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Abstract

Controlling underactuated system is still a challenge because of their chaotic be-
havior. In this report, we apply optimal control techniques to a rotary inverted
pendulum, also known as Furuta pendulum. The goal is to track optimized trajecto-
ries in order to do light-painting with the tip of the pendulum using long exposure
photography. Therefore, we compare trajectory optimization using the collocation
and single shooting method. By formulating the loss function with time dependent
RBF activations, we were able to overcome limitations of naive loss functions. To
compensate for modeling errors, the optimized trajectories are tracked on the real
system through linear quadratic control.

1 Introduction

In this project we aim to create pictures using long-exposure photography by attaching a light
source at the tip of the Quanser QUBE, (Figure 1), a Furuta pendulum. This robot is supposed
to be controlled in a way so that letters can be seen in the final picture. To accomplish this, we
first created a simulator based on the equations of motion (EoM) of a Furuta pendulum as well as
a corresponding 3D Model to visualize its behavior. Next, we applied optimal control techniques
like direct single shooting and direct collocation to plan trajectories to reach prespecified points.

Figure 1: Quanser QUBE [4]

As the straight forward static specification of via points does not
allow us to succeed with our task, we came up with a time-dependent
formulation based on a loss function activated by radial basis func-
tions (RBFs). The generated trajectories do not lead to the expected
results when applied on the robot because the model is not precise
enough for open-loop control. We stabilize the execution on the
robot by applying closed-loop control through a linear-quadratic
regulator (LQR).

2 Related Work

The dynamics of a Furuta pendulum have been stated in multiple
papers. For a derivation of its EoM, see [3]. A better understand-
ing about the topic and methods we use for optimal control can
be acquired from [6]. For formulating and solving the nonlinear
programming (NLP) optimization problems, we use the symbolic
computer algebra system with automatic differentiation (CasADi),
see [2] for further information. This document also contains the

∗equal contribution



application of the single shooting and collocation methods for trajectory optimization. To work with
the real system, a controller needs to be applied to compensate for deviations from the model and to
stabilize the robot around the desired trajectory. Previous papers like [7] and [1] came to the result,
that the use of a LQR can give satisfying results for underactuated systems in general and also for a
Furuta pendulum.

3 Model and Simulation

To prototype different trajectory optimization algorithms and to validate the model, we implemented
a simulator for a Furuta Pendulum, particularly the Quanser QUBE [4].

3.1 Notation

For reference, we use the following mathematical notations

Figure 2: Furuta pendu-
lum model [5]

N number of time steps
h = dt length of one time step
k ∈ {0, ..., N} time discretization
xk state at time step k
uk control at time step k
f(xk, uk) system dynamics at time step k

3.2 Furuta Pendulum Model

The EoM can be derived using the Euler-Lagrange method [3]. We use slightly simplified non-linear
EoM and assume small arm radii in comparison to their length. The resulting EoM are given as
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with the motor torque

τ =
km(Vm − kmθ̇)

Rm
, (3)

where Vm is controlled. The forward dynamics in state-space form are then given as

x =
[
θ α θ̇ α̇

]T
, (4)

f(x, u) = ẋ =
[
θ̇ α̇ θ̈ α̈

]T
. (5)

3.3 Point Projection to create Letters

We want to write letters with the tip of the pendulum using long exposure photography. But how do
we know what states the joints have to be in, in order to create a trajectory in the form of a letter?
To answer this, we first have to analyse the reachable space of the pendulum and then calculate the
projection between the camera space, a 2D plane, and the pendulum’s state space.
We plotted the reachable space using a point cloud sampled from different values of the joint space
in Figure 3. It is a sphere with cut off bottom and top with just a small area at the back that is not

2



Table 1: Quanser QUBE System Parameters
Symbol Description Value
Rm Terminal resistance 8.4 Ω
km Motor back-emf constant 0.042 Vs/ rad

mr Rotary arm mass 0.095 kg
Lr Rotary arm length 0.085 m
mp Pendulum link mass 0.024 kg
Lp Pendulum link length 0.129 m
Jr Rotarty arm inertia around the center of mass Mr · Lr2/12
Jp Pendulum link inertia around the center of mass Mp · Lp2/12
Dr Rotary arm damping coefficient 0.0005 Nm s/ rad

Dp Pendulum link damping coefficient 0 Nm s/ rad

Figure 3: Reachable space Figure 4: Projection visualization of the letter ’T’

reachable due to the boundary on θ. Mathematically expressed:

r =
√
L2
r + L2

p,

s.t. |z| ≤ Lp

|θ| ≤ θmax.

For the projection from the camera plane to the robots reachable space we place the camera in front of
the pendulum parallel to its y-z-plane to make the projection as simple as possible. The intersection
between the camera space and the pendulum’s space can than be computed through

p = pcamera + k

([
0
yproj
zproj

]
− pcamera

)
.

Figure 4 shows how a letter is projected onto the reachable space of the pendulum, here graphically
simplified as sphere.

4 Optimal Control

The optimal control problem we are facing can be divided in two parts. First, we have to plan and
optimize a trajectory with respect to desired properties and constraints (e.g. reaching a specific point).
Therefore, we have to find the output actions that can generate this trajectory. But simply applying
these actions to the real robot is not feasible because of the chaotic nature of the robot and deviations
in our model. To track and stabilize the trajectory on the real system, we apply a linear quadratic
controller which is supposed to compensate for deviations.

4.1 Trajectory Optimization

There are numerous approaches on how to formulate a trajectory optimization problem depending on
the properties of the desired goal. Here, we focus on direct optimization methods, more explicitly
direct single shooting and direct collocation, as described in [2], [6].
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The CasADi framework exposes an interface for NLP solvers, which solve problems of the form

minimize J(x, p)

s.t. xlb ≤ x ≤ xub
glb ≤ g(x, p) ≤ gub

where x is the decision variable and p are the known parameters [2]. NLP refers to optimization
problems that have a nonlinear objective function and nonlinear constraints. With CasADi these can
be formulated in a symbolic way and then be optimized by a standard optimizer like e.g. IPOPT2.
We also came up with a formulation for the loss function based on RBF activations, which suits
our goal better than the obvious choices that come with the aforementioned optimization problem
formulations.

4.1.1 Direct Single Shooting

The first type of formulation we applied to our problem was single shooting. It is based on a recursive
definition of the state for each point in time:

xk+1 = xk + hẋk(xk, uk) ∀ k ∈ 0 . . . N − 1 (6)

Where ẋk is determined by our model of the robot. This resembles the EULER-Integration of the
state in a symbolical way, to yield the state trajectory based on an initial state x0. We chose the
EULER integration for sake of simplicity here but we were also able to employ RUNGE-KUTTA (RK)
integration with single shooting to model the state trajectory with more precision. The result of
iterating (6) k times is the state xk+1(x0, u0:k) which depends on the initial state and all previous
actions.

From this, we can now formulate a simple objective function that penalizes the distance at the final
state xN to the desired state xd and constraints that restrict the state and action spaces to match the
real robot. It turns out that the method works well and that the control sequence u lets the simulator
reach a single state at a predefined time step very precisely, as long as the state is reachable in the
desired number of time steps.

The problem arising with using a desired state as objective formulation is that we have to chose
the length of the trajectory prior to the optimization. Because of this, the trajectories can not be
considered optimal with respect to our goal as there may be some trajectory that also reaches the
point but e.g., takes less time. This problem is tackled in Section 4.1.3 where we introduce a cost
formulation that allows to additionally optimize the time of arrival.

4.1.2 Direct Collocation

In this section we will briefly explain the collocation method and how we apply it to our optimization
problem. The most profound difference between collocation and single shooting is, that it takes
the states along the trajectory as additional decision variables. In addition to that, the trajectory is
modeled by chaining intervals constructed from Lagrange polynomials which fit the states at given
collocation points. Because the Lagrange polynomials are differentiable by definition, the trajectory
can be tied to the model of the robot by forcing their derivatives to fit the EoM at each collocation
point via constraints. These constraints are also called collocation equations [2]. To ensure the chain
of intervals yields a viable trajectory, the last state of each interval is forced to equal the first point of
the next interval. These constraints are labeled as continuity equations.

In this scenario all states are decision variables. It is straightforward to add constraints such that a
certain desired point is reached at a given time. Therefore, we can simply add constraints at different
points in time to reach desired states. But despite being able to incorporate multiple via-points by
adding constraints on the state we still can not know in advance what points in time are optimal or
even feasible. To address this issue we derived a new cost formulation.

4.1.3 RBF Based Cost Formulation

We enabled the optimizer to chose (and thus optimize) the time at which a certain via-point should be
reached. Since the system is underactuated, it takes thorough planning to reach points. This evokes

2An open source library for nonlinear optimization. https://projects.coin-or.org/Ipopt

4

https://projects.coin-or.org/Ipopt


the need to exploit the properties of our goal, especially, it requires to only somehow reach the point
at some predictable time. With this formulation a via point’s loss contributes to the overall loss only
when it is activated by its time dependent RBF. This allows the optimizer to chose a variable time
point at which a via point should be reached. Thus the loss of all via points is invariant with respec
to states where the loss of none of the via points is activated. This increased freedom allows the
optimizer to e.g., accumulate energy and prepare for reaching certain points.

To allow the optimization of time points, a new set of decision variables is introduced:

t =

 t0
...

tnvia−1

 , 0 ≤ ti ≤ 1 ∀ i ∈ 0 . . . (nvia − 1), V =

 v0

...
vnvia−1

 (7)

The variable time-points ti are restricted to be between 0 and 1 and define the phase which is a portion
of the whole trajectory with 0 being the first time step and 1 being the last one. The given desired
via-points v are used to calculate the loss which is then weighted by the RBF activations depending
on the temporal difference between the selected time t and each time step of the trajectory:

Jvia =

n−1∑
k=0

nvia−1∑
j=0

ϕ

(
tj ,

k

n− 1

)
· d (xk,vj) , (8)

where in the simplest case the RBF-activation-function ϕ is defined as

ϕ (t, s) = e−( t−sσ )
2

, (9)

and d(xk,vj) being a metric.

The RBF for each via-point is centered around the time the optimizer choses for that particular
via-point. The bandwidth parameter σ allows to restrict (σ > 1) or expand (σ < 1) the temporal
extent of the RBFs. This relaxes or tightens the restrictions around the via points. The LossFunction
for the trajectory states and the particular via-point is activated in a time-frame (with a size depending
on σ) around this point. With more temporal distance the loss connected to that particular via-point
becomes less relevant.

From our point of view, this formulation is more favorable because it is differentiable and we get the
chosen (optimal) time points t as a result of the optimization. With this approach it is also possible to
establish ordering constraints on the via-points. The time values of t can also be used to penalize late
arrival at via-points. The combined loss can be written as

Jcombined = Jvia + α ·
nvia−1∑
j=0

tj . (10)

It appears that the solution of the optimization is very sensitive to the choice of α and that its tuning
is a non-trivial endeavor. Nevertheless, very satisfying solutions may arise, see Figure 5, 8.

In all cases the LossFunction can be defined in either task- or joint-space. In our experiments with
the simulator this did not make a significant difference but using the task-space loss tends to produce
trajectories that resemble the expected behavior with respect to our goal a bit better. Moreover, using
the task-space loss also seems to have a slight impact on the performance as the optimizer needs to
evaluate the forward pass through the kinematic chain multiple times. For latter results, we used
squared task space loss.

In Figure 5 the result of four different optimization problems can be seen. Each of them is based
on a prespecified set of points in task-space that should be reached within that trajectory. The
aforementioned loss formulation J allows the optimizer to chose when to reach them, which can
be observed in the first picture where only one via-point has to be passed. The optimizer choses
to reach the point at t0 ≈ 0.58 which corresponds to step t0 · step_count ≈ 58. This can also be
observed in Figure 6, where the raw loss and the RBF activated loss are shown over time. The loss
without activation would be quite high even though the robot reaches the point very precisely. The
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RBF activation around t0 applied to this loss signal gives a more precise loss with regard to our goal.
It is invariant to the state of the robot at most time points, but ensures that at least at some point the
squared task-space loss needs to be taken into account.

For LossFunctions with more via-points, given the fixed boundary conditions (collocation with 100
steps, dt = 0.01, collocation points [0, 0.1, 0.5, 0.8, 0.9] and α = 10−7) the trajectories share some
similarities but also differ conceptually. We can observe that the trajectory for two via-points is more
or less an extension for the first one. With three via-points this gets extended so that a third point
in the middle is reached while still maintaining high precision. With five via-points this behavior
changes and the optimizer stops reaching the points exactly. This can be attributed to the constrained
trajectory length and the choice of α. Figure 7 shows the corresponding raw and activated loss values
over time. It can be seen that the first three points are activated in short succession while the last
two points are activated at the same time, just at the end. This behavior can be tweaked by choosing
other parameters while giving us a dynamic framework for reaching very distinct sets of points. In
our opinion, there is also no way for a human to estimate this behavior beforehand so we see this
formulation as an essential baseline to build further steps of abstraction upon.

(a) One Via-Point (b) Two Via-Points (c) Three Via-Points (d) Five Via-Points

Figure 5: Trajectories generated by collocation with RBF activated loss
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With an increasing number of via points the optimization problem gets more complex. To reduce run
time and stabilize convergence, we came up with the idea of chaining multiple optimization problems
together. The simplest case is to split the optimization problem in two parts. The first one uses the
RBF activated loss function to pass through the given via points leaving out the inital condition on
the state. The second part optimizes a trajectory from the resting position to the chosen initial state of
the afore mentioned optimization.

The simulated results for two different trajectory optimization problems can be seen in Figure 8. The
white dots show the desired trajectory which was discretized through multiple points and the green
one is the chosen initial state of the first optimization problem.

(a) Vertical line (b) Horizontal line

Figure 8: Passing through Multiple Points using the RBF activated loss function and splitting of the
optimization problem

4.2 Trajectory-tracking Using Linear Quadratic Control

After successful passing through multiple points in simulation, the results need to be verified on
the Quanser QUBE (Figure 1). But executing the same commands to the real system as to the
simulator results in deviation. We need a controller which compensates the error and tracks the
desired trajectory through local stabilization. For that, we use a finite-horizon discrete-time LQR.
The dynamics of the Furuta Pendulum are non-linear, therefore we have to linearize the
dynamics around an equilibrium (xd, ud) using the TAYLOR expansion and the difference
x̃ = x − xd as new state coordinate. x is the feedback state of the real system.

Figure 9: LQR on modified simulator

˙̃x = ẋ− ẋd = ẋ− f(xd, ud)

=
∂f(xd, ud)

∂x
(x− xd) +

∂f(xd, ud)

∂u
(u− ud)

= Ax̃ + Bũ.

The quadratic cost function in discrete form is defined as

J = xT
NQxN +

N−1∑
k=0

(xT
kQxk + uTkRuk). (11)

The optimal feedback control sequence which minimizes
the cost function 11 is given by

ũk = −Kkx̃k,

uk = udk −Kk(xk − xd
k),

where

Kk = (R+ BT
kPk+1Bk)−1(BT

kPk+1Ak).

Pk is found by solving the Riccati equation iteratively
backwards in time:

Pk−1 = AT
kPkAk − (AT

kPkBk)(R+ BT
kPkBk)−1(BT

kPkAk) + Q
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with the terminal condition PN = Q.

Before applying the LQR controller on the Quanser QUBE, we tested and validated its behavior on
the simulator. Therefore, we created a trajectory by executing some actions on our simulator. To
model the behavior of a real system we created a modified simulator by changing some parameter
values. Executing the same actions on this system, we get a diverging trajectory. Applying the LQR
with Q = 1 and R = 1 to our modified simulator, the original simulator’s trajectory can be tracked
(see Figure 9).

5 Photography

In order to evaluate the trajectory in terms of long exposure photography, a camera sensor is simulated.
The basic idea is to have a matrix in which every element corresponds with a virtual pixel of the
camera sensor. A simple way to do it is to use the optical model of a pinhole camera (see:[8]).

Quanser Qube

Windows PC
with Quarc

Arduino

Controlling PC

UV-LED Board

Camera

Proprietary
Protocol

Serial Port

PWM

TCP/IP

USB

Figure 10: System Overview

Taking long exposure pictures (also called "light-painting") requires
the tip to be illuminated. Attaching a light source to the tip is
not feasible because cables affect the robots behavior too much.
Likewise, a battery powered source would be to hard to control. Thus,
we decided to use a combination of reflective material and ultraviolet
(UV) light to illuminate the tip. The UV-LEDs are connected to
the control-pc through a serial connection over USB. We used UV-
LEDs with a wavelength of 400nm. An Arduino is used to control
the LEDs using pulse-width modulation. Figure 10 shows how the
system is structured. The process of light-painting requires a long
exposure and a dark environment. The control-pc triggers the camera
and starts to execute the trajectory on the robot. Simultaneously the
brightness of the UV light is adjusted because the light should be on
when the tip is close to the desired trajectory.

6 Conclusion & Outlook

Figure 11: Long exposure photography
result for a section of a swing-up trajec-
tory

In this report, we presented how optimal control can be
applied to an underactuated system, called Furuta Pendu-
lum. We realized the optimization of simple trajectories by
discretizing them and minimized the error through RBF ac-
tivation in the objective function. But for big optimization
problems like complete letters we regularly observed that
the selected solver(s) did not converge. Therefore, we split
the problem into smaller ones, or in other words, construct
a letter by splitting it in multiple trajectories. This should
be easier and faster to compute.
In the future, we will apply model learning to better fit
the parameters of our model to behave even closer to the
real system, because we still aim to construct letters on
a real system using long exposure photography with the
Quanser QUBE. For this, parameter optimization for the
LQR could also help, to get more stable trajectories. A
first look on how the long exposure photography with UV
light could look like can be seen in Figure 11.
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