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Abstract
Physics simulators offer a powerful way to develop and test policies in robotics. Promising progress in learning difficult
robotic control tasks has recently been made using reinforcement learning, however primarily in simulations due to the
high sample complexity of state-of-the-art reinforcement learning algorithms. Transferring learned policies to the real
world often fails because simulations only approximate the real world and are inherently imprecise. In recent years,
domain randomization gained a lot of momentum for learning policies in simulation that are more likely transferable to
the real world. However, the success of domain randomization depends on the design of the randomization distribution.
In this thesis, we argue that the distribution can be adapted in order to maximize real-world performance of learned
policies. We propose, how Bayesian optimization can be used to iteratively adapt the domain randomization distribution
using reward signals of the real-world system. Finally, we present empirical results on a Furuta pendulum that the likeli-
hood of learning transferable policies can be substantially increased by optimizing the domain parameter distribution.

Zusammenfassung
Physik Simulatoren bieten eine leistungsstarke Methode zum Entwickeln und Testen von Policies in der Robotik. Viel-
versprechender Fortschritt im Lernen von schwierigen Robotik Aufgaben wurde in der letzten Zeit durch Bestärkendes
Lernen erreicht, jedoch hauptsächlich in Simulationen aufgrund der hohen Datenkomplexität von modernen Bestärken-
des Lernen Algorithmen. Das Transferieren von Policies, die in Simulationen gelernt wurden, in die reale Welt schlägt oft
fehl, weil Simulationen die reale Welt nur approximieren und von Natur aus unpräzise sind. In den letzten Jahren gewann
Domain Randomisierung viel Momentum um Policies zu Lernen, die mit höherer Wahrscheinlichkeit auf das reale System
übertragbar sind. Der Erfolg von Domain Randomisierung ist jedoch oft abhängig von dem Design der Randomisierungs-
Distribution. In dieser Thesis schlagen wir vor, dass die Distribution mit dem Ziel der Performance Maximierung auf dem
realen System hin angepasst werden kann. Wir schlagen vor, wie Bayes’sche Optimierung eingesetzt werden kann, um
die Randomisierungs-Distribution, mithilfe von Signalen des realen Systems, iterativ zu adaptieren. Zuletzt präsentieren
wir empirische Ergebnisse auf einem Furuta Pendel, dass die Wahrscheinlichkeit Policies zu lernen, die transferierbar
sind, durch das Optimieren der Parameter Distribution wesentlich erhöht werden kann.
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1 Introduction
In current research, physics simulators of real world systems are often utilized for learning robotic control tasks. Using
simulators in robotics is generally more cost efficient, less time-consuming and safer than using real-world robots. These
advantages make it very attractive to learn and test robotic controllers in simulation and later transfer them to the real
world. Furthermore, simulators offer the possibility to collect a large and a highly diverse amount of data in short time
spans compared to real-world systems making simulators particularly interesting for reinforcement learning.
In recent years, promising progress on learning difficult, high-dimensional, continuous control tasks was made using
reinforcement learning algorithms [1, 2, 3]. However, most demonstrations have been done on simulated systems due
to the high sample complexity of many state-of-the-art reinforcement learning algorithms, especially model-free policy
search algorithms. Learning complex robotic control tasks with these algorithms on real robots is often too time con-
suming and expensive or even unfeasible. Moreover, reinforcement learning algorithms need to naturally explore their
environment during learning which can be undesirable or even dangerous on real-world robots. Therefore, training of
policies directly on real robots has only been successful in rather restricted domains [4]. In order to generally utilize
the power of model-free reinforcement learning algorithms for robotics, we need to transfer policies that are learned in
simulation to the real system with minimal requirements of real world data.
Unfortunately, simulations have the major drawback that they are only capable of approximating the real world and are
inherently imprecise. Subsequently, the transfer of policies learned in simulation to the real system often fails as the
policies are unable to generalize to the real world. This problem is often referred to as the reality gap [5]. Bridging
the reality gap is of high interest, because simulations offer a powerful method to learn challenging control task e.g. by
reinforcement learning algorithms. The simplest approach to make policies learned in simulation more likely applicable
to the real world is to increase the accuracy of the simulator towards the real world. The most commonly used technique
is system identification which fits the given model using data from the real world. While system identification typically
works exceptionally well, showing impressive results, it can also be error-prone. Typical causes for system identification
to fail on closing the reality gap are too simple models, unmodelable physical effects like wear-and-tear and non-rigidity
as well as too imprecise sensors. A widely used technique, that is build up on system identification, is to perturb the
simulator by adding independently and identically distributed (i.i.d.) noise to e.g. observations and actions [5]. Other
methods are fine-tuning policies on the real system, that are pre-trained in simulation, learning probabilistic models or
domain randomization. In the following, we introduce domain randomization, also called randomized simulation, which
currently gains a lot of momentum in the research of robotic control and vision-based tasks for bridging the reality gap.
Domain randomization is a method that randomizes the domain parameters of the simulator. In the context of robotics,
these are usually, but not exclusively, the physics parameters. The underlying hypothesis is that large variability in sim-
ulation results in policies that are more robust towards modeling errors and exploitation. This robustness should then
make learned policies more likely to generalize to the real-world system and to be transferable. The general goal is to
maximize the direct-transfer performance, which is the expected performance on the real-world system, without any
direct training in the real-world. This is typically abbreviated and referred to as the sim-to-real performance. Successful
applications of domain randomization are among other things made at manipulating a cube in a robotic hand [6], the
locomotion of a quadruped robot [7] as well as in a robot pushing [8] and grasping task [9].
One of the main challenges of domain randomization is the design of the domain parameter distribution. Currently, the
distribution often relies on prior belief, in particular domain knowledge [10, 11]. However, a good source distribution is
not always known. If a learned policy fails on the real-world system, adaption of the domain parameter distribution can
be a tedious process. It is therefore desirable to automate the process of finding a good domain parameter distribution.
In this thesis, we present a data-driven, automated process to find a good domain parameter distribution. Concrete,
we investigate how Bayesian optimization can be used to adapt the distribution using the rewards received from the
real-world system.
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2 Related Work
The discrepancy between simulations and real systems, which leads to policies not being successful in the real world
is called the reality gap. The problem of closing the reality gap has gained momentum in research within the past
years. Classical work on bridging the reality gap is commonly based on system identification [12]. However, system
identification is not a general solution for bridging the reality gap, especially if the model is too simple. In the context of
reinforcement learning, model-based methods are used to learn real-world tasks. In general, model-based reinforcement
learning algorithms use real-world sampled trajectories to learn a model, which can then be used in simulation to learn
policies. Impressive results in terms of data-efficiency have been demonstrated, e.g. by Deisenroth et al. [13] through
iteratively learning a probabilistic model using available real-world data and improving the policy based on the learned
model. However, the quality of the learned model acts as bottleneck for the quality of the learned policy. Learning a good
model is not a generally easy task and especially falls off for higher dimensional systems.
A different approach for transferring policies from simulation to reality is domain randomization. In recent applications,
domain randomization led to promising results in zero-shot sim-to-real transfer tasks [14, 8, 6, 9, 7, 15]. Lowrey et al.
[16] compare the performance difference between policies that are learned on a model from proper system identification,
a model with bad system identification and under randomized simulation on a composition of robots that aim to push
an object to a target location. While proper system identification showed the best performance on the real system,
policies learned under randomized simulation also solved the task with slightly worse performance. The improper system
identification led to policies that could not solve the task.
The domain parameter distribution is usually designed based on prior belief and adapted through trial-and-error when
learned policies fail to transfer. Recently, multiple approaches have been presented that propose how to design the domain
parameter distribution. Ramos et al. [17] extend the system identification method to be probabilistic by computing a full
posterior over the simulation parameters. The posterior is then used as domain parameter distribution to learn policies.
The closest related methods to our approach are [10, 18, 19], which also use real-world data to iteratively adapt the
domain parameter distribution after each learned policy that is evaluated on the real-world system. The method proposed
by Chebotar et al. [10] iteratively adapts the distribution hyperparameters by minimizing the discrepancy between
trajectories from the real-world system and simulation. Rajeswaran et al. [18] propose an algorithm to train robust,
risk-aware policies in randomized simulation and combine their learning algorithm with a Bayesian update rule for the
domain parameter distribution using trajectories collected from the real system. The update rule is in the fashion of
Bayesian model-learning update rules. The idea, that the reward on the target system can optimized directly by changing
the domain parameter distribution was also recently presented by Vuong et al. [19]. Instead of Bayesian optimization,
the Cross Entropy Method (CEM) is used to update the domain parameter distribution and empirical results are only
present for the transfer of policies between different physics simulators and not to real-world systems.
For scenarios where prior access to the real system is not possible or too costly, Mozifian et al. [11] explore the use of
gradient-based optimization techniques to find domain randomization distributions without real world samples. Their
optimization objective is defined as a trade-off between performance of the policy and entropy of the distribution. The
goal is to solve the given task successfully on the most diverse set of scenarios possibly. When training on a wide range of
scenarios, learning policies can suffer from high variance in the sampled trajectories. This is a problem Mehta et al. [20]
aim to solve by learning a strategy for sampling the domain parameters subsequently to learning the policy. The strategy
is designed to prefer environment instances that lead to better generalization in the policy by maximizing utility.
The goal of adapting the distribution during learning has also been subject to the work of Paul et al. [21], however
with the goal of being robust to significant rare events and not for sim-to-real performance. Their approach is based on
Bayesian optimization to sequentially optimize the distribution after each policy update with respect to maximizing the
reward of the next policy. As Bayesian optimization is used during learning, the policy parameters have a major influence
on the expected return and cannot simply be ignored like in our method. To model the relation between the union of
policy parameters and domain parameter distribution hyperparameters to the expected reward, they use a fingerprint of
the policy. This fingerprint then allows to use policies with high-dimensional parameter space like deep neural networks.
Finally, we want to highlight that system identification, model learning and domain randomization are not the only
options for sim-to-real transfer. Recently, Yu et al. [22] presented to learn a family of policies that map state observations
and physics parameters to an action by defining both as inputs to a neural network. After training a policy in simulation,
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is used to find the inputs to the neural network that result
in the best return on the real system.
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3 Foundations
In this chapter, we briefly introduce reinforcement learning and randomized simulation, and explain the foundations of
Bayesian optimization.

3.1 Reinforcement Learning

A finite-horizon Markov decision processM = (S, A, P, R, p0, γ, T ) is characterized by the state space S, action space
A, the probabilistic system dynamics P : S × A× S → R+, a reward function R : S × A→ R, an initial state distribution
p0 : S→ R+, a reward discount factor γ and a fixed horizon T .
The discounted reward of a trajectory τ = (s0,a0, . . . , sT ,aT ) is defined as

R(τ) =
T
∑

t=0

γt r(st ,at).

The goal of reinforcement learning is to find a policy πθ (a|s) parameterized by θ that maximizes the expected discounted
reward over trajectories induced by the policy

max
θ

J(πθ ) =max
θ
Eτ∼πθ [R(τ)], (3.1)

where s0 ∼ p0, st+1 ∼ P(st+1|st ,at) and at ∼ πθ (at |st), see [23].
In the later described experiments we use the Proximal Policy Optimization (PPO) algorithm, introduced by Schulman et
al. [3], due to its simple implementation and good empirical results across a wide range of scenarios.
PPO is a model-free reinforcement learning algorithm that uses policy gradients and actor-critic style for updating the
policy parameters. We use the clipped objective function

LC LI P(θ ) = Êt

�

min
�

rt(θ ) Ât , clip(rt(θ ), 1− ε, 1+ ε) Ât

�

�

,

where rt is the probability ratio

rt(θ ) =
πθ (at |st)
πθold

(at |st)
(3.2)

and Â is the advantage function estimate.

3.2 Randomized Simulations

To receive probabilistic system dynamics in simulation, we can define a distribution over the domain parameters ξ ∼
pψ(ξ), resulting in the probabilistic system dynamics Pξ∼pψ = P(st+1|st ,at ,ξ). The domain parameter distribution is
parametrized byψ, e.g. the mean and covariance of a normal distribution. This approach is called domain randomization
or randomized simulation and extends the formulation of (3.1) to

max
θ

J(πθ ) =max
θ
EPξ∼pψ

[Eπθ [R(τ)]]. (3.3)

Instead of maximizing the expected discounted reward induced by the policy for a specific modelM , we now maximize
over a parameterized modelMψ.
The general scheme of learning a policy under randomized simulation is presented in Algorithm 1.
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Algorithm 1 Learning from Randomized Simulation

1: Choose a PolicyOptimizer (e.g. PPO)
2: Initialize parameters of the policy θ 0
3: Specify the hyperparameters of the domain parameter distribution ψ
4: for n= 0 to N do
5: Sample domain parameters ξ0:k ∼ pψ(ξ)
6: Collect trajectories τ0:k using policy πθn

for ξ0:k
7: θ n+1 = PolicyOptimizer(θ n,τ0:k)
8: end for
9: return Policy πθN

3.3 Bayesian Optimization

Bayesian optimization [24, 25, 26, 27] is a sequential, global optimization method concerned with finding the maximum
of a function f (x) over a compact set X ⊂ Rd

max
x∈X

f (x). (3.4)

The function f (x) is typically a black box function, which means that there is no closed-form or derivatives available and
evaluation is restricted to sampling. Further, observations y of the function f are assumed to be noise corrupted such
that E[y| f (x)] = f (x). Bayesian optimization is particularly effective if the function f is costly to evaluate as it maintains
a probabilistic model of the function and can utilize prior belief about the problem.
Given some prior knowledge and data of the form D1:n = (xi , yi) | i = 1, . . . , n}, we can employ a probabilistic model in
form of a Gaussian process, called the surrogate function. The surrogate function captures the expectation of what the
objective function f looks like. The next sample location xn+1 is then determined by a utility that specifies how good it
is to sample at a specific location. This function is called acquisition function α(x). The acquisition function trades off
exploration and exploitation by taking the expectation and uncertainty (mean and covariance for a Gaussian process)
of the surrogate function into account. Exploration favors location where the surrogate function is very uncertain while
exploitation favors locations where the surrogate function expects high function values.
At each step of Bayesian optimization, the objective function f is evaluated at the maximizer of the acquisition function.
Then, the surrogate function is updated by taking the new sample into account. A sketch of Bayesian optimization is
presented in Algorithm 2.

Algorithm 2 Bayesian optimization algorithm

1: Specify the compact set X
2: Initialize the dataset D0 by observing f at n0 samples
3: Initialize and fit the surrogate modelM
4: for n= 0, 1,2, . . . , do
5: Select xn+1 by optimizing the acquisition function α : xn+1← arg max

x∈X
α(x|M ,Dn)

6: Sample f (xn+1)
7: Dn+1 = {Dn, (xn+1, f (xn+1))}
8: Update the surrogate modelM using Dn+1
9: end for

10: return Maximizer x∗ of the surrogate modelM

3.3.1 Gaussian Process Regression

A Gaussian process can be thought of as an extension to the multivariate Gaussian distribution by placing a distribution
over a function instead of a random variable. While a Gaussian distribution is fully specified by a mean and covariance,
a Gaussian process is fully specified by its mean function m : X → R and covariance function k : X → X ×X . The
covariance function is also called kernel function [28].
Gaussian processes are non-parametric models and can be used to solve regression problems. A regression problem is
defined as finding a function f (x) that maps inputs to continuous outputs based on the available data {(xi , yi) | i =
1, . . . , n}, where x ∈ Rd are the inputs and y = f (x) + ε the observations with i.i.d. Gaussian noise ε ∈ N (0,σ2

n).
By placing a Gaussian process prior on the function f , such that

p( f (x)) = GP(m(x), k(x,x′))
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with

m(x) = E[ f (x)],
k(x,x′) = E[( f (x)−m(x)( f (x′)−m(x′)],

the likelihood is then given as

p(y| f ,x) =N (y| f (x),σ2
n).

Given data in the form of inputs X = [x1, . . . ,xn] and corresponding noisy outputs y = [y1, . . . , yn], we can predict the
posterior probability distribution of the function value f∗ for a given test point x∗

p( f∗|X,y,x∗) =N ( f∗|µ∗,σ2
∗)

µ∗ = m(x∗) + k(x∗,X)(k(X,X) +σ2
nI)−1(y−m(X)) (3.5)

σ2
∗ = k(x∗,x∗)− k(x∗,X)(k(X,X) +σ2

nI)−1k(X,x∗). (3.6)

While (3.5) and (3.6) define the point-wise predicted distribution for a given test input, they remain the same if x∗
denotes multiple test inputs and are therefore the mean function and covariance function of the posterior Gaussian
process. However, to make predictions with a Gaussian process given some data we first need to define the prior mean
and covariance which let us incorporate prior knowledge and assumptions about how the underlying function looks like.

Mean
The most common choice for the prior mean is the zero function m(x) = 0 and is also our choice in the later presented
experiments. Another typical choice is a constant function which then yields an additional hyperparameter that can be
optimized. Other choices like explicit basis functions are presented in detail by Rasmussen and Williams [28].

Covariance
The covariance function is typically the key component of a Gaussian process and defines most of the properties we
expect from the underlying function. In the following, we introduce the commonly used squared exponential kernel kSE
as well as the Matérn kernel kM52 [28, 26]. The index 52 indicates that the hyperparameter for smoothing has a value of
5/2. The kernels with signal variance σ f (scaling factor) and dimension specific length-scales `d , also called automatic
relevance detection, are given as

kSE(x,x′) = σ f exp(−
1
2

r2(x,x′)),

kM52(x,x′) = σ f (1+
Æ

5r2(x,x′) +
5
3

r2(x,x′))exp(−
Æ

5r2(x,x′)), (3.7)

r2(x,x′) =
D
∑

d=1

(xd − x′d)
2

`2
d

.

The Matérn kernel kM52 is often more attractive for modeling processes of real world applications because the squared
exponential kernel kSE can be too smooth.
Although the Gaussian process is a non-parametric model, we still have hyperparameters η = (`d ,σ f ,σn) which heavily
influence posterior predictions.

Marginal Likelihood
An estimate of the hyperparameters is typically computed by optimizing the marginal likelihood

p(y|X,η) =

∫

p(y| f ,X)p( f |X)d f .

For Gaussian process regression with Gaussian noise the marginal likelihood can be expressed in analytic form as

p(y|X,η) = −
1
2
(y−m(X))T (k(X,X) +σ2

nI)−1(y−m(X))−
1
2

log |k(X,X) +σ2
nI| −

n
2

log(2π). (3.8)

By differentiating this equation with respect to the hyperparameters η we have an optimization problem that can be
solved by first order optimization algorithms [28]. However, especially when data is scarce, optimizing the marginal
likelihood can lead to bad local optima as the data can be interpreted in multiple ways [27]. Figure 3.1 illustrates this
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problem by visualizing the surface of the marginal likelihood for different sample seeds and different sample sizes for the
1-dimensional toy problem

ftoy(x) = sin(x)− x2 + 0.7x + 0.1ε, ε ∼N (0,1). (3.9)

When the marginal likelihood has no clear optima but rather a large plateau, so called over- and under-fitting can occur.
Over-fitting is here interpreted as kernels that have a low length-scale and low noise variance, causing the model to
interpolate the data. We refer to under-fitting, when the kernel has a high length-scale and high noise variance, treating
every data point as noise from the prior mean.
To avoid over- and under-fitting, it is important to have strong priors for the hyperparameter optimization. For normalized
inputs and standardized outputs good prior distribution for hyperparameters exist that work well for a wide range of
scenarios. This can remove the dependency on the human to specify hyperparameter priors for each new problem
setting. Another approach is to integrate the hyperparameters out to have a full Bayesian treatment that automatically
weight the predictions from different interpretation of the data. In practice however, this has to be approximated by
sampling which scales very bad with the dimension of the input data and is very sensible to the sampling density [26].
In our later presented experiments, we use point estimates of the hyperparameters by optimizing the marginal likelihood
with strong priors and avoid undesirable predictions as in Figure 3.1.
After placing a prior on our unknown function and updating it to a posterior by considering the available evidence in
form of data, we are left with determining a criterion of which point to evaluate next.

3.3.2 Acquisition Functions

The acquisition function, denoted by α : X → R, is concerned with selecting the next query point given a probabilistic
surrogate model and thereby guides the search for the optimum. It is designed to trade-off exploitation of areas with high
predicted function values and exploration of uncertain areas in its search space. By maximizing the acquisition function
we can determine the most promising sample location

xnext = argmax
x

α(x),

where promising implies potentially high function values. Contrary to the unknown function f , function samples from the
acquisition function are very cheap. Because of that, we can use global optimizers like CMA-ES or first-order optimization
algorithms like the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm in conjunction with multi-starts to find the
maximizer of the acquisition function.
Several acquisition functions have been proposed. In the following, we introduce some of the most common acquisition
functions in the context of Bayesian optimization.

Probability of Improvement
The Probability of Improvement (PI) criterion was first introduced by Kushner et al. [29]. For models that yield a
Gaussian posterior distribution like Gaussian processes, it is defined as

αPI(x) = Φ
�

µ(x)− fmax

σ(x)

�

,

where Φ(·) is the standard normal cumulative distribution function and fmax is the best current function value.

Expected Improvement
The Expected Improvement (EI) criterion can be interpreted as an extension to the PI criterion. For a Gaussian process
and other models that have a Gaussian posterior, it can be expressed in closed form

αEI(x|D) = (µ(x)− fmax)Φ
�

µ(x)− fmax

σ(x)

�

+σ(x)φ
�

µ(x)− fmax

σ(x)

�

, (3.10)

where φ(·) is the standard normal probability density function. It was introduced in the context of Bayesian optimization
by Jones et al. [24].
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Gaussian Process - Upper Confidence Bound
The Upper Confidence Bound (UCB) for a Gaussian process [30] is defined as

αUCB(x|D) = µ(x) + βσ(x),

where β is a hyperparameter that regulates the trade-off between exploitation and exploration and has to be specified
by the user.
In Figure 3.2, the presented acquisition functions are visually compared on the previously introduced 1-dimensional
toy problem (3.9). In our experiments, we will use the EI acquisition as it requires no further hyperparameter and
is generally less exploiting than PI [26]. For a broader analyses of acquisition function in the context of Bayesian
optimization, including information-based criterion’s and using portfolios of acquisition functions, see [27].
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(a) Gaussian process hyperparameter optimization using the marginal likelihood for three random samples.

(b) Gaussian process hyperparameter optimization using the marginal likelihood for seven random samples.
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(c) Gaussian process hyperparameter optimization using the marginal likelihood for fifteen random samples.

Figure 3.1: Visualization of the Gaussian process hyperparameter optimization using the marginal likelihood. The Gaussian
process uses the Matérn kernel with a fixed signal variance σ f = 1.0. The three columns present different
random seeds, which result in different sample location. The subfigures show how the marginal likelihood
surface evolves for increasing number of samples. The upper row of each subfigure visualizes the posterior
prediction of the Gaussian process for the optimized hyperparameters. The lower row of each subfigure
visualizes the logarithm of the marginal likelihood as function of the noise variance σn and length-scale `.
Likelihoods with a value below ten times the value of the maxima are clipped to have better visualization
results. The star indicates the found maximum and corresponds to the visualized posterior model.
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(a) Iteration 1

(b) Iteration 2

(c) Iteration 3

(d) Iteration 4

Figure 3.2: Comparison of the introduced acquisition functions PI, EI and UCB on the 1-dimensional toy function (3.9). The
columns present the three acquisition criterions while the rows show the progression of Bayesian optimization
for four iterations, starting with four random samples. For the surrogate model, we use a Gaussian process
with Matérn kernel, inputs that are normalized to (0,1) and standardized observations y .
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4 Method
One of the main challenges for the success of domain randomization is the design of the simulation parameter distribu-
tion pψ(ξ). Typically, the distribution pψ(ξ) covers the uncertainty about the underlying parameters of the real world
environment. This uncertainty is often based on system identification as well as human expertise. Ideally, the real world
dynamics are covered by the chosen distribution. In practice, designing this distribution based on prior belief can be
error-prone and most likely there will be physical effects which are not covered by the model [10, 18]. If a policy, found
by handcrafted domain randomization, fails on the real system, often trial-and-error is used to find a distribution where
learned policies can be successfully transferred. This rises the problem of automating the adapting of the distribution
over the domain parameters.
In the following, we present a data-driven approach to solve the automation problem. The problem of adapting the
distribution’s hyperparameters using data from the real world system has already been subject of the state-of-the-art re-
search [10, 18, 17]. These works are build upon the same idea as probabilistic model learning, often seen in model-based
reinforcement learning. The observations received from executing learned policies on the real system are used to adapt
the hyperparameters of the distribution such that the observations generated in simulation match the observations from
the real world.
However, we want to investigate a more direct approach, similar to Vuong et al. [19]. The performance of a policy
is quantified by the expected return on the real-world system. Instead of optimizing the similarity between the state
transitions of source and target domain, we aim for directly optimizing the return on the real-world system. Our goal is
to find the distribution pψ which maximizes the expected return on the target system J real(πθ (ψ)). Thus, we desire to
find

ψ∗ = argmax
ψ

J real
�

πθ (ψ)
�

, (4.1)

where the policy parameters θ are found by solving the inner optimization problem (3.3). Under the assumption that
policies trained for a specific value of ψ, but different random seeds, lead to a similar performance on the target system,
the problem (4.1) can simplify by removing the dependency on θ

ψ∗ = argmax
ψ

J real(ψ). (4.2)

This simplification can further be motivated by our high-level goal of finding a source distribution over the domain
parameters, specified byψ, that enables reliable training of policies that are transferable to the target system. Therefore,
the approach presented in this thesis differs from the typical setting where one tries to find one configuration of policy
parameters which solves the task.
In the following we want to explore how Bayesian optimization can be used to efficiently solve (4.2). Considering the
very expensive evaluation of (4.2) and a sufficiently low dimensional domain parameter set ψ, Bayesian optimization
is well suited for this problem. Furthermore, Bayesian optimization can handle noisy function evaluations which in this
case corresponds to the difference in performance between different policies trained for the same hyperparameters ψ.
Algorithm 3 presents a high-level view on how Bayesian optimization can be used to solve the outer optimization problem
(4.2) in combination with any reinforcement learning algorithm like PPO solving the inner optimization problem (3.3).

Algorithm 3 Bayesian optimization for learning the domain parameter distribution

1: Input: boundaries for ψ, initial dataset D0
2: for n= 0,1, 2, . . . , do
3: πθ (ψn)← PolicyOptimizer
4: J real(ψn)← Run policy πθ (ψn) on the target system
5: Dn+1 = {Dn, (ψn, J real(ψn))}
6: ψn+1← Bayesian optimization step using Dn+1
7: end for
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5 Experiments
In this chapter, we present empirical results to the proposed method of optimizing the domain parameter distribution
through Bayesian optimization. We compare the sim-to-real performance of policies learned from the distributions found
by Bayesian optimization to the policies learned from handcrafted distributions and exact models. In the remainder, the
exact model and the handcrafted randomization are referred to as the baselines. The goal is to empirically evaluate,
whether the domain parameter distribution can be optimized such that policies trained on these distributions are more
likely to be transferable to the real system. We quantify the transferability with the expected average reward from the
real-world system.

5.1 Platform

To benchmark the experiments, we chose the Quanser Qube, see Figure 5.1a, which is a Furuta pendulum (also called
rotary inverted pendulum). The Quanser Qube is a robust to use platform and therefore well suited for benchmark
testing. The Furuta pendulum was first introduced by Furuta et al. [31] in 1992. It consists of a freely rotating pendulum
attached to a motor driven pole. The motor driven pole is rotatable in the horizontal plane and the pendulum can swing
in a vertical plane orthogonal to the arm. By having two degrees of freedom but only one actuator it is an underactuated
system. The dynamics can be derived using the Euler-Lagrange method, presented in [31]. The goal is to swing the
non-actuated pendulum up and stabilize around the upright unstable equilibrium. This is a typical benchmark test used
in control theory and robotics.
The state space of the Furuta pendulum is given as s = [θ ,α, θ̇ , α̇], where θ is the angle of the rotary pole and α the
angle of the pendulum, see Figure 5.1b. Its action space is given as a = [Vm], where Vm is the motor voltage, which
induces a momentum to the rotary pole. For the Quanser Qube, the state and action space are constraint to

|s|< [2.3, 4π, 30, 40], |a|< [5].

The constraints on α and the velocities are not hardware constraint but are used to ensure safe behavior of policies on
the real system.
The system dynamics are given as

�

mp L2
r +

1
4

mp L2
p −

1
4

mp L2
pcos(α)2 + Jr

�

θ̈ +
�

1
2

mp Lp Lr cos(α)
�

α̈+

�

1
2

mp L2
p sin(α) cos(α)

�

θ̇ α̇−
�

1
2

mp Lp Lr sin(α)
�

α̇2 + Dr θ̇ =
km(Vm − kmθ̇ )

Rm
,

�

1
2

mp Lp Lr cos(α)
�

θ̈ +
�

Jp +
1
4

mp L2
p

�

α̈−
�

1
4

mp L2
p cos(α) sin(α)

�

θ̇ 2 +
1
2

mp Lp g sin(α) + Dpα̇= 0

and are used to deploy the randomizable simulator. The physics parameters and constants are detailed in Table 5.1.
The goal position for the presented benchmark test is given as sdes = [0,π, 0, 0] and ades = [0]. The reward is defined as
a squared exponential function on the error of state and action towards the goal

r(s,a) = exp
�

(s− sdes) Q (s− sdes) + (a− ades) R (a− ades)
�

,

with Q= diag(0.2, 1,0.02,0.005) and R= 0.003.
Further, the control frequency is set to 100Hz and the maximum trajectory length to 6 seconds, resulting in 600 state
transitions for a full trajectory. However, a trajectory is terminated early if the boundary conditions are violated.
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(a) Qube by Quanser [32] (b) Mechanical model of the Furuta pendulum

Figure 5.1: Furuta pendulum benchmark platform

Description Abbreviation Nominal value Unit

Gravity g 9.81 m/s2

Motor resistance Rm 8.4 Ω

Motor back-end constant km 0.042 V · s
Rotary pole damping Dr 5× 10−6 N ·m · s
Pendulum damping Dp 10−6 N ·m · s
Rotary pole mass Mr 0.095 kg

Pendulum mass Mp 0.024 kg

Rotary pole length Lr 0.085 m

Pendulum length Lp 0.129 m

Rotary pole inertia Jr Mr × L2
r /12 kg ·m2

Pendulum inertia Jp Mp × L2
p/12 kg ·m2

Table 5.1: Quanser Qube domain parameters and constants
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5.2 Setup

In this section, we present the experimental setup for testing the baseline experiments and our method to compare them
in terms of their sim-to-real performance. As baselines experiments are considered learning a policy from a nominal
model and learning a policy from an exact handcrafted domain randomization distribution. For the exact (or nominal)
model, the nominal parameters reported in Table 5.1 are used without any randomization. Next, two randomized models
are deployed by extending the nominal with a handcrafted randomization over (i) the masses and lengths (Mr , Mp, Lr , Lp)
while using the nominal parameters for the remaining domain parameters and (ii) all domain parameters (the inertia’s
are treated as constants, see Table 5.1). We choose a normal distribution where the mean is equal to the nominal
value of the corresponding domain parameter and the standard deviation is equal to a fifth of the identified value
pψ(ξ) =N (ξnom,ξnom/5).
Our method proposes that the domain parameter distribution can be optimized with respect to the performance on the
real-world system, see Algorithm 3. In the following, we outline the setup of the optimization process and than compare
the found optimized distribution to the baselines in terms of sim-to-real performance.
A typical choice for the distribution type is the normal distribution like we used for the handcrafted distributions. Using
normal distributions results in two hyperparameters per domain parameter, the mean and the standard deviation. Even
the Furuta pendulum as a benchmark systems has nine domain parameters (neglecting the inertia’s), which would ren-
der Bayesian optimization with optimizing in an 18-dimensional search space. Although successful applications for up to
20-dimensional inputs have been demonstrated, we desire to benchmark our method on a lower dimensional task. There-
fore, we chose to optimize the distribution over a subset of the domain parameters. By that, the necessity of optimizing
the distribution over every domain parameter can also be analyzed. Concretely, we optimize the distribution of mass and
length of both rotary pole and pendulum (Mr , Mp, Lr , Lp), rendering Bayesian optimization with an 8-dimensional search
space. The boundaries used for our experiments are presented in Table 5.2. While optimizing masses and lengths, we
fixed the remaining domain parameter (g, Rm, km, Dr , Dp) to (i) the handcrafted distribution and (ii) the nominal domain
parameter values. As acquisition function we use EI (3.10) and for the Gaussian process we use a zero prior mean and
the Matérn kernel with smoothing factor 5/2 (3.7). As initialization we use 15 random samples. Further, inputs to the
Gaussian proccess are normalized to the unit hypercube and output are standardized to make use of priors on the kernel
hyperparameters for marginal likelihood optimization. We implemented our Algorithm 3 using Botorch, a library for
Bayesian optimization build upon GPyTorch [33], which itself is an implementation of Gaussian processes in PyTorch
[34].
For the inner optimization problem of learning a policy given a simulator, we use PPO. To ensure comparability, we use
the same hyperparameter setting in each experiment. The policy π and advantage function estimate Â are represented
as feed-forward neural networks with two hidden layers of size 64 and tanh non-linearity. To update the parameters of
the neural networks, we use a learning rate of 5× 10−4, 10 optimization epochs for each estimator update and set the
corresponding estimator sample size to 64. Further hyperparameter are the temporal discount factor of γ = 0.99, the
trade-off factor for bias and variance of λ = 0.95 and the clipping factor of ε = 0.1, see [3]. Finally, we use 100 policy
updates, each using 48000 state transitions, which corresponds to at least 80 trajectories. Such high numbers of samples
per update are not required to learn good policies with nominal models. However, for domain randomization it ensures
that the randomly sampled parameters represent the underlying distribution to lower bias.
We have specified five different models that we now can compare against each other in terms of their sim-to-real perfor-
mance:

• nominal parameter values,

• handcrafted randomization for all parameters,

• handcrafted randomization for masses and lengths and nominal value for the remaining parameters,

• optimized randomization for masses and lengths and handcrafted randomization for the remaining parameters,

• optimized randomization for masses and lengths and nominal value for the remaining parameters.

To ensure that the sim-to-real performance comparison of the presented methods is not disturbed by the random seed,
we train twenty policies over different random seeds on each model. Then, all trained policies are tested on the real
system and their average reward is used as measure for the sim-to-real performance of the model.
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µMp
σMp

µMr
σMr

µLp
σLp

µLr
σLr

Lower 0.019 5e-5 0.085 3e-4 0.115 5e-4 0.070 2e-4

Upper 0.029 5e-3 0.110 3e-2 0.140 5e-2 0.095 2e-2

Table 5.2: Boundaries for the search space of Bayesian optimization. The columns present the means µ and standard
deviations σ of the normal distribution over each domain parameter. The rows specify the corresponding
lower and upper boundaries of the search space.

5.3 Results

In this section, we present our empirical results and evaluate these. The proposed method of optimizing the domain
parameter distribution through Bayesian optimization converged for both experiments after 10 iterations, given 15 initial
random samples. The optimized distributions are then given as the inputs that maximize the posterior mean of the
Gaussian processes and are presented in Figure 5.2. The plots show a comparison of the optimized distributions, the
handcrafted distribution and the nominal values for the masses and lengths of the Furuta pendulum. Subsequently, we
evaluated the performance of the five models on 20 random seeds, resulting in 20 different policies, for a thorough
estimation of performance that is not biased by random seeds. The training progress is presented in Figure 5.3. It is
noticeable that all training runs converge to similar good solutions in terms of their average reward in simulation. For
each training run, the policy yielding the best average reward is subsequently transfered to the real-world system. The
sim-to-real performance results are reported in Table 5.3. As it can be seen, trained policies with the nominal model have
the worst average sim-to-real performance despite having the best results in simulation. For the models with handcrafted
randomization and combination of handcrafted randomization and nominal values, we see a clear increase in their
average sim-to-real performance. However, the clearly best result in terms of sim-to-real performance was achieved by
the models with the optimized randomization found by our proposed method. The policies trained on the optimized
domain parameter distribution have significantly higher probability of being transferable to the real-world system than
the policies trained on the handcrafted randomization. The experiment demonstrates that we are able to optimize the
domain parameter distribution with respect to the policies real-world performance. Further, the results suggest, that it
is not generally necessary that we randomize every possible domain parameter. For the Furuta pendulum swing-up task,
randomizing the masses and lengths with a handcrafted distribution showed similar to slightly better results in terms
of transferability then randomizing all domain parameters. The same phenomena can also be observed by comparing
policies over partial optimized randomization with handcrafted randomization and partial optimized randomization with
nominal parameters. Both strategies result in a similar sim-to-real performance. Subsequently, we do not generally need
to optimize the distribution over all domain parameters to get a model that allows reliable training of transferable policies.
It should be emphasized that a difference in success rate of 5 %, see 5.3, here corresponds to a single policy more being
successfully transferable. However, the differences in success rate between nominal model, handcrafted randomization
and optimized randomization are distinctively large and therefore highly unlikely caused by statistical imprecision.
For the nominal model, despite all policies having a similar high reward in simulation, only a small percentage (10 %)
of the policies were transferable while others were not. This result suggests that (i) policies can easily exploit errors in
the nominal model and become "over-optimized" which leads to policies that typically do not generalize to the real-world
system (ii) the transferability of a policy can greatly vary depending on the found local optimum in the policy parameters.
The policy parameters itself only depend on the chosen random seed, as the model and hyperparameters are fixed. It is
worth noting, that the failed policies all terminated early by violating the state boundaries.
Typically, we want to randomize domain parameter we are uncertain about. Parameters like gravity, masses and lengths
can be measured very accurately. As seen in this experiment, it can still make sense to randomize these parameters to
compensate for errors in the model and making model errors less exploitable.
Further, we also tested uniform distributions, but they showed worse performance in terms of sim-to-real performance,
and a deeper analysis about the influence of the distribution type could be subject to future research.

16



Simulation Real-world system

Mean reward
Standard

deviation
Mean reward

Standard

deviation
Success rate

Nominal model 541 8.5 141 192 10 %

Handcrafted randomization 453 26.3 311 235 55 %

Combination of nominal model and

handcrafted randomization
487 26.1 324 232 60 %

Combination of optimized randomization

and handcrafted randomization (Opt/Hc)
499 21.2 454 123 85 %

Combination of optimized randomization

and nominal model (Opt/Nom)
514 16.4 476 110 90 %

Table 5.3: Sim-to-real performance comparison between baselines and the optimized distribution found by our method.
The baselines are the nominal (exact) model, a handcrafted randomization over all domain parameters and
a combination, where only masses and lengths are randomized and the remaining parameters are fixed to
their nominal value. With our method, we optimized the distributions over the masses and lengths while once
using the handcrafted randomization for the remaining parameters (Opt/Hc) and once using the fixed nominal
values for the remaining parameters (Opt/Nom). The optimized distributions are shown in Figure 5.2. For the
experiment, 20 policies were trained until convergence for each evaluated method, see Figure 5.3. Additionally,
we report the success rate which is a subjective quantity. For this benchmark test, we call a policy successful if
it is able to stabilize the pendulum at the upright position, does not terminate early (e.g. by violating the state
boundaries) and has a reward of at least 400.

Figure 5.2: Comparison of the domain parameter distributions over the masses and lengths of the Furuta pendulum for
the evaluated methods. The nominal values corresponds to the values in Table 5.1. For the handcrafted
distribution, we use a normal distribution with the nominal value as mean and a standard deviation equal to
a fifth of the nominal parameter value. The abbreviation ’Opt/Hc’ stands for the optimized distribution over
the masses and lengths while using the handcrafted randomization for the remaining parameters. ’Opt/Nom’
stands for the optimized distribution over the masses and lengths while using nominal values for the remaining
parameters.
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(a) Nominal model.

(b) Model with handcrafted randomization.

(c) Model with handcrafted randomization for the masses and lengths and nominal values for the remaining domain parameters.

18



(d) Model with optimized randomization for the masses and lengths and handcrafted randomization for the remaining domain
parameters.

(e) Model with optimized randomization for the masses and lengths and nominal values for the remaining domain parameters.

Figure 5.3: Training progress of PPO for learning policies from different models. The plots in the left column shows the
average reward over the current policy. The plots in the right column presents the average reward of the
currently best policy. Each plot shows the progress of 20 policies trained on different random seeds as well as
their average reward over the iterations.
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6 Conclusion
In this thesis, we showed how domain randomization can be used to learn policies in simulation that are more likely
to be transferable to real-world system compared to policies which learned from exact models. One of the decisive
factors in domain randomization is the domain parameter distribution design. When policies trained on a simulator
with handcrafted randomization based on prior belief fail on the real-world system, trial-and-error is commonly used to
reshape the domain parameter distribution. We argue that this task can be automated. Therefore, we proposed to use
Bayesian optimization to iteratively optimize the domain parameter distribution with respect to the policy performance
on the real-world system.
Our experiments demonstrate that Bayesian optimization can be used to find effective domain parameter distribution
in just a few iterations. An effective distribution here means, that policies trained under this randomization are more
likely transferable to the real-world system than policies trained on a naive, handcrafted randomization. We observered
a substentially increased success rate for policies trained from the optimized distributions found by our proposed method
then policies trained from handcrafted randomization.
By modeling the relation between distribution and real-world performance by a Gaussian process, we assumed that the
real-world performance for policies trained on different seeds result in Gaussian distributed real-world rewards. However,
in our experiment, policies trained on the same distribution but different random seeds typically result in failure (very
low reward) or success (very high reward). Therefore, Bayesian optimization has no guarantees of converging for this
optimization problem, but nevertheless showed promising results.
In the future, we are interested in how other global optimization algorithms compare to our approach for optimizing
domain parameter distributions. Another interesting field for future research could be, how Bayesian optimization can
be used in a context where prior access to the real system is not possible. Furthermore, methods for optimizing domain
parameter distributions only in simulation combined with approaches like ours, that use real-world data, could further
decrease real-world data requirements for successful sim-to-real transfer.
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