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Abstract

Domain Randomization (DR) has recently proven to be an effective approach for learn-
ing control policies from randomized simulations to increase robustness against the
model-plant mismatch. In particular, adaptive methods that update domain parameter
distributions using Likelihood-Free Inference (LFI) were shown to be efficient at sim-to-
real transfer. However, current LFI methods either require manually designed distance
metrics to distinguish simulated and real trajectories or learn a costly global surrogate
inverse model of the simulator to enable amortized inference. In this thesis, we propose
an algorithm termed Wasserstein-optimal Likelihood-Free Inference, that estimates the
intractable likelihood of a simulator using Energy-Based Models (EBMs) in which the
energy functional is represented by the Wasserstein distance over trajectories, thereby
addressing the challenges of the current LFI approaches. For the proposed method, we de-
velop Bayesian inference routines based on Sequential Monte Carlo Approximate Bayesian
Computation (SMC-ABC) and Relative Entropy Policy Search (REPS) algorithms. We
establish a theoretical connection between SMC-ABC and REPS using maximum entropy
principles, demonstrating that both approaches optimize the same objective function.
This connection can be leveraged to apply REPS to typical LFI problems, and in particular,
Bayesian system identification. The proposed method is validated on sim-to-sim and
sim-to-real tasks and are compared against SNPE-C, a state-of-the-art LFI algorithm that
sequentially updates a neural model of the posterior. The sim-to-sim experiments confirm
that both SNPE-C and REPS are able to capture the domain parameter correlations of
the posterior. The sim-to-real experiments on the cart-pole and the Furuta pendulum
swing-up tasks demonstrate that the proposed Wasserstein-optimal LFI algorithm finds
the parameter distributions that match the real trajectories better than SNPE-C in terms
of the Dynamic Time Warping (DTW) discrepancy and the Mean Squared Error (MSE)
between the real and simulated trajectories.
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Zusammenfassung

Die Domänen Randomisierung (DR) hat sich in jüngster Zeit als wirksamer Ansatz für
das Erlernen von Kontrollstrategien aus randomisierten Simulationen erwiesen, um die
Robustheit gegenüber Modellfehlern zu erhöhen. Insbesondere adaptive Methoden, die
Domänenparameterverteilungen mit Hilfe von Likelihood-Freier Inferenz (LFI) verbessern,
haben sich als effizient bei der Übertragung von Simulationen in die Realität erwiesen.
Aktuelle LFI Methoden erfordern jedoch entweder manuell entwickelte Abstandsmetriken,
um simulierte und reale Trajektorien zu unterscheiden, oder sie lernen ein ineffizientes
inverses Ersatzmodell des Simulators, um eine amortisierte Inferenz zu ermöglichen.
In dieser Arbeit schlagen wir einen Algorithmus mit dem Namen Wasserstein-Optimale
Likelihood-Freie Inferenz vor, der den schwer lösbaren Likelihood eines Simulators mit
Hilfe von Energie-Basierten Modellen (EBMs) schätzt, wobei das Energiefunktional durch
die Wasserstein-Distanz zwischen Trajektorien repräsentiert wird, wodurch die Herausfor-
derungen der aktuellen LFI Ansätze addressiert werden. Für die vorgeschlagene Methode
entwickeln wir Bayessche Inferenzroutinen, die auf den Algorithmen Sequential Monte
Carlo Approximate Bayesian Computation (SMC-ABC) und Relative Entropy Policy Search
(REPS) basieren. Wir stellen einen theoretische Zusammenhang zwischen SMC-ABC und
REPS her, indem wir Maximale-Entropie-Prinzipien verwenden und zeigen, dass beide
Ansätze dieselbe Zielfunktion optimieren. Die vorgeschlagenen Methoden werden in
Sim-zu-Sim- und Sim-zu-Real Anwendungen validiert und mit SNPE-C verglichen, ei-
nem modernen LFI Algorithmus, der ein neuronales Modell des Posteriors fortlaufend
aktualisiert. Die Sim-zu-Sim Experimente bestätigen, dass sowohl SNPE-C als auch REPS
in der Lage sind, die Korrelationen zwischen den Domänenparametern des Posteriors
zu erfassen. Die Sim-zu-Real Aufschwung-Experimente an einem inversen Pendel und
dem Furuta Pendel zeigen, dass der Wasserstein-Optimale LFI Algorithmus diejenige
Parameterverteilungen findet, die die realen Trajektorien besser darstellen können als
SNPE-C mit Bezug auf die Diskrepanz der dynamischen Zeitnormierung (DTW) und den
mittleren quadratischen Fehlern (MSE) zwischen den realen und simulierten Trajektorien.
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1. Introduction

Reinforcement Learning (RL) is a promising approach to solving complex robotic problems.
Nevertheless, there are still very few physical systems that directly utilize RL. On one hand,
the RL algorithms do not yet have sufficient capacity to scale to realistic, high-dimensional
environments. On the other hand, policies trained solely in simulation are usually not
applicable on physical systems. Such discrepancy is due to the simulation not being capable
of grasping all the influences in the physical world. The mismatch between simulation
and reality is commonly referred to as the ‘reality gap’.

Applying policy optimization algorithms directly on the real device is time-consuming,
error-prone and may lead to the harm of the robot, or even worse its environment. Ideally,
policy optimization should be carried out in simulation and should only be transferred to
the real system once it is safe. Therefore, algorithms for sim-to-real transfer have been
proposed to make the transfer as robust as possible. One of these approaches is Domain
Randomization (DR). In DR, policy optimization is carried out on randomized domains
such that the trained policy is robust to environmental changes. Applications of DR in
various robotic environments [1, 2, 3, 4, 5, 6] show that DR can bridge the sim-to-real
gap.

Developed in the field of evolutionary biology, Likelihood-Free Inference (LFI) is a collective
term for inference approaches for which it is impossible to compute the likelihood. Given
a black-box simulator, LFI only requires reference data to infer the most likely parameters
responsible for the observation. Recently, adaptive DR approaches [4, 6] have successfully
integrated LFI as a Bayesian system identification routine into the DR framework.

Another approach towards Bayesian system identification is Relative Entropy Policy Search
(REPS) [7]. Formally known from policy search, REPS presents an empirical inference
method to infer the parameters of a parameterized distribution in a gradient free way [3].

In this thesis, we consider Bayesian system identification approaches which are based on
LFI and the Wasserstein distance between trajectories. We show that a subclass of LFI
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algorithms, Approximate Bayesian Computation (ABC), and REPS can be interpreted as
inference algorithms which approximate the intractable likelihood with an EBM where
the energy functional is the Wasserstein distance between observed and real trajectories.
Therefore, we refer to these approaches as Wasserstein-optimal Likelihood-Free Inference.

We contribute to the state-of-the-art by (i) formulating the Wasserstein distance between
trajectory distributions, (ii) presenting a unifying perspective on REPS and ABC as infer-
ence based on EBMs, and (iii) validating and carrying out an extensive ablation study for
Wasserstein-optimal LFI.

The thesis is structured as follows: Chapter 2 outlines relatedwork connected toWasserstein-
optimal LFI. In Chapter 3, the foundations are presented and subsequently the method-
ology is described. Afterwards, the experimental set-up is introduced in Chapter 4 and
is followed by the experimental results and a final discussion in Chapter 5. Chapter 6
summarizes the findings and outlines future work.

3



2. Related Work

In this thesis, we employ Bayesian inference to infer the parameters of a dynamical system.
The goal is to use the inferred system parameters for domain randomization. Putting our
Bayesian system identification approach into a broader perspective, Section 2.1 introduces
various domain randomization approaches. Section 2.2 summarizes a representative
selection of recent LFI approaches. Section 2.3 highlights metrics for time series data and
Section 2.4 presents statistical distances in Machine Learning (ML).

2.1. Domain Randomization (DR)

RL (see Section 3.1) trains policies to maximize the expected cumulative reward. In
classical RL, a fixed simulator is used during the training procedure. It has been observed
that policies tend to exploit this fact by finding solutions which explicitly fit to the specified
domain [8]. In order to train policies which generalize to variations of the underlying
dynamics, domain randomization aims at solving the problem by training on randomized
domains

J(θ) = E
ξ∼p(ξ)

[︄
E

τ∼pθ,ξ(τ )
[R(τ )]

]︄
. (2.1)

As stated in Eq. (2.1), domain randomization extends the standard RL objective by an
additional expectation over domain parameters. In general, a variety of domain parameters
can be randomized, however, they must be manually selected for each task. Randomizing
the friction coefficients, motor-specific parameters, or the geometric properties of the
robot has shown to provide robust policies on underactuated swing-up tasks [5, 6] as well
as on pushing and reaching tasks [2]. Domain parameters can also reflect other influences
such as uncertainties of visual inputs. Grasping and pushing tasks [9] or drone control [1]
are examples where the observed scene will change with each experiment as possible
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disturbances can occur due to changes of the position and orientation of the camera or
reference objects, or due to lighting changes.

Early approaches [9, 1] sample the parameters from a predefined uniform distribution.
Although capable of bridging the reality gap, these approaches require fine tuned prior
distributions and might lead to overly conservative policies. Therefore, recent approaches
adapt the domain parameter distribution to represent the underlying parameter distribu-
tion of the target system.

SimOpt [3] is a DR approach which leverages a Bayesian system identification subroutine.
Here, a loss between the simulated and the real-world reference data is defined. The
domain parameter distribution of the real system is estimated by minimizing the loss
w.r.t. the parameters φ of pφ(ξ). To overcome the non-differentiability of the system
dynamics, a gradient-free optimization algorithm is applied. The authors proposes to
use episodic REPS [7]. The distance is chosen as a weighted l1 and l2 norm between
the observations in addition with a Gaussian filter to account for misalignments. The
parameter distribution is estimated by a parameterized multivariate Gaussian pφ(ξ) =
N (ξ|µ,Σ) which can account for correlations between the domain parameters. SimOpt
intertwines policy optimization with the Bayesian system identification method and apply
their approach on a grasping and pulling task and a peg-in-a-hole task which moves away
from the typical rigid motion assumption.

Muratore et al. [5] formulate a bi-level optimization problem of Eq. (2.1) which subse-
quently updates the parameters of the policy and of the domain parameter distribution.
The domain parameter distribution is updated using sample efficient Bayesian optimiza-
tion which is suited for black-box functions with low dimensional input space. The domain
parameter distribution is fitted such that the expected real world return is maximized.
The authors show promising sim-to-real results on a swing-up and stabilization task and
in a ball-in-a-cup task where the proposed approach employs PPO [10] and Policy Learn-
ing by Weighting Exploration with the Returns (PoWER) [11] as their respective policy
optimization subroutines.

Given recorded data from the reference system, Bayesian system identification can be
applied to obtain the most likely domain parameters for a given set of observations.
BayesSim [4] and its online variant [12] are two domain randomization algorithms that
leverage LFI. The most recent LFI algorithms train neural posterior models based on
pairs of domain parameters and simulated data. The inferred domain parameters can
be obtained by conditioning the trained posterior on the observed data. Evaluated on
various continuous tasks, BayesSim shows that the posterior obtained from LFI makes the
policy optimization routine more robust. Online BayesSim builds upon this framework
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by adding model predictive control to update the controller’s parameters and show the
results on a skid-steer robot. NPDR [6] extends the ideas introduced in BayesSim and
learns a neural model of the posterior based on a normalizing flow. Normalizing flows
are flexible density estimators that can represent complex distributions [13] and hence,
can overcome the restriction for a specific type of parameterized distribution. Moreover,
careful tuning of summary statistics of the trajectories can be circumvented as they are
learned jointly with the neural model. The ability to depict multi-modal distributions is
shown in a minigolf experiment. Moreover, the LFI subroutine is combined with PoWER
on the Furuta pendulum to generate robust swing-up and stabilization policies.

2.2. Likelihood-Free Inference (LFI)

The previous section shows that Bayesian system identification is a promising subroutine
for DR approaches. Specifically, we want to present LFI algorithms as a particular case
of Bayesian inference. Inference routines from this family are specifically designed for
problems where drawing samples from a stochastic model is possible but the likelihood
is intractable. The survey of LFI approaches [14] offers an in-depth look into the LFI
approaches described below.

2.2.1. Approximate Bayesian Computation (ABC)

ABC is one of the earliest and well known LFI approaches and is solely based on samples
of the model parameters. In its simplest form, domain parameters are drawn from a
prior distribution and are accepted if the simulated data is close to the observed data.
For discrete data, it has been shown that the accepted domain parameter samples are
drawn from the true posterior if the acceptance threshold goes to zero [15]. Several
approaches have been proposed to improve on the vanilla rejection ABCmethod. Sampling
strategies, such as Markov Chain Monte Carlo (MCMC) [16] and Sequential Monte
Carlo (SMC) [17, 18, 19, 20, 21, 22], update the sampling distribution from which newly
proposed samples are drawn iteratively.
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2.2.2. Sequential Neural Density Estimation (SNDE)

Recently, neural density estimators have been proposed to approximate the posterior
distribution. The simulator is used to generate a synthetic data set from which the neural
model is trained. During the data generation process, parameter samples are first drawn
from a sampling distribution and fed through the simulator to yield pairs of parameters
and simulations. These samples are drawn from the joint distribution which is proportional
to the posterior. The posterior can thus be learned from the samples by maximizing the
log-probability of the density estimator. The recent success of neural density estimators
in LFI can be attributed to the idea of sequentially updating the sampling distribution,
originally proposed in [23]. This idea significantly improved the sample efficiency of the
algorithms and made it possible to scale to higher dimensions and to solve more complex
tasks.

Papamakarios and Murray [23] first proposed to approximate the posterior with a neural
model. The algorithm, dubbed Sequential Neural Posterior Estimation (SNPE)-A, relies on
an analytical solution using Gaussian conjugate priors which is why the neural model is
restricted to mixture of Gaussians. The algorithms SNPE-B [24] and APT/SNPE-C [25] im-
prove upon their predecessor such that any density estimator, e.g., Masked Autoregressive
Flows (MAFs)[13], can be utilized.

Alternatively, Sequential Neural Likelihood Estimation (SNLE) [26] learns a neural model
of the likelihood. With a tractable likelihood at hand, sampling strategies such as MCMC
sampling can be applied to draw samples from the posterior distribution.

Sequential Neural Ratio Estimation (SNRE) approaches [27] estimate the likelihood-ratio
r(x, ξ) = p(x|ξ)/p(x) = p(ξ|x)p(x)/p(ξ)p(x). The idea is to connect posterior estimation
with contrastive learning which learns a binary classifier r(x, ξ) to discriminate positive
and negative samples. In the likelihood-ratio, positive samples are considered to be
sampled from the joint distribution p(ξ,x) and negative samples from p(ξ)p(x). The
paper sets the classifier to be the log of the likelihood-ratio log r(x, ξ). The authors show
that the binary classifier can be updated sequentially to sample in domain parameter
regions which are likely to reproduce the observed data. Furthermore, they connect
SNPE-C with SNRE, presenting a more general view on contrastive learning, and show
that the likelihood-ratio can be recovered by SNPE-C.
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2.3. Metrics for Time Series Data

Time series data is ubiquitous in the physical world. In robotics, time series most often
appear as trajectories which comprise the information a robot gathers while moving
through its environment. In nonlinear systems, two time series starting in close vicinity
may diverge after few time-steps. Muskulus and Verduyn-Lunel [28] claim that comparing
time series by pairwise comparisons of the time steps is often ineffective[28]. Therefore,
the authors embed time series into a ‘reconstruction space’ in which each data point
contains information about the correlations between time-steps over a fixed time horizon.
Subsequently, statistical measures, such as theWasserstein distance, are applied to compare
two trajectories in their embedded representation.

Originally developed for speech recognition, DTW [29] finds the optimal alignments
that minimize the distance between time steps of two time series. DTW is a dynamic
programming algorithm which allows the comparison of time series of different length.
The algorithm is especially interesting for time series which undergo different speed, e.g.,
comparing the gaits of two different persons. Soft-DTW [30] approximates an entropy-
regularized version of the DTW objective which makes the discrepancy differentiable. The
authors formulate the Soft-DTW discrepancy between time-series as a loss for classification
and clustering tasks.

2.4. Statistical Distances in Machine Learning (ML)

The field of information geometry offers a set of tools for comparing probability distri-
butions [31]. The Kullback-Leibler (KL) divergence, the Wasserstein distance, and the
Jensen-Shannon divergence are examples of statistical distances employed in ML [31]. For
example, the maximum likelihood approach for regression or classification, minimizes the
KL divergence between a target and the approximate distribution. In this regard, statistical
distances have been applied as a loss function for machine learning problems [32, 33] or
can be applied as regularization terms in the loss function [7, 34].

The Wasserstein distance is defined as the solution of the optimal transport problem [35],
which represents the minimal cost of moving mass from one probability measure to another.
This optimal transport problem has gained attention in recent years due to its particularly
favorable properties: (i) an optimal coupling between the two probability measures exists,
(ii) the transport problem is convex, and (iii) the Wasserstein distance is symmetric [35].
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With the goal to calculate theWasserstein distance, numerical methods have been proposed.
Cuturi [36] formulated a regularized optimal transport problem which can be solved
using Sinkhorn’s algorithm[37]. Sinkhorn iterations allow to parallelize the computations,
resulting in significant speed-ups when using hardware accelerators such as GPUs.
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3. Foundations and Methodology

In this chapter, an LFI approach to Bayesian system identification is presented that es-
timates a posterior based on the Wasserstein distance between ground truth data and
simulated data. Section 3.1 introduces Markov Decision Processes (MDPs), as training
data will be collected by rolling out trajectories in MDPs. Afterwards, Section 3.2 outlines
an approach to calculate the discrepancy between two single trajectories using Dynamic
Time Warping (DTW). To compare two empirical probability distributions over trajecto-
ries, Section 3.3 presents the Wasserstein distance as an example for measures of statistical
distances. The proposed inference procedure leverages the Wasserstein distance over
trajectories to carry out LFI.

3.1. Markov Decision Processes (MDPs)

Consider the tuple (Sξ,Aξ,Pξ, r, p0(s)) forming a time-discrete Markov Decision Process
[38] with continuous states s ∈ Sξ ⊂ Rn and continuous actions a ∈ Aξ ⊂ Rm. The
transition distribution P := pξ(s

′|s,a) is the probability moving from state s to state s′

following action a for which a reward r = r(s,a) is collected. The system dynamics are
defined by domain parameters which are assumed to be distributed according to p(ξ).
To complete the MDP, we denote the initial state distribution by p0(s|ξ). In an MDP, an
agent interacts with its environment following the policy πθ(a|s) and collecting rewards.
The goal of the agent is to maximize its discounted cumulative sum of rewards

J(θ) = E
ξ∼p(ξ)

[︄
E

τ∼pπθ (τ )
[R(τ )]

]︄
; pπθ

(τ ) = p(s0|ξ)
T−1∏︂
t=0

pξ(st+1|st,at)πθ(at|st). (3.1)

Trajectories τ = {s0,at, rt, st+1|t = 0, ..., T − 1} comprise all states, actions, and rewards
for all time steps which have been collected by an agent. The reward accumulated over
the trajectory is R(τ ) =

∑︁T−1
t=0 γtr(st,at). Here, γ is a discount factor on returns.
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3.2. Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) [29] is an algorithm to compare two time series of possibly
different length. DTW finds the optimal alignments between the data points of two
time series such that it minimizes the overall distance between these two time series.
Here, we will follow the notation introduced in [29, 39]. Given two time sequences
τx = {x0, . . . ,xM} and τy = {y0, ...,yN}, we define the warping curve

φ(t) = (φx(t), φy(t)), t = 1 ... T,

φx(t) ∈ {0, ...,M},
φy(t) ∈ {0, ..., N},

where φx and φy contain the time steps of their respective time series. A warping curve
φ(t) aligns the time steps of the data points xφx(t) and yφy(t) at time step t. The goal of
DTW is to find the warping curve which minimizes the accumulated cost of all alignments

ρ(τx, τy) = min
φ

∑︁T
t=1 d(xφx(t),yφy(t)) w(t)∑︁T

t=1w(t)
. (3.2)

Here, d(xm,yn) ≥ 0 is a dissimilarity function, e.g., the squared cost between single
states of the two time series τx and τy. w(t) is a weighting coefficient which is normalized
in order to compare time-series of different length. In order to only allow reasonable
alignments between time steps, several constraints have been formulated. Monotonicity
is insured by the following conditions on the warping curve:

φx(k − 1) ≤ φx(t),

φy(k − 1) ≤ φy(t)

Continuity is insured by the following requirement:

φx(t)− φx(t− 1) ≤ 1,

φy(t)− φy(t− 1) ≤ 1

The alignments must meet the following boundary conditions on the starting and end
position:

φx(1) = 1, φy(1) = 1,

φx(T ) = M, φy(T ) = N
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This Optimization Problem (3.2) can be solved using dynamic programming by making
use of the following recursive formulation

g(t) = min
φ(t−1)

[g(t− 1) + d(φx(t), φy(t)) w(t)] , (3.3)

ρ(τa, τb) =
1∑︁T

t=1w(t)
g(T ), (3.4)

where g(t) is the cost between τx and τy up to the tth time step. The cost for time step t
can be calculated from the cost up to t− 1 and the pairwise comparison at t. Up to this
point, the weighting coefficients and normalization have been neglected. Nevertheless,
normalization and weighting is important in order to compare time-series with dissimilar
warping curves. Step patterns [39] are a way to visualize the weightings in an elegant
way, and furthermore, account for a warping slope which is neither too steep nor too
flat. Step patterns define the possible transitions and the assigned weights from one pair
matching φ(k) to the next one φ(k + 1). A visualization of the step patterns is depicted in
Fig. 3.1.

(a) Symmetric P-0 step pattern

(i, j)

(i− 1, j − 1)

(i− 1, j)

(i, j − 1)

2

1

1

(b) Symmetric P-1 step pattern

(i, j)

(i− 1, j − 1)

(i− 1, j)

(i, j − 1)

(i− 1, j − 2)

(i− 2, j − 1)

2

1

1
2

2

Figure 3.1.: Example step patterns for DTW. The weight along an edge denotes how much
the distance between the pairs ρ(xi,yj) is weighted. The recursion for the symmetric P-0
step pattern Eq. (3.5) gives further insights into this representation.

With these in mind, the dynamic programming recursion for the symmetric P-0 step
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pattern is as follows:

g(i, j) = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g(i, j − 1) + d(i, j)

g(i− 1, j − 1) + 2d(i, j)

g(i− 1, j) + d(i, j)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.5)

Note here that the recursion is now over the pairs (i, j). A visualization of DTW with the
prescribed step pattern is shown in Figure 3.3. The bandwidth b is a parameter which
decides how far the pairwise comparison i and j should be skewed. If the time steps
move too far away from each other, spatial correlation might not be given and hence, one
should restrict the bandwidth.
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(a) bandwidth b = 0 (b) bandwidth b = 1

(c) bandwidth b = 2 (d) bandwidth b = ∞

Figure 3.3.: Rollouts showing the DTW alignments for different bandwidths b. The
bandwidth decides how far the elements xi and xj can be apart from each other, e.g., the
bandwidth b = 2 says that |i− j| <= 2. Note, that for b = 0 DTW becomes the squared
distance between single samples.

3.3. Wasserstein Distance

The Wasserstein distance is a statistical distance that can be used to compare two prob-
ability measures [35]. Assume two probability measures µ and ν defined on X and let
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(X , ρ) be a polish space. Then, the p-Wasserstein distance between µ and ν is (see [35])

Wp(µ, ν) :=

(︃
inf

γ∈Γ(µ,ν)

∫︂
X×X

ρ(x,y)pdγ(x,y)
)︃1/p

. (3.6)

Here, γ(x,y) is a joint probability measure with marginals µ, ν and Γ(µ, ν) denotes the
set of all possible couplings of (µ, ν). The Wasserstein metric finds the optimal coupling
which minimizes the cost ρ(x,y) of moving a particle x to y.

In this thesis, the optimal transport problem for discrete measures is considered due to
its numerical solutions presented in Section 3.3.1. Let us consider the discrete measures
µ̂ =

∑︁M
i=1µiδxi , ν̂ =

∑︁N
j=1 νjδxj , where δ denotes the Dirac delta distribution. The

vectors µi and νj contain the probabilities assigned to the samples xi and yj , respectively.
As shown in [40], the optimal transport problem for the discrete case can be written as

Wp(µ̂, ν̂) =

⎛⎝ inf
γ∈Γ(N,M)

M∑︂
i=1

N∑︂
j=1

ρ(xi,yj)
pγi,j

⎞⎠1/p

, (3.7)

where Γ(N,M) is the set of all coupling matrices γn,m, i.e., matrices whose rows sum up
to µ and whose columns sum up to ν. If N = M , Eq. (3.7) can be reformulated as

Wp(ν̂, µ̂) =

(︄
1

N
inf

σ∈SN

N∑︂
i=1

ρ(xi,yσ(i))
p

)︄1/p

. (3.8)

Here, SN denotes the set of all permutations of {1, ..., N}. This problem is known as the
assignment problem and the solution to this problem is to find the optimal permutation σ∗

to match the samples xi to yσ∗(i). In the following, we will only consider the case p = 1
which is known as the Monge-Kanterovic problem.

3.3.1. Numerical Solution to the Monge-Kanterovic Problem

The Assignment Problem (3.8) can be thought of as finding the permutation σ(i) such
that the distance between xσ(1:N) and y1:N is minimal. Therefore, the time complexity of
the problem is N logN for one dimensional data and N3 in multivariate settings [40].
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The linear constraint program of the discrete optimal transport problem Eq. (3.7) is

LC(µ,ν) := min
P∈U(µ,ν)

⟨PC⟩ =
∑︂
i,j

Pi,jCi,j ,

s.t. µi =
n∑︂

i=1

Pi,j , (3.9)

νj =
m∑︂
j=1

Pi,j ,

where [ C ]ij = ρ(xi,yj) is the cost of moving xi to yj and P denotes a coupling matrix
of µ and ν. Again, the task is to find the optimal coupling which minimizes the total
distance. The condition on the coupling matrix to be doubly stochastic are formalized as
linear constraints. From linear optimization it is known that the given problem is convex
and can be solved using standard simplex solvers for linear optimization.

Recently, effective approximations to the optimal control problem have been proposed by
solving the regularized optimal transport problem [41]

L̂C(µ,ν) := min
P∈U(µ,ν)

⟨PC⟩ − εH(P ), H(P ) := −
∑︂
i,j

Pi,j (logPi,j − 1) . (3.10)

Here, H is called the entropic regularization term of the coupling P . The entropy is
strictly concave which yields a strictly convex optimization problem with a unique optimal
solution. The effect of the entropy is that for large ε the optimal solution favors maximum
entropy solutions. In the extreme case, ε → ∞, the optimal coupling P ∗ is the joint
distribution between the two independent marginal distributions µ and ν. Contrary, the
optimal solution to problem Eq. (3.10) converges to the optimal solution of the linear
program Eq. (3.9) for ε → 0 (see [41]).

It can be shown that the optimal coupling for the regularized optimal transport problem
assumes the following form

Pi,j = ui e−
Ci,j
ε⏞ ⏟⏟ ⏞

Ki,j

vj , (3.11)

where u and v are two unknown vectors which have to be determined. Ki,j is the Gibbs
kernel associated to the cost between the masses of µ and ν. It assigns large values towards
couples which are close to each other. Fitting the vectors u and v can be understood as
finding the coupling P which projects the Gibbs kernel onto the space of doubly stochastic
matrices (see constraints of Eq. (3.7)). Sinkhorn’s algorithm [37] provides a solution to
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iteratively updating the scaling vectors using only matrix multiplications. The vectors u
and v are updated one after another to yield the desired solution [41]

ut+1 =
µ

Kvt
, vt+1 =

ν

Kut+1
, (3.12)

where division denotes pointwise division. This so called matrix scaling problem can
be solved in O(n2 logn) operations. Sinkhorn iterations can be calculated using basic
arithmetic operations which can be massively parallelized using GPUs. Furthermore, the
gradient can be tracked such that the Wasserstein distance can be leveraged in gradient
descent optimization problems.

3.4. Inference with Intractable Likelihoods

In the following, two inference algorithms, Approximate Bayesian Computation (ABC)[42]
and Relative Entropy Policy Search (REPS) [7], are presented to obtain an approximation
of the posterior p(ξ|τ real

1:N ). The problem setting is that N observed data points τ real
1:N are

available and the latent parameters ξ, responsible for the observations, are to be inferred.
Both algorithms face the problem that the likelihood is intractable, i.e., samples can be
drawn from the likelihood p(τ |ξ) but no probability can be assigned towards those. This
case occurs with stochastic black-box simulators g(ξ) whose output can be interpreted
as samples from the likelihood. For conciseness, we establish the following notation:
p(ξ|τ1:N ) is the posterior, p(τ |ξ) is the likelihood of a single trajectory, p0(ξ) is the prior,
p(ξ) is the sampling distribution, and q(ξ|τ1:N ) denotes the approximate posterior which
is connected to the sampling distribution via Bayes’ rule

q(ξ|τ1:N ) =

∏︁N
i=1 p(τi|ξ)p(ξ)∫︁ ∏︁N
i=1 p(τi|ξ)p(ξ)dξ

. (3.13)

Here the data samples τ1:N are assumed to be i.i.d. random variables.

3.4.1. Approximate Bayesian Computation (ABC)

ABC uses sampling strategies to obtain samples from the posterior distribution. Several
algorithms have been developed which use different sampling strategies to generate
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Sampling strategy Kernel Kε (ρ (τ
′, τ ))

Rejection, MCMC, SMC Uniform 1(ρ(τ ′,τ )≤ε)

MCMC, SMC RBF exp
(︂
−ρ(τ ′, τ )

2ε2

)︂
Table 3.1.: Kernels used in ABC to estimate the transition probability between the real
and simulated data. ρ is any distance measure between the data τ ′ and τ . The kernel is
further parameterized by ε which serves as a bandwidth.

samples drawn from the underlying posterior. As shown in [42, 15], ABC approaches
draw samples from the approximate posterior

q(ξ|τ real
1:N ) ∝ p(ξ)

∫︂
Kε

(︂
D(τ real

1:N , τ1:M )
)︂ M∏︂

m=1

p(τm|ξ) dτm. (3.14)

A more intuitive understanding of the above expression can be gained by studying the
general principle of ABC algorithms. The steps are: (i) sample from a sampling distribution
p(ξ), (ii) generate M data samples for each domain paramater from the generative model
g(ξ), and (iii)weigh the sample w.r.t. the observed data. These three steps are represented
by the joint distribution over domain parameters and trajectories (see [42])

p(ξ, τ1:M |τ real
1:N ) ∝ Kε

(︂
D(τ real

1:N , τ1:M )
)︂
p(τ1:M |ξ)p(ξ). (3.15)

We arrive at Eq. (3.14) by marginalizing Eq. (3.15) w.r.t. theM data samples and assuming
i.i.d. data.

The kernel Kε

(︁
D(τ real

1:N , τ1:M )
)︁
represents the transition probability for moving from the

simulated data to the real data. It assigns high probability mass towards samples which
are close to the real data and low probability mass towards samples which are not close
to the real data. Typically, either a uniform or a Radial Basis Function (RBF) kernel is
applied which are denoted in Table 3.1.

A straightforward sampling strategy is rejection ABC [43]. In rejection ABC, simulation
parameters are drawn from a prior distribution and are accepted if the data, generated
from the simulator, matches the real data up to a specified threshold ε. With respect to
Eq. (3.14), rejection ABC uses a uniform kernel and the sampling distribution is always
the prior distribution p0(ξ). The pseudocode is presented in Algorithm 1.
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Algorithm 1: Rejection-ABC
Input: prior p0(ξ), generative model g(ξ), distance ρ(τ , τ̃ ), acceptance threshold ε or

quantile q, number of samples K, real world samples τ real

Output: posterior samples {ξi|ξi ∼ p(·|τ real), i = 1, ...,K}
1 for i = 1, ...,K do
2 repeat
3 Sample candidate from prior ξi0 ∼ p(·)
4 Simulate τ i ∼ g(·|ξi)
5 until ρ(S(τ real), S(τ i)) < ε

In general, rejection ABC does not scale well to high-dimensional problems as the prior will
search the whole parameter space. Therefore, more sophisticated algorithms sequentially
update the sampling distribution to be less diffusive each round.

In SMC-ABC [17, 44, 20], ideas from the particle filtering algorithm are applied, i.e., at
each iteration a set of weighted particles (ξ(k), w(k)) is adapted such that it represents the
current posterior distribution best. In order to sequentially move the sampling distribution
from the prior towards the posterior, the epsilon threshold εt is adapted at each iteration
step.

Given a prior set of particles drawn from the prior distribution p0(ξ), the SMC sampler
follows five steps to improve upon the previous set of particles. First, the bandwidth
ε is monotonically decreased every round. If a uniform kernel is assumed, this means
that the upper threshold, for which data is accepted, is decreased every round. After-
wards, the particles are adapted by first, sampling from the previous weighted particle
distribution. These samples are then perturbed using a transition kernel G(ξt+1, ξt).
This step moves the particle towards more likely parameter samples while maintaining
the particle diversity. A renowned SMC-ABC algorithm [20] is shown in Algorithm 2.

19



Algorithm 2: Generalized SMC-ABC algorithm [20]
Input: prior p0(ξ), simulator g(ξ), distance D(τ ′

1:N , τ1:M ), number of samples K,
number of samples per domain parameter L, number of simulated rollouts M ,
N real world samples τ real

1:N , number of steps T , acceptance threshold ε,
transition Kernel G(ξt+1, ξt), distance Kernel Kε(τt+1, τt)

Initialize: t = 0, ε0 = ∞, w(k)
0 = 1/K

1 Sample from prior ξ(k)0 ∼ p0(ξk), (k = 1, ...K)

2 Generate simulations τ (k,l,m)
0 ∼ g(ξ

(k)
0 ), (l = 1, ..., L), (m = 1, ...,M)

3 for t = 1, ..., T do
4 Determine εt by solving
5

ESS({w(k)
t }) = αESS({w(k)

t−1}) (3.16)

with w
(k)
t = w

(k)
t−1

∑︁L
l=1 Kεt

(︂
D(τ real

1:N , τ
(k,l,1:M)
t−1 )

)︂
∑︁L

l=1 Kεt−1

(︂
D(τ real

1:N , τ
(k,l,1:M)
t−1 )

)︂ (3.17)

6 Compute new particle weights w(k)
t using Eq. (3.17) and set particles ξ(k)t = ξ

(k)
t−1

7 if ESS({w(k)
t }) < Nt then

8 Resample K new candidates ξ(k)t ∼
∑︁K

k=1w
(k)
t−1δξ(k)t−1

9 Set new weights w(k)
t = 1/K

10 for k = 1, ...,K do
11 Sample candidates ξ̃(k) ∼ G(ξ̃

(k)
, ξ

(k)
t ), (k = 1, ...K)

12 Generate candidate simulations
τ̃ (k,l,m) ∼ g(ξ(k)), (l = 1, ..., L), (m = 1, ...,M)

13 Accept sample ξ̃
(k) with probability

14

min

⎧⎨⎩1,

∑︁L
l=1Kεt

(︂
D(τ real

1:N , τ
(k,l,1:M)
t−1 )

)︂
p0(ξ̃

(k)
) G(ξ

(k)
t , ξ̃

(k)
)∑︁L

l=1Kεt(ρ(τ
(k,n)
t , τ real)) p0(ξ

(k)
t ) G(ξ̃

(k)
, ξ

(k)
t )

⎫⎬⎭ (3.18)

1616 and set ξ(k)t = ξ̃
(k), τ (k,l,m)

t = τ̃
(k,l,m)
t

Output: posterior samples ξ(k)T ∼ p(·|τ real
1:N ), (k = 1, ...,K)
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In the context of SMC-ABC the Effective Sample Size (ESS)

ESS({w(k)
t }Kk=1) =

(︄
K∑︂
k=1

(︂
w

(k)
t

)︂2)︄−1

(3.19)

is used as a measure to compare the variability of the given weighted particles. The ESS
takes values between zero and K. If all particles are evenly distributed, the ESS is K
and gets smaller when the variability of the samples sinks. If the ESS is below a certain
threshold, the SMC-ABC algorithm re-samples new particles to replenish the particles
with non-negligible probability.

3.4.2. Relative Entropy Policy Search (REPS)

REPS [7] is an empirical inference algorithm, formally presented for policy search. Given
a cost to discriminate between simulated and real data, the objective is to find the data
distribution which minimizes the expected cost. For the joint distribution q(τ1:M , ξ|τ real

1:N ),
the objective is as follows:

min
q(τ1:M ,ξ)

E
ξ∼q(ξ)

[︄
E

τ1:M∼p(τ1:M |ξ)

[︂
D
(︂
τ real
1:N , τ1:M

)︂]︂]︄
, (3.20)

s.t. KL (q(τ1:M , ξ) ∥ p(τ1:M , ξ)) ≤ ε,∫︂∫︂
q(τ1:M |ξ)p(ξ) dτ1:M dξ = 1.

Note, for clarity of presentation and without loss of generality, the problem is formu-
lated without conditioning on the real data τ real

1:N . Following trust-region optimization
approaches, the optimization of the joint distribution q(τ1:M , ξ) to the previously assumed
posterior p(τ1:M , ξ) is restricted by the KL divergence between these distributions. The
third term guarantees that q(ξ) adheres to the family of probability distributions. The
analytical solution to the optimization problem is

q⋆(τ1:M , ξ) ∝ e−η−1D
(︁
τ real
1:N ,τ1:M

)︁
p(τ1:M |ξ) p(ξ), (3.21)

where η is a temperature parameter which can be obtained by maximizing the dual
function of Eq. (3.20)

max
η>0

g(η) = −η

(︄
ε+ log E

p(ξ)

[︄
E

p(τ1:M |ξ)

[︂
e
− 1

η
D
(︁
τ real
1:N ,τ1:M

)︁]︂]︄)︄
. (3.22)
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A derivation of the optimal domain parameter distribution q⋆(τ1:M , ξ) and the dual function
using Lagrange multipliers can be found in Appendix A.1.

The optimal posterior can be recovered by marginalizing Eq. (3.21) w.r.t. the simulated
trajectories τ1:M

q⋆(ξ|τ real
1:N ) ∝ p(ξ)

∫︂
e−η−1D

(︁
τ real
1:N ,τ1:M

)︁
p(τ1:M |ξ) dτ1:M . (3.23)

From Eq. (3.23), a sequential algorithm can be derived which finds the optimal solution.
In a first step, the dual Eq. (3.22) is maximized w.r.t. η. The expectation Ep(ξ)[·] can be
approximated using Monte Carlo samples. Standard non-linear optimization solvers can be
applied to find η. After that, the parameter distribution can be fitted by minimizing the KL
divergence between q(ξ|τ real

1:N ) and q⋆(ξ|τ real
1:N ). Optimizing the parameterized distribution

qφ(ξ) w.r.t. them-projection of the KL divergence is referred to as maximizing the weighted
likelihood

min
φ

KL (q⋆ ∥ qφ) = max
φ

E
q⋆
[log qφ(ξ)] (3.24)

=max
φ

E
p(ξ)

⎡⎣ E
p(τ1:M |ξ)

⎡⎣ e−η−1D
(︁
τ real
1:N ,τ1:M

)︁
Ep(ξ)

[︂
Ep(τ1:M |ξ)

[︂
e−η−1D

(︁
τ real
1:N ,τ1:M

)︁]︂]︂ log qφ(ξ)

⎤⎦⎤⎦ . (3.25)

Again, the expectations are approximated with Monte Carlo samples. REPS assumes a
parameterized multivariate Gaussian posterior model while ABC relies on a set of particles
to estimate the posterior. The pseudocode for REPS is shown in Algorithm 3.

3.5. Connecting Approximate Bayesian Computation and Relative
Entropy Policy Search

The approximate posteriors of SMC-ABC and REPS in Sections 3.4.1 and 3.4.2 have
a similar form and indeed, we will show that the two inference methods are closely
related. In a first step, a generalized view on the two inference methods is established
as a form of inference for Energy-Based Models (EBMs) [45]. In EBMs, parameters z
and the corresponding data samples x are available from which the likelihood can be
approximated using a Gibbs distribution

p̃(x|z) = e
− 1

β
E(x,z)

. (3.29)
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Algorithm 3: Pseudo code for episodic REPS[7] using the m-projection
Input: parameterized model qφ(ξ), prior p0(ξ), generative model g(ξ), cost function

D(τ1:N , τ1:M ), number of samples K, number of samples per domain
parameter M , N real world samples τ real

1:N , number of steps T , acceptance
threshold ε

Input: t = 0, Set prior as sampling distribution p(ξ) = p0(ξ)
1 for t = 1, ..., T do
2 Sample parameters ξ(k)t ∼ p(ξk), (k = 1, ...K)

3 Generate simulations τ (k,l,m)
t ∼ g(ξ

(k)
t ), (l = 1, ..., L), (m = 1, ...,M)

4 Calculate weights

wk =
L∑︂
l=1

e
−η−1 D

(︂
τ real
1:N , τ

(k,l,1:M)
t

)︂
(3.26)

5 Optimize η using non-linear optimization solvers (e.g. Newton CG)

min
η

−g(η) ≈ ηε+ η log

(︄
1

K

K∑︂
k=1

wk

)︄
(3.27)

6 Fit parameter distribution by maximizing the weighted log-likelihood

max
φ

∑︁K
k=1wk log qφ(ξ(k))∑︁K

k=1wk

(3.28)

Output: approximate posterior qφ(ξ)

Here β serves as a temperature parameter. The likelihood yields large probabilities if
the energy functional E(x, z) is low and vice versa. Applying Bayes rule on the ABC
posterior (Eq. (3.14)), the approximate likelihood reads

p(τ real
1:N |ξ) =

∫︂
Kε

(︂
D(τ real

1:N , τ1:M )
)︂ M∏︂

m=1

p(τm|ξ) dτm. (3.30)

The likelihood p(τ real
1:N |ξ) of the real data can be approximated using Monte Carlo sam-

pling from p(τm|ξ) via the simulator g(ξ). Assuming an RBF kernel (see Table 3.1), a
closer look reveals the similarities between REPS, ABC and EBMs. For the RBF kernel,
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Kε

(︁
D
(︁
τ real
1:N , τ1:M

)︁)︁
with standard deviation ε = (η/2)−1/2, the approximate posteriors of

SMC-ABC and REPS are the same and can be understood as being the posterior estimated
from an energy based likelihood. Thus, the posterior is constructed from a sampling
distribution and a likelihood which scores the drawn samples based on their distance to
the ground truth.

A successful application of any ABC or REPS implementation relies on (i) a ‘good’ rep-
resentation of the data via summary statistics and a ‘reliable’ distance measure and (ii),
adapting the sampling distributions in a ‘reasonable’ way. The former point is addressed
in various conducted research on summary statistics (see, e.g., [46, 42]). We will show in
the next paragraphs how SMC-ABC and REPS address the sequential adaptation of the
sampling distribution.

In SMC-ABC, the particle updates follow by sampling candidate samples from the pre-
vious particle distribution and accepting the candidate parameters with the acceptance
probability shown in Eq. (3.18). Large kernel parameter values ε yield broader kernels
Kε which means that samples from a broad range get assigned equally likely probabili-
ties. Therefore, the acceptance probabilities are higher for large ε for a broad range of
parameters. The contrary is the case for small kernel parameters. Therefore, the choice of
the hyperparameter α (see Eq. (3.16)) decides whether the sampling distribution adapts
quickly or slowly.

REPS applies a trust-region via the KL divergence constraint to ensure that the update of the
parameterized distribution is bounded by a threshold. The constraint on the distribution
update is motivated to minimize the information loss[47, 7] while optimizing the main
objective. In Eq.(3.23), the regularization constraint is represented by the exponential
kernel. As can be seen in Eq. (3.25), the kernel weights the domain parameter samples ξ.
Thus, large sample weights move the optimization routine towards these samples. Similar
to SMC-ABC, the kernel parameters decide how far the distribution can move away from
the current distribution.

To complete the comparison of REPS and SMC-ABC, the kernel parameters η and ε are
considered. In SMC-ABC, the kernel parameter ε is estimated from the ESS. As a measure
for the variability of the particles, estimating ε from Eq.(3.16) finds the smallest kernel
parameter ε which maintains a certain particle variability. In REPS, the kernel parameter
η is obtained by maximizing the Dual (3.22). In practice, the Lagrange multiplier η and
the rejection threshold ε are constantly updated within their respective inference routine.
Figure 3.4 shows that the kernel parameters are small in the beginning and exponentially
decrease to an equilibrium state. The kernels, depicted in the three remaining plots, show
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that the kernels become less diffusive with every iteration. This means that the more
diffusive the posterior is, the less confident the kernel is and vice versa.

In summary, we have shown that REPS and SMC-ABC approximate the intractable like-
lihood using a distance-based Gibbs distribution. Furthermore, both algorithms have
a built-in regularization of the posterior update based on a kernel that represents the
certainty with which samples and ground truth observations belong to each other. In
experiments, the kernel bandwidths of REPS and SMC-ABC show similar behavior.
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Figure 3.4.: Kernel parameters ε and η measured over one run of REPS and APMC-ABC on
the Furuta pendulum. On the left, the exponential decline of the parameters is plotted over
the algorithms iterations. The three remaining plots show how the kernels, associated to
η and ε, develop. x can be interpreted as a distance representation between the reference
and simulated data. The y axis depicts the kernel values, which represent an unnormalized
probability. In APMC-ABC, a uniform kernel is used while REPS applies an RBF kernel.

3.6. Wasserstein-Optimal Bayesian System Identification

In this section, we introduce Wasserstein-optimal Bayesian system identification, an
approach which combines the Wasserstein distance between trajectories with the LFI
approaches SMC-ABC and REPS. First, the Wasserstein distance between two trajectory
distributions is worked out. Then the Bayesian inference approaches SMC-ABC and REPS
are combined with the Wasserstein distance.

Assume that we have collected trajectories from the real system {τ real
i }Ni=1. Given a

behavioral policy, the goal is to infer the domain parameters which are responsible for
the observed data. Therefore, data is collected in simulation {τ ξ

j }Mj=1 to compare it to the

25



observed data. Let us assign an empirical probability measure for each dataset

preal(τ ) =
1

N

N∑︂
i=1

δτ real
i

(τ ), (3.31)

pξ(τ ) =
1

M

M∑︂
j=1

δ
τξ
j
(τ ); τ ξ

j ∼ p(·|ξ), (3.32)

where each sample has the same probability. To calculate the statistical distance between
the two probability measures, the Discrete Optimal Transport Problem Eq. (3.7) is solved.
The cost matrix is the distance between the trajectories τ real

i and τ ξ
j

Ci,j = ρ(τ real
i , τ ξ

j ). (3.33)

Trajectories are represented as a set of vectors which contain the states and actions at
each time step {(sTt ,aT

t )
T }T−1

t=0 . ρ can be any distance measure between two time series,
but will be the DTW discrepancy or the MSE throughout this work. Note that the MSE
is a special case of DTW assuming the bandwidth b = 0. Given the cost matrix, the
optimal transportation cost can be calculated using the numerical methods described in
Section 3.3.1.

D(τ real
1:N , τ ξ

1:M ) =
∑︂
i,j

P ∗
i,jCi,j , (3.34)

τ real
1:N ∼ preal(τ ), τ ξ

1:M ∼ pξ(τ ).

In the previous sections, the inference routines SMC-ABC and REPS have been formulated
in a way such that the Wasserstein distance can directly be leveraged as the distance
function for SMC-ABC and REPS. For Bayesian system identification, we choose REPS
with m-projection updates of the posterior and a slightly improved SMC-ABC algorithm,
namely (Adaptive Population Monte Carlo) APMC-ABC [21]. Note that in this thesis,
the expectations over trajectories in Eq. (3.14) and Eq. (3.25) are estimated by a single
sample. The validity of this approximation is left for future work.
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4. Experiments

The proposed method, introduced in Section 3.6, is evaluated on three experiments. First,
a toy experiment serves as a validation for the proposed method. Afterwards, Bayesian
system identification is carried out for the swing-up tasks on the cart-pole and Furuta
pendulum.

4.1. Environments

This section dives deeper into the specifics of each environment. For that, the equations
of motion are outlined which can be derived by formulating the Euler-Lagrange equation
for each environment and assuming rigid-body dynamics for the cart-pole and Furuta
pendulum.

4.1.1. Damped Harmonic Oscillator

In this experiment, a point mass is attached to a spring which oscillates along the x-Axis
around the resting position x = 0. The other end of the spring is attached to a fixed point
which is assumed to be not moving. Furthermore, we assume that the system is damped.
The ordinary differential equation for the damped harmonic oscillator is

f = mẍ+ cẋ+ kx. (4.1)

Here f denotes the external force applied to the point mass,m denotes the mass, c denotes
the friction coefficient and k denotes the spring stiffness. In the experiments, the external
force is set to zero, f = 0, which yields the analytical solution of the underdamped system

x(t) = x0 e
−λt cos(ωt+ φ). (4.2)
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The natural frequency ω and the damping ratio λ of Eq. (4.1) are characteristic constants
to describe the system’s behavior

ω0 =

√︃
k

m
, λ =

c

2m
, ω =

√︂
ω2
0 − λ2. (4.3)

The system oscillates around the equilibrium position x(t)
t→∞−−−→ 0 with the natural

frequency ω. Assume that φ = 0 and no initial velocity of the point mass, then the initial
amplitude of the system is x0 and the system slowly decays exponentially, based on the
damping ratio λ, to its resting position.

4.1.2. Cart-Pole

The swing-up and stabilization task on the cart-pole is one of the common baselines to
evaluate RL approaches [48]. A rod is mounted on an angular joint which is positioned on
a cart which can drive horizontally along the x-direction. The swing-up can be achieved
by driving the cart in both direction and thereby generating the kinetic energy needed for
the rod to swing up. The generalized coordinates are the joint angle of the rod θ and the
position of the cart x w.r.t. to its equilibrium position. The equations of motion for the
cart-pole are given by⎡⎣−dcẋ+ fc

−dpθ̇

⎤⎦ =

⎡⎣mc +mp + Idc mplp cos θ

mplp cos θ 4
3mpl

2
p

⎤⎦⎡⎣ẍ
θ̈

⎤⎦+

⎡⎣mplp sin θ θ̇
2

mplpg sin θ

⎤⎦ . (4.4)

The left-hand side is the change of momentum due to the joint friction, defined by the
damping coefficients dc and dp as well as the external force along the rails fc applied by the
servo motor. The servo motor can be actuated applying voltage in the interval [Vmin, Vmax].
The mass matrix contains the terms for the longitudinal and angular momentum of the
cart and the pole as well as a term for the angular momentum of the DC motor Idc. The
non-linear terms are due to the Coriolis forces and the gravitation working on the rod.

4.1.3. Furuta Pendulum

The underactuated Furuta Pendulum is popular in control for its fast changing dynamics.
In a Furuta pendulum, the end of the ‘rotational’ pole is attached on a rotational joint
with a vertical rotation axis. The other end serves as the pendulum link, where the end of
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a second pole is attached which can rotate around the longitudinal axis of the rotational
rod. The system can be described by the angular deflection [θr, θp] of the rods w.r.t. their
equilibrium position [0, 0]. The equations of motion can be derived by formulating the
Euler-Lagrange equation similar to [49]⎡⎣−drθ̇r + τ

−dpθ̇p

⎤⎦ =

⎡⎣ 1
12mrl

2
r +mpl

2
r +

1
4mpl

2
p sin2 θp 1

2mplplr cos θp
1
2mplplr cos θp 1

3mpl
2
p

⎤⎦⎡⎣θ̈r
θ̈p

⎤⎦
+

⎡⎣1
4mpl

2
p sin 2θp θ̇rθ̇p − 1

2mplplr sin θp θ̇
2
p

−1
8mpl

2
p sin 2θp θ̇

2
r +

1
2mplpg sin θp

⎤⎦ . (4.5)

Here, the assumption is made that the pole length is significantly greater than its diameter
for which the moments of inertia of the poles around their pivot are Ji = 1/3 mil

2
i , i ∈

{r, p}. The mass matrix contains entries from the translatoric and rotational movement of
the two poles. As the reference coordinate systems are constantly rotating w.r.t. the basis
coordinate system, Coriolis forces dominate the non-linear term. They are complemented
by the gravitation which works on the rotational pole. The left-hand side considers
damping in the joints, represented by the damping coefficients dr and dp, and the torque
τ which is applied from a servo motor

τ = −k2m
rm

θ̇p +
km
Rm

u, (4.6)

where km is the motor resistance and rm is the motor back-electromotive force. Here u is
the applied voltage to control the robot.

4.2. Behavior Policies

A behavior policy is needed to complement the simulator for Bayesian system identification
(see Figure 4.1).

The damped harmonic oscillator is not subject to any external influences and hence, the
behavioral policy is an idle policy with zero return.

For the experiments, energy-based controllers are leveraged to solve the swing-up task
on the given environment. Depending on its current state, the swing-up controller either
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s

a

τ = {s0, at, rt, st|t = 1, ..., T}ξ env π(a|s)

Figure 4.1.: Simulator used for Bayesian system identification. The domain parameters
define the system dynamics. The simulator is an agent which chooses actions based on
the policy π(a|s) within the environment and thereby creates a trajectory τ .

chooses its next action based on an energy generating controller or uses a PD controller to
stabilize the swing-up. The deflection angle of the pendulum θp decides which controller
to use. The decision boundary for the experiments are |π − θp| ≤ 20π/360. The energy
controller generates the systems kinetic energy and compares it to a reference energy,
which is a representation of the minimal energy required to do the swing-up. The missing
kinetic energy will be provided by the controller.

4.3. Software Setup

The experiments are carried out within “SimuRLacra — a framework for reinforcement
learning from randomized simulations” [50]. For the system identification baseline SNPE-
C [25], the “sbi-toolbox” [51] is used which offers a variety of implementations for LFI
algorithms. Finally, the python library “geomloss” [52] is used to calculate the Wasserstein
distance between the two sets of trajectories.
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5. Results

Wasserstein-optimal Bayesian system identification is carried out on the cart-pole and the
Furuta pendulum. First, the proposed method is validated on sim-to-sim experiments
to show that the approach converges towards the ground truth parameters. Afterwards,
experiments using real world data are conducted on the swing-up tasks of the cart-pole
and the Furuta pendulum. The experimental details are defined in Section 4. During all
the experiments, we compare the Wasserstein-optimal LFI approaches, APMC-ABC and
REPS, with the baseline SNPE-C.

5.1. Evaluation of Inference Methods

In sim-to-sim experiments, true domain parameters are defined from which N reference
trajectories τ real

1:N are generated. Validation is carried out by finding the true domain
parameters responsible for these reference rollouts. The sim-to-sim experiments are
conducted on the damped harmonic oscillator (see Section 4.1.1) and the Furuta pendulum
(see Section 4.1.3). The experimental specifications are shown in Tables A.1 and A.2. The
sim-to-sim experiments are carried out for one reference rollout and are using the MSE
between trajectories to compare the data. The evolution of the approximate posterior
and the simulated rollouts of REPS on the damped harmonic oscillator are presented in
Figure 5.1.
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(c) Iteration 10
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(d) Rollouts at iteration 10

0 1 2 3 4 5 6 7
time t [s]

0.5

0.0

0.5

x

REPS Real Nominal

Figure 5.1.: Posterior evolution of REPS on the damped harmonic oscillator. The pair-plots
(a)–(c) are plotted from 1000 samples and present the adaptation of the approximate
posterior to the real data. REPS captures the pairwise linear correlations between the
domain parameters highlighted in black dotted lines. 100 trajectories of the position of
the mass x are plotted in (d) and show that the physical behavior is accurately presented.

The mode of the posterior moves from the prior, centered around the nominal parameters,
towards the real parameters. Furthermore, the posterior samples show pairwise linear
correlations between all domain parameters. In this experiment, the initial deflection and
velocity is fixed such that the trajectories only deviate in the damping ratio λ and the
natural frequency ω. These variables are completely described by the domain parameters
(see Eq. (4.3)). Typically, ω0 is a good approximation for ω and indeed, they differ
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by 0.26%. Hence, ω0 is modeled as the natural frequency from which the correlations
between the parameters are

ωreal
0 =

k

m
, 2λreal =

c

k
,

2λreal

ωreal
0

=
c

k
.

The linear correlations are highlighted in the plots by black dotted lines. The pair-plot
shows that the approximate posterior can capture the underlying linear correlations.
The trajectory plot of the inferred parameters in Figure 5.1d confirms that the found
correlations reproduce the reference data. As can be seen, all simulations of the sampled
parameter configurations reproduce the observed trajectories. APMC-ABC and the baseline
SNPE-A reveal similar results and are therefore not further mentioned. Though, for
completeness their results are shown in Table A.1.

Figure 5.2.: Approxi-
mate posteriors of REPS,
APMC-ABC and SNPE-C
on the Furuta pendulum
in a sim-to-sim experi-
ment. The diagonal axis
depicts the marginal
histograms while the
remaining subplots show
scatter plots between
two parameters. Each
experiment is evaluated
on 1000 samples. The
domain parameter cor-
relations, which yield
the reference trajectory,
are presented in black
dotted lines.

The domain parameters for the Furuta pendulum are the gravitational constant g and the
mass and length of the rotational rod mr, lr and of the pendulum rod mp, lp. Figure 5.2
presents the pair-plot of the trained approximate posteriors of the three inference methods

33



REPS, APMC-ABC and SNPE-C. The marginal histogram plots show that all inference
methods are centered around the real domain parameters. It can be seen that SNPE-
C has the least diffusive posterior while REPS has the most diffusive one. Next, we
examine the scatter plots by comparing against the correlations plotted in black dotted
lines. These correlations are the domain parameter configurations which yield the same
reference rollout when fed through the simulator. A derivation of the correlations can be
found in Appendix A.2. As shown in the previous experiment, the linear correlations are
captured by all inference routines. The Furuta pendulum additionally features non-linear
correlations, e.g., betweenmr,mp and lr, lp. REPS approximates the quadratic correlation
with an elliptic point cloud, APMC-ABC shows more diffuse scatter plots when quadratic
correlations are present while SNPE-C finds the correlations over a wide range of the
prior region. This observation might be explained by the different models each algorithm
assumes. Normalizing flows, leveraged by SNPE-C, are known to be flexible [13] while the
Gaussian model, utilized by REPS, restricts the expressiveness of the density estimator.

5.2. Evaluation of Data Generation Processes on the Real System

In this section, an ablation study is carried out to investigate the influence of the data
generation process for the proposed approaches. We will consider interfering the data
generation process in following ways: (i) using recorded actions which will be replayed
from the actions applied on the real system, (ii) partitioning the rollouts into five seg-
ments and resetting the rollouts to the states of the reference rollouts, and (iii) adding
stochasticity to the environment by assuming Gaussian noise on the states

s̃ = s+ ε, ε ∼ N (0,diag(σ2)).

We will refer to ‘vanilla’ rollout generation as not applying any of the aforementioned in-
terferences. Experiments using APMC-ABC, REPS and the baseline SNPE-C are conducted
on the Furuta pendulum and the cart pole using recorded data of the real system. The
algorithmic specifications for each algorithm can be found in Tables A.2 and A.3 and the
randomized domain parameters are shown in Table A.4.
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Figure 5.3.: Radar charts of the ablation study of the inference approaches using different
trajectory representations on the Furuta pendulum. We report the mean DTW discrepancy
and the mean MSE between the reference trajectories and the simulations generated from
100 domain parameters of the trained posterior. For five reference rollouts, five simulated
rollouts are generated from a single domain parameter and compared via the Wasserstein
distance. For each configuration 12 experiments have been conducted and trained until
convergence (20 iterations); rr: number of reference rollouts; sn: state noise is applied;
ur: the same actions are used on the physical and simulated system, seg: the rollouts
are segmented into five trajectories of equal length and are reset to the states of the real
trajectory; vanilla: neither of the described modifications is applied.
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Figure 5.4.: Radar charts of the ablation study of the inference approaches using different
trajectory representations on the cart-pole. We report the mean DTW discrepancy and
the mean MSE between the reference trajectories and the simulations generated from
100 domain parameters of the trained posterior. For five reference rollouts, five simulated
rollouts are generated from a single domain parameter and compared via the Wasserstein
distance. For each configuration 12 experiments have been conducted and trained until
convergence (20 iterations); rr: number of reference rollouts; sn: state noise is applied;
ur: the same actions are used on the physical and simulated system, seg: the rollouts
are segmented into five trajectories of equal length and are reset to the states of the real
trajectory; vanilla: neither of the described modifications is applied.
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Throughout the ablation study, Figures 5.3 and 5.4 present the mean performance of the
inference routines for the different data generation processes on the Furuta pendulum
and on the cart-pole. Furthermore, the radar charts are quantified by Tables A.5 and A.6
reporting the mean and standard deviation over 12 experiments. The ablation study is
carried out using either one or five reference rollouts and is evaluated using the DTW
discrepancy with infinite bandwidth b and the MSE between the reference data and the
simulated data. Note that in all conducted experiments, the trajectories obtained from the
inference methods yield better results than the nominal system parameters w.r.t. applied
distance metric.

It can be seen that all algorithms adapt similarly to changes of the data generation
processes. This observation indicates that the choice of the data representation is an
important part of a successful LFI application. The mean performance on one and five
reference rollouts is comparable. Though, the standard deviation of experiments conducted
on five reference rollouts is in general smaller which is to be expected as the inference
routine has to generalize on multiple rollouts. Overall, the two Wasserstein-optimal LFI
methods perform best over all experimental configurations and metrics. Furthermore,
the reference Tables A.5 and A.6 reveal that APMC-ABC and REPS are more robust over
the series of conducted experiments. Note, while Wasserstein-optimal LFI is specifically
trained to minimize the discrepancy between simulated and real trajectories, SNPE-C
approximates the whole posterior and is conditioned on the real data only at the end.

5.2.1. Rollout Comparison

Rollout plots of the Furuta pendulum in Figure 5.5 and on the cart-pole in Figure 5.6
give further insight into the data representations. A single state is plotted for all six
considered data generation processes. On the Furuta pendulum, we show the results of
APMC-ABC for the pendulum angle θp. It can be seen that ‘vanilla’ data generation on the
deterministic and noisy environment yield more diffuse rollouts compared to applying
recorded actions. The plots suggest that the ‘recorded actions’ data fit the real data better,
but this is indeed not the case, as the rotational angle θr (not shown) is not well presented.
Therefore, the overall performance of the recorded actions is worse than ‘vanilla’ data
generation.
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(a) Vanilla (b) State noise

(c) Use recorded actions (d) Use recorded actions and state noise

(e) Segmentation (f) Segmentation and use recorded actions

Figure 5.5.: 100 rollouts of APMC-ABC (green) on the Furuta pendulum. Here, the
pendulum’s angular change θp is plotted and compared with the reference rollout (black)
and a nominal rollout (grey). The plots show the interferences into the data generation
process by, (i) resetting the states after a certain segment length, (ii) applying recorded
actions, or (iii) adding state noise to the environment.

The rollouts obtained from REPS on the cart-pole are shown in Figure 5.6 by means of
the cart velocity ẋ. On the cart pole, the ‘vanilla’ rollouts suggests that the policy can not
replicate the trajectory of the real system, but applying recorded actions yields trajectories
close to the real data. These observations are further supported by the radar charts
(Figures 5.3 and 5.4). On the Furuta pendulum, ‘vanilla’ rollout generation minimizes
both metrics for one and five reference rollouts while using recorded actions performs
best on the cart-pole. Interfering further into the data generation process by segmenting

38



the rollouts does not improve the performance, but rather yields larger metric values.

(a) Vanilla (b) State noise

(c) Use recorded actions (d) Use recorded actions and state noise

(e) Segmentation (f) Segmentation and use recorded actions

Figure 5.6.: 100 rollouts of REPS (blue) on the cart-pole. Here, the velocity of the cart ẋ
is plotted and compared with the reference rollout (black) and the nominal rollout (grey).
The plots show the interferences into the data generation process by, (i) resetting the
states after a certain segment length, (ii) applying recorded actions, or (iii) adding state
noise to the environment.

5.2.2. Posterior Comparison

Next, the posterior samples obtained from the inference routines are compared with
each other. Figure 5.7 shows the posteriors of APMC-ABC, REPS and SNPE-C trained on
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five reference rollouts. Here, we only consider experiments trained with ‘vanilla’ data
generation as it performed best on the Furuta pendulum. It is noticeable that the algorithms
do not converge to a unique solution. While REPS is tightly centered, APMC-ABC is more
diffuse and SNPE-C captures tight correlations over the whole prior region. As the sim-to-
sim experiments have revealed the correlations between the domain parameters, these
findings suggest that REPS concentrates around a single domain parameter configuration
to reproduce the rollouts while Adaptive Population Monte Carlo (APMC)-ABC finds a
larger solution space. In addition, the performance differences between SNPE-C and the
Wasserstein-optimal LFI approaches might be explained by the visual shift of the domain
parameters.

Figure 5.7.: Posterior of
REPS, APMC-ABC and
SNPE-C on the Furuta
pendulum. The poste-
rior, trained on five roll-
outs, which are gener-
ated without any inter-
ference into the data gen-
erating process, is dis-
played. For each distri-
bution 1000 samples are
drawn from the approxi-
mate posterior.

A similar behavior can be seen on the cart-pole which is presented in Figure 5.8. Here,
the posteriors trained with recorded actions are shown as they perform best on the
specified metrics. Again, the posterior samples cluster in different regions. While REPS
was tightly clustered on the Furuta pendulum, REPS is spread over the whole prior region
for the parameters mc, mp, Vmin and Vmax, suggesting that the domain parameters do
not influence the inference procedure. The damping coefficient dc and the length lp are
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similarly estimated by all inference routines.

Figure 5.8.: Posterior of REPS, APMC-ABC and SNPE-C on the cart-pole.

Finally, the posterior samples of APMC-ABC are compared between three different data
generation processes on the Furuta pendulum in Figure A.2. It can be seen that different
data generation processes find their own clusters, but they seem to cluster along straights,
see e.g., mr, lp. The according posterior plot of REPS on the cart-pole is shown in
Figure A.3. Compared to the other data generation processes, segmenting the rollouts
lead to more tight posteriors. Here, it is interesting to note that lp which prior was uniquely
estimated between the different inference methods, is widely spread for different data
generation processes.

41



In summary, we compare different rollout representations for Bayesian system identifi-
cation by interfering with the data generation process. The results of APMC-ABC, REPS
and the baseline SNPE-C are evaluated using the DTW discrepancy and the MSE between
the reference and the simulated rollouts. It can be seen that different data generation
processes have a large impact on the performance of the algorithms. Not interfering into
the data generation process at all yields the best results on the Furuta pendulum. In
contrast, using recorded actions on the cart-pole is necessary to fit the real data. Samples
from the posteriors show that local solutions are found by APMC-ABC and REPS. Slight
shifts between the posteriors of the Wassestein-optimal LFI approaches and SNPE-C might
explain the different approximate posteriors of the respective inference routine.

5.3. Choice of the Likelihood-Free Inference Algorithm

The results of the previous section show that Wasserstein-optimal LFI algorithms perform
better than SNPE-C on the considered tasks. On the Furuta pendulum, it can be seen
that the posterior samples of SNPE-C are shifted compared to the samples obtained
from Wasserstein-optimal LFI. In this section, we discuss how the differences between
Wasserstein-optimal LFI and the SNPE approaches might be explained by the different
optimization objective. We further discuss the choice of the LFI algorithm based on the
differences of the optimization objective, run time, and sample efficiency.

As the approximate posterior is solely trained on samples from the simulator in SNPE-C,
the density estimator can be interpreted as an inverse model of the simulator. Only after
training, the posterior is conditioned on the real data. In contrast, Wasserstein-optimal
LFI estimates the parameter distribution based on the discrepancy between real and
simulated data. Therefore, the parameter distribution is also trained on real data. The
different approximate parameter distributions of SNPE and Wasserstein-optimal LFI might
explain the observed performance differences and shifts in the posterior plots of the
previous experiments. Directly training the parameter distribution of the real system with
Wasserstein-optimal LFI might lead to overfitting on the training data yielding the better
scores.

Table 5.1 presents the run-times of APMC-ABC, REPS and SNPE-C applied on the Furuta
pendulum for five reference rollouts and 5000 domain parameter samples per round. For
Wasserstein-optimal LFI, the computational cost is almost exclusively attributed to the
simulation time. In SNPE-C, neural networks in form of normalizing flows are trained
which takes up a significant part of the run time. Similar observations are made by
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Lueckmann et al. [53] on a benchmarking study on Simulation-Based Inference (SBI)
which shows that SMC-ABC has lower runtimes than SNPE-C on benchmarking simulators.
On the other hand, SNPE-C can reuse the samples which it has been trained on for the
next iteration. Thus, SNPE-C is in general more sample efficient than SMC-ABC [25]. For
simulators, where simulation time exceeds the optimization time, SNPE-C might be the
right choice.

Algorithm Sim. time Opt. time Avg. run-time for one iteration

APMC-ABC 99.2% 0.08% 37min

REPS 99.1% 0.09% 34min

SNPE-C 66.7% 33.3% 52min

Table 5.1.: Run-times of APMC-ABC, REPS and SNPE-C on the Furuta pendulum. In each
iteration, a total of 25 000 simulations are carried out. Each experiment is multi-processed
on 16 CPUs to speed up computations.
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6. Conclusion

In this thesis, we presentedWasserstein-optimal Bayesian system identification, a Likelihood-
Free Inference (LFI) algorithm which leverages the Wasserstein distance between trajecto-
ries to approximate the intractable likelihood. The proposed method was validated on
sim-to-sim tasks and an extensive ablation study on data generation processes was carried
out on sim-to-real swing-up tasks.

6.1. Summary

Sequential Monte Carlo Approximate Bayesian Computation (SMC-ABC) and Relative
Entropy Policy Search (REPS) are two Bayesian inference approaches developed in two
different areas of research. In this work we showed that both approaches approximate
the same posterior by approximating the intractable likelihood with an Energy-Based
Model (EBM) for which the energy functional is a distance between real and simulated
data. By making the likelihood tractable, classical sampling strategies can be applied
yielding the SMC-ABC algorithm. Using parameterized models, REPS carries out inference
by weighting samples, drawn from the sampling distribution with the likelihood, and
maximizing the Kullback-Leibler (KL) divergence between the true and approximate
parameter distribution.

We applied the Wasserstein distance between trajectories as the energy functional for
the LFI approaches SMC-ABC and REPS. The Wasserstein-optimal LFI algorithms were
validated in sim-to-sim experiments on the damped harmonic oscillator and on the Furuta
pendulum. Here, all inference algorithms could reproduce the linear correlations while
REPS had problems representing the non-linear correlations of the Furuta pendulum due
its Gaussian model assumptions.

Afterwards, an ablation study was carried out on the sim-to-real swing-up tasks of the
cart-pole and the Furuta pendulum to investigate the effect of different data generation
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processes, namely, using recorded actions from the real system, resetting the states to the
real states segmentwise, or adding state noise. Using recorded actions was crucial for a
successful application of LFI on the cart-pole while using the policy was beneficiary on the
Furuta pendulum. Wasserstein-optimal LFI showed improved performance compared to
the baseline SNPE-C on the specified metrics, Dynamic Time Warping (DTW) discrepancy
and theMSE, between simulated and real trajectories. Posterior plots revealed that samples
from SNPE-C were slightly shifted from the posterior samples of Wasserstein-optimal LFI
which might have explained the performance differences.

6.2. Future Work

The presentedWasserstein-optimal Bayesian system identification approach can be straight-
forwardly integrated into Domain Randomization (DR) to enable sim-to-real transfer.

In Chapter 5, it was shown that Wasserstein-optimal LFI performs better than SNPE-C on
the considered tasks. However, SNPE-C does not assume any form of the density estimator.
The benefits of normalizing flows were visible on the sim-to-sim Furuta pendulum where
SNPE-C was capable of estimating the nonlinear correlations. Adding more flexible
density estimators could further improve the performance of Wasserstein-optimal Bayesian
system identification. Gaussian mixture models have been successfully employed within
REPS [54] and is one possibility to overcome the restrictions on the parameter distribution.
Using differentiable simulators is another idea to sidestep the non-differentiability of the
optimization objective in Eq. (3.20). This requirement on the simulator enables the
training of neural models using gradient descent.

As discussed in Section 3.6, the inner expectation over trajectories in Eq. (3.14) was
approximated by a single sample in this thesis. A further study is necessary to evaluate
whether this assumption is valid.

In this thesis, changing the data generation process showed significant changes in the
performance of the inference algorithms. Instead of further interfering with the data
generation process, one approach is to consider step-wise data comparison instead of full
trajectories. As time-series tend to diverge over long time horizons, comparing transitional
changes could make the inference routine more robust. Furthermore, intertwining online
Reinforcement Learning (RL) algorithms with an online update of the domain parameter
distribution could improve the sample efficiency of the Domain Randomization (DR)
method.

45



Bibliography

[1] F. Sadeghi and S. Levine, “CAD2RL: real single-image flight without a single real
image,” in Robotics: Science and Systems XIII, MIT, Cambridge, Massachusetts, USA,
July 12-16, 2017, 2017.

[2] B. Mehta, M. Diaz, F. Golemo, C. J. Pal, and L. Paull, “Active domain randomization,”
in CoRL, Osaka, Japan, October 30 - November 1, vol. 100 of PMLR, pp. 1162–1176,
2019.

[3] Y. Chebotar et al., “Closing the sim-to-real loop: Adapting simulation random-
ization with real world experience,” in ICRA, Montreal, QC, Canada, May 20-24,
pp. 8973–8979, IEEE, 2019.

[4] F. Ramos, R. Possas, and D. Fox, “BayesSim: Adaptive domain randomization via
probabilistic inference for robotics simulators,” in Robotics: Science and Systems XV,
Freiburg im Breisgau, Germany, June 22-26, 2019.

[5] F. Muratore, C. Eilers, M. Gienger, and J. Peters, “Data-efficient domain random-
ization with bayesian optimization,” IEEE Robotics Autom. Lett., vol. 6, no. 2,
pp. 911–918, 2021.

[6] F. Muratore, T. Gruner, F. Wiese, B. Belousov, M. Gienger, and J. Peters, “Neural
posterior domain randomization,” in CoRL, 2021.

[7] J. Peters, K. Mulling, and Y. Altun, “Relative entropy policy search,” in AAAI, Atlanta,
Georgia, USA, July 11-15, 2010.

[8] B. Baker et al., “Emergent tool use from multi-agent autocurricula,” in ICLR, Addis
Ababa, Ethiopia, April 26-30, 2020.

[9] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain random-
ization for transferring deep neural networks from simulation to the real world,” in
IROS, Vancouver, BC, Canada, September 24-28, pp. 23–30, IEEE, 2017.

46



[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” CoRR, vol. abs/1707.06347, 2017.

[11] J. Kober and J. Peters, “Policy search for motor primitives in robotics,” Mach. Learn.,
vol. 84, no. 1-2, pp. 171–203, 2011.

[12] R. Possas, L. Barcelos, R. Oliveira, D. Fox, and F. Ramos, “Online BayesSim for
combined simulator parameter inference and policy improvement,” in IROS, Las
Vegas, NV, USA, October 24, 2020 - January 24, 2021, pp. 5445–5452, IEEE, 2020.

[13] G. Papamakarios, I. Murray, and T. Pavlakou, “Masked autoregressive flow for density
estimation,” in NIPS, December 4-9, Long Beach, CA, USA, pp. 2338–2347, 2017.

[14] K. Cranmer, J. Brehmer, and G. Louppe, “The frontier of simulation-based inference,”
Proceedings of the National Academy of Sciences, vol. 117, no. 48, pp. 30055–30062,
2020.

[15] G. Karabatsos and F. Leisen, “An approximate likelihood perspective on ABC meth-
ods,” Statistics Surveys, vol. 12, no. none, pp. 66 – 104, 2018.

[16] P. Marjoram, J. Molitor, V. Plagnol, and S. Tavaré, “Markov chain monte carlo
without likelihoods,” Proceedings of the National Academy of Sciences, vol. 100,
no. 26, pp. 15324–15328, 2003.

[17] S. A. Sisson, Y. Fan, and M. M. Tanaka, “Sequential monte carlo without likelihoods,”
Proceedings of the National Academy of Sciences, vol. 104, no. 6, pp. 1760–1765,
2007.

[18] M. A. Beaumont, “Approximate bayesian computation in evolution and ecology,”
Annu. Rev. Ecol. Evol. Syst., vol. 41, no. 1, pp. 379–406, 2010.

[19] C. C. Drovandi and A. N. Pettitt, “Estimation of parameters for macroparasite popu-
lation evolution using approximate bayesian computation,” Biometrics, vol. 67, no. 1,
pp. 225–233, 2011.

[20] P. D. Moral, A. Doucet, and A. Jasra, “An adaptive sequential monte carlo method for
approximate bayesian computation,” Stat. Comput., vol. 22, no. 5, pp. 1009–1020,
2012.

[21] M. Lenormand, F. Jabot, and G. Deffuant, “Adaptive approximate bayesian computa-
tion for complex models,” Comput. Stat., vol. 28, no. 6, pp. 2777–2796, 2013.

47



[22] C. Albert, H. R. Künsch, and A. Scheidegger, “A simulated annealing approach to
approximate bayes computations,” Stat. Comput., vol. 25, no. 6, pp. 1217–1232,
2015.

[23] G. Papamakarios and I. Murray, “Fast ϵ-free inference of simulation models with
bayesian conditional density estimation,” in NIPS, December 5-10, 2016, Barcelona,
Spain, pp. 1028–1036, 2016.

[24] J. Lueckmann, P. J. Gonçalves, G. Bassetto, K. Öcal, M. Nonnenmacher, and J. H.
Macke, “Flexible statistical inference for mechanistic models of neural dynamics,” in
NIPS, December 4-9, Long Beach, CA, USA, pp. 1289–1299, 2017.

[25] D. S. Greenberg, M. Nonnenmacher, and J. H. Macke, “Automatic posterior trans-
formation for likelihood-free inference,” in ICML, 9-15 June, Long Beach, California,
USA, vol. 97, pp. 2404–2414, PMLR, 2019.

[26] G. Papamakarios, D. C. Sterratt, and I. Murray, “Sequential neural likelihood: Fast
likelihood-free inference with autoregressive flows,” in AISTATS, 16-18 April, Naha,
Okinawa, Japan, vol. 89, pp. 837–848, PMLR, 2019.

[27] C. Durkan, I. Murray, and G. Papamakarios, “On contrastive learning for likelihood-
free inference,” in ICML 2020, 13-18 July, Virtual Event, vol. 119, pp. 2771–2781,
PMLR, 2020.

[28] M. Muskulus and S. Verduyn-Lunel, “Wasserstein distances in the analysis of time
series and dynamical systems,” Physica D: Nonlinear Phenomena, vol. 240, no. 1,
pp. 45–58, 2011.

[29] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spoken
word recognition,” IEEE Trans. on Acoustics, Speech, and Sig. Proc., vol. 26, no. 1,
pp. 43–49, 1978.

[30] M. Cuturi and M. Blondel, “Soft-dtw: a differentiable loss function for time-series,”
in ICML, Sydney, NSW, Australia, 6-11 August, vol. 70, pp. 894–903, PMLR, 2017.

[31] S.-i. Amari, Information geometry and its applications, vol. 194. Springer, 2016.

[32] I. J. Goodfellow et al., “Generative adversarial nets,” inNIPS, December 8-13, Montreal,
Quebec, Canada, pp. 2672–2680, 2014.

[33] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” CoRR,
vol. abs/1701.07875, 2017.

48



[34] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy
optimization,” in Proceedings of the 32nd International Conference on Machine Learn-
ing (F. Bach and D. Blei, eds.), vol. 37 of Proceedings of Machine Learning Research,
(Lille, France), pp. 1889–1897, PMLR, 07–09 Jul 2015.

[35] C. Villani, Optimal transport: old and new, vol. 338. Springer, 2009.

[36] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,” in
NIPS, Lake Tahoe, Nevada, United States, December 5-8, pp. 2292–2300, 2013.

[37] R. Sinkhorn, “A Relationship Between Arbitrary Positive Matrices and Doubly Stochas-
tic Matrices,” vol. 35, no. 2, pp. 876 – 879, 1964.

[38] M. L. Puterman,Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics, Wiley, 1994.

[39] T. Giorgino, “Computing and visualizing dynamic time warping alignments in r: The
dtw package,” Journal of Statistical Software, Articles, vol. 31, no. 7, pp. 1–24, 2009.

[40] E. Bernton, P. E. Jacob, M. Gerber, and C. P. Robert, “Approximate bayesian computa-
tion with the wasserstein distance,” J. R. Stat. Soc.: Series B (Statistical Methodology),
vol. 81, no. 2, pp. 235–269, 2019.

[41] G. Peyré and M. Cuturi, “Computational optimal transport,” Found. Trends Mach.
Learn., vol. 11, no. 5-6, pp. 355–607, 2019.

[42] S. A. Sisson, Y. Fan, and M. Beaumont, Handbook of approximate Bayesian computa-
tion (1st ed.). Chapman and Hall/CRC, 2018.

[43] S. Tavaré, D. J. Balding, R. C. Griffiths, and P. Donnelly, “Inferring coalescence times
from dna sequence data,” vol. 145, no. 2, pp. 505–518, 1997.

[44] T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P. Stumpf, “Approximate bayesian
computation scheme for parameter inference and model selection in dynamical
systems,” J. R. Stat. Soc. Interface, vol. 6, no. 31, pp. 187–202, 2009.

[45] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, “A tutorial on energy-
based learning,” Predicting Structured Data, vol. 1, no. 0, 2006.

[46] P. Fearnhead and D. Prangle, “Constructing summary statistics for approximate
bayesian computation: semi-automatic approximate bayesian computation,” J. R.
Stat. Soc., vol. 74, no. 3, pp. 419–474, 2012.

49



[47] S. M. Kakade, “A natural policy gradient,” in NIPS, December 3-8, Vancouver,
British Columbia, Canada] (T. G. Dietterich, S. Becker, and Z. Ghahramani, eds.),
pp. 1531–1538, MIT Press, 2001.

[48] B. Belousov, H. Abdulsamad, P. Klink, S. Parisi, and J. Peters, Reinforcement Learning
Algorithms: Analysis and Applications. Springer, 2021.

[49] K. Furuta, M. Yamakita, and S. Kobayashi, “Swing-up control of inverted pendulum
using pseudo-state feedback,” Proc. Inst. Mech. Eng., Part I: Journal of Systems and
Control Engineering, vol. 206, no. 4, pp. 263–269, 1992.

[50] F. Muratore, “SimuRLacra — a framework for reinforcement learning from random-
ized simulations.” https://github.com/famura/SimuRLacra, 2020.

[51] A. Tejero-Cantero et al., “sbi: A toolkit for simulation-based inference,” J. Open
Source Softw., vol. 5, no. 52, p. 2505, 2020.

[52] J. Feydy, T. Séjourné, F. Vialard, S. Amari, A. Trouvé, and G. Peyré, “Interpolating
between optimal transport and MMD using sinkhorn divergences,” in AISTATS, 16-18
April, Naha, Okinawa, Japan, vol. 89, pp. 2681–2690, PMLR, 2019.

[53] J. Lueckmann, J. Boelts, D. S. Greenberg, P. J. Gonçalves, and J. H. Macke, “Bench-
marking simulation-based inference,” in AISTATS April 13-15, Virtual Event, vol. 130,
pp. 343–351, PMLR, 2021.

[54] O. Arenz, M. Zhong, and G. Neumann, “Trust-region variational inference with
gaussian mixture models,” J. Mach. Learn. Res., vol. 21, pp. 163:1–163:60, 2020.

[55] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search for robotics,”
Found. Trends Robotics, vol. 2, no. 1-2, pp. 1–142, 2013.

50

https://github.com/famura/SimuRLacra


A. Appendix

A.1. Derivation of the Optimal Domain Parameter Distribution in
REPS

The derivation of the optimal domain parameter distribution closely follows the derivation
of the optimal policy in REPS [7]. A thorough insight into REPS and its derivation can
also be found in [55]. The Lagrangian of the optimization problem in Eq. (3.20) is

L =

∫︂∫︂
q(τ1:M , ξ) D

(︂
τ real
1:N , τ1:M

)︂
dτ1:M dξ (A.1)

+ η

(︃∫︂∫︂
q(τ1:M , ξ) log

q(τ1:M , ξ)

p(τ1:M , ξ)
dτ1:M dξ − ε

)︃
+ λ

(︃∫︂∫︂
q(τ1:M , ξ) dτ1:M dξ − 1

)︃
=

∫︂∫︂
q(τ1:M , ξ)

[︃
D
(︂
τ real
1:N , τ1:M

)︂
+ η log

q(τ1:M , ξ)

q(τ1:M , ξ)
+ λ

]︃
dτ1:M dξ − ηε− λ (A.2)

The optimal domain parameter distribution is found where the derivative of the Lagrangian
w.r.t. q(ξ) vanishes

∂L
∂q

⃓⃓⃓⃓
q=q⋆

= D
(︂
τ real
1:N , τ1:M

)︂
+ η

[︃
log

q⋆(τ1:M , ξ)

p(τ1:M , ξ)
+ 1

]︃
+ λ = 0. (A.3)

Reformulating the above expression yields the solution

q⋆(τ1:M , ξ) = p(τ1:M , ξ) e
− 1

η
D
(︁
τ real
1:N ,τ1:M

)︁
e

−η−λ
η (A.4)
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The last term can be substituted by

e
η+λ
η =

∫︂∫︂
p(τ1:M , ξ) e−η−1D

(︁
τ real
1:N ,τ1:M

)︁
dτ1:M dξ (A.5)

yielding the optimal solution. The last term is a result of the last constraint in (eq. (3.20))
making q(τ1:M , ξ) a probability density. Lastly, we can obtain the dual by plugging in the
optimal domain parameter distribution into Eq. (A.2)

g(η) = −ηε− η − λ

= −ηε− η log
(︃∫︂∫︂

p(τ1:M , ξ)e
− 1

η
D
(︁
τ real
1:N ,τ1:M

)︁
dτ1:M dξ

)︃
(A.6)

= −ηε− η log E
p(τ1:M ,ξ)

[︂
e
− 1

η
D
(︁
τ real
1:N ,τ1:M

)︁]︂
.

A.2. Derivation of Domain Parameter Correlations for Furuta Pen-
dulum

Muratore et al. [6] show that the equations of motion of the Furuta pendulum can be
formulated as a linear equation w.r.t. the parameters w

⎡⎣θr θ̈r sin2 θp + θ̇rθp sin(2θp) θ̈p cos θp − θ̇
2
p sin θp 0 θ̇r 0

0 4
3 θ̈p − θ2r sin θp cos θp θ̈r cos θp sin θp 0 θ̇p

⎤⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w0

w1

w2

w3

w4

w5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣km
rm

u

0

⎤⎦ .

(A.7)

The parameters w are functions of the domain parameters which can be recovered by
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following correlations:
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2
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)︃
.

Let a rollout τ be characterized by the generalized coordinates θp, θr and its derivatives
θ̇p, θ̇r, θ̈p, θ̈r, and assume that a unique solution w⋆ of Eq. (A.7) exists. Then, all domain
parameter configurations that comply with the conditions in Eq. (A.8) yield the same
rollout. Note that w4 and w5 are neglected as they only contain information about the
motor constants and damping coefficients which are set to a constant value during the
experiments. We refer to the supplementary materials of [6] for further information.
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A.3. Algorithmic Configurations

Damped harmonic Oscillator

Parameter Value

Sampling rate 250[Hz]

Downsampling factor 1

Rollout length 8 [s]

Number of DPs samples 1000

Number of rollouts per DPs 1

Dp Prior range Unit

m [0.5, 1.5] kg

c [0.25, 0.75] Nm−1

k [7.5, 52.5] Nsm−1

Table A.1.: Algorithmic and experimental configuration of the one-mass oscillator.
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Furuta pendulum

Parameter Value

Sampling rate 500[Hz]

Downsampling factor 5

Rollout length 3[s]

Number of DPs samples 1000, 5000

Number of rollouts per DPs 1,5

Policy Hybrid controller: energy-based + PD controller

REPS

Number of iterations 20

Model Multivariate Gaussian

KL bound ε 0.3

APMC-ABC

Number of iterations 20

Model Particles

Cov Factor 2

α 0.1

Acceptance cut-off 0.0

SNPE-C

Model MAF [13]

Embedding layer FNN with 256 output neurons

Number of transformations 5

Number of features 50

Number of iterations 9

Table A.2.: Algorithmic configurations for Bayesian system identification on the Furuta
pendulum.

55



Cart-pole

Parameter Value

Sampling rate 250[Hz]

Downsampling factor 1

Rollout length 4.5 [s]

Number of DPs samples 1000, 5000

Number of rollouts per DPs 1,5

Policy Hybrid controller: energy-based + PD controller

REPS

Number of iterations 20

Model Multivariate Gaussian

KL bound ε 0.3

APMC-ABC

Number of iterations 20

Model Particles

Cov Factor 2

α 0.1

Acceptance cut-off 0.0

SNPE-C

Model MAF [13]

Embedding layer FNN with 256 output neurons

Number of transformations 5

Number of features 50

Number of iterations 13

Table A.3.: Algorithmic configurations for Bayesian system identification on the cart-pole.
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Furuta Pendulum

Dp Prior range Unit

g [8.34, 11.28] ms−2

mr [0.029, 0.162] kg

mp [0.007, 0.041] kg

lr [42.5, 127.5] mm

lp [64.5, 193.5] mm

Cart Pole

Dp Prior range Unit

mc [0.19, 0.57] kg

mp [0.0381, 0.2159] kg

lp [84.1, 252.4] mm

dc [2.7, 8.1] Nsm−1

dp [0.00, 1.0] Ns

Vmin [0.00, 2.0] V

Vmax −[0.00, 2.0] V

Table A.4.: Domain parameters of the Furuta pendulum and the cart-pole environment.
The domain parameters are sampled within a fixed prior region to prohibit physically
unplausible behavior.
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A.4. Validation of APMC-ABC and SNPE-C on Damped Harmonic
Oscillator
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Figure A.1.: Pair-plots of the trained APMC-ABC and SNPE-C posteriors on the damped
harmonic oscillator. We report the posterior after 10 iterations and 1000 samples.
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A.5. Ablation Study of Data Generation Processes

DTW MSE

APMC-ABC REPS SNPE-C APMC-ABC REPS SNPE-C

1 rr (0.79±0.06)e−1 (0.63±0.08)e−1 (1.38±0.24)e−1 (3.82±0.27)e−1 (1.84±0.16)e−1 (3.05±0.42)e−1

1 rr seg (3.91±0.20)e−1 (4.45±2.75)e−1 (5.98±2.82)e−1 (12.40±0.17)e−1 (13.80±5.94)e−1 (17.93±5.29)e−1

1 rr seg ur (3.85±0.03)e−1 (3.85±0.39)e−1 (4.64±0.51)e−1 (6.14±0.02)e−1 (6.44±1.10)e−1 (8.26±1.07)e−1

1 rr sn (1.12±0.16)e−1 (0.99±0.30)e−1 (2.72±0.26)e−1 (3.71±0.33)e−1 (2.65±0.80)e−1 (7.85±0.87)e−1

1 rr ur (2.14±0.01)e−1 (2.38±0.19)e−1 (3.94±0.78)e−1 (2.43±0.01)e−1 (2.73±0.32)e−1 (4.92±1.23)e−1

1 rr ur sn (3.27±0.09)e−1 (3.00±0.07)e−1 (4.39±1.52)e−1 (3.87±0.11)e−1 (3.64±0.10)e−1 (6.19±3.54)e−1

5 rr (0.82±0.05)e−1 0.61e−1 (1.90±0.35)e−1 (3.77±0.29)e−1 1.80e−1 (3.93±0.96)e−1

5 rr seg (3.89±0.15)e−1 (3.59±0.03)e−1 (8.06±2.99)e−1 (12.46±0.18)e−1 (11.81±0.13)e−1 (20.05±5.54)e−1

5 rr seg ur (3.95±0.03)e−1 3.89e−1 (5.00±0.64)e−1 (6.33±0.02)e−1 6.18e−1 (8.14±0.49)e−1

5 rr sn (0.90±0.04)e−1 (0.79±0.01)e−1 (1.72±0.60)e−1 (3.03±0.11)e−1 (2.12±0.03)e−1 (5.18±1.60)e−1

5 rr ur 2.51e−1 (2.67±0.07)e−1 (3.93±0.59)e−1 2.81e−1 (3.00±0.09)e−1 (4.90±1.08)e−1

5 rr ur sn (3.77±0.13)e−1 (3.38±0.07)e−1 (4.64±0.45)e−1 (4.93±0.23)e−1 (4.06±0.09)e−1 (5.80±0.79)e−1

Table A.5.: Ablation study of the inference approaches using different trajectory represen-
tations on the Furuta pendulum. We report the mean DTW discrepancy and the mean
MSE between the reference trajectories and the simulations generated from 100 domain
parameters of the trained posterior. In case of 5 reference rollouts, 5 simulated rollouts
are generated from a single domain parameter and compared via the Wasserstein distance.
For each configuration 12 experiments have been conducted and trained until convergence
(20 iterations); rr: number of reference rollouts; sn: state noise is applied; ur: the same
actions are used on the physical and simulated system, seg: the rollouts are segmented
into 5 trajectories of equal length and are reset to the states of the real trajectory; vanilla:
neither of the described modifications is applied.
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DTW MSE

APMC-ABC REPS SNPE-C APMC-ABC REPS SNPE-C

1 rr (2.31±0.41)e−1 (3.14±0.66)e−1 (4.82±2.07)e−1 (7.84±1.77)e−1 (13.30±3.25)e−1 (16.06±7.03)e−1

1 rr seg (2.96±0.15)e−1 (5.20±0.62)e−1 (5.26±1.23)e−1 (12.01±0.48)e−1 (19.27±1.71)e−1 (19.22±3.91)e−1

1 rr seg ur (1.25±0.12)e−1 (1.31±0.32)e−1 (3.10±2.14)e−1 (2.66±0.20)e−1 (2.87±0.62)e−1 (5.08±2.50)e−1

1 rr sn (3.01±1.26)e−1 (3.00±0.71)e−1 (4.41±0.76)e−1 (7.75±1.93)e−1 (12.31±4.26)e−1 (12.58±1.02)e−1

1 rr ur (1.23±0.20)e−1 (1.25±0.53)e−1 (0.98±1.13)e−1 (2.74±0.40)e−1 (2.18±0.81)e−1 (1.64±1.26)e−1

1 rr ur sn (1.21±0.15)e−1 (1.76±0.96)e−1 (2.48±1.73)e−1 (2.73±0.29)e−1 (2.81±1.25)e−1 (3.33±1.76)e−1

5 rr (2.61±0.16)e−1 (4.75±0.17)e−1 (5.15±0.99)e−1 (8.63±0.50)e−1 (11.90±0.19)e−1 (12.84±2.76)e−1

5 rr seg (3.37±0.13)e−1 (4.04±0.19)e−1 (6.35±1.89)e−1 (12.93±0.31)e−1 (15.25±0.52)e−1 (20.73±3.16)e−1

5 rr seg ur (1.29±0.05)e−1 (1.17±0.14)e−1 (4.44±1.24)e−1 (2.66±0.08)e−1 (2.49±0.26)e−1 (6.37±1.25)e−1

5 rr sn (2.59±0.13)e−1 (4.67±0.11)e−1 (4.91±0.60)e−1 (8.31±0.33)e−1 (11.93±0.11)e−1 (12.89±0.68)e−1

5 rr ur (1.28±0.11)e−1 (0.65±0.10)e−1 (1.66±1.04)e−1 (2.74±0.21)e−1 (1.23±0.17)e−1 (2.54±1.44)e−1

5 rr ur sn (1.12±0.09)e−1 (0.61±0.13)e−1 (3.07±1.31)e−1 (2.49±0.18)e−1 (1.19±0.29)e−1 (3.86±1.31)e−1

Table A.6.: Ablation study of the inference approaches using different trajectory representa-
tions on the cart-pole. We report the mean DTW discrepancy and the mean MSE between
the reference trajectories and the simulations generated from 100 domain parameters of
the trained posterior. In case of 5 reference rollouts, 5 simulated rollouts are generated
from a single domain parameter and compared via the Wasserstein distance. For each
configuration 12 experiments have been conducted and trained until convergence (20
iterations); rr: number of reference rollouts; sn: state noise is applied; ur: the same
actions are used on the physical and simulated system, seg: the rollouts are segmented
into 5 trajectories of equal length and are reset to the states of the real trajectory; vanilla:
neither of the described modifications is applied.
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Figure A.2.: Posterior of APMC-ABC trained with 3 different data representations on the
cart-pole; ur: the same actions are used on the physical and simulated system, seg: the
rollouts are segmented into 5 trajectories of equal length and are reset to the states of the
real trajectory; vanilla: neither of the described modifications is applied.
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Figure A.3.: Posterior of REPS trained with 3 different data representations on the cart-
pole; ur: the same actions are used on the physical and simulated system, seg: the rollouts
are segmented into 5 trajectories of equal length and are reset to the states of the real
trajectory; vanilla: neither of the described modifications is applied.
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