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Abstract 
In order to design a controller or run a simulation, an appropriate mathematical model of an 
investigated system is necessary. Such a mathematical model is also utilized to describe the 
structural behavior of a mechanical system. Current methods to face the modelling challenges are 
limited to the description of predefined discrete points of a system. In order to model the 
mechanical behavior of an arbitrary point along a surface line or within a surface area, we propose 
an adaption of continuous Takagi-Sugeno Fuzzy Systems (TSFS) for structural mechanical 
systems. Consequently, the structural dynamics of specific points are modelled in a modal state 
space representation and utilized as subsystems of the fuzzy system. This approach leads to 
nonlinear differential equations containing the dynamics of all analyzed points and their 
interpolation. Thus, a continuous approximation of the properties between the discrete subsystems 
is possible, thereby outlining the main novelty of this concept. The proposed representation 
provides the advantages of an TSFS and is also applicable to fields such as model based 
controller design. The accuracy and performance of our approach is verified by an experimental 
setup and measurements of the system behavior in the time domain. 
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1 INTRODUCTION 

Today, models are used in nearly every discipline to 
characterize a system’s specific behavior or its 
relations. An example taken from biology is the 
modeling of population dynamics [1]. Within the 
domain of industrial management, relational models 
are used to describe numerous influences affecting 
production [2]. In the field of machine tools, 
especially considering the cutting process, the 
knowledge of the structural behavior is of great 
importance. Such a model can be utilized e. g. for 
analyzing transient excitation responses or for 
defining an active vibration compensation 
controller [3]. The specification of a similar model, 
which characterizes the structual dynamics of a 
system using a predefined amount of discrete 
positions, is state of the art. A good overview 
regarding this topic is given by [4, 5]. To the best of 
the authors’ knowledge, examination of the 
structural dynamics  within a specified area of an 
object has not been investigated until now. For this 
purpose, we propose a method from computational 
intelligence (CI), an adapted Takagi-Sugeno fuzzy 
system (TSFS), to achive this goal. 

In the past, CI has been applied to a wide range of 
research tasks in the domain of machine tools, e. g. 
control tasks [6, 7] or the description of machining 
processes [8]. An approach for modelling a 
mechnical system, which partly includes structural 
dynamics, was presented in [9, 10]. For this 
purpose, both approaches utilize TSFS. The first 
publication focuses on a universal specification of 
the model description. Therein, the authors take 

advantage of the inherent stability condition of 
quadratic Lyapunov functions, which analytically 
guarantees a correct system behavior. This 
approach is demonstrated using an inverted 
pendulum on cart as an application example. The 
second publication is devoted to modeling as well as 
to controller design. In contrast to [9], the object of 
investigation is a building. The presented methods 
were proven to allow a description of the nodal 
system behavior. The definition of a TSFS in modal 
representation has not been mentioned. This leads 
to a model that is capable of specifying the 
structural dynamics of discrete points. Compared to 
this, a fuzzy frequency response estimation from 
experimental data for mechanical structures of 
aircraft and aerospace vehicles is presented in [12]. 
The primary objective is to take uncertainties into 
account and to describe the system’s boundaries in 
magnitude and phase of a bode plot. In the end, this 
new frequency response estimation can be used for 
control design and robust stability analysis. 

In this paper the proposed TSFS contains the 
structural dynamics of predefined points and the 
area inbetween. For this purpose we take 
advantege of a modal representation, which leads to 
no changes in the state vector of the interpolated 
TSFS subsystems.  

The remainder of the paper is organized as follows: 
Section 2 gives a short introduction to structural 
dynamics and fuzzy systems. In section 3, the novel 
modelling method is explained in detail. The 
performance of the proposed approach is confirmed 
in section 4 by experimental results. 



 
 

  
2 FUNDAMENTALS 

In this section the differential equations of a 
mechanical system, the modal state space 
representation of its structural dynamics and the 
basics of TSFS are recapitulated. 

2.1 Equations of motion 

Regarding a mechanical system with ܰ degrees of 
freedom (dof) and proportional viscous damping the 
motion equation is as follows �ࢗሷ ሺݐሻ + ሶࢗࡰ ሺݐሻ + ሻݐሺࢗ� =  ሻ. (1)ݐሺࢌ

Therein, ࢗሺݐሻ ∈ ℝே×ଵ is the (nodal) displacement 
vector, � ∈ ℝே×ே is the mass matrix, ࡰ ∈ ℝே×ே is 
the damping matrix, � ∈ ℝே×ே is the stiffness matrix 
and ࢌሺݐሻ  ∈ ℝே×ଵ is the external load vector. To 
shorten the notation the explicit formulation of time 
dependency will not be carried out in the following 
equations. According to [4] the matrices of the 
modal parameters natural frequency �௥, damping 
ratio �௥ and mass-normalized eigenvectors (mode 
shape vectors) �௥ ∈ ℝே×ଵ are defined as 

� = [�ଵ Ͳ⋱Ͳ �௡], (2a) 

� = [�ଵ Ͳ⋱Ͳ �௡] and (2b) 

� = [�ଵ,ଵ ڮ �ଵ,௡ڭ ڮ ே,ଵ�ڭ ڮ �ே,௡]. (2c) 

Thereby, it is �, � ∈ ℝ௡×௡ and � ∈ ℝே×௡ with ݊ ൑ ܰ 
as the number of observed modes. By using these 
parameter matrices subject to the criterions  ʹ�� = �Tࡰ�, � = �T�� as well as �ଶ = �T�� 
and the modal coordinates ࢗ௠, which satisfy the 
condition ࢗ =  ௠ (3)ࢗ�

eq. (1) can be transformed into ࢗሷ௠ + ሶ௠ࢗ��ʹ + �ଶࢗ௠ = �T(4) .ࢌ 

This differential equation characterizes the motion of 
a linear and proportionally viscously damped 
mechanical system with ݊ modelled (structural) 
modes. Note, all modal variables are denoted by the 
index ݉. 

2.2 Modal state space representation 

The system described by eq. (4) can be written as 
the subsequent state space model ࢗሷ௠ + ሶ௠ࢗ��ʹ + �ଶࢗ௠ = �T۰� = ۰௠�, (5a) ࢟ = ࢗ۱ = ۱௠ࢗ௠, (5b) 

in which ۰ ∈ ℝே×௣, � ∈ ℝ௣×ଵ and ۰௠ ∈ ℝ௡×௣ 
describe the p-dimensional input of the system. The 
q-dimensional system output is determined by  ࢟ ∈ ℝ௤×ଵ, ۱ ∈ ℝ௤×ே and ۱௠ ∈ ℝ௤×௡. 

 

Considering a new coordinate vector ࢞ = ଵT࢞] ڮ  ௡T]T࢞

   = ௠,ଵݍ] ሶ௠,ଵݍ ڮ ௠,௡ݍ  ሶ௠,௡]T,  (6)ݍ

where ࢞௥ = ௠,௥ݍ] ሶ௠,௥]Tݍ ∈ ℝଶ×ଵ, with ݎ = ͳ,… , ݊, 
contains the modal displacement ݍ௠,௥ and the modal 

velocity ݍሶ௠,௥. Similar to [5], this leads to the following 

modal state space representation for the rth mode: ࢞ሶ ௥ = [ሷ௠,௥ݍሶ௠,௥ݍ] = [ ୫,rT࢈ሶ௠,௥ݍ � − �rଶݍ௠,௥ − ʹ�௥�௥ݍሶ௠,௥] = [ Ͳ ͳ−�rଶ −ʹ�௥�௥] ௥࢞ + [ �T࢈୫,rT ] �       = ऋr࢞r + ऌr�, 

   

         
(7a) ࢟௥ = ௠,௥ࢉ] �] = ऍ௥࢞௥, (7b) 

where ࢈୫,rT ∈ ℝଵ×௣ and ࢉ௠,௥ ∈ ℝ௤×ଵ are the rth row of ۰௠ and the rth column of ۱௠, respectively. The 
dynamic matrix of the entire system ऋ ∈ ℝଶ௡×ଶ௡ is 
given by  

ऋ = [ऋଵ �⋱� ऋ௡]. (8) 

Complementary, the input matrix ऌ ∈ ℝଶ௡×௣ and the 
output matrix ऍ ∈ ℝ௤×ଶ௡ of the modal state space 
model are defined as 

ऌ = [ऌଵڭऌ௡] = [  
  �T࢈୫,ଵTڭ�T࢈୫,୬T ]  

  
, 

    
(9) 

ऍ = [ऍଵ ڮ ऍ௡] = ௠,ଵࢉ] � ڮ ௠,௡ࢉ �]. (10) 

Finally, the eqs. (6) to (10) conclude in the ensuing 
linear time invariant (LTI) system ࢞ሶ = ऋ࢞ + ऌ�, (11a) ࢟ = ∑ ௥௡௥=ଵ࢟ = ऍ࢞, (11b) 

which will be used in this study to describe the 
structural dynamics of mechanical systems. 

2.3 Takagi-Sugeno modelling 

Based on the definition of fuzzy sets in [11] and the 
description of fuzzy systems introduced in [13], a 
TSFS allows the description of a nonlinear system 
behavior as a combination of (local) linear systems. 
The included if-then rules of these TSFS consist of a 
premise part and a conclusion part. Within the first, 
the premise variables’ degree of membership to the 
fuzzy sets of the rule is determined. In the second 
part, functional relationships are formulated, which 
are combined in a weighted sum. Thereby, the 
result of each rule is a weighted degree of 
activation. 

Using a notation similar to [14], the ith model rule, 
with ݅ = ͳ,… , ܴ, of a TSFS with linear consequent 
functions can be stated as 

 



 
 

  
if ݌ଵ = �௜,ଵ and … and ݌௅ = �௜,௅, 
then {࢞ሶ = ࢞௜ۯ + ۰௜�,࢟ =  (12)              ,࢞௜࡯

where ݌௟, with ݈ = ͳ,… , -is the conceivably time ,ܮ
dependent premise variable and ܮ denotes the 
number of premise variables. Furthermore �௜,௟ is the 

fuzzy set corresponding to the lth premise variable 
of the ith rule and the local LTI system dynamic 
given by the matrices ۯ௜ , ۰௜ and ࡯௜. According to 
[11] a fuzzy set � is characterized by a membership 
function �ሺݑሻ, which associates each element ݑ out 
of the universe of discourse � with a degree of 
membership in the interval � = [Ͳ, ͳ]. The activation 
degree of the ith rule is defined as �௜ሺ࢖ሻ = ∏ �௜,௟ሺ݌௟ሻ௅௟=ଵ , (13) 

where ࢖ = ଵ݌] ڮ  ௅] is the collection of all݌
premise variables, which are elements of  � and �௜ሺ࢖ሻ ൒ Ͳ as well as ∑ �௜ሺ࢖ሻ�௜=ଵ > Ͳ. In other words, 
the and-operator is implemented as the dot product. 
This leads to the normalized activation degree of the 
ith rule ℎ௜ሺ࢖ሻ = �೔ሺ࢖ሻ∑ �ೕሺ࢖ሻ�ೕ=భ , (14) 

with ℎ௜ሺ࢖ሻ ൒ Ͳ and ∑ ℎ௜ሺ࢖ሻ�௜=ଵ = ͳ due to the 
normalization. Building on these definitions, the 
dynamics are expressed as ࢞ሶ = ∑ ℎ௜ሺ࢖ሻ�௜=ଵ ሺۯ௜࢞ + ۰௜�ሻ, (15a) ࢟ = ∑ ℎ௜ሺ࢖ሻ�௜=ଵ  (15b) .࢞௜࡯

Generally, the result of this dynamic is nonlinear.  It 
is called a blending of the linear subsystems, in 
which the weight of each subsystem ℎ௜ depends on 
the premise variables and the fuzzy sets’ 
membership functions. The type of fuzzy reasoning 
by eqs. (13) to (15b) is named sum-prod inference. 

 

3 TAKAGI-SUGENO BASED MODELLING OF 
STRUCTURAL DYNAMICS (TSSD) 

The goal of this section is to create a TSFS, which is 
able to model the structural dynamics of a 
mechanical structure. First, a new matrix is 
introduced, to link the modal state space 
representation in eqs. (11a) to (11b) with the well-
known receptance transfer function �ሺ�ሻ. Second, 
TSSD is developed by setting up an application-
oriented TSFS similar to eq. (12) and defining two 
problem-specific membership functions. 

3.1 Connection of notations 

Taken form [5] the elements of the transfer function 
matrix for a proportionally viscously damped system 
equivalent to eq. (4) are stated as �௝௞ሺ�ሻ = ∑ �ೕ��ೖ���మ − �మ + ௜ଶ�����௡௥=ଵ , (16) 

where the indices ݆ and ݇ represent the 
measurement point and the driving point, 
respectively. Furthermore �௝௥ denotes the jth 

element of the mode shape vector �௥ (rth column of � from eq. (2c)). In order to connect this definition 
with the state space model from section 2.2, eq. (16) 
is written as �௝௞ሺ�ሻ = ∑ ୡm,ౠrୠm,rౡ��మ − �మ + ௜ଶ�����௡௥=ଵ , (17) 

with c୫,୨r and b୫,r୩ being elements of the matrices ۱௠ and ۰௠, respectively. Note that the equality of 
eq. (16) and eq. (17) requires one constraint: All 
elements of the nodal system matrices ۰ and ۱, 
which describe the system’s input and output, must 
be either Ͳ or ͳ. Following this constraint, the modal 
input and output matrices (۱௠ and ۰௠), defined by 
eqs. (5a) and (5b), are composed of the elements 
from the mode shape matrix �. 

Based on this relation we introduce the new matrix 

�௦௦ = [  
  �ଵଵ Ͳ ڮ �ଵ௡ ͲͲ �ଵଵ ڮ Ͳ �ଵ௡ڭ ڭ ⋱ ڭ ேଵ�ڭ Ͳ ڮ �ே௡ ͲͲ �ேଵ ڮ Ͳ �ே௡]  

  
, 

 
(18) 

where �௜௝, with ݅ = ͳ,… , ܰ and ݆ = ͳ,… , ݊, are the 

entries of the eigenvector matrix �. Using  �௦௦ ∈ ℝଶே×ଶ௡ it is possible to calculate the modal 
state space model written in eqs. (11a) and (11b) 
directly from the nodal representation, which is more 
common. Therefore the subsequent equations 

ऌ = �௦௦T [  
  �T࢈ଵTڭ�T࢈୬T]  

  
 and 

 

 
(19) 

ऍ = ଵࢉ] � ڮ ௡ࢉ �]�௦௦ (20) 

show the link between the two representations. 

3.2 Definition of TSSD 

Relying on the presented theory in the previous 
sections we want to apply TSSD to a mechanical 
system described by the eqs. (5a) and (5b) as well 
as (11a) and (11b), respectively. Thereby, each pair 
of measurement and driving points is represented 
by one subsystem. This leads to the final TSSD 
representation in which the ith rule of the TSFS is 
stated as 

if ࢖௜௡ = �௜,௜௡ and ࢖௢௨௧ = �௜,௢௨௧, 
then { ࢞ሶ = ऋ࢞ + ऌ௜�,࢟ = ऍ௜(21)              ,࢞ 

where ࢖௜௡, ࢖௢௨௧ ∈ ℝଷ are the premise variables of 
each rule and �௜,௜௡ as well as �௜,௢௨௧ are the fuzzy 

stets of the ith rule, describing the geometric area of 
the measurement and driving point.  

This system operates in the following way: Prior to 
the application of the presented approach, the user 
determines a set of transfer functions at specific 
points on the test object’s surface. Combined with 
the membership functions, these points shape the 
fuzzy sets �௜,௜௡ and �௜,௢௨௧ for all i. Depending on the 



 
 

  
measurement and driving points, the premise 
variables have a specifiable degree of membership 
to all fuzzy sets. The final outcome is the 
displacement vector ࢟, which results from the 
weighted sum of all linear subsystems described by 
eq. (21). It is important to note, that in this eq. the 
dynamic matrix ऋ is independent of the fuzzy rules. 
As a consequence, no state of ࢞ changes its 
physical sense, which is a fundamental requirement 
of a TSFS. Because of a possible blending between 
the subsystems an approximation between the 
analyzed points becomes available. 

Since the transfer function is linear, switching the 
measurement and the driving point does not make a 
difference theoretically. Because of the utilization of 
a state space representation, every possible 
combination has to be taken into account to 
guarantee a fixed meaning of ࢞. As a conclusion, 
the number of rules for a fully described network is 
calculated as R = �ଶ. Furthermore, � denotes the 
combined number of measurement and driving 
points, which have been determined by the user 
beforehand. 

In the proposed approach, every fuzzy set is defined 
to have the same type of membership function, 
which has a significant influence on the final result. 
Before defining two function prototypes, we set up 
five requirements, which have to be fulfilled by every 
membership function: 

1. The image region of a membership function 
covers the whole interval � = [Ͳ, ͳ]. 

2. A membership function is continuous. 

3. The core of each fuzzy set consists of exactly 
one unique element, which is determined by a 
measurement point or a driving point. This 
specific point in space is described by the vector ࢖௖௢௥௘,௟ ∈ ℝଷ, with ݈ = ͳ,… , �. It is the only 

element of the fuzzy set �௟, whose degree of 
membership is equal to ͳ. Since ࢖௖௢௥௘,௟ is 

specific for �௟, the intersection of two fuzzy sets’ 
cores has to be the null set. 

4. If the Euclidean distance between an examined 
point ࢋ࢖ ∈ ℝଷ, i. e. one of the premise variables 
from eq. (21) and the core of an arbitrary fuzzy 
set ࢖௖௢௥௘,௟ ∈ ℝଷ, with ݈ = ͳ,… , �, decreases 

monotonously, then the associated degree of 
membership has to increase monotonously. 

5. For every element in the universe of discourse, 
i. e. for every point on the surface of the object, 
the sum of all degrees of membership is equal 
to ͳ. This can be regarded as a normalization, 
as mentioned in [14]. 

Due to the restrictions above a fuzzy set, e. g. �௟ 
with ݈ = ͳ,… , �, is characterized and named by its 
core element ࢖௖௢௥௘,௟, which is equal to the vector ࢖௟ 
representing the specific point. If a measurement or 
driving point is used in multiple rules, then the 
associated fuzzy set, i. e. the membership function 
has to be identical. This is also true for the case that 

a point is once used as a measurement point and 
another time as driving point. Therefore, the total 
number of points � is equal to the total number of 
fuzzy sets in the TSFS defined by eq. (21). 
The Euclidean distance between two points in space ࢖௜ and ࢖௝ is written as �௜௝ henceforth. 

3.3 Membership function concepts 

This section introduces two new concepts of 
membership function, which are supposed to fulfill 
the five aforementioned constraints. In addition to 
the definition, the function prototypes will be 
examined in a two-dimensional test environment. 

3.3.1 Membership function concept 1 

It is ࢖௘ ∈ ℝଷ the vector of the examined point, which 
can be any point on the object surface. The 
collection of all considered fuzzy sets is called 
termset of the linguistic variable � and denoted as �ሺ�ሻ [15]. Thereby, �ଵ is the first of the � fuzzy sets 
and the last one is �௉. The membership function of 
the fuzzy set �௜, with �௜ , �௝, �௞ ∈ �ሺ�ሻ, is defined as �௜ሺ࢖௘ሻ = ∏ �௘௝ி�ிೕ=ிభ, ிೕ≠ி೔∑ ቀ∏ �௘௝ி�ிೕ=ிభ,  ிೕ≠ிೖ ቁி�ிೖ=ிభ . (22) 

Expressed in words, the eq. (22) states: The degree 
of membership of the point ࢖௘ to the fuzzy set �௜, 
defined by the point ࢖௜, is calculated by a ratio of 
distances in space. In eq. (22) the numerator holds 
the product of the distances from the examined 
point to all other points, which characterize the 
considered fuzzy sets. The denominator uses the 
same calculation rule for all fuzzy sets in �ሺ�ሻ and 
sums up the results. 

3.3.2 Membership function concept 2 

Under the same conditions as mentioned in the 
previous subsection, the membership function of the 
fuzzy set �௜ is defined as 

�௜ሺ࢖௘ሻ = {  
  ͳ − �௘௜�̂௜∑ ͳ − �௘௝�̂௝ி�ிೕ=ிభ  �௘௜ ൑ �̂௜ ,

Ͳ  �௘௜ > �̂௜ .
 (23) 

with the parameter �̂௜ defining a distance where the 
point ݅ has an influence on the approximation of the 
examined point. Thus, this function prototype 
generates a seemingly piecewise linear relation 
between the distance and the degree of 
membership. However, due to the dependency of 
the Euclidean distances from ࢖௘ to the core 
elements of the fuzzy sets, which change 
simultaneously, the membership function in eq. (23) 
is nonlinear. In each case the distance of the 
examined point to one of the fuzzy set’s core 
elements equals or exceeds the associated distance 
parameter, the slope of �௜ሺ࢖௘ሻ decreases. 

Both of the introduced function prototypes fulfill all of 
the previously listed conditions and lead to nonlinear 
functions, that return the value ͳ if ࢖௘ =  ௜ and the࢖



 
 

  
value Ͳ if ࢖௘ = ݆ ௝ with࢖ = ͳ,… , � and ݆ ≠ ݅. The fifth 

requirement implies the benefit, by implementing 
this TSFS in software using one state-space 
system. 

3.3.3 Test of the membership function concepts 

Consider a not further specified arbitrary triangle in 
space, illustrated in figure 1. The points A, B and C 
mark the vertices, whereas M is the circumcenter. 
Because of this fact it is �஺ெ = �஻ெ = �஼ெ. 
Furthermore ࢘ indicates the direction in which a 
point T moves from M to A over the normalized time � with a constant velocity. Therefore, this scenario 
yields a strong relationship between the normalized 
time and the distanced between the point T and the 
vertices. There exist three fuzzy sets �஺, �஻ and �஼ 
defined by their core elements ࢖஺, ࢖஻ and ࢖஼ as well 
as their membership functions �஺ሺ࢖�ሻ, �஻ሺ࢖�ሻ and �஼ሺ࢖�ሻ, which depend on the test case. 

 

Figure 1 – Test environment for function prototypes 

Due to the chosen setup the degree of membership 

from ࢖� to all fuzzy stets at � = Ͳ is 
ଵଷ. In analogy to 

that the degree of membership at � = ͳ is ͳ for �஺ as 
well as Ͳ for �஻ and �஼. The two subsequent figures 
visualize the behavior of the different function 
prototypes from subsection 3.3.1 and 3.3.2, 
respectively. 

 

Figure 2 – Membership function concept 1 

 

Figure 3 – Membership function concept 2 

The figures 2 and 3 illustrate, that the two concepts 
of membership function fulfill all mentioned 
requirements. In case of the second concept, the 
distance parameters for all the fuzzy sets have been 
chosen equally as well as larger than the initial 
distance from the circumcenter and smaller than 
each side of the triangle. This determines the time in 
figure 3 at which �஻ሺ࢖�ሻ and �஼ሺ࢖�ሻ become zero. 
As mentioned beforehand, both function prototypes 
show a nonlinear characteristic. 

 

4 APPLICATION OF TSSD 

The validation of this approach was done by 
evaluating a series of measurements, which were 
carried out on an approximately two-dimensional 
steel plate mounted on four steel springs at the 
edges of the plate. The measurement points were 
arranged in a triangular grid shown by figure 4. Each 
side of the equilateral triangle is ͳͲͲ mm. The points 
B, C, D and F mark the midpoint of the related lines. 
The driving point O (also measured) was located at 

the position ࢖ை = [ͳͲ mm ͳͲ mm Ͳ mm ]T and 
the measurement point A was placed at  ࢖஺ = [ͳͲͲ mm ͳͲͲ mm Ͳ mm]T in relation to the 
global coordinate system. Note, that the positions of 
the points on the test surface as well as the relative 
positions of these points were chosen arbitraryly. 

Figure 4 – Sketch of the steel plate (top view) 



 
 

  
The goal was to show the performance of TSSD by 
comparing the measured system response of a 
specific point (here C) to the results computed by 
the TSFS in eq. (21) and the measured system 
response of the nearest point. The defined TSSD 
contains the dynamics of all illustrated points in 
figure 4, except C, resulting in 49 rules. As a 
measure for similarity the root mean square (RMS) 
was used. Considering two discrete signals �ௗ௘௦[݇] 
and �[݇] with K samples, the RMS of their 
difference �ௗ௜௙௙[݇] =  �ௗ௘௦[݇] − �[݇] is calculated as ܴܵܯ(�ௗ௜௙௙[݇]) = √ଵ௄∑ �ௗ௜௙௙ଶ [݇]௄௞=ଵ . (24) 

This is a nonlinear measure, where big deviations 
have a disproportionately high impact. 

Concerning the simulation, the inputs of all 
subsystems are the same recorded force excitation 
values provided by an impulse hammer. The outputs 
of the systems were calculated based on the modal 
parameters, which have been extraced beforhand. 
The results of the different TSFSs will be compared 
to three reference systems. They were chosen 
because of their minor deviation from the desired 
system behavior. Moreover the measurement points 
of the reference systems are the three closest to the 
measurement point of the target system. The 
approximation results of the transfer function from ࢖ை to ࢖஼ are summarized in table 1. The contained 
index describes the output point, whereby �ୡଵ and �ୡଶ represent the results for TSSD using both 
membership function concepts from section 3.3. For 
each signal the driving point was O, hence it does 
not show up in the notation of the signals. This 
example of application represents a special case, 
because the described theory allows a continuous 
and erratic shifting of measurement and driving 
point. The last two columns of the table contain the 
RMS values of the deviation from each system’s 
output to the true output �஼ , in which lower numbers 
represent a better approximation. The evaluation 
includes the examination of two different time 
intervals. The point in time ݐ = ͳͷ s is of interest, 
because the amplitude is down to less then ͷͲ % of 
the initial peak value. At ݐ = ͳͷͲ s, the amplitude 
has decreased to less then ʹ % of the initial peak 
value. These two statements apply to all signals. 

signal parameter ܴܵܯሺ�஼ − �௜ሻ [ͳͲ−6 m] 
௘௡ௗݐ   = ͳͷ s ݐ௘௡ௗ = ͳͷͲ s �஺ − ͳ͵.͹͵ Ͷ.͸ͺ͸ �஻ − ͳ͵.͹͹ ͷ.Ͷ͸͵ �஽ − ͳͷ.Ͷ͸ ͸.ͳ͹ʹ �ୡଵ − ͳͲ.Ͷ͹ Ͷ.Ͳͻ͵ �ୡଶ �̂஼ = ͷͳ mm ͳͲ.͹͹ Ͷ.Ͷʹ͸ �ୡଶ �̂஼ = ͳͲͳ mm ͳͲ.ʹͳ ͵.ͻͶͺ �ୡଶ �̂஼ = ͳͷͳ mm ͳͲ.ʹ͹ ͵.ͻ͹Ͷ 

Table 1 – Comparison of the RMS values 

Table 1 shows that both concepts of membership 
functions (outputs �ୡଵ and �ୡଶ) perform better than 
all three reference systems (outputs �஺, �஻ and �஽). 
For better readability, the best result of TSSD and 
the reference systems have been highlighted for 
each time interval. In contrast to the first 
membership function prototype, the second is 

adjustable by the distance parameter �̂஼. Increasing 
this parameter leads to a consideration of more 
subsystems, i. e. to a larger number of rules. Once �̂஼ exceeds the largest appearing distance between 
the examined point and one of the measurement 
points (�஼ீ = �஼ி), the effect is a change of the 
subsystems’ weighting. As a result of the 
experiments it revealed that the optimal value of the 

distance parameter �̂௜ varies for each target system.  

 

Figure 5 – Comparison of signals (time frame 1) 

 

Figure 6 – Comparison of signals (time frame 2) 



 
 

  
Furthermore, the figures 5 and 6 visualize the 
comparison of the best implementation of TSSD, 
i. e. the one from table 1 with the least RMS value 
(output �ୡଶ with �̂஼ = ͳͲͳ mm) and the best 
reference system (output �஺) derived from the 
extracted modal parameters with respect to the 
desired system (output �஼). Figure 5 shows the time 
response of the three systems immediately after the 
hammer impact and figure 6 illustrates the behavior 
after ͳͶ.͹ͷ s. Both plots visualize and confirm the 
results in table 1. Although the TSSD output �ୡଶ 
does not match the desired signal �஼  perfectly, it 
states a better approximation than the nearest point 
results �஺, reducing the RMS error by about 26 % for 
the short time interval and by about 16 % for the 
long time interval. 

 

5 CONCLUSIONS 

Within this contribution a novel approach on the 
modelling of structural dynamics has been 
presented. The proposed method requires 
predefined points and their dynamic behavior in 
modal representation, which shape the required 
subsystems. In order to allow a blending between 
the subsystems a Takagi Sugeno fuzzy system has 
been utilized. This allows an approximation of the 
dynamics between the analyzed points, providing 
the behavior of not explicitly examined areas of the 
test object. The regulation of this interpolation is 
user-defined. To secure a correct implementation 
five requirements for the interpolation were 
specified. Furthermore, we presented two possible 
realization options and benchmarked them by an 
experimental setup. The results show the potential 
of the proposed approach and validate the 
introduced theory. 
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