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Abstract—Deep Reinforcement Learning (DRL) has seen an
uptick in publications due to its impressive performance in a
variety of tasks. However, this comes at a cost since using a
deep neural network policy requires a huge amount of data to
learn from. Acquiring this data on a physical device is time
and resource expensive. Thus, DRL often relies on simulations,
since they provide vast amount of diverse training data faster
than real time. A major problem in this research area is
the reality gap, which describes the differences between the
simulated and the real world, making the policy transfer from
the virtual environment to a real robot brittle and difficult. In
this paper we propose a novel application of curriculum learning
to the area of domain randomization called Self-Paced Domain
Randomization (SPDR), which puts the Reinforcement Learning
(RL) policy “in the loop”. By letting the policy influence the
automatic generation of the curriculum of domain parameters
based on its current performance we can show that this leads
to performance increases and more stable policies when using
DRL methods, both in the simulated environments and when
applied to real-world platforms.

Index Terms—reinforcement learning, sim-to-real, deep learn-
ing

I. INTRODUCTION

The usage of (physics) simulators in robot learning to
train agents in a virtual environment has been proven quite
beneficial, especially for DRL methods. They not only able
to provide (almost) unlimited training data but can also easily
be configured for different environments and tasks. Problems
arise, however, when agents trained in such simulated envi-
ronments are transferred to a real robotic platform. The so-
called “reality gap”, which denotes the subtle differences be-
tween the simulation and the real world, poses a well known
challenge [1] for the trained agent to overcome. A number
of strategies have been proposed in the recent years which
attempt to address the reality gap in two main ways: Either by
increasing the accuracy of the simulator (e.g. by incorporating
real world data gathered from the robotic platform) [2] or by
finding ways to increase robustness of the trained agent (for
example by only providing noisy sensor data) [1]. While the
former method has the downside of producing very specific
policies, which do not generalize well (and might not even
work on different instances of the same robotic platform), the
latter method in the form of Domain Randomization (DR)
has seen multiple successful applications in the past [1, 3,
4]. In DR certain domain parameters of the simulation such
as for example the friction coefficients or the gravity constant
are varied during training to encourage robustness. However,
sampling the domain parameters using fixed training distribu-
tions, although showing promising results [5, 6, 7], might also
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be undesirable due to the increased learning complexity for
the agent created by high-variance distributions. Dynamically
updating the distribution could help with this but this leaves
open the question on which basis the distribution is adapted
during training.

One idea taken from supervised learning is the creation
of a curriculum, which varies the examples presented to the
model according to their estimated difficulty [8]. Applying
this technique to the aforementioned problem of updating the
domain parameter distribution allows for a gradually rising
level of difficulty, which is bound by the agents performance.
In this paper we present one possible attempt at implementing
this solution based on the Self-Paced Reinforcement Learn-
ing framework proposed by Klink et al. [9]. We call this
technique Self-Paced Domain Randomization (SPDR) and are
able to show that this not only improves training time but
also yields more stable agents which perform well on a wide
range of domain parameters (not only the ones they were
initially trained with). Compared to other distribution-varying
domain randomization methods such as Uniform Domain
Randomization (UDR) and Active Domain Randomization
(ADR) we not only achieve higher performance in one-shot
transfers to a real robotic platform but also are able to show
that the trained agent is able to better generalize beyond the
domain parameters used during training.

Contributions: We advance the state-of-the-art by introduc-
ing Self-Paced Domain Randomization (SPDR), a method to
decrease the reality gap by iteratively adapting the domain
randomization distributions according to the performance
of the agent. Using curriculum learning approaches allows
for an automated exploration of the search space, which is
comparatively easy to implement yet still provides good re-
sults even when compared to other state-of-the-art algorithms
such as ADR. Our method is independent from the used
RL algorithm and can be used in a variety of tasks and
environments. We validate our method by applying it both
to real world and simulation tasks and compare it against
other algorithms both in terms of overall performance and
achieved robustness.

The remainder of the paper is structured as follows:
First, we describe related work in addition to providing the
theoretical background of our approach (Section II). We then
continue with a description of SPDR in Section III before
presenting our evaluation in Section IV. Finally, we conclude
with a discussion our findings in Section V.



II. RELATED WORK

A. Curriculum Learning

Self-Paced Reinforcement Learning (SPRL) takes its basic
principles from the observed human and animal learning
behavior. By only gradually increasing the complexity of the
shown samples, it can be shown that the learning performance
and speed can be increased significantly [10]. This technique
was formalized for supervised learning approaches by Bengio
et al. under the term curriculum learning [8], in which the
trained model is exposed to examples in an order defined by
a curriculum. Ideally, this ordering is done by providing a
training distribution from which examples can be sampled
according to given configuration of weights. These weights
are initially chosen to yield “easier” examples in the begin-
ning and are updated according to the performance of the
trained model.

The generation of such curricula has proven to be quite
challenging, especially in DRL. Florensa et al. [11] propose
“reversing the learning direction” by choosing the initial
start states for the agent to be close to the goal state and
gradually increase the distance between them based on the
performance. Similarly, Riedmiller et al. [12] base their
approach on the behavior of children during their playful
exploration of the world by using basic rewards for small
changes in the environment (such as the distance of certain
movable objects between each other) in addition to higher
but more complex task rewards. Both approaches, however,
are based on heuristics and are not well understood, which
inhibits further development.

Based on this observation, Klink et al. [13] proposed a new
RL algorithm called Self-Paced Reinforcement Learning built
on top of the approximate inference of the latent variable
model [14]. In their approach, certain parameters of the task
at hand, for example the initial position for a ball thrown to
a ball-catching robot, are encoded inside the distribution of
a context variable in a Contextual Markov Decision Processs
(CMDPs) [15]. A curriculum in this context would than
consist of a series of parameter changes interpolating between
an initial distribution with a low task complexity and the
target distribution, which usually has a higher task complex-
ity. To automatically generate such a curriculum, the authors
reinterpret the generation as an inference problem, which they
solve by weighing a change in the current context distribution
against the expected performance of the agent on this changed
task environment. SPRL has been evaluated on a variety of
tasks: Two variations of a point mass environment, where the
agent needed to steer a point mass through a gate, which size
and position were used as context parameters, and a ball-
catching environment, where an agent controlled a Barrett
WAM Arm to catch a thrown ball; here, the initial position
of the ball was parameterized by the context distribution.

B. Other Domain Randomization Techniques

Another approach for the improvement of sim-to-real
transfer is the Bayesian Domain Randomization (BayRn)

algorithm proposed by Muratore et al. [4], which has simi-
larities to SPDR. Both algorithms locally optimize the used
policy on a distribution of domain parameters in a first step
and then update said distribution using the performance of
the locally trained policy. The crucial difference appears
in the second step: while SPDR uses an estimation of the
performance to gradually reduce the distance between the
current and a target distribution, BayRn executes the policy
on the real platform and uses the estimated return to learn a
Gaussian Process (GP). The GP is then used to propose a new
set of distribution parameters for the domain parameter, thus
resulting in an Bayesian optimization problem. This process
is repeated until a performance bound is reached, upon which
the algorithm terminates. Since this approach uses real-world
data from the target platform it provides more accurate results
for the sim-to-real transfer compared to SPDR. However, this
comes at the (reduced) cost of training on a real platform,
therefore requiring either an easily resettable platform and
task or constant supervision. On the other hand, SPDR does
not require such things but performs significantly worse when
applied to sim-to-real.

In this work we try to apply SPRL to increase the ro-
bustness of our trained policy against certain variations in
the distribution of the (unknown) transition distribution. This
task is known in the literature as Distributionally Robust Op-
timization (DRO) and is one way of introducing uncertainty
and probabilities to optimization problems [16]. Although
DRO is considered a sub-discipline of optimization research
in general, there are some papers applying the theory to the
specifics of Markov Decision Processs (MDPs) [17, 18, 19].
However, these approaches usually require special training
methods or limit the possible set of policies; for example the
proposed approach by Derman and Mannor does not support
non-linear function approximations [19].

A survey of different methods in sim-to-real can be found
in [20]. Their work differs from ours in the respect that it
is a survey and existing approaches are presented but not
evaluated.

III. METHODS

A. Preliminaries

Consider a time-discrete dynamical system

st+1 ∼ Pξ(st+1 | st,at), s0 ∼ µξ(s0)

at ∼ πθ(at | st), ξ ∼ νϕ(ξ)

with the continuous state st ∈ S ⊆ Rns and continuous
action at ∈ A ⊆ Rna at time step t. The environment, also
called domain, is instantiated through its parameters ξ ∈ Rnξ

(e.g., masses, friction coefficients, or time delays), which are
assumed to be random variables distributed according to the
probability distribution ν : Rnξ → R+ parameterized by ϕ.
These parameters determine the transition probability density
function Pξ : S × A × S → R+ that describes the system’s
stochastic dynamics. The initial state s0 is drawn from the
initial state distribution µξ : S → R+. Together with the



reward function r : S × A → R, and the temporal discount
factor γ ∈ [0, 1), the system forms a MDP described by the
Mξ = (S,A,Pξ, µξ, r, γ).

The goal of a Reinforcement Learning (RL) agent is to
maximize the expected (discounted) return, a numeric scoring
function which measures the policy’s performance. The ex-
pected discounted return of a stochastic domain-independent
policy πθ(at | st), characterized by its parameters θ ∈ Θ ⊆
Rnθ , is defined as

J(θ, ξ, s0) = Eτ∼p(τ |ξ)

[
T∑

t=0

γtr(st,at)

∣∣∣∣∣θ, ξ, s0
]
.

While learning from experience, the agent adapts its pol-
icy parameters. The resulting state-action-reward tuples are
collected in trajectories, a.k.a. rollouts, τ =

{
st,at, rt

}T

t=0
,

with rt = r(st,at). To keep the notation concise, we omit the
dependency on s0. This parameterized version of the MDP
can also be seen as a CMDP [15], where ξ is the context
variable for the MDP.

B. Self-Paced Reinforcement Learning

To extend the formulation from Section III-A to curricula,
we follow the notation by Klink et al. [13], except for using
the domain parameter ξ and its corresponding distribution
νϕ as our context variable and its associated distribution.
We augment the formulation of the expected reward from
Section III-A to depend on the distribution νϕ rather than on
a single sampled parameter ξ. This has no influence on our
policy specification, however, it leads to a different expected
return formulation

J [θ, νϕ] = Eξ∼νϕ(ξ)

[
J(θ, ξ)

]
(1)

where the objective is a functional depending on the distribu-
tion νϕ. Compared to the previous formulation, a policy πθ

which maximizes J [θ, νϕ] can now be interpreted as being
robust to perturbations of the domain parameters according
to νϕ.

We can now introduce the concept of curricula in this
setting by not optimizing (1) directly, but instead using
an adaptive distribution pφ(ξ) parameterized by φ during
training. The distribution pφ(ξ) is gradually changed over
the course of training (e.g., after a fixed amount of steps)
until it finally matches the desired target distribution νϕ.
We call the tuple of all training distributions pφi

(ξ) used
over the course of training the curriculum. As mentioned in
Section II-A finding a good update rule and therefore a good
curriculum for pφ(ξ) is non-trivial.

To maximize (1), Klink et al. [9] propose a two-step
method for finding θ and φ separately:

1) employ any RL algorithm to optimize J [θ, pφi ] w.r.t.
θ to get θi+1 constituting the next policy πi+1

2) update φi+1 based on the performance of πi+1

This is analogous to an Expectation-Maximization (EM)
algorithm. While the first step is typically straightforward,
the second step is more involved. Since a change in φ usually

results in a performance drop of the current policy, it is
necessary to strike a good balance between moving φ closer
to the target distribution and not destroying all previously
made training progress.

One proposal by Klink et al. [9] based on RL is allowing
the agent itself to manipulate pφ(ξ) by solving the optimiza-
tion problem

min
φ

DKL

(
pφ(ξ)

∥∥ ν(ξ))
s.t. DKL

(
pφ(ξ)

∥∥ pφi(ξ)
)
≤ ϵ

J [θ, pφ] ≥ VLB,

(2)

where VLB is a lower bound on the performance and ϵ
functions as a restriction for a proposed update by enforcing
a maximum bound between the “old” distribution pφi(ξ)
and the “new” proposed distribution pφ(ξ). Note that in this
formulation we do not solve for the policy parameter θ, since
it already incorporates the decoupled optimization of policy
and training distribution as outlined in the two-step process
before.

As the second constraint of (2) requires the expected
performance given a new context distribution, a method for
gauging this performance given a new φ is necessary.

If the upstream RL algorithm provides a value function
V πi+1(s0, ξ) or an estimated of the values (which is assumed
from now on), estimating the new performance can be
done in an importance sampling fashion. By sampling a
set of K domain parameters ξ1:K ∼ pφi(ξ) and executing
them, obtaining the trajectories τ 1:K , the respective values
V πi+1(s0, ξk) can be approximated. Treating the distribution
pφi

(ξ) as the proposal distribution, the expected return for a
new domain parameter distribution pφ(ξ) is

Ĵ
(
θ, pφ(ξ)

)
=

1

K

K∑
k=1

pφ(ξk)

pφi(ξk)
V πi+1(s0, ξ). (3)

It should be noted that sampling is only done once after
getting a new θ and not in every iteration of the optimizer
used for solving (2) (e.g., Sequential Quadratic Programming
methods).

A few changes were necessary to adapt the technique
behind SPRL [9] to the self-paced learning of domain pa-
rameters such as the friction or the motor constant. First, in
the experiments done by Klink et al., often both mean and
variance of the initial and target distributions vary. Although
we tried this approach in the initial stages, it turned out
to be more effective to use a fixed mean and start with a
small initial variance and use a large target variance, such
that the agent gradually learns to adapt to a wide range of
possible domain parameter values. This can be interpreted as
a maximum-entropy approach to increase the distributional
robustness of the policy in regards to its transition matrix.

Second, Klink et al. used a different optimization objec-
tives whenever the agent did not reach the performance lower
bound in the last iteration. In our experiments we were able
to show that this second objective, which tries to maximize



Figure 1: The Quanser Qube Platform

the performance of the agent by changing the distribution
to be more accommodating to the agent, does not work in
environments where the performance prediction using (3) is
not very precise. Since this is specifically the case in our
test environments with more than one domain parameter, we
switched to a simpler approach, where the agent was trained
until convergence was reached before the domain parameter
distributions were updated.

IV. EXPERIMENTS

We evaluated SPDR in sim-to-sim and sim-to-real settings.
For sim-to-real we used a Furuta pendulum and a cart-pole
swing up, simulated using a numerical solver as described
in [4, app. A]. To also evaluate SPDR in sim-to-sim settings,
we used again the platforms already used in sim-to-real and in
addition several OpenAI Gym [21] environments. The envi-
ronments we use are HalfCheetah-v2, and Hopper-v3.
Both of these environments are powered by MuJoCo [22].
For implementing the method we used SimuRLacra [23], a
framework for randomized physics simulations. For sim-to-
real, we utilized the Quanser Qube (see Figure 1).

Algorithm 1: Self-Paced Domain Randomization
Input: initial context distribution p(θ;φ0), initial

policy parameter θ0, target context
distribution ν(ξ), performance lower bound
VLB, number of iterations N , rollouts per
policy K

Output: policy parameter θN
1 for i← 1 to N do

▷ Train the policy:
2 Sample K domain parameters: ξ1:K ∼ p(ξ;φi)
3 Generate trajectories for all; domain parameters:

τ 1:K ∼ ROLLOUT
(
θ, ξ1:K

)
4 Train policy on τ 1:K to get θi+1.

▷ Update the context distribution:
5 Obtain pφi+1(ξ) by optimizing objective (2)
6 end

A. Baselines

To assess the quality of our approach, SPDR, we chose
three different baselines: Uniform, Active, and Iterative Do-
main Randomization (UDR, IDR, and ADR). UDR applies
domains randomization to all domain parameters available
in the respective environment, e.g., the Furuta pendulum.
The randomization is applied on the start of each rollout
and the distributions over the parameters are never changed
during training. IDR is similar to UDR but starts with a
small variance on the domain parameters and iteratively
increases it once a set performance bound is reached. This
performance bound is different for each of the environments
and coincides with the value of the return we associate with
solving an environment. ADR [24] takes its core ideas from
UDR but tries to maximize the “utility” of the chosen domain
parameter distribution for the agent by training multiple Stein
Variational Policy Gradient (SVPG) particles from which the
domain parameters are subsequently sampled during training.

B. MuJoCo Gym Environments

We used different domain parameters for the environ-
ments: In the HalfCheetah-v2 environment the total
mass initially sampled from a distribution of N (mc | 14, 0.1),
where the variance was increased until a target distribution
of N (mc | 14, 20) was reached. For the Hopper-v3 en-
vironment we used the friction coefficient of the foot as a
parameter for SPDR and ADR.

For the policy we used a Multi-Layer Perceptron (MLP)
with two hidden layers with 64 hidden units each and hyper-
bolic tangent activation functions. The subsequent training
was performed with Proximal Policy Optimization (PPO)
using Generalized Advantage Estimation (GAE) as the critic.
Results can be found in Figure 2 and Figure 3.

Although SPDR performs better around the nominal value
of the domain parameter in the HalfCheeath-v2 case,
it results in much more noisy returns compared to the
other baselines. It stands to reason however, whether such
divergences in the domain parameter actually occur in the
real world and whether the agent should be robust against
it (and possibly trading peak performance against overall
robustness). For the Hopper-v3 environment we observed
no learning in the region around the nominal parameter for
the friction coefficient for any of the tested baselines or our
approach. We attribute this to the used policies hyperparam-
eters and want to further investigate this phenomenon, which
does not occur when trained with minimal or no domain
randomization.

C. Furuta Pendulum (Sim-to-Sim and Sim-to-Real)

We modified the reward function of the Furuta environment
to penalize derivations from the center position of the rotary
arm more. To do this we modified the weights in the error
term to be Q = diag(1, 1, 2 · 10−2, 5 · 10−3) and R = 4 ·
10−3. This prevents strong movements of the rotary arms and
improves performance on the real environment by preventing
the arms to crash into the workspace boundaries. The actions
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Figure 2: Comparison between UDR, ADR and SPDL on
the HalfCheetah-v2 gym environment. Shown are the
average values with a shaded area depicting the 5% and 95%
quantile.
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Figure 3: Comparison between UDR, ADR and SPDL on
the Hopper-v3 gym environment. Shown are the average
values with a shaded area depicting the 5% and 95% quantile.

a are given by the voltage applied to the rotary arm motor
which causes an acceleration in the horizontal pole.

During training, we optimize the distribution over the
gravity g and the motor resistance Rm (in ADR, IDR,
and SPDR). The initial parameter distributions are set to
N (g | 9.81, 0.01) and N (Rm | 8.4, 0.01). For the target dis-
tribution, the variance is increased while the mean is kept
identical as described in Section III-B: N (g | 9.81, 1) and
N (Rm | 8.4, 1). It should be noted that, although the joint
distribution of g and Rm is diagonal (and also isotropic),
it is possible that the covariance matrix is non-diagonal

during optimization. For the policy we used a MLP with
two hidden layers with 64 hidden units each and hyperbolic
tangent activation functions. The subsequent training was
performed with PPO using GAE at a sample frequency of
500Hz with a rollout length of 3000 steps (corresponding to
6 s of interaction time). We consider the problem to be solved
for a return of over 1500, corresponding to a swing-up and
perfect stabilization after 3 s. For training, we used 50 SPDR
iterations with 150 PPO iterations. For SPDR a Kullback-
Leibler (KL) constraint of ϵ = 10 and a performance lower
bound of VLB = 1000 was used, corresponding to a policy
that be just about able to swing the pole up. Note that we
used the same hyper-parameters for PPO for all methods.

1) Sim-to-Sim: Our hypothesis is that even though we
solely randomized the gravity and motor resistance param-
eters, the resulting policies will be robust towards pertur-
bations of other domain parameters, too. We test this on
the damping coefficients Dr and Dp (for the rotary arm
and pendulum, respectively) by varying the parameters on
a grid (Dr, Dp) ∈ [0.0, 0.0006] × [0.0, 0.0001]. The nom-
inal values are Dr = 5 × 10−6 Nms rad−1 and Dp =
1 × 10−6 Nms rad−1. A comparison of the baseline and
SPDR results is given in Figure 4. The heatmap shows the
undiscounted cumulative return averaged over 20 policies
trained with different seeds.

While our hypothesis is supported by the empirical results
(the policy is robust even to perturbations in other parameters
than the randomized ones), all methods are outperformed by
UDR and exhibit similar performance. It should be noted,
however, that the domain randomization in UDR is performed
across all domain parameters, including the damping coeffi-
cients. An interesting result is that the boundary between a
high and low reward is quite sharp. This can be explained
by the policy needing to follow a fundamentally different
strategy for tackling higher friction. One example for this
is that the pole has to be swung back and forth a different
number of times, making the difficulty of the problem non-
continuous w.r.t. the domain parameters.

2) Sim-to-Real: We evaluated all (20) policies on the
Quanser Qube 5 times each, corresponding to a total of
100 evaluations per algorithm. Again we set the maximum
number of steps to 3000 and used a sampling frequency of
500Hz. The results are shown in Figure 5. It is clear that
ADR and UDR outperform out method, SPDR. Only IDR
performs worse on the real platform that most policies trained
with SPDR. It should be noted again that UDR was executed
by sampling from all domain parameters while ADR, IDR,
and SPDR only sampled on the gravity and motor resistance.

V. DISCUSSION

For the MuJoCo environments we see that on the
HalfCheetah-v2 environment, the performance of SPDR is
significantly better than both ADR and UDR around the
nominal value. As a downside, the return is much more noisy
and reduces steeply for a larger total mass. On the Hopper-v3
environment we noticed some strange behavior: while ADR



0

2e-4

D
p

Active DR Iterative DR

0 3e-3Dr

0

2e-4

D
p

Uniform DR

0 3e-3Dr

Self-Paced DR

Figure 4: Sim-to-sim evaluation of the Furuta swing-up.
The panels show, from the top left to the bottom right,
the ADR, IDR, and UDR baselines along with results from
SPDR (ours). Shown is the cumulative undiscounted return
under perturbations of the damping coefficients Dr and Dp

(on the x- and y-axis, respectively). The marker in the
bottom left corners shows the nominal values. All baselines
as well as SPDR have been evaluated on 20 or 20 or 20
different policies, training with different seeds. For all (meta-)
algorithms, PPO was uses as the subroutine with equivalent
hyper-parameters. The plots show the average total return
over all policies generated by a single swing-up with the
initial state (0, 0, 0, 0) and no randomization. The dark red
regions correspond to a total reward of 3000 whereas the
dark blue regions correspond to a total reward of 0.

outperforms SPDR and UDR and SPDR are roughly equal,
all of them fail around the nominal mass.

From our sim-to-sim and sim-to-real experiment on the
Furuta pendulum we conclude that while ADR and UDR
ourperform our method, IDR performs significantly worse
on the real system while having similar performance in
simulation. This is a rather promising result as we used
the same initial and target distribution for IDR, but the
performance of SPDR is clearly superior. This indicates that
the more complicated update rule yields more robust policies
compared to the rather simple update done in IDR.

During the evaluation of SPDR we found that it has
problems dealing with domain parameters with are small in
magnitude. This could be caused by the variance being tiny
in those cases, possibly leading to numerical instabilities.
We evaluated using a log-transformation to increase the
parameter size in magnitude. However, this leads to both
problems with parameters close to one (for which the trans-
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Figure 5: Sim-to-real evaluation of the Furuta swing-up on
the Quanser Qube platform. Shown is a violin plot of 20
trained policies per method (the same policies used during
sim-to-sim evaluation) with 5 evaluations on the real platform
each. The upper and lower bounds of the black box in the
center show the first and third quartile, the white dot shoes
the second quartile (the median), and the needles show the
minimum and maximum return. The colored area corresponds
to a kernel density estimation of the return distribution for the
respective method. Note that the widths of the distributions
are scaled to match each other, so the areas will differ.
The dashed green line shows the boundary after which we
consider the problem to be solved.

formed value is, again, small in magnitude). Additionally the
inverse transformation (i.e., an exponential function) squishes
the parameters values in a small space around zero for
largely negative values, which also causes problems with
values falling in this range. Hence, tackling environments
with domain parameters small in magnitude remains an open
question.

We also found that the performance estimation needed in
the first constraint of (2) and carried out by the importance
sampling (3) has serious issues. By empirical measures it
can be shown that the estimated performance is not close
to the actual performance under the new domain parameter
distribution. This has a high impact on the optimizer, which
currently has to be compensated by adapting the upper bound
ϵ on the KL divergence. For future work we suggest focusing
on the performance estimation and to test different estimation
methods such as computing a few rollouts for the new distri-
bution to better estimate the performance. Another approach
would be to model the dependency of the value on the domain
parameters using a GP and to use the expectation of the
marginal w.r.t. the domain parameters as the performance
estimation. The joint distribution is comprised by the GP and
the distribution over the domain parameters as the prior.
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