action representation.
Tactile data is often encoded and combined with visual or proprioceptive inputs to improve
perception, but the action space remains purely positional or joint-based.
A large part of research focuses on the fusion of visual and tactile data for imitation
learning. Works such as 3D-ViTac [23] and GelFusion [25] integrate tactile and visual
signals into a unified latent representation, enabling policies to overcome visual occlusion
or leverage contact information during manipulation. Similarly, TactileAloha [19] and
FreeTacMan [48] demonstrate that tactile features combined with visual observations
improve success in contact-rich manipulation tasks compared to vision-only approaches.
However, in these systems the policy ultimately outputs standard joint or Cartesian
commands, leaving tactile feedback as passive context.
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Several studies exploit tactile sensing for contact-aware grasping or failure recovery. For
instance, Sharma et al. [43] demonstrate how tactile feedback can mitigate covariate shift
in imitation learning by identifying and recovering from failed grasps. Han et al. [20]
show how tactile feedback helps predict grasp success and Mao et al. [35] present how
tactile feedback helps achieve fine bimanual pinch grasping. Yet again, all attained through
richer state embeddings from tactile sensing.
Other approaches emphasize learning from tactile-rich demonstrations. MimicTouch [50]
builds on non-parametric imitation learning, where tactile and audio embeddings together
with the robot end-effector pose are matched against a demonstration library to retrieve a
nearest-neighbor-based action prediction. Online residual reinforcement learning is then
used to adapt the policies learned from human demonstrations for robotic execution. Liu et
al. introduced ViTaMIn [32], an embodiment-free manipulation interface that integrates
vision and custom fin-ray finger tactile sensors into a hand-held gripper based on the
Universal Manipulation Interface (UMI) from Chi et al. [11]. They propose a multimodal
representation learning strategy to obtain a tactile representation that captures essential
contact properties, such as the object’s in-hand pose and gripper’s deformation. Ablett et
al. [1] leverage a see-through visuotactile fingertip sensor attached to the end-effector
of a robot to enhance imitation learning via kinesthetic teaching. They introduce tactile
force matching, transforming recorded estimated contact forces into replay trajectories
using an impedance controller. The resulting robot demonstrations are then used to
train policies for contact-rich tasks, such as door-opening. This work conceptually aligns
with DexForce [8], which leverages contact forces, measured on a robotic hand with F/T
sensors during kinesthetic demonstrations. By converting these forces into force-informed
position targets via an impedance controller, the robot can replay the demonstrations,
yielding trajectories suitable for policy learning. All these methods highlight the utility
of tactile information in demonstrations, but tactile feedback remains an auxiliary signal
rather than a directly controlled output.

3.2 Tactile Sensing for Action Representation

While most prior work treats tactile sensing as a passive observation channel, recent
efforts have begun exploring its role in shaping the action space itself. Instead of passively
conditioning perception, these methods aim to regulate actions through tactile signals,
marking an important step toward contact-aware control.
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One prominent example is the work from Xu et al. [49], who developed the TactAR
teleoperation system to collect demonstration data with real-time visual tactile/force
feedback. Building on this data, the authors propose a Reactive Diffusion Policy, where a
latent diffusion policy predicts action chunks in latent space at low frequency, while the
fast asymmetric tokenizer refines these latent actions at high frequency using real-time
tactile feedback, effectively acting as a learned impedance controller. While their method
emphasizes closed-loop force control in task space, our approach focuses on local grasp
dynamics, where grip force and gripper width are themselves actions predicted by the
policy. By embedding forces directly into the action representation, our method provides
finer-grained control at the contact interface. Furthermore, while the reactive diffusion
policy separates planning and reactive refinement into two subsystems, our single diffusion
policy jointly predicts the robot pose, grasp width, and grasp force trajectories, yielding a
simpler and more transparent architecture.
The work most conceptually related to ours is by Adeniji et al. [2]. They introduce the
Feel-the-Force framework, which also incorporates tactile sensing directly into the action
space. Using human demonstrations collected with a tactile glove, their policy predicts
gripper end-effector poses together with grasping forces, which are then executed through
a PD force controller. This approach, however, relies on a calibrated setup and a reset
alignment between the human hand and robot gripper, as well as manual annotation
of semantic keypoints to initialize scene representations. Moreover, their execution is
constrained by binarized gripper states and requires the force controller to converge
before the robot advances to the next action, which slows execution and limits adaptability.
By contrast, our method learns directly from robot-embodied demonstrations through a
hand-held gripper, avoiding cross-domain retargeting. Instead of a binary gripper state,
we predict continuous grip width and target forces, enabling smoother and more precise
control. A dual-mode controller scheme decides when to regulate grip width versus grip
force, allowing execution to proceed without waiting for force convergence and enabling
adaptation to real-time tactile feedback.
Together, these works demonstrate the promise of incorporating tactile sensing into
the action space. Yet, they either remain task-space oriented or rely on rigid execution
protocols. Our approach advances this direction by directly coupling continuous grip force
control with diffusion policy learning from robot-embodied tactile data, enabling more
adaptive and contact-aware manipulation.
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4 Methods

In this work, we introduce a Force-Aware imitation learning framework to learn grasp-
ing policies from demonstration data. To capture detailed contact interactions during
manipulation, we integrate the GelSight Mini sensor into a custom-built robotic gripper,
enabling high-resolution tactile feedback at the fingertip. From the sensor’s raw tactile
images, we extract estimates of the applied contact forces using Finite Element Analysis
for Tactile Sensing (FEATS) (cf. Sec. 2.1.2). This force information is integrated as both
state and action in a diffusion policy, which is trained to replicate human demonstrations
not only in terms of gripper motion, but also by explicitly predicting and controlling the
target grip force applied to the object. This framework is designed to generalize across
tasks requiring either strong or delicate manipulation. The following sections describe the
gripper hardware, data collection and processing pipeline, the design of the Force-Aware
diffusion policy, and the implementation of closed-loop force control for deployment on a
real robot.

4.1 Gripper Hardware

Our approach relies on two closely related grippers: an adapted Universal Manipulation
Interface (UMI) gripper for demonstration data collection, and a custom-built actuated-
UMI gripper for robotic deployment (cf. Fig. 4.1).
For demonstrations, we use a modified version of the UMI gripper [11], a hand-held
gripper designed to allow direct transfer of human manipulation skills to robotic systems.
Our modified version of the UMI gripper replaces the original GoPro camera with an
Intel RealSense D405, which provides in-hand RGB images and is tracked via OptiTrack1
markers for precise motion capture. The standard elastic TPU fingers are replaced with

1OptiTrack is a real-time motion capture system with precise 6DoF tracking: https://optitrack.com
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Intel RealSense D405

OptiTrack Markers
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Figure 4.1: Side-by-side comparison of the adapted UMI gripper (left) used for demon-
stration data collection, and the actuated-UMI gripper (right) used for robotic
deployment. Both designs feature an Intel RealSense D405 camera, a GelSight
Mini tactile sensor (mounted on one fingertip), OptiTrack markers for motion
tracking, and ArUco markers for grip width measurement. Sensor placement
and overall geometry are matched to enable direct transfer of learned policies
to the actuated-UMI.

rigid fingers. One finger is fitted with a GelSight Mini sensor at its fingertip, and the other
finger holds a shell of the GelSight Mini sensor with a matching gel pad but no electronics.
In addition, we attach ArUco2 markers to each finger and use the in-hand Intel RealSense
D405 camera to track their positions, enabling precise measurement of the grip width.
To deploy learned policies on a real robot, we developed the actuated-UMI gripper3.
2ArUco markers are square markers consisting of a wide black border and an inner binary matrix
that determines their identifier: https://docs.opencv.org/3.4/d5/dae/tutorial_aruco_
detection.html

3The Actuated UMI Gripper is a fully 3D-printable, open-source, modular, and cost-efficient robotic gripper
based on the original UMI design: https://actuated-umi.github.io
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Powered by a single DYNAMIXEL XL430-W250-T motor, this gripper uses a belt-driven
mechanism to synchronously actuate both fingers. Two coil springs, one per finger, return
the gripper to its open position when torque is released. The geometry mirrors the
adapted hand-held UMI gripper. All sensors and markers, including the GelSight Mini,
the Intel RealSense D405, the OptiTrack markers, and the ArUco markers are positioned
identically, enabling seamless transfer of policies learned on demonstration data. The
actuated-UMI supports multiple control modes, such as position, velocity, Pulse Width
Modulation (PWM) and operates at approximately 50Hz, making real-time force control
feasible.

4.2 Data Collection

By using the adapted hand-held UMI gripper, we are able not only to demonstrate the
required motions, but also to directly apply the necessary contact forces for each task. Cap-
turing both gripper kinematics and high-resolution tactile feedback during demonstrations
enables us to record the force profiles essential for learning policies that require precise
grip control, something not achievable with conventional teleoperation or kinesthetic
teaching methods (cf. Fig. 4.2).
During each demonstration, we record synchronized streams of all relevant sensor data:

• RGB images from the Intel RealSense D405 camera (848× 480× 3).
• GelSight Mini tactile images (320× 240× 3).
• Gripper pose via OptiTrack, tracking the rigid body frame defined by the marker

constellation.
• Grip width from the ArUco markers on the fingers, with positions determined by

the in-hand Intel RealSense D405 camera.
• Force distribution estimates computed from each GelSight Mini image using the

FEATS model.

For the gripper pose, we record the position as 3D coordinates and the rotation as a 6D
feature representation [53], avoiding ambiguities in orientation encoding. All sensor data
are acquired using the Robot Operating System (ROS), stored in rosbags with reliable
communication settings (reliability: reliable, history: keep_all, depth: 10) to
prevent data loss.
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Figure 4.2: Demonstration setup using the adapted hand-held UMI gripper. Right: An
expert performs a task using the adapted hand-held UMI gripper. Top left:
In-hand RGB camera view with ArUco markers for grip width measurement.
Bottom left: GelSight Mini tactile image and corresponding FEATS normal
force estimate, visualizing the contact interaction and force distribution during
demonstration.

After recording, we synchronize all sensor streams to the GelSight Mini images, which
operates at 25Hz and act as the reference clock. For each GelSight Mini timestamp,
we associate the temporally closest RealSense D405 image, OptiTrack and grip width
measurement with a tolerance of 0.4 s. This ensures that every sample in the trajectory
contains a complete set of sensor observations. The force estimations from FEATS are
already timestamped identically to the corresponding GelSight Mini images and thus
require no further alignment.
In practice, sensor data loss is rare, but occasional missing grip width values can occur if
ArUco markers are temporarily occluded or overexposed. In such cases, missing values are
linearly interpolated from nearby valid measurements to maintain a complete time series.
We trim each demonstration to exclude irrelevant data before initial contact and after
task completion. For this, we use a threshold of −0.5N on the estimated total normal
force. To account for preparatory and finishing actions, we extend the cropped window by
three seconds at both the start and end of each trajectory. This standardizes the sequence
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boundaries while preserving all relevant manipulation data. Finally, we subsample each
demonstration by retaining every fourth data point. This reduces the dominance of idle or
static periods in the dataset, pushing the training set to represent more meaningful action
phases.

4.3 Force-Aware Diffusion Policy

We build on the diffusion policy introduced by Chi et al. [10], using the 1D temporal
CNN variant with FiLM conditioning [39] (cf. Sec. 2.3.2). To incorporate tactile feedback
into the diffusion policy in a physically meaningful and interpretable way, we extend the
observation and action spaces beyond those used in prior work [10], [11]. Each policy
input at time t includes:

1. An in-hand RGB image from the Intel RealSense D405 camera, downsampled to
96 × 96 × 3 for computational efficiency without sacrificing the essential visual
context.

2. The gripper pose, consisting of 3D position coordinates and 6D rotation feature
representation [53] providing an unambiguous and continuous encoding of spatial
orientation.

3. Grip width, calculated as the Euclidean distance between the centers of the ArUco
markers on the two fingers, measured in the Intel RealSense D405 image.

4. Tactile feedback is represented by a force estimate, which we extract from each
GelSight Mini tactile image using a pretrained and fixed FEATS model. Although
FEATS outputs a spatial distribution of normal force, we integrate over the discretized
force distribution to obtain the total normal force. This scalar value is used, as it
directly corresponds to the quantity regulated during closed-loop force control on
the gripper.

The diffusion policy is designed to predict action trajectories consisting of the absolute
target pose, target grip width gd, and target grip force fd, each over a fixed prediction
horizon of 32 and action execution horizon of 16. The observation horizon comprises the
two most recent observations, which allows the policy to capture short-term context for
decision-making (cf. Fig. 4.3). By incorporating both force and grip width as elements of
the state and action space, these quantities are used for conditioning the model as well
as being treated as output variables during the denoising process. This design ensures

19



x: Action Emb

x: Action Emb
Linear

O
bservation 

Observation Encoder

Conv1D

Conv1D

Conv1D

Conv1D

Conv1DLinear

FiLM
conditioning

Action Trajectory

1D Temporal CNN

Figure 4.3: Schematic of the Force-Aware diffusion policy architecture. Visual, proprio-
ceptive, and tactile observations are encoded and provided as input to a 1D
temporal CNN with FiLM conditioning. The model predicts action trajectories
including absolute end-effector pose, grip width, and grip force. This structure
enables closed-loop force control of the gripper during manipulation.

20



that the current force and grip width observations directly influence the predicted action
trajectory, including the target force and target grip width at each step. As a result, the
model’s predictions align with current observations, mitigating the risk of implausible or
unstable grasping behavior. This enables the policy to anticipate and regulate the amount
of force required for subsequent steps.
The policy is trained using a mean squared error loss on the noise added during the de-
noising process. We use the publicly available implementation of the diffusion policy from
LeRobot4 with modifications to support our extended observation and action modalities.

4.4 Policy Deployment and Gripper Control

Including both target grip width and target force in the action space allows us to capture
both positional and force-related aspects of manipulation. Target grip force is the relevant
control variable during object contact because it enables closed-loop force control. However,
target grip width is required to guide finger positioning during phases when there is no
contact, such as when approaching, grasping, or releasing an object. Without explicit grip
width actions, the policy would lack the means to open or close the gripper accurately
outside the contact phase. This dual-action design reflects how humans intuitively adjust
both finger placement and applied force during object manipulation.
To deploy learned policies on the actuated-UMI gripper, we therefore implement a dual-
mode control strategy that switches between grip width control and force control based on
the current interaction phase (cf. Fig. 4.4). This strategy allows the robot to execute both
pre-contact motions and in-contact, closed-loop force control. The diffusion policy outputs
both a target grip width gd and a target force fd at each step. The controller monitors both
the target force and the estimated contact force f̂ , computed from FEATS using the latest
GelSight Mini image IGS . If both the target and estimated force are below −0.5N, the
system assumes that the robot is in contact with the object and switches to force control.
The switching threshold of −0.5N was selected based on the noise characteristics of the
FEATS model, ensuring that the controller only transitions to force control when actual
contact is confidently detected. The controller computes the force error e = f̂ − fd and
applies a PID controller to this error:

4LeRobot is a Hugging Face community providing models, datasets, and tools for real-world robotics in
PyTorch: https://github.com/huggingface/lerobot
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Figure 4.4: Control flow diagram for dual-mode gripper control. When both target and
measured force are below−0.5N, the controller switches to PID force control
using FEATS force feedback. Otherwise, the controller uses direct position
control based on the target grip width. All actions are mapped to motor
position commands for the actuated-UMI gripper.

∆g = KP e(t) +KI

∫

e(t)dt+KD

d

dt
e(t) (4.1)

where∆g is the incremental grip width adjustment. This value is added to the current grip
width and sent as a position command to the internal PD controller of the DYNAMIXEL
motor. The force control loop runs at 25Hz, synchronized with GelSight Mini image
acquisition and FEATS prediction. During deployment, the diffusion policy runs at 7Hz,
while the lower-level force and position controllers operate at higher rates to bridge the
gap between high-level action selection and real-time motor actuation. If either the target
or measured force is above −0.5N, the controller assumes the robot is not in contact and
directly sends the target grip width gd to the internal PD controller of the DYNAMIXEL
motor.
A PID controller is chosen for force control to balance responsiveness and stability. A small
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integral gain is included to reduce steady-state errors that can arise in phases where the
force does not vary rapidly, helping to eliminate offsets that a pure PD controller may
leave uncorrected. Output limits with anti-windup are applied to ensure the integral term
cannot accumulate beyond actuator limits. Controller gains and output limits are tuned
based on observed system performance.
To further ensure seamless transfer from demonstration data to robot execution, two
calibrations are performed. First, hand-eye calibration is carried out using the method
of Tsai and Lenz [44], aligning the OptiTrack world frame with the robot base. This
transformation allows us to directly command end-effector positions to the robot in its
own base frame during policy execution. Second, a linear mapping between grip width,
measured as the ArUco marker distance, and motor position is estimated via least squares
by slowly closing the actuated-UMI gripper and recording both quantities. This ensures
that grip width values predicted by the policy can be accurately converted into motor
commands during deployment.
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5 Experiments

In this chapter, we present the experimental evaluation of our proposed method using two
robotic manipulation tasks with differing physical interaction demands. The experiments
focus on comparing input modalities to the diffusion policy, particularly the impact of
incorporating tactile feedback. We evaluate both task success and imitation quality. The
following sections describe the experimental design and detail the experimental setup
and results for each task.

5.1 Experimental Design

We evaluate our method using two distinct robotic manipulation tasks that cover a range
of force requirements. The Plant Insertion Task involves high-force contact to insert a
plastic plant into real soil, while the Grape Extraction Task requires delicate, low-force
manipulation to remove a real grape from a toothpick without damaging it. In the
following, we describe the choice of input modalities, baseline configurations, general
experimental setup, and evaluation metrics used for the experiments.

5.1.1 Input Modalities and Baselines

All trained diffusion policies receive multimodal input, combining proprioceptive1 and
exteroceptive2 signals to support both coarse and fine-grained manipulation. The input
always includes the robot’s End-Effector (EE) pose and grip width, as well as the RGB
image from the Intel RealSense D405 camera mounted on the actuated-UMI gripper (cf.
Sec. 4.1). The key variable among the evaluated models is the use and format of tactile

1Proprioception is the perception of the body’s position and movement [45].
2Exteroception refers to sensing external stimuli such as sight, smell, hearing, touch, and taste [45].
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feedback from the GelSight Mini sensor. In this section, we evaluate three strategies
that differ in how (or whether) tactile sensing is used. Our goal is to understand how
tactile information contributes to task success and force-aware behavior. For simplicity, the
following descriptions focus only on the differences in tactile sensing and gripper-related
state and action modalities. Other input and output components of the diffusion policy
remain consistent across all strategies and are described in Sec. 4.3. Each policy is trained
for 60000 steps. A summary of the different strategies can be found in Tab. 5.1.

Force-Aware Strategy
Input Modalities Vision, EE pose, grip width, tactile (force)
Action Space Target EE pose, target grip width, target force
Force Control Strategy Explicit force control (closed-loop via estimated force)

Tactile-Aware Strategy
Input Modalities Vision, EE pose, grip width, tactile (image)
Action Space Target EE pose, target grip width
Force Control Strategy No force control (reactive to tactile image)

Vision-Only Strategy
Input Modalities Vision, EE pose, gripper state (open/closed)
Action Space Target EE pose, gripper command (open/close)
Force Control Strategy No force control (open-loop in force space)

Table 5.1: Comparative summary of the proposed method and baselines with respect to
input modalities, action space, and force control strategy. While all policies
share visual and proprioceptive inputs, they differ in whether and how tactile
sensing is incorporated. These differences influence both the structure of the
action space and how the gripper can be controlled.

Proposed Method: Force-Aware Strategy

Our primary method uses force estimations from the pretrained FEATS model as tactile
input. The diffusion policy receives the total normal force and absolute grip width as
inputs and predicts the target force and target grip width. Incorporating a single force
signal results in an interpretable value that is used during both state encoding and action
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generation. This allows for closed-loop force control, in which the robot explicitly controls
the force it applies to an object.
Using a dual-mode controller, this approach distinguishes between a no-contact phase,
where only the gripper width is controlled, and a contact phase, where the interaction
force is actively regulated. This distinction is critical for fine manipulation and handling
delicate objects. Without reliable contact detection and an explicit target force, the policy
would lack a reference for closed-loop force control. See Sec. 4.3 and Sec. 4.4 for a more
detailed description of our proposed method.

Baseline 1: Tactile-Aware Strategy

In this baseline, we provide the diffusion policy with the raw tactile image from the
GelSight Mini alongside the input from the RGB camera. Both are resized to 96× 96× 3
and processed using separate visual encoders. The policy neither receives an explicit force
signal nor predicts a target force. Rather, it only predicts the target grip width, i.e., the
desired finger distance. Absolute grip width is used instead of relative motion to prevent
prediction error accumulation over longer time horizons.
With this setup, tactile sensing is used more passively, primarily to estimate contact state,
but not to perform explicit force control. The robot implicitly reacts to tactile feedback
through visual features. Accordingly, this policy cannot actively control contact forces,
though it may still benefit from situational awareness.

Baseline 2: Vision-Only Strategy

As a minimal baseline, we evaluate a diffusion policy that receives no tactile input. This
policy operates using proprioception and vision only. Rather than using the continuous
absolute grip width as part of the state and action, we convert the gripper command into
a binary signal that indicates whether the gripper should be open or closed. This binary
signal is derived from the same demonstrations used for the other policies by applying
a threshold to the grip width. If the grip width falls below a predefined threshold, the
gripper state is labeled as closed (= 1), and otherwise it is considered open (= 0).
During inference, the policy only predicts whether to open or close the gripper. The
internal PD controller of the motor inside the actuated-UMI enforces this command by
moving the fingers to a position where the gripper is fully closed (i.e., the fingers touch).

26



Since the internal PD controller lacks an integration term, the fingers will continue to close
until the motor cannot overcome the mechanical resistance. This results in unmodulated,
coarse force application.

5.1.2 General Experimental Setup

All experiments are conducted using a real Franka Research 3 robot equipped with the
actuated-UMI gripper (see Sec. 4.1). The robot is controlled using Cartesian position
control from franky3. During inference, the robot moves with a relative velocity of
2%. Across all strategies, actuation of the actuated-UMI gripper relies on the internal
PD position controller of its DYNAMIXEL motor. The motor is controlled through the
dynamixel-api4. We use the Robot Operating System (ROS) for sensor data acquisition
and synchronization. Sensors and the policy run in separate ROS nodes, with the policy
operating at 7Hz.
For both tasks, we collected around 30 demonstrations using the UMI gripper (see Sec. 4.2),
all performed by the same expert. All diffusion policies are trained with an observation
horizon of 2, prediction horizon of 32, and action execution horizon of 16. We train
the diffusion policies using Denoising Diffusion Probabilistic Models (DDPM) with 100
denoising steps. For inference, we adopt Denoising Diffusion Implicit Models (DDIM)
with 10 steps to reduce the number of sampling iterations [10].
Each strategy is evaluated on 20 rollouts per task, across 4 different starting gripper
orientations to test generalization under varied initial conditions. For both tasks, object
and target positions were fixed throughout all demonstrations and rollouts.

5.1.3 Evaluation Metrics

We evaluate task performance using two complementary criteria: task success and imitation
quality. Task success is measured as the success rate computed across all evaluation rollouts
for a given strategy. Imitation quality is assessed by measuring how closely the force
patterns obtained via FEATS from a strategy’s learned policy trajectories match those from
the demonstrations. This similarity is measured using several statistical metrics as well
3franky is a high-level control library for the Franka robots: https://github.com/TimSchneider42/
franky

4dynamixel-api is a Python wrapper for the DYNAMIXEL SDK library, designed to control various DYNAMIXEL
motors: https://github.com/TimSchneider42/dynamixel-api
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as the Wasserstein-1 distance, all of which are computed with an equal-mass weighting
scheme.

Equal-Mass Weighting of Trajectories

Since trajectories differ in duration, pooling all samples would bias the statistics toward
longer trajectories. To ensure each trajectory contributes equally, we assign every trajectory
the same total weight and distribute that weight uniformly over its samples. For a set of
M trajectories with lengths nm, each sample in trajectory m receives a weight

wm,k =
1

M · nm

. (5.1)

Statistical Summaries

For each strategy’s rollouts and for the demonstrations, we compute the following statistics
using the equal-mass weighting scheme:

Weighted mean. The average applied force is computed as

µ =
∑

i

wixi , (5.2)

where xi is a force sample and wi is its assigned weight.

Weighted standard deviation. The variability under the same weighting scheme is
computed as

σ =

√

∑

i

wix
2
i − µ2 . (5.3)
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Weightedmedian. This is the force value at which the cumulative sum of weights reaches
0.5, meaning that half of the total trajectory-normalized weight lies below and half above
this value.

Minimum force. This is reported as the largest negative observed force value, indepen-
dent of weighting.

Wasserstein-1 Distance

To quantify the difference between the force distributions of the demonstrations and
rollouts, we use the Wasserstein-1 distance W1, also known as the Earth mover’s distance
[12]. For two 1D probability mass functions u and v, it is defined as

W1(u, v) = inf
π∈Γ(u,v)

∫

R×R

|x− y|dπ(x, y) (5.4)

where Γ(u, v) denotes the set of all joint distributions with marginal u and v. In our case,
u and v are the weighted empirical distributions of force values from the demonstrations
and from the rollouts of a given strategy, using the equal-mass weighting scheme described
earlier.
The W1 value corresponds to the “average amount” the force distributions from one set
would need to be shifted to match the other, expressed in the same unit as the force (N).
Smaller values therefore indicate that the forces measured during rollouts are more similar
to those of the demonstrations, while larger values indicate greater differences in either
magnitude or distributional shape.

5.2 Plant Insertion Task

In the Plant Insertion Task, the robot must grasp a plastic plant from a fixed start position
and insert it into a flower pot filled with real soil. After successful insertion, the robot
releases the plant. The main challenge is applying sufficient grip force to insert the plant
without losing grip. This task serves as a high-force manipulation scenario.
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5.2.1 Experimental Setup

Fig. 5.1 shows the experimental setup used for the Plant Insertion Task. The pot and plant
are kept at fixed positions on the workspace. Before each rollout, the soil is moistened
to increase cohesion and improve grip, helping the plant remain firmly in place after
insertion.
To standardize the initial conditions, the robot’s movement at the beginning of each rollout
is constrained. Specifically, the policy initially controls only the gripper. Once a grasp
is detected, the robot performs a predefined upward motion to take the plant from its
holder before giving full control to the policy.
Grasp detection is strategy-dependet:

• In the Force-Aware strategy, a grasp is assumed if the estimated normal force exceeds
a small threshold.

• In the Tactile-Aware strategy, grasp detection is triggered when the image difference
between a reference GelSight Mini image (pre-contact) and the current frame
exceeds a threshold.

• In the Vision-Only strategy, grasp is assumed when the grip width falls below a
closing threshold.

A rollout is considered successful if the plant remains upright in the soil without tilting,
falling, or touching the pot rim.

5.2.2 Experimental Results

Across 20 rollouts, the Force-Aware strategy achieves the highest success rate of 95% (cf.
Fig. 5.2). It consistently inserts the plant while maintaining a firm grip and ensuring
that the plant is standing properly in the soil. A successful rollout using the Force-Aware
strategy can be seen in Fig. 5.4. The Vision-Only baseline achieves a moderate success rate
of 85%, while the Tactile-Aware baseline performs the worst with a success rate of 65%.
Failures mainly occur when insufficient force is applied during travel or insertion, leading
to slippage or incomplete planting. This is particularly common in the Tactile-Aware
baseline since there is no direct force control.
Tab. 5.2 summarizes the weighted force statistics and Wasserstein-1 distances between
demonstrations and the three strategies. The demonstrations exhibit consistently high
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Figure 5.1: Experimental setup for the Plant Insertion Task. The image shows the Franka
Research 3 robot equipped with the actuated-UMI gripper in its initial state
before starting a rollout. The robot must grasp the plastic plant from its holder
and insert it into the blue pot filled with real soil.
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grip forces with a mean of −8.4N and a narrow spread, as described by the standard
deviation of 2.4N. The Force-Aware strategy reproduces the overall magnitude of the
demonstrations most closely, with a mean of −6.5N and a Wasserstein-1 distance of
1.92N. The 95% Confidence Interval (CI) of the Wasserstein-1 distance, obtained via 1000
bootstrap resamples, ranges from [1.04 N, 2.95 N], indicating robust similarity between
demonstrations and Force-Aware rollouts despite some variability. The Vision-Only baseline
also approaches the demonstration force range but with slightly larger deviation shown by
the Wasserstein-1 distance of 1.99N. The Tactile-Aware strategy deviates strongly, applying
significantly lower forces on average−3.4N and showing the largest Wasserstein-1 distance
of 5.07N, reflecting a clear mismatch in the force distribution.
To complement these summary metrics, Fig. 5.3 visualizes the weighted Empirical Cu-
mulative Distribution Functions (ECDFs) and histograms for demonstrations and rollouts.
The Wasserstein distance is directly related to the area between the two ECDF curves.
Closer curves indicate higher similarity, while shifts or gaps reveal systematic differences.
In our results, the Force-Aware and Vision-Only strategies produce ECDFs that lie closer to
the demonstrations, while the Tactile-Aware curve is clearly shifted toward weaker forces.
The overlapping histograms confirm this observation, showing that Tactile-Aware rollouts
rarely reach the higher grip forces seen in the demonstrations.
These differences reflect the underlying control principles. With closed-loop force control,
the Force-Aware strategy can actively target and maintain a firm grip force, enabling
stable insertion of the plant into the soil. In contrast, the Tactile-Aware strategy can only
use tactile feedback passively to detect contact without controlling the applied force. As
a result, it often falls short of the grip force demonstrated by the human, leading to
frequent failures. The Vision-Only baseline performs reasonably well in this high-force
setting because its binary open/close command effectively clamps the fingers together
with substantial force. Although the gripper is coarsely controlled, the force values happen
to be close to those seen in the demonstrations.
This correspondence shows that success in a high-force task depends directly on matching
the demonstrated force profile, with insufficient grip force leading to failure.
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Figure 5.2: Success rates for the Plant Insertion Task. The Force-Aware strategy achieves
the highest success rate at 95%, followed by the Vision-Only strategy at 85%,
and the Tactile-Aware strategy at 65%.

Metric (N) Demo Force-Aware Tactile-Aware Vision-Only
µ −8.4247 −6.5057 −3.3523 −6.4455
σ 2.3892 2.8899 3.0545 3.2459
x̃ −8.5755 −5.8804 −3.4873 −6.6978

min −16.2255 −17.4085 −10.3348 −17.0829
W1 – 1.9235 5.0725 1.9893

95% CI of W1 – [1.0397, 2.9496] [3.8453, 6.4105] [0.9899, 3.3032]

Table 5.2: Force metrics for demonstrations, proposedmethod and baselines in the Plant
Insertion Task. All statistics are computed using the equal-mass weighting
scheme. Reported values include weighted mean, standard deviation, median,
minimum force, and theWasserstein-1 distancewith 95% bootstrap confidence
intervals. All force metrics are reported in Newtons (N).
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Figure 5.3: Weighted ECDFs and histograms of force values for demonstrations, pro-
posed method, and baselines in the Plant Insertion Task. The ECDFs show
the cumulative fraction of samples at or below each force value, where over-
lap means similar distributions and shifts indicate bias. The overlapping
histograms highlight differences in force spread and magnitude between
demonstrations and control strategies.

34



Figure 5.4: Illustration of a successful rollout with the Force-Aware strategy in the Plant
Insertion Task. The plot shows the estimated normal force from FEATS and
the target force predicted by the diffusion policy over time. Snapshots at
three points along the trajectory include the external view of the robot, the
image from the Intel RealSense D405 camera mounted on the actuated-UMI
gripper, the GelSight Mini tactile image, and the corresponding FEATS normal
force distribution estimation.
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5.3 Grape Extraction Task

In the Grape Extraction Task, the robot must grasp a grape that is mounted on a toothpick,
remove it without crushing or slipping, and place it into a bowl. The task demands delicate
contact handling and minimal squeezing.

5.3.1 Experimental Setup

Fig. 5.5 shows the experimental setup used for the Grape Extraction Task. The setup again
involves fixed object positions. The grape is manually put on a toothpick before each
trial, and the target bowl remains in a constant location. As in the Plant Insertion Task,
the robot executes a constrained initial motion before policy control begins. In this task,
after grasp detection, the robot moves along the toothpick to detach the grape from the
toothpick, after which full control is handed over to the policy.
Grasp detection and control logic followed the same procedure as in the Plant Insertion
Task, with the same thresholds to trigger the transition from initial state motion to full
policy control.
A particular challenge of this task is that grapes are slightly deformable, which makes force
estimation with the GelSight Mini sensor more difficult. Since FEATS estimates forces
based on gel deformation, the additional deformation of the grape introduces ambiguity.
At higher applied forces, the grape deforms more significantly, which leads to less reliable
force estimates. This poses a real problem for closed-loop force control.
A rollout is considered successful if the grape is placed in the bowl intact and visually
undamaged, simulating a “salable” condition.

5.3.2 Experimental Results

In the Grape Extraction Task, across 20 rollouts, the Force-Aware strategy again achieves
the highest success rate at 85% (cf. Fig. 5.6), reliably removing grapes from the toothpick
without crushing them. A successful rollout using the Force-Aware strategy can be seen
in Fig. 5.8. The Tactile-Aware strategy performs reasonably well with a success rate of
60%, but often fails when the grip is too weak and the grape slips out of the fingers. The
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Figure 5.5: Experimental setup for theGrape ExtractionTask. The image shows the Franka
Research 3 robot equipped with the actuated-UMI gripper in its initial state
before starting a rollout. The robot must remove the grape from a toothpick
and place it in a bowl without damaging the grape.
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Vision-Only strategy fails entirely, as its binary gripper command applies excessive forces,
crushing the grapes.
Tab. 5.3 reports the weighted statistics and Wasserstein-1 distances. Demonstrations show
a low-force profile with a mean of about −3.6N and a standard deviation of 1.4N. The
Force-Aware strategy reproduces this distribution most closely, with a mean of −2.1N and
a Wasserstein-1 distance of 1.56N with a 95% CI of [1.04 N, 2.28 N]. The Tactile-Aware
strategy lies in a similar range with a mean of −1.99N and a comparable Wasserstein-1
distance of 1.63N with a 95% CI of [0.95 N, 2.41 N]. By contrast, the Vision-Only strategy
is far from the demonstrations, with an extreme mean of −25.4N and a much larger
Wasserstein-1 distance of 21.78N.
Fig. 5.7 shows the corresponding weighted ECDFs and histograms. The curves for the
Force-Aware and Tactile-Aware strategies are both close to the demonstrations, though
slightly shifted toward weaker forces, while the Vision-Only strategy has a strong shift
toward higher forces.
These differences once again reflect the control principles of each strategy. The Force-Aware
strategy benefits from its closed-loop force control, allowing it to apply just enough force
to firmly grasp the grape without crushing it. The Tactile-Aware strategy lacks explicit
force control but implicitly benefits from its tendency to apply smaller forces, which is
safer in this low-force setting. However, it sometimes fails when insufficient grip force
causes it to lose the grape. The Vision-Only strategy suffers from its coarse, binary gripper
command. This results in the gripper clamping too hard without modulation, which leads
to crushing the grapes every time.
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Figure 5.6: Success rates for the Grape Extraction Task. The Force-Aware strategy
achieves the highest success rate at 85%, followed by the Tactile-Aware strat-
egy at 60%. The Vision-Only strategy achieves 0% success and fails on all
trials.

Metric (N) Demo Force-Aware Tactile-Aware Vision-Only
µ −3.6209 −2.1277 −1.9932 −25.3917
σ 1.4344 1.8607 1.8443 9.9522
x̃ −3.5339 −1.8167 −1.7737 −26.2926

min −12.0623 −13.6696 −7.6022 −51.5901
W1 – 1.5634 1.6276 21.7809

95% CI of W1 – [1.0361, 2.2843] [0.9481, 2.4054] [18.8638, 24.6033]

Table 5.3: Forcemetrics for demonstrations, proposedmethod and baselines in theGrape
Extraction Task. All statistics are computed using the equal-mass weighting
scheme. Reported values include weighted mean, standard deviation, median,
minimum force, and theWasserstein-1 distancewith 95% bootstrap confidence
intervals. All force metrics are reported in Newtons (N).
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Figure 5.7: Weighted ECDFs and histograms of force values for demonstrations, pro-
posed method, and baselines in the Grape Extraction Task. The ECDFs show
the cumulative fraction of samples at or below each force value, where over-
lap means similar distributions and shifts indicate bias. The overlapping
histograms highlight differences in force spread and magnitude between
demonstrations and control strategies.
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Figure 5.8: Illustration of a successful rollout with the Force-Aware strategy in the Grape
Extraction Task. The plot shows the estimated normal force from FEATS and
the target force predicted by the diffusion policy over time. Snapshots at
three points along the trajectory include the external view of the robot, the
image from the Intel RealSense D405 camera mounted on the actuated-UMI
gripper, the GelSight Mini tactile image, and the corresponding FEATS normal
force distribution estimation.
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6 Discussion and Conclusion

This work investigated how tactile sensing can be incorporated not only as an observation
modality but also directly into the action space of imitation learning for contact-rich
manipulation. We introduced a Force-Aware diffusion policy that predicts target grip width
and target grip force jointly with the robot pose. In this formulation, the force enters
both the observation embedding of the policy and the action representation, producing
temporally consistent, force-aware action sequences. Demonstrations were collected
using an adapted hand-held UMI gripper equipped with a GelSight Mini sensor at one
fingertip, with normal forces estimated via the FEATS model. To enable policy transfer, we
developed the actuated-UMI gripper, whose geometry and kinematics match the hand-held
UMI gripper. We executed gripper actions through a dual-mode controller that switches
between grip width position control and closed-loop force control, depending on whether
the measured and predicted forces exceed a threshold.
We evaluated our approach on two real-world tasks that spanned opposite ends of the
force spectrum: a Plant Insertion Task requiring high-force contact to push a plastic plant
into real soil, and a Grape Extraction Task demanding delicate, low-force manipulation
to remove a grape from a toothpick without crushing it. Across these contrasting force
settings, the Force-Aware policy consistently outperformed baselines. Explicit, closed-
loop force control both improved task success and yielded applied forces closer to those
demonstrated by an expert. In comparison, the Vision-Only baseline was brittle. Its
binarized gripper control was sufficient when higher forces were preferable, but it failed
catastrophically when excessive force caused breakage. The Tactile-Aware baseline, which
relied on tactile sensing solely for observation, was able to detect contact but, without an
explicit action-level force target, it frequently applied insufficient grip forces that resulted
in failures.
Taken together, the results show that incorporating force directly into the action space and
closing the loop on it can substantially improve imitation learning policies for contact-rich
manipulation, enabling them to handle both delicate and high-force interactions with
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greater reliability. This work argues for Force-Aware imitation learning as a strong default
for contact-rich manipulation, showing that imitation learning for manipulation tasks does
not have to stop at kinematics. Adding force as an explicit action results in more reliable
and safer performance across diverse task demands. Our approach further illustrates how
high-level force targets can be integrated into simple dual-control schemes, providing a
practical way to use force alongside grip width as a target. Future work should investigate
how to incorporate richer tactile feedback into this framework, moving beyond a single
normal force value to include full normal and shear force distributions. Additionally,
replacing the hand-tuned contact threshold with an end-to-end learned contact-state
estimator could lead to more reliable switching between control modes. Finally, a broader
evaluation across a more diverse set of tasks would provide a stronger test of generalization
and adaptability.
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