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Abstract

As simulators represent an inexpensive, fast and save test environment, it is a common practice

to evaluate and optimize controllers of robotic systems in physics simulators, before applying

them to the real robot. Identifying precise physics parameters that are required by the sim-

ulators is difficult. Thus one can observe a drop in performance when testing the designed

controller on the real system. One approach to bridge this reality gap is to design robust con-

trollers that are able to stabilize the system for parameter uncertainties. Within this thesis a

Multi-Model Pole Placement (MMPP) and a H2 fixed-structure robust controller is designed.

The robustness of both is examined on a seven DoF Schunk arm, that balances a ball on a plate.

The static controllers that were designed with respect to a precise model are able to stabilize the

Ball-on-Plate system for different radii and rolling friction coefficients of the ball. The balanc-

ing behaviour is simulated in the robot control system environment which is developed by the

Honda Research Institute Europa. These controllers are compared against a robust controller

that is designed using Proximal Policy Optimization (PPO). In the simulation the neuronal net-

work trained with PPO revealed a faster balancing behaviour compared to the MMPP and H2

fixed-structure controller. On the real robot a Linear Quadratic Regulator (LQR) controller with

an additional integrative part was able to balance balls with different radii and for different

rolling friction coefficients. Using this controller the reality gap could be crossed.

Keywords: Robust control, Multi-Model Pole Placement, fixed-structure H2 controller, Physics

simulation, LQR, PPO.
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Symbols and Abbreviations

Symbols

Symbol Description Unit

x Ball position in Plate coordinates along xp - Axis m

y Ball position in Plate coordinates along yp - Axis m

z Ball position in Plate coordinates along zp - Axis m

rB Ball position vector in solid coordinate system m

vB = ṙB Ball velocity vector in solid coordinate system m/sec

ωB Ball angular velocity vector in solid coordinate system rad/sec

αB Ball rotation angle around its xB axis rad

βB Ball rotation angle around its yB axis rad

ωP Plate angular velocity vector in solid coordinate system rad/sec

α Plate angle. α > 0 when the plate rotates around xP
1 rad

β Plate angle. β > 0 when the plate rotates around yP
2 rad

γ Plate angle around zP (with right hand rule). rad

xp Axis of plate coordinate frame

yp Axis of plate coordinate frame

zp Axis of plate coordinate frame

w Width of the plate m

l Length of plate m

h Height of plate m

Fx Force along Xworld N

Fy Force along Yworld N

Fz Force along Zworld N

τx Moment around of xp Nm

τy Moment around of yp Nm

XWorld Axis of World coordinate frame

YWorld Axis of World coordinate frame

ZWorld Axis of World coordinate frame

X Plate position in World coordinates along XWorld - Axis m

Y Plate position in World coordinates along YWorld - Axis m

Z Plate position in World coordinates along ZWorld - Axis m

1 with right hand rule
2 with right hand rule
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Symbols

Symbol Description Unit

g Gravitational constant m
s2

d Thickness of a hollow sphere m

r Radius of the ball m

m, mB Mass of the ball kg

mP Mass of the plate kg

jB Constant for inertia of the ball kg m2

IB Inertia matrix of the ball kg m2

IP Inertia matrix of the plate kg m2

L Lagrange parameter Nm

T Kinetic energy parameter of Lagrange approach Nm

V Potential energy parameter of Lagrange approach Nm

q Vector with generalized coordinates

Q Vector with generalized forces and torques used in Lagrange

approach

R Rx and Ry are rotational matrices around the x and y axis

x Vector with the states of the state space representation of the

BoP system

u Vector with the control inputs of the state space representation

of the BoP system

A System matrix of the state space representation of the BoP

system

B Control input matrix of the state space representation of the

BoP system

C Output matrix of the state space representation of the BoP

system

R Friction coefficient

P Dissipation function

µR Rolling friction constant of the Ball

A Contact surface that causes the air friction of the Ball m2

ρ Air density of the surrounding medium of the ball kg/m3

cW Drag coefficient
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TRPO Trust Region Policy Optimization
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1 Introduction

As simulators represent an inexpensive, fast, safe and easy to change test environment, it is a

common practice today to analyse controllers of robotic systems with Multibody physics simula-

tors1 such as Bullet, Vortex or MuJoCo before applying them to the real world. However, every

physics simulation is by definition an approximation of the real world. One reason is the fact

that simulators require accurate, but often unknown physical parameters. Moreover, physics

simulations struggle with precisely modelling non-linear behaviour as contact reaction. Thus,

applying controllers which have been examined in idealized simulators to the real system one

can observe a drop in performance. This problem called reality gap can be significantly enough

to lead to instability and thereby to complete failure. Overcoming this issue is a recent research

topic.

One approach to bridge the reality gap is to design robust controllers that are able to stabi-

lize a system and guarantee a minimal performance even though the exact physics parameters

are not known. A robust controller can either be designed as a static controller that does not

change its structure or parameter values or as a non-static controller which is changing during

the control of the system. Non-static controllers like adaptive controllers [1, p.319] determine

the feedback control with respect to previously identified plant physics parameters. Åström

et. al. compared robust and adaptive controllers and concluded that robust controllers with

static gains will respond faster to variations in process parameters if these are within the design

specifications. Adaptive systems respond more slowly, but have less steady state error. In gen-

eral it can be said, that adaptive controllers achieve a higher performance if the identification

process of the process parameters converges [2]. Thus, the disadvantage of adaptive control is

that a precise identification is required and stability cannot easily be proven. For this reason

static robust controllers are examined in this thesis. Control theory methods for designing ro-

bust controllers with a static gain can be divided in two groups. The first group considers the

exact uncertainties limits, whereas the second group assumes a generic uncertainty. H∞ loop

shaping is e.g. a method that does not require the precise uncertainty range, but optimizes the

open loop of a system assuming a generic uncertainty [3, p. 134]. Algorithms that are based on

precise knowledge of the uncertainty range are e.g. Multi-Model Pole Placement (MMPP). This

method aims to place the poles of a defined set of models within a particular region. Another

method of the first group is to design a fixed-structureH2 controller.

Besides using methods from control theory, Treede [4] demonstrated the design of robust con-

trollers using novel methods from Reinforcement Learning (RL) for example Ensemble Policy
1 For detailed information about these simulators see: Bullet, Vortex and MuJoCo.

1

https://github.com/bulletphysics/bullet3
https://www.cm-labs.com/vortex-studio
www.mujoco.org


Optimization (EPOpt) or Trust Region Policy Optimization (TRPO).

The aim of this thesis was to design robust controllers with methods from control theory and

compare these controllers against methods from RL. In order to benchmark the designed con-

trollers a Ball-on-Plate (BoP) was utilized. Balancing a ball on a plate is a challenging problem,

because it represents an underactuated system with non-negligible dynamics and changing con-

tact situation.

In a first step the model of a BoP-system for seven Degree of Freedom (DoF) Schunk arm is

derived (see Chapter 2). Secondly an image-based Ball Tracking (BT) algorithm was developed

to obtain the position and velocity of the ball (see Chatper 3). In a third step, a LQR, MMPP and

a fixed-structure H2 controller are designed (see Chapter 4). Chapter 5 describes the robust

controller designed with methods from RL. The controllers are evaluated using the Robot Con-

trol System (Rcs) simulation environment which is developed by the Honda Research Institute

Europa (see Chapter 6). In Chapter 7 certain problems (such as measurement noise, image

processing time delay) that occurred, when applying the designed controllers to the robot, are

discussed. Additionally, a LQR controller with an integrative part is analysed on the real robot.

With the experience gained from these experiments, a guideline of how to cross the reality gap

is given. The results are summarized in Chapter 8.

2 1. Introduction



2 Modelling of the Ball-on-Plate system

In order to determine a control law for balancing a ball on a plate, a model of the system is

required. This chapter describes the setup of the Ball-on-Plate (BoP) system. Moreover, two

models are discussed for this setup. The first model considers the plate angles as actuating

variables. In the following, this model is denoted as decoupled Ball-on-Plate (dBoP) system,

because the tilting angles can be controlled directly by two motors. The second model ad-

ditionally controls the end-effector position of the robot. This model is denoted as coupled

Ball-on-Plate (cBoP) system. Both models are validated by using Matlab. The code is given in

Appendix E.

2.1 Setup of the Ball-on-Plate system

The setup of the real BoP system constructed at the Honda Research Laboratory is illustrated in

Figure 2.1.

Figure 2.1.: Ball-on-Plate setup: Seven DoF Schunk Arm, Realsense R200 Camera and FTS to track the

ball lying on the plate

A Realsense R2001 camera or the Force Torque Sensor (FTS) mounted on the robot’s end-

effector observes the ball position relatively to the Plate. A seven DoF Light Weight Arm (LWA)

by Schunk is used to control the pose of the plate’s end-effector. The pose of the plate’s end-

effector is the tip position and orientation of the LWA. It consists of the distance to the world

coordinate frame (X , Y, Z) and the inclination angles of the plate (α, β), which are defined

1 For additional information see datasheet Realsense R200.

3

https://www.intel.co.uk/content/www/uk/en/support/articles/000023534/emerging-technologies/intel-realsense-technology.html


defined around the axis of the local plate coordinate frame (x , y, z). The ball itself is measured

in the plate coordinate system.

Given the task of controlling the ball to a desired relative position (xdes, ydes), it is required

to measure the states of the system that are defined as the plate position and orientation in

world coordinates, the relative position of the ball and the derivatives of these states. The

measurement vector is given by

xmeas =
�

X Y Z α β x y Ẋ Ẏ Ż α̇ β̇ ẋ ẏ
�T

.

zP
yP

xP

y

x
α

β

Back

Right

Front

Left

w

l

yB, vB,x

xB, vB,y

αB

βB

Figure 2.2.: Top view of the BoP system

Figure 2.3.: All coordinate frames of the BoP system

xP
yp

zp

Yworld

Zworld

τxα
w

Figure 2.4.: Right up view (α > 0) of BoP system

yP

xp

zp

Xworld

Zworld

τyβ

l

Figure 2.5.: Back up view (β > 0) of BoP system

In order to model the BoP system, a decoupled Ball-on-Plate (dBoP) and coupled Ball-on-Plate

(cBoP) system is given. The dBoP system considers the angles of the plate as actuating variables,

whereas the cBoP system additionally considers the position of the plate as actuating variables.

In total three coordinate systems are defined for both systems.

4 2. Modelling of the Ball-on-Plate system



Figure 2.2 shows the frame of the ball (axis: xB, yB, angles: αB, βB) and the frame of the plate

(axis: xP , yP , zP , angles: α, β). Figure 2.4 and 2.5 show the definition of the angles of the

plate relative to the world coordinate frame (axis: XWorld , YWorld , ZWorld). Figure 2.3 shows all

coordinate frames.

In order to understand the BoP system more deeply, the following facts are summarized:

• The world frame coordinates are written with capital letters and the plate frame coordi-

nates with lower case letters.

• α,β are the angles measured between the coordinate system of plate and the world.

• The position of the ball measured in coordinates of the plate is: PrB = [x , y, z]T .

• The position of the plate measured in coordinates of the world is: W rP = [X , Y, Z]T

• α > 0 → y ↓: If α > 0, right side of plate goes up and the y position of the ball is

decreasing.

• β > 0 → x ↑: If β > 0, back side of plate goes up and the x position of the ball is

increasing.

• Additionally, the coordinate frames of the real cBoP system are depicted in Figure 2.1.

2.2 Decoupled Ball-on-Plate system

In the decoupled four DoF BoP system the inclination angles of the plate can be manipulated.

The position of the end-effector of the robot holding the plate is constant. The state vector is:

x=
�

x y α β ẋ ẏ α̇ β̇
�T

To derive a model for this system the Lagrange formalism is used. Thereby it is important to

note that the total energy of a system remains constant. For this reason it does not matter in

which coordinate frame the modelling is done. However, the easiest is to do it in coordinates of

the plate.

2.2.1 Assumptions

Assumptions to model the dBoP system:

• Ball is not rotating around its vertical axis (γ= 0).

• Ball is lying on the plate (z = r).

• The inertia of the ball is considered as point mass.

• The arm of the robot holding the plate is assumed to rotate the plate around α and β . The

plate is not assumed to move. Thus there is no force on the ball but the torques τx ,τy

around α and β . This means X = Y = Z = Fx = Fy = Fz = 0

• The friction of the ball on the plate is ignored.

2.2. Decoupled Ball-on-Plate system 5



2.2.2 Equations of motion

In order to calculate the equations of motions of the dBoP system, the Lagrange formalism is

used. The energies are calculated in the plate frame.

The kinetic energy can be calculated by using

T = TB,t rans + TB,rot + TP,rot

=
1
2

mB ·P vT
B ·P vB +

1
2
·P ωT

B · IB ·P ωB ++
1
2
·P ωT

P · IP ·P ωP , (2.1)

with

PrB =







x

y

r






, PvB =







ẋ

ẏ

0






, PωB =P ωP +P ωB,rel =







α̇

β̇

0






+







− ẏ
r
ẋ
r

0






.

The inertia of a ball with Radius r and mass mB can be calculated as

IB = jb







1 0 0

0 1 0

0 0 1






,

for a hollow sphere with d << r jb =
2
3 mB r2

for a full sphere jb =
2
5 mB r2 .

The inertia of a plate with the dimensions l ×w× h (length x width x height), mass mP and the

inertia of the ball considered as point mass at (x, y, r)2 can be determined with

IP =







JP,x x +mB(x2 + r2) 0 0

0 JP,y y +mB(y2 + r2) 0

0 0 IP,zz +mB(x2 + y2)







JP,x x =
mP

12
(l2 + h2), JP,y y =

mP

12
(w2 + h2), IP,zz =

mP

12
(w2 + l2) .

Calculating

TB,t rans =
1
2

mB · ( ẋ2 + ẏ2) , (2.2)

TB,rot =
1
2

jb · [(α̇−
ẏ
r
)2 + (β̇ +

ẋ
r
)2] , (2.3)

TP,rot =
1
2
[α̇2(JP,x x +mB(x

2 + r2)) + β̇2(JP,y y +mB(y
2 + r2))] , (2.4)

the kinetic energy T can be obtained

T =
1
2
[α̇2(JP,x x +mB(x

2 + r2) + jb) + β̇
2(JP,y y +mB(y

2 + r2) + jb) (2.5)

+ ẋ2(
jb
r2
+mB) + ẏ2(

jb
r2
+mB) + 2 · jb(

ẋβ̇
r
−

ẏα̇
r
)] .

2 The mas of the ball is included in the calculation of the inertia of the ball with the Parallel Axis theorem.

6 2. Modelling of the Ball-on-Plate system



The potential energy V can be calculated as

V = mB · g ·W rB,z , (2.6)

with

W rB,z =
�

0 0 1
�

·Ry ·Rx ·P rB (2.7)

=
�

0 0 1
�

·







cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)






·







1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)






·







x

y

r







= r cos(α) cos(β)− sin(β)x + cos(β) sin(α)y .

With the kinetic and potential energy the Lagrange formalism

L = T (q,q̇)− V (q), (2.8)

Q∗i =
d
d t
∂ L
∂ q̇i
−
∂ L
∂ qi

, i = 1,2,3,4, q= [x , y,α,β]T , Q= [0, 0,τx ,τy]
T (2.9)

Q∗i =
d
d t
∂ T
∂ q̇i
+
∂ V
∂ qi
−
∂ T
∂ qi

, (2.10)

can be applied. The result

L =
1
2
[α̇2(JP,x x +mB(x

2 + r2) + jb) + β̇
2(JP,y y +mB(y

2 + r2) + jb)

+ ẋ2(
jb
r2
+mB) + ẏ2(

jb
r2
+mB) + 2 · jb(

ẋβ̇
r
−

ẏα̇
r
)]

− [r cos(α) cos(β)− sin(β)x + cos(β) sin(α)y].

is used to calculate the equations of motion. Therefore the partial derivates are

∂ T
∂ ẋ
= (

jb
r2
+mB) ẋ +

jbβ̇
r

, →
d
d t
∂ T
∂ ẋ
= (

jb
r2
+mB) ẍ +

jbβ̈
r

∂ T
∂ ẏ
= (

jb
r2
+mB) ẏ −

jbα̇
r

, →
d
d t
∂ T
∂ ẏ
= (

jb
r2
+mB) ÿ −

jbα̈
r

∂ T
∂ α̇
= α̇(JP,x x +mB(x

2 + r2) + jb)− jb
ẏ
r

→
d
d t
∂ T
∂ α̇
= α̈(JP,x x +mB(x

2 + r2) + jb) + 2α̇mB ẋ x − jb
ÿ
r

∂ T

∂ β̇
= β̇(JP,y y +mB(y

2 + r2) + jb) + jb
ẋ
r

→
d
d t
∂ T
∂ α̇
= β̈(JP,y y +mB(y

2 + r2) + jb) + 2β̇mB ẏ y + jb
ẍ
r

∂ T
∂ x
= mBα̇

2 x ,
∂ T
∂ y
= mBβ̇

2 y,
∂ T
∂ α
= 0,

∂ T
∂ β
= 0

∂ V
∂ x
= mB g(− sin(β)),

∂ V
∂ y
= mB g cos(β) sin(α)

∂ V
∂ α
= mB g(− sin(α) cos(β)r + cos(β) cos(α)y)

∂ V
∂ β
= mB g(− sin(β) cos(α)r − sin(β) sin(α)y − cos(β)x)
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are calculated first. Summarizing the above terms leads to the non-linear differential equations

of motion

0= (
jb
r2
+mB) ẍ +

jbβ̈
r
+mB g(− sin(β))−mBα̇

2 x

0= (
jb
r2
+mB) ÿ −

jbα̈
r
+mB g cos(β) sin(α)−mBβ̇

2 y

τx = α̈(JP,x x +mB(x
2 + r2) + jb) + 2α̇mB ẋ x − jb

ÿ
r

+mB · g · cos(β) · (− sin(α)r + cos(α)y)

τy = β̈(JP,y y +mB(y
2 + r2) + jb) + 2β̇mB ẏ y + jb

ẍ
r

−mB g(sin(β) cos(α)r + sin(β) sin(α)y + cos(β)x) .

Note that one can see the Coriolis force in the above equation FCoriol is = mBβ̇
2 y .

2.2.3 Constructing a simulator

In order to simulate the non-linear equations of motion, the system of equations of motions has

to be solved for the second derivatives










( jb
r2 +mB) 0 0 jb

r

0 ( jb
r2 +mB) − jb

r 0

0 − jb
r (JP,x x +mB(x2 + r2) + jb) 0

jb
r 0 0 (JP,y y +mB(y2 + r2) + jb)











·











ẍ

ÿ

α̈

β̈











=











mB g sin(β) +mBα̇
2 x

−mB g cos(β) sin(α) +mBβ̇
2 y

τx − 2mB ẋα̇x −mB g cos(β) · (− sin(α)r + cos(α)y)

τy − 2mB ẏβ̇ y +mB g(sin(β) cos(α)r + sin(β) sin(α)y + cos(β)x)











.

The equations required for simulation can then be calculated by inverting the above system3:











ẍ

ÿ

α̈

β̈











=

















r2 (mB x α̇2+g mB sin(β))(mB r2+mB y2+JPyy+ jb)
JPyy jb+mB2 r4+2 jb mB r2+ jb mB y2+mB2 r2 y2+JPyy mB r2 −

jb r (τy+g mB (x cos(β)+r cos(α) sin(β)+y sin(α) sin(β))−2 β̇ ẏ mB y)
JPyy jb+mB2 r4+2 jb mB r2+ jb mB y2+mB2 r2 y2+JPyy mB r2

(β̇2 mB y−g mB cos(β) sin(α))(JPxx r2+ jb r2+mB r4+mB r2 x2)
JPxx jb+mB2 r4+2 jb mB r2+ jb mB x2+mB2 r2 x2+JPxx mB r2 − jb r (2 α̇ ẋ mB x−τx+g mB cos(α) (y cos(α)−r sin(α)))

JPxx jb+mB2 r4+2 jb mB r2+ jb mB x2+mB2 r2 x2+JPxx mB r2

jb r (β̇2 mB y−g mB cos(β) sin(α))
JPxx jb+mB2 r4+2 jb mB r2+ jb mB x2+mB2 r2 x2+JPxx mB r2 −

(mB r2+ jb) (2 α̇ ẋ mB x−τx+g mB cos(α) (y cos(α)−r sin(α)))
JPxx jb+mB2 r4+2 jb mB r2+ jb mB x2+mB2 r2 x2+JPxx mB r2

(mB r2+ jb)(τy+g mB (x cos(β)+r cos(α) sin(β)+y sin(α) sin(β))−2 β̇ ẏ mB y)
JPyy jb+mB2 r4+2 jb mB r2+ jb mB y2+mB2 r2 y2+JPyy mB r2 − jb r (mB x α̇2+g mB sin(β))

JPyy jb+mB2 r4+2 jb mB r2+ jb mB y2+mB2 r2 y2+JPyy mB r2

















.

2.2.4 Linearisation and torque control

All equation of motion derived in Section 2.2.3 are used to construct the non-linear system

ẋ(t) = f(x(t), u(t)), y(t) = g(x) =
�

x y
�T

(2.11)

x=
�

x y α β ẋ ẏ α̇ β̇
�T

, u=
�

τx τy

�T
. (2.12)

3 This is done by Matlab.
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This system is linearised around the Equilibrium Point (EP) of (2.13) by utilizing

x(t = 0) = x0 = 0T , u(t = 0) = u0 = 0T (2.13)

ẋ− f(x, u)|EP ≈
∂ f(x, u)
∂ x

|EP · (x(t)− x0) +
∂ f(x, u)
∂ u

|EP · (u(t)− u0) (2.14)

∆ẋ= A∆x+B∆u . (2.15)

The result of the linearisation around the EP of 0 is given as

A=

































0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

− g jb mB r
kk2

0 0
g mB r2 (mB r2+JPyy+ jb)

kk2
− g jb mB r2

kk2
0 0 0 0

0 − g jb mB r
kk1

g jb mB r2

kk1
− g mB (JPxx r2+ jb r2+mB r4)

kk1
0 0 0 0 0

0 − g mB (mB r2+ jb)
kk1

g mB r (mB r2+ jb)
kk1

− g jb mB r
kk1

0 0 0 0 0
g mB (mB r2+ jb)

kk2
0 0

g mB r (mB r2+ jb)
kk2

− g jb mB r
kk2

0 0 0 0

































,

kk1 = JPxx jb +mB
2 r4 + 2 jb mB r2 + JPxx mB r2, kk2 = JPyy jb +mB

2 r4 + 2 jb mB r2 + JPyy mB r2,

B =































0 0

0 0

0 0

0 0

0 − jb r
kk2

jb r
kk1

0
mB r2+ jb

kk1
0

0 mB r2+ jb
kk2































, C =

�

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

�

.

With these A, B, C matrices a Linear Time Invariant (LTI) system is obtained.

2.2.5 Linearisation and acceleration control

It is possible to use the last two equations of motion and receptively solve them for ẍ , ÿ

ẍ = −
( jbβ̈

r +mB g(− sin(β))−mBα̇
2 x)

jb
r2 +mB

=
− jbβ̈

r +mB g sin(β) +mBα̇
2 x

jb
r2 +mB

(2.16)

ÿ = −
− jbα̈

r +mB g cos(β) sin(α)−mBβ̇
2 y

jb
r2 +mB

=
jbα̈
r −mB g cos(β) sin(α) +mBβ̇

2 y
jb
r2 +mB

. (2.17)
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If the motors controlling the inclination angle of the plate are controlled by α̈ and β̈ , the lin-

earisation can be done as follows

ẋ(t) = f(x(t)), y(t) = g(x) =
�

x y
�T

x=
�

x y α β ẋ ẏ α̇ β̇
�T

, u=
�

α̈ β̈
�T

.

Linearisation around the EP of x= x0, u= u0 with

f(x) =

�

ẋ ẏ α̇ β̇
α̇2 mB x+g mB sin(β)−

β̈ jb
r

mB+
jb
r2

β̇2 mB y+
α̈ jb

r −g mB cos(β) sin(α)

mB+
jb
r2

α̈ β̈

�

,

results in

A=



































0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 g mB

mB+
jb
r2

0 0 0 0

0 0 − g mB

mB+
jb
r2

0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



































B =



































0 0

0 0

0 0

0 0

0 − jb

r
�

mB+
jb
r2

�

jb

r
�

mB+
jb
r2

� 0

1 0

0 1



































,

C =

�

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

�

.

With these A, B, C matrices a LTI system is obtained.

2.3 Coupled Ball-on-Plate system

One problem of the dBoP system are its invariant zeros4, which cannot be moved by the con-

troller. As real non minimum phase zeros (invariant zeros) imply undershoot in the step re-

sponse of linear systems, the ball of the dBoP will always respond by moving in the opposite

direction when applying a step on the system. In order to investigate, if the invariant zeros can

be removed by adding more DoF to the system, the cBoP system is modelled as well.

In the coupled seven DoF BoP system the position of the end-effector’s is additionally manipu-

lated. Moreover, the rolling friction of the ball is considered. The state vector is

x=
�

X Y Z α β x y Ẋ Ẏ Ż α̇ β̇ ẋ ẏ
�T

.

To derive a model for this system the Lagrange formalism is used. For the cBoP system the ro-

tational kinetic energy does not has to be transformed to the world frame, but the linear kinetic

energy has to be transformed5.
4 The invariant zeros of the dBoP are obtained by using the tzero function of Matlab.
5 The rotational kinetic energy is independent of a coordinate frame. For this reason it does not have to be

transformed to the world frame.
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2.3.1 Assumptions

The assumptions used for the cBoP system consist of the first three assumptions of the dBoP

system and the following:

• The ball is assumed to roll all the time. Thus no sticking friction has to be considered.

• The ball is assumed to not slide.

2.3.2 Modelling the friction of the ball

In order to incorporate the friction of the ball into the model, the Lagrange formalism has to

be extended. The generalized force vector Q∗ becomes the sum of the conservative forces and

the non-conservative forces (friction). The additional non-conservative forces are given by the

derivation of the dissipation function P in the following equations

L = T (q,q̇)− V (q) (2.18)

Q∗i =
d
d t
∂ L
∂ q̇i
−
∂ L
∂ qi
+
∂ P
∂ q̇i

, i = 1...7, (2.19)

q= [X ,Y,Z ,α,β ,x ,y]T , Q= [Fx , Fy , Fz,τx ,τy , 0, 0]T . (2.20)

To model the friction R the dissipation function P is utilized

R j = −
∂ P
∂ q̇ j

.

In general, the friction can be calculated as the integrated sum of a velocity dependent function

h(v )

R j = −
∂

∂ q̇ j

N
∑

i=1

∫ vi

0

hi(v̂i)d v̂i .

Solving the above equation for P gives

P =
N
∑

i=1

∫ vi

0

hi(v̂i)d v̂i . (2.21)

The rolling friction of an object that is rolling without sliding is given as 6

Rrol l = −µRFN
v
|v|

. (2.22)

6 µR is the rolling friction coefficient, FN is the normal force and v is the velocity of the object.
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xP , ~xP

yP , ~yP

zP , ~zP = ~n

Yworld

Zworld

FG, ~fg

FN

ξ

η

FR

α,ξ

Figure 2.6.: Explanation of the angle ξ

Using 2.22 and 2.21 the dissipation function of a ball on a plate can be derived as [p. 13 -17][5]

hrol l(v ) = µRFN = µRmB gξ

Prol l =

∫ vB

0

µRmB gξ · d v̂B = µRmB gξ
q

ẋ2
B + ẏ2

B .

To calculate the rolling friction, the angle between the normal force FN and FG denoted as ξ

has to be obtained. For a deeper understanding of this angle, assume that α > 0, β > 0. Then

the plate "stands" on one contact point (purple point in Figure 2.6) in the front left corner. The

angle between the front left contact point and the standing plate is named ξ. Note that α = ξ

if β = 0 and β = ξ if α= 0.

With respect to the world frame the vectors

~yP =







cos(α)

0

sin(α)






, ~xP =







0

cos(β)

sin(β)






, ~n= ~xP × ~yP =







− sin(α) cos(β)

− cos(α) sin(β)

cos(α) cos(β)







~fg =







0

0

−1






, ξ= 180−η, ξ= 180−η= arccos(−η) (2.23)

cos(η) =
~n · ~fg

|~n| · | ~fg |
=

− cos(α) cos(β)
Æ

sin2(α) cos2(β) + cos2(α)
=

− cos(α) cos(β)
Æ

1− sin2(α) sin2(β)

can be calculated, in order to obtain ξ.

With ξ the total dissipation function P

P = Prol l (2.24)

=
Æ

ẋ2 + ẏ2 ·µRmB g
︸ ︷︷ ︸

kR

·arccos(
cos(α) cos(β)

Æ

1− sin2(α) sin2(β)
)

is given.

12 2. Modelling of the Ball-on-Plate system



2.3.3 Equations of motion

To calculate the equations of motion the Lagrange formalism is used. The kinetic energy of the

cBoP system can be derived as

T = TB,t rans + TP,t rans + TB,rot + TP,rot

=
1
2

mB ·W vT
B ·W vB +

1
2

mP ·W vT
P ·W vP +

1
2
·P ωT

B · IB ·P ωB ++
1
2
·P ωT

P · IP ·P ωP , (2.25)

with7

W vB =







Ẋ

Ẏ

Ż






+







α̇

β̇

0






× (R ·







x

y

r






) +R







ẋ

ẏ

0







W vB =







β̇(r cos(α) cos(β)− sin(β)x + cos(β) sin(α)y) + cos(β) ẋ + Ẋ + sin(α) sin(β) ẏ

cos(α) ẏ − α̇(r cos(α) cos(β)− sin(β)x + cos(β) sin(α)y) + Ẏ

Ż − β̇(cos(β)x + r cos(α) sin(β) + sin(α) sin(β)y)− sin(β) ẋ − α̇(r sin(α)− cos(α)y) + cos(β) sin(α) ẏ






.

Inserting W vB in equation 2.25 gives

TB,t rans = (mB((α̇(r sin(α)−cos(α)y)+β̇(cos(β)x+r cos(α) sin(β)+sin(α) sin(β)y)+

sin(β) ẋ−Ż−cos(β) sin(α) ẏ)2+(β̇(r cos(α) cos(β)−sin(β)x+cos(β) sin(α)y)+

cos(β) ẋ+Ẋ+sin(α) sin(β) ẏ)2+(cos(α) ẏ−α̇(r cos(α) cos(β)−sin(β)x+

cos(β) sin(α)y) + Ẏ )2))/2

.

The other kinetic energies

TP,t rans =
1
2

mP · (Ẋ 2 + Ẏ 2 + Ż2)

TB,rot =
1
2

jb · [(α̇−
ẏ
r
)2 + (β̇ +

ẋ
r
)2]

TP,rot =
1
2
[α̇2(JP,x x +mB(x

2 + r2)) + β̇2(JP,y y +mB(y
2 + r2))]

can be calculated more simple as they do not have to be transformed into the world frame. The

total kinetic energy is then given as

Tges = (ib(β̇ + ẋ/r)2 + ib(α̇ − ẏ/r)2 + α̇2(IP x x + mB(r2 + x2)) + β̇2(IP y y +

mB(r2+ y2))+mB

�

((r sin(α)−cos(α)y)α̇+(cos(β)x+ r cos(α) sin(β)+

sin(α) sin(β)y)β̇+sin(β) ẋ− Ż−cos(β) sin(α) ẏ)2+(β̇(r cos(α) cos(β)−

sin(β)x+cos(β) sin(α)y)+cos(β) ẋ+ Ẋ +sin(α) sin(β) ẏ)2+(cos(α) ẏ−

α̇(r cos(α) cos(β)− sin(β)x + cos(β) sin(α)y)+ Ẏ )2
�

+mP Ẋ 2+mP Ẏ 2+

mP Ż2)/2

.

7 R= Ry ·Rx . The Rx and Ry matrix is given in equation 2.7.
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The potential energy V can be calculated as

V = mB · g ·W rB,z +mP · g · [0, 0, Z]T

W rB,z =
�

0 0 1
�

(·Ry ·Rx ·P rB)

=
�

0 0 1
�

· (







cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)






·







1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)






·







x

y

r






+







X

Y

Z






)

= Z − sin(β)x + r cos(α) cos(β) + cos(β) sin(α)y

→ V = (Z − sin(β)x + r cos(α) cos(β) + cos(β) sin(α)y)gmB +mP Z g .

Next the Lagrange formalism (see equation 2.18) is used to calculate the equations of motion.

The equations of motion of the cBoP system with rolling friction are given in Appendix A. As

solving the non-linear equations of motion for the seven second derivatives (given in Appendix

A) results in really long terms, it is computationally very expensive to construct a non-linear

simulator for the cBoP system.

2.3.4 Linearisation and acceleration control

However, if the task is to only control the x and y position of the ball on the plate, (A.6) and

(A.7) can be solved. Solving these equations for ẍ and for ÿ results in (A.8) and (A.9). These

two equations of motion are linearised by (2.13) around

x0 = [0 0 0 0.001 0 0 0 0 0 0 0 0 0 0.0001]T

u0 = [0 0 0 0 0]T .

In order to prevent a division through zero the cBoP system should be linearised around an EP,
which has a non zero ball velocity and a minimal inclination angle. The matrices of the system
can subsequently be derived as

A=































































0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 g mB

mB+
jb
r2

0 0 0 0 0 0 − mB

107
�

mB+
jb
r2

� − 2 kA+10 kR

mB+
jb
r2

0

0 0 0 − kR+g mB

mB+
jb
r2

0 0 0 0 0 0 0 0 0 − 2 kA

mB+
jb
r2






























































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B =



































































0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

− mB

mB+
jb
r2

0 0 0 −mB r+
jb
r

mB+
jb
r2

0 − mB

mB+
jb
r2

− mB

103
�

mB+
jb
r2

�

mB r+
jb
r

mB+
jb
r2

0



































































C =

�

0 0 0 0 0 1.0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1.0 0 0 0 0 0 0 0

�

.

With these matrices the state space representation of the cBoP system is derived.
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2.4 Comparison of both models

The main difference between the dBoP and the cBoP system is that the dBoP system has three

additional DoF. With these additional DoF the system is much more complex, because it is

required to calculate the inverse kinematics8 to control the system. Additionally, it can be

summarized that the observability (Obsv) and the controllability (Ctrb) of both systems depend

on the output (y) vector and thereby on the C matrix. Moreover, the minimal phase (Min), the

eigenvalues (Eig) and invariant zeros (Inv zeros) are evaluated in Table 2.19.

It is conspicuous that the cBoP system has no invariant zeros for y =
�

x y
�T

. Thus, this

system will not undershoot. Moreover, it is expected that the three additional DoF can be used

to design a faster and more stable controller. If the control input vector can be weighted, it is

also possible to disable the cBoP system to become a dBoP system. For these reasons, the cBoP

system is chosen for further analysis.

Sys y Ctrb Obsv Min Eig Inv zeros

cBoP

















X

Y

Z

x

y

















yes yes no







−0.19696

−0.54732

0(x12)

















−10.4636

−10.4897

10.4636

10.4897











cBoP

�

x

y

�

yes no yes







−0.19696

−0.54732

0(x12)






−−

dBoP

�

x

y

�

yes yes no
�

0(x8)
�

�

−19.5756(x2)

19.5756(x2)

�

Table 2.1.: Comparison of the coupled and decoupled BoP system

8 The inclination angles of the dBoP system can directly be controlled by two motors.
9 The concrete eigenvalues and invariant zeros given in Table 2.1 are calculated with the linearised A, B matrices

for the pool ball and the wooden plate (as parameter values). The code for these calculations is given in the

cBoP.m script (see Appendix E).
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3 Ball tracking

In order to control the ball on the plate it is necessary to quickly, precisely and smoothly measure

the position and velocity of the ball. Ball Tracking can be done by analysing different sensor

data. One approach is doing RGB Image Processing. Another one is tracking the point cloud of

the ball. A third one is calculating the position of the ball by using force and torque sensors at

the end-effector of the LWA. The advantages and disadvantages of these methods are discussed

in the following sections.

3.1 Ball tracking with RGB images

In order to measure the position and velocity of balls by analysing RGB images, an algorithm

is invented. This algorithm uses OpenCV to detect circles within a defined HSV color range.

The center and radius for each of these circles is determined in image coordinates. Using the

radius, the center position and the projection matrix of the Realsense Camera R200 the position

of the ball in 3D coordinates relative to the camera can be calculated. This position can be

mapped to the frame of the plate by using Aruco markers 1 on the plate. The velocity of each

ball is estimated by using a Kalman Filter (KF). This algorithm is explained in more detail in

Figure 3.1. The algorithm is implemented within a ROS Indigo environment. Figure 3.3 shows

the benefit of using a KF compared to raw measurements. For this experiment the ball was first

placed on the origin of the plate and then accelerated in y-direction on a rail. This experimental

setup is illustrated in Figure 3.2.

The maximum camera input stream of the Realsense R200 camera for RGB images is 60 Hz (at

a resolution of 640x480). For observing one ball an output frequency of 58Hz can be reached.

Moreover a static positioning Standard Deviation (STD)2 of ≤ 1 mm is reached (see Figure 3.3).

The downside of this algorithm is its need of the true radius to detect the position of the ball.

Moreover, the performance depends on lightning conditions. In order to compensate high noise,

filtering is required. However, this results in a time delay which should be prevented. For this

reason, no additional filters are used.

3.2 Ball tracking with point clouds

The Realsense R200 outputs a point cloud stream at 30 Hz. Analysing these point clouds the

radius and position of the ball in the camera frame can be determined. Using aruco markers
1 To calculate the transformation matrix of the Aruco markers to the camera, an extended and improved version

of the Robot Operating System (ROS) package aruco_eye is used.
2 The STD was calculated with respect to the sample STD.
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Figure 3.1.: Multiple RGB image-based Ball Tracking algorithm

Figure 3.2.: Visualization of BT algorithm and aruco marker detection

on the plate, this position can be transformed to plate coordinates. With an additional KF the

velocity of the ball can be estimated as well. The invented algorithm, that uses a particle filter
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Figure 3.3.: Comparison of the raw and the Kalman filtered position of the ball. The velocity is estimated

by the Kalman Filter.

and the Point Cloud Library (PCL)3, reaches an output position frequency of 25 Hz. Moreover,

the algorithm sometimes lost the position of the ball. In such cases it is required to reinitialize

it. However, one advantage of this algorithm is that it does not depend on lightning conditions.

3.3 Ball tracking by torque measurements

The used setup (see Figure 2.1) includes a Force Torque Sensor (FTS) by Schunk that is mounted

to the end-effector of the LWA. Using these torques (Mx , My) and the mass of the ball (m), the

position of a single ball lying on the plate can be determined [6]

x =
My

m(g cos(α)− Ẍ sin(α))

y =
Mx

m(g cos(β)− Ÿ sin(β))
. (3.1)

The advantage of this method is that no camera is required. Moving the ball by hand over the

plate, the performance of this method was convincing (output stream of 500 Hz, static position

STD of five millimeter). In (3.1) no friction force and torque is assumed. Thus when using this

method for different rolling friction coefficients of the ball, a friction model has to be included

in (3.1). Additionally, it was observed that (3.1) does not consider dynamic changes of the

3 This algorithm is based on PCL Tracking object in real time.
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tilting angles. In an experiment α was tilted between ±5◦ in a sinusoidal way and the position

of the ball was tracked by the using the BT algorithm and (3.1). With respect to Figure 3.4 one

can see that the BT algorithm provides a more accurate solution as the ball was rolling from one

side of the plate y = 22.5 cm to the other side4. Instead the solution obtained using the torque

measurements was much slower and inaccurate. For this reason this method was not further

1 2 3 4 5 6 7 8 9

−0.2

−0.1

0

0.1

0.2

t in sec

B
al

lp
os

it
io

n
in

m
y-by Images
y-by FTS

Figure 3.4.: Comparison of the BT algorithm with the method of (3.1) that utilizes torque measurements

investigated. The velocity of the ball can be calculated by derivating the position. As this results

in noisy data a KF should be used [6].

3.4 Summary

Table 3.1 compares the performance of the approaches above. The image-based BT algorithm

was extensively tested and the most precise one. Thus it was used to obtain the measurements

of the position and velocity of the ball for the experiments on the real robot.

Measurements Hardware Frequency static STD Other

RGB images Realsense R200 58 Hz 0.9 mm Radius required.

Point clouds Realsense R200 25 Hz 5 mm Information of the

radius is not neces-

sary.

Torques FTS by Schunk 500 5 mm No camera con-

struction required.

Mass required.

Table 3.1.: Different methods of Ball Tracking

4 In this experiment the plate was surrounded by a fence which prohibits the ball to fall of the plate.
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4 Robust controller design

This chapter describes general aspects concerning robust control (in Section 4.1). Moreover,

the following (robust) controllers for the uncertain (see Section 4.2) cBoP system with respect

to Actuator Saturation Limits (ASLs) are described:

1. As a baseline a LQR controller is designed in Section 4.6.

2. A robust Multi-Model Pole Placement (MMPP) controller is designed in Section 4.7.

3. The benefit of aH2 controller is discussed in Section 4.8.

4. A fixed-structureH2 robust controller is designed in Section 4.9.

The objective of the design of the above controllers is to stabilize the uncertain cBoP and fullfill a

minimum performance (as defined in Section 4.4). To apply the designed controller the control

circuit described in Section 4.5 is used. The controller design is based on the linearised cBoP

system of Section 2.3.4.

4.1 What is Robust Control

The objective of robust control is to guarantee stability and a specified minimum performance, if

a system is working within predefined uncertainty margins. The task of robust control is to find

the controller K for the control circuit in Figure 4.1 (b) to achieve Robust Performance (RP). In

order to explain RP other terms are explained in the following.

4.1.1 Generalized plant

Robust control is usually done for a generalized plant P. It contains the plant and additional

weights which are used for the controller design. The controller K is connected between the

measurement signals (control outputs) y and the control signals (control inputs) u of the gen-

eralized plant.

To design a robust controller the system performance is optimized from the performance inputs

w to the performance outputs z of the generalized nominal plant P. Thereby w is a vector that

includes reference signals, noises and disturbances, z is a vector that includes all controlled

signals and tracking errors and the nominal plant represents the system with no uncertainties.

The control input vector and the control output vector of the generalized plant is denoted as u

and y. Figure 4.1 (a) shows the regulated generalized plant N. If the plant has uncertainties
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(a) Regulated generalized plant (b) Approach for design of robust controllers

Figure 4.1.: Generalized plant of the nominal system (a) and of a system with uncertainties (b). This

framework is used for the design of robust controllers.

another framework for robust control depicted in Figure 4.1 (b) is utilized. The set of all possible

uncertainties1 is denoted as ∆ and Ñ is the transfer function from w to z [8, p. 2].

A state space representation can be transformed to a generalized plant by partitioning the

input(B), output(C) and feedthrough matrix (D)

ẋ= Ax+
�

B1 B2

�

�

w

u

�

(4.1)

�

z

y

�

=

�

C1

C2

�

x+

�

D11 D12

D21 D22

��

w

u

�

. (4.2)

The generalized plant can also be represented as transfer function

P(s) =

�

P11(s) P12(s)

P21(s) P22(s)

�

=







A B1 B2

C1 D11 D21

C2 D21 D22






.

The transfer function of a generalized plant is given by

P(s) = P21(sI− P11)
−1P12 + P22 . (4.3)

Figure 4.2 shows the block diagram of the generalized plant.

1 For just parametric uncertainties∆ is a diagonal matrix. Each diagonal entry contains a parametric uncertainty.

However ∆ can also be used to describe more complex uncertainties as dynamic and parametric, structured

and unstructured. For more details about describing the uncertainty of a system see [7, p. 260 - 280].
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+
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ẋ
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Figure 4.2.: Block diagram of generalized plant.

4.1.2 Linear Fractional Transformation

In order to compute N in Figure 4.1(a) the concept of Linear Fractional Transformation (LFT)

is applied 2. Using

z= P11w+ P12u

y= P21w+ P22u

u= Ky ,

N can be calculated

N= P11 + P12K · (I− P22K)−1 · P21 . (4.4)

N can also be written as lower LFT of P and K:

N= Fl(P, K) .

Note that the upper linear LFT (Fu(·, ·)) is required if the uncertainty ∆ is incooperated in the

generalized plant [3, p. 247 - 253].

4.1.3 Well-posedness

A closed loop control circuit is well-posed if all transfer matrices of the closed loop control

circuit are well-defined and proper [8, p. 66 - 68]. A transfer function is proper if the degree of

the numerator is less or equal the degree of the denominator.
2 Note that in Figure 4.1 P and K are state space systems. Thus, K is not represented as constant controller

matrix (as e.g. in an LQR controller design).
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4.1.4 Internal Stability

Figure 4.3 shows a block diagram that is used to explain internal stability.

Figure 4.3.: Internal stability analysis diagram

Assume that P and K̂ are transfer functions that can be represented as state space matrices

P=

�

A B

C D

�

K̂=

�

AK BK

CK DK

�

.

Thereby the matrices with subscript K denote the state space matrices that are summarized in

the transfer function K̂.

The system is proper if

�

I −DK

−D I

�−1

exists [8, p. 68].

The system of Figure 4.3 is said to be internally stable if the feedback is well-posed and the

transfer matrix

�

I −K̂

−P I

�−1

(4.5)

from (w1, w2) to (e1, e2) belongs to RH∞3. The second argument can simply be checked by

proving that these four transfer functions

(I− K̂P)−1, K̂ · (I− PK̂)−1, P · (I− K̂P)−1 and (I− PK̂)−1

are stable. This can be summarized to: A control circuit is internal stable if all transfer functions

of the closed loop control circuit are stable [8, p. 68 - 71] and [3, p. 121].

4.1.5 Robust Stability (RS) for MIMO systems

Consider the uncertain N∆-system in Figure 4.4 4 for which the transfer function from w to z is

given by the upper LFT

Ñ= Fu(N, ∆) = N22 +N21∆(I−N11∆)
−1N21 . (4.6)
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Figure 4.4.: N∆-structure for robust stability and robust performance analysis

First assume ∆ = 0 and all transfer functions of N are stable. Then the system achieves

Nominal Stability (NS). This means that a system has NS if N is internally stable. For Robust

Stability (RS) suppose that ∆ and all transfer functions of N are stable. With these assumptions

the only possible source of instability in (4.6) is the feedback term (I − N11∆)−1. Thus, the

stability of the system in Figure 4.4 is equivalent to the stability in Figure 4.5.

∆

M= N11

u∆ y∆

Figure 4.5.: M∆-structure for robust stability analysis

To check RS the so called M∆-structure (with M = N11) depicted in Figure 4.5 is used. RS

can now be formulated depending on the kind(structured, unstructured, complex, real) of the

uncertainty in different ways [7, p. 301 - 316]. One simple representation of RS is given by the

Determinant stability condition for real or complex perturbations 5[7, p. 301]:

Assume the nominal system M(s) and the perturbations ∆(s) are stable. Consider the convex set of

perturbations ∆, such that if ∆′ is an allowed perturbation then so is c∆ where c is any real scalar

such that |c| ≤ 1. Then the M∆-system in Figure 4.5 is stable for all allowed perturbations (we

have RS) if and only if

Nyquist plot of det(I−M∆(s)) does not encircle the origin, ∀∆

⇐⇒det(I−M∆( jω)) 6= 0,∀ω,∀∆

⇐⇒λi(M∆) 6= 1, ∀i, ∀ω, ∀∆.

3 RH∞ describes the set of stable, proper and rational transfer functions.
4 This control diagram can be obtained by calculating the lower LFT of P∆ and K in Figure 4.1 (b): N= Fl(P∆, K)
5 In the following, the equations λi(M∆) represent the eigenvalues of (M∆).
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4.1.6 Robust Performance for MIMO systems

Rearrange the uncertain system into the N∆-structure of Figure 4.6. Assume Nominal Stability

(NS) so that N is internally stable. Then

RP⇐⇒ ‖Ñ‖∞ < 1, ∀‖∆‖∞ ≤ 1

⇐⇒ µ∆̂(N( jω))< 1, ∀ω (4.7)

holds. In (4.7) µ is the Structured Singular Value (SSV)6 computed with respect to the general

uncertainty structure

∆̂=

�

∆ 0

0 ∆P

�

.

∆P is a full complex perturbation with the same dimensions as ÑT [7, p.316].

Figure 4.6.: N∆̂-structure for robust performance analysis

4.1.7 Summary

The above terms can be summarized with [7, p.300]

NS⇐⇒ N is internally stable

NP⇐⇒ ‖N22‖∞ < 1; and NS

RS⇐⇒ Ñ= Fu(N, ∆) is stable ∀∆,‖∆‖∞ ≤ 1; and NS

RP⇐⇒ ‖Ñ‖∞ < 1, ∀∆, ‖∆‖∞ <= 1; and NS .

Thereby NP is the nominal performance and ‖ · ‖∞ is theH∞norm. These terms can also be

formulated as µ conditions [7, p. 319].

6 For simplicity a definition of the SSV is not given in this thesis. More about the SSV can be read in [8, p.

187-200].
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4.2 Uncertain Ball-on-Plate System

In order to benchmark robust control on the cBoP system, the objective is to find a static and sta-

ble controller with a minimum performance for a ball with uncertain parameters. If ideal rolling

friction is assumed, it is important to note that the mass of the ball does not impact the system

and thereby the performance of the controller. This is due to the fact, that different masses are

accelerated by the same gravitation. In case of non-ideal rolling friction it was observed, that

varying the radius of the ball impacts the performance of the system. Moreover, changing the

rolling friction coefficient (µr) influences the system with and without ideal assumptions.

The uncertain cBoP system that is used for robust control is described by the following two

parametric uncertainties

r ∈
�

20.0 · 10−3m 80 · 10−3m
�

(4.8)

µr ∈
�

0.0295 0.1
�

.

The uncertainty of the radius varies from a table tennis ball to a hand ball. The rolling friction

coefficient varies from the rolling friction of wood on metal to a rolling friction coefficient of

(µr = 0.1) which corresponds to the friction of car wheels on solid sand. Ideal rolling friction

slows the ball down with a constant force FR = FNµr . The ball starts to accelerate if F > FR.

In the real world it is assumed that there is a drop between the friction of the ball with zero

velocity(‖v = 0‖) denoted as static friction and the friction of the ball with (‖v > 0‖). These

non-linear effects can be prevented by a higher upper rolling friction coefficient. On purpose the

upper bound of the rolling friction is defined quite high, as this allows to overcome non-linear

effects between static and rolling friction. In particular a static friction coefficient of µH = 0.1

corresponds to the stiction of wood on metal7. Figure 4.7 illustrates the relation between the

force and the friction of a ball.

F(Force)

t(Time)

FN ·µr , ideal

|v |= 0 |v |> 0

FN = mg

F

FR

FN ·µH m

µH > µR FR = FNµ=

¨

FN ·µH static friction

FN ·µr rolling friction

«

Figure 4.7.: Static friction and rolling friction of the ball

The balancing behaviour of the ball with an initial position of x0 = −0.1 y0 = 0.1 is evaluated by

the designed controllers (see Section 4.6 and 4.9). The response of the closed-loop controllers
7 For more details see Engineer’s handbook .
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are plotted for the pool ball and the wooden plate (see Appendix B). Each plot shows the four

corner models denoted as (a) - (d) (see Figure 4.8). Moreover, the nominal system (denoted as

(nom)) which represents the true values of the pool ball is plotted. A wooden plate is assumed

for the nominal system. Thus, a low rolling friction coefficient of µr = 0.00295 is assumed for

the nominal system.

Figure 4.8.: Region of uncertainties

4.3 Actuator Saturation Limits of the BoP system

In order to design a robust controller for a real system it is important to consider the limits of the

actuator saturation of the motors of this system. Our system is a seven DoF Schunk arm. It has

seven motors (joints denoted as q) which have saturation limits. The limits of the Schunk arm

are given in Table 4.1. Note that the LWA consists of three different Universal Rotary Actuators

PRL sizes from 120 to 80. For more details read the datasheet. The output of the designed

Joint PRL Peak torque[Nm] max vel. [◦/s] max acc. [◦/s2] angle range[◦]

1 120 372 25 100 −180,180

2 120 372 25 100 −270, 90

3 100 176 24 95 −115,115

4 100 176 24 95 −270,−90

5 80 41.4 25 100 −110,115

6 80 41.4 25 100 −360, 0

7 80 41.4 25 100 −120,120

Table 4.1.: Joint limits of the Schunk LWA

controller however is given in Task Space and not in Joint Space. This means the controller

computes a desired control signal (Ẍ , Ÿ , Z̈ , α̈, β̈) for the pose of the end-effector of the LWA.

The joint limits can be calculated in task space by using

ẋP,max = J · q̇max

28 4. Robust controller design

http://www.cs.unc.edu/Research/stc/FAQs/Schunk/old-irrelevant/PRL_Manual_V01.pdf


and

ẍP,max = J̇ · q̇max + J · q̈max

with

xP =
�

X Y Z α β
�T

, J=
∂ xP

∂ q
.

The so determined task space ASLs depend on the current joint configuration of the LWA and

the time. Thus, no constant ASLs can be specified. Designing a controller having a constant ASL

would be desirable. For this reason the following limits are defined in task space:

• Ẍ ≤ 0.25 m/sec2

• Ÿ ≤ 0.25 m/sec2

• Z̈ ≤ 0.25 m/sec2

• α̈≤ 100 ◦/sec2

• β̈ ≤ 100 ◦/sec2.

In Chapter 6 it is verified, that if the above task space ASLs are not exceeded, the joint space

limits are not exceeded, too. During the design of the controllers (see Section 4.6 to 4.9) the

above task space ASLs are considered.

4.4 Required performance of the controllers

Testing Robust Performance (RP) of a control circuit is difficult. For this reason a custom term

of Step Response Robust Performance (SRRP) is defined. SRRP has a closed-loop system if:

• it achieves Robust Stability as defined in Section 4.1,

• it fullfills the Step Response Requirements (SRR) (as defined below) for all models of the

uncertain cBoP system and

• it does not exceed the ASL of the task-space (Ẍ , Ÿ , Z̈ , α̈, β̈) as defined in Section 4.3

for the analysis of the model and the ASL of the joint-space for the analysis of the Rcs

simulation.

The Step Response Requirements (SRR) are given as:

• Max. overshoot of o≤ 60 %.

• Max. undershoot of u≤ 10 %.

• The Ball reaches a ±5 cm band around the desired value within 20 s

• Max. steady state error of sse≤ 0.05m.
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4.5 Control circuit

The control circuit is depicted in Figure 4.9. This picture shows, that in order to control the BoP

system, a desired plate pose xP,des is obtained. To reach this pose desired joint angles qdes of

the Schunk arm have to be calculated. These angles are determined by Inverse Kinematics (IK)

and then applied to the motors of the Schunk arm. If the BoP System is simulated, the position

xB =
�

x y
�T

and velocity ẋB of the ball can be measured. If the real robot is used, the

position and velocity of the ball is determined with a ball tracking algorithm or with the FTS

(see Chapter 3). The position of the plate xP =
�

X Y Z α β
�T

and velocity ẋP can be

calculated with Forward Kinematics (FK). With the ball and the state of the plate a measurement

vector xmeas =
�

xP xB ẋP ẋB

�T
is constructed. This measurement vector is then multiplied

by a feed back constant control matrix K. The control input vector u that is applied to the

plant consists of the difference of the reference input vector w multiplied with the feed forward

matrix F and the feed back term. K is constructed by using different control design methods

explained in the next Sections. F is designed so that there is no steady state error.

IK
qdes

BoP System

FK

xmeas

q, q̇, q̈

xP , ẋP

K

+−
u

xP,des

Fw

q, q̇, q̈,xP , ẋP

Ball Tracking Camera

∫∫

xB, ẋB

Figure 4.9.: Control circuit to apply the controllers to the real robot (In the Rcs simulation the position and

velocity of the ball is directly obtained by the simulation.).

4.6 Design of LQR controller

In a first step a Linear Quadratic Regulator (LQR) controller is designed as a baseline to control

the cBoP system. Given the continuous-time linear cBoP system (see Section 2.3.4)

ẋ= Ax+Bu ,

with a quadratic cost function

J(x,u) =

∫ ∞

0

x(t)Qx(t) + u(t)Ru(t)d t , (4.9)

the feedback control law that minimizes the value of the cost can be obtained by

u= −K · x+ F ·w . (4.10)
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The feed back matrix K can be obtained by solving the continuous time Riccati differential

equation [9, p. 358]. Therefore the semi-positive Matrix Q, that weights the states and the

positive Matrix R that weights the actuating variables have to be constructed first.

Calculating the IK for big variations of the position of the end-effector compared to the inclina-

tion angles of the end-effector is more computational expensive8. For this reason it is desired,

that the end-effector does not move more than ±20 cm (in X, Y, Z direction) away from its ini-

tial position. This aspect can be considered in the design of the LQR controller by punishing

the states of the position of the end-effector more than inclination angles in the R matrix. In

order to have a fast step response the position of the ball is weighted much more compared

to the other states in the Q matrix. When designing the system it should be considered, that

high dynamic parts (such as much overshoot) should be prevented, because these are amplified

when the controller is applied to the non-linear real BoP system [p. 16][10]. Thus, the states

of the position of the ball should not be weighted to high. These considerations result in the

following Q and R matrix

Q= diag(1 1 1 1 1 50 50 1 1 1 1 1 1 1) (4.11)

R= diag(50 50 50 0.2 0.2) .

Using the parameters for the pool ball and the wooden plate, as defined in Appendix B, the feed

back matrix K is calculated9. With respect to [11, p. 183] the feed forward matrix can now be

derived as

F= (C(BK−A)−1B)−1 .

Figure 4.10 shows the balancing behaviour of the LQR controller for the cBoP system for an

initial position of x0 = −0.1, y0 = 0.1. The LQR controller is designed for the linearised cBoP

nominal system. Besides the nominal system the balancing behaviour is plotted for the four

corner systems (a)-(d) of the uncertainty. For each of these, the rise time t r , the overshoot

o and the settling time Ts is given10. Additionally, 20 random systems within the bounds of

uncertainty mentioned in 4.8 are displayed. The Figure illustrates a nice balancing behaviour

for the nominal system. However, if the rolling friction coefficient is smaller, the response tends

to higher settling times. Figure 4.11 shows that the ASL as defined in Section 4.3 are not ex-

ceeded. In order to check if the LQR controller achieves RS, the robstab Matlab command

which is explained in Table D.1 is utilized. Using robstab RS is established for the designed LQR

controller (see lqr_design.m lines 45 - 61). It should be noted, that if the LQR controller is de-

signed for a rolling friction coefficient of µr =
µr,max+µr,min

2 , the system response has an increased

settling time and overshoot for lower rolling friction coefficients. The balancing behaviour for

8 This is due to the attributes of the IK algorithm. Additionally, finding a solution for the IK algorithm is easier

if the actual positions of the end-effector are similar to the desired positions.
9 µr = 0.0295 is used for the nominal system.
10 The definition of these terms is given at https://de.mathworks.com/help/control/ref/stepinfo.html.
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x for sys nom, tr=0.8s o=7% Ts=2.4s
xdes=0

Figure 4.10.: Balancing behaviour of LQR controller for an initial position of the ball of x0 = −0.1, y0 =

0.1 (simulated)

these LQR controller is given in Figure C.1. Thus, it can be concluded, that designing a LQR

controller with a low rolling friction coefficient leads to a stable controller for the defined un-

certainties, because a higher rolling friction coefficient slows down the system response. The

designed LQR controller achieves RS and fulfils the SRR.

4.7 Design of Multi-Model Pole Placement controller

One robust control approach to cope parameter uncertainties is Multi-Model Pole Placement

(MMPP) [12]. MMPP aims to put all eigenvalues of models with different parameters (depicted

in Figure 4.8) within a particular pole region (depicted in Figure 4.12). The better a feed back

controller matrix K is able to put all eigenvalues within this pole region Γ the more robust is the

controller with respect to these predefined uncertainties. Applying MMPP to the uncertainties

(see Section 4.2) of the cBoP system, a stable controller with a minimum performance can

be optimized. To achieve this performance (as defined in Section 4.4) a desired pole region

of a damping ratio ϕ ≈ 79◦, a minimum speed 11 of −0.1δ and a maximum speed of −10δ

is designed. Figure 4.15 shows this desired region Γ . By using MMPP a feed back matrix K

11 The minimum speed is a stability margin. The closer this margin to the origin of the complex plane, the more

likely it is that the system tends to instability.
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Figure 4.11.: Control input u of LQR controller (simulated)

Figure 4.12.: Performance explanation of desired pole region [13].

is optimized in a way that the eigenvalues of all corner models are placed in the desired pole

region. Figure 4.15 shows the poles of the closed loop systems of the four corner models (a)-(d).

All eigenvalues are lying in the desired region Γ .

The result of the step response is given in Figure 4.13. The corresponding control input is given

in Figure 4.14.
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x for sys a, tr=1.9s o=16.4% Ts=7.7s
x for sys b, tr=3s o=5.8% Ts=7.8s
x for sys c, tr=1.8s o=16.4% Ts=7.7s
x for sys d, tr=3s o=5.7% Ts=7.7s
x for sys nom, tr=2.5s o=10.5% Ts=6.8s
xdes=0

Figure 4.13.: Balancing behaviour of MMPP controller for an initial position of the ball of x0 = −0.1, y0 =

0.1 (simulated by Matlab)

With respect to the script mmpp_design.m (Line 67 - 85) RS could be proven with the Matlab

command robstab 12.

Comparing Figure 4.10 (LQR controller) and Figure 4.13 (MMPP controller) the settling time

for high rolling friction coefficients µr is significantly less for the MMPP controller. Thus, the

MMPP controller achieves a more robust step response performance. The SRR as defined in

Section 4.4 could be achieved with the MMPP controller. However, the ASL of the task-space

(depicted as dashed red lines in Figure 4.14) are exceeded. The MMPP method cannot be used

to weight certain control input paths. This means it is not possible to weight the angles of the

end-effector more than the position13. Additionally, it is not possible to weight the states. Thus,

the controller aims to stabilize the system around its EP and does not focus on controlling the

position of the ball. As it is desirable to weight the inputs and the states it is necessary to design

other robust controllers which are discussed in the next sections.

12 For details about the Matlab commands see Table D.1.
13 This aspect is illustrated in Figure 4.14. In this Figure the acceleration of the position are weighted very less

compared to the acceleration of the angles.
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Figure 4.14.: Control input u of MMPP controller (simulated by Matlab)

4.8 Design ofH2 controller

As it is not possible to weight the control inputs with the MMPP method, another control design

which allows to weight the states and control inputs similar to the LQR approach , would be

desirable. In a first step the LQR design (see (4.9)) can be formulated as a specialH2 problem

[8, p. 257 - 261]. The generalH2 problem is given as

min
K
||Fl(P(s), K(s))||2 under the condition that K(s) stabilizes P(s) internal. (4.12)

The generalized plant P is given as

P(s) =







A B1 B2

C1 0 D12

C2 D21 0






. (4.13)

The objective of theH2 approach is to find the minimum K of the lower LFT of the generalized

plant P and K. [8, p. 261 - 265]. In order to solve (4.12) by common algorithms as e.g. Matlab

h2syn it is required that

1. (A, B2) is controllable (1a), (C2, A) is observable (1b),
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Figure 4.15.: Desired region of closed loop poles Γ and closed loop poles(x) of the four corner models

2. D12 has full column (2a) and D21 full row rank (2b),

3.

�

A− jωI B2

C1 D12

�

has full column rank ∀ω

4. and

�

A− jωI B1

C2 D21

�

has full row rank ∀ω.

If these requirements [3, p. 384] are achieved, it is guaranteed, that there is a solution of the

H2 optimization problem common algorithms can find. A closed solution can be found in [3, p.

369, 370]. A LQR controller is a specialH2 problem. Thus, a LQR controller can be formulated

as aH2 problem with the following generalized plant P [3, p. 372]

P(s) =











A S B
�

Q0.5

0

� �

0

0

� �

0

R0.5

�

C2 0 0











. (4.14)

S in (4.14) is an arbitrary (6= 0) matrix. In general S is a diagonal matrix. Each diagonal entry

reflects the initial distortion of this state.

A special case of theH2 Optimization problem known as "full state feedback" problem, is when

C2 = I in (4.14) holds. In this case each state is measurable and a solution can be found if

condition (1a), (2b), (3) and (4) is satisfied [3, p. 390 - 393].
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Considering the BoP system, each state is measurable. Thus, using a generalized plant of (4.14)

allows to design a controller and be able to weight the control inputs and the states. However,

this full state feedback problem can only be solved (e.g. with the Matlab h2syn command) for a

nominal system. For this reason another method has to be utilized to design a robust controller.

4.9 Design of fixed-structureH2 controller using systune

H2 or H∞ controller are optimal controllers with respect to the defined weighted inputs and

outputs. This means there is no other controller that reaches a smaller H2 or H∞ norm of the

generalized plant P(s) with its given weights14. These controllers, however have disadvantages:

• Depending on the weights the computed controller is of high order.

• Commonly optimizing algorithms require measurement noise to compute a controller.

• Additional requirements such as limitation of the control input can only be considered by

additional terms in the cost function.

• Integrative components are not supported.

Considering these disadvantages, it might be useful to formulate the controller design problem

as

min
K∈K

∑

i

‖Fl(Pi(s), K(s))‖ under the condition that K(s) stabilizes P(s) internal, (4.15)

‖Fl(Ps.t., j(s), K(s))‖ ≤ γmax , j,∀ j . (4.16)

K is the set of valid controllers, which can contain a specification of the structure or the maxi-

mum order. Being able to use multiple generalized plants Pi, makes it possible to weight certain

control signal and reference signal paths. Ps.t. j(s) allows to formulate additional constraints for

the optimization process.

Optimizing (4.15) leads to non-convex and non-smooth problems. To solve these problems

numerical optimization methods (e.g. Matlab systune) are required. These methods do not

guarantee to find a global or even local minimum[13].

In the following, a robust controller that uses the generalized plant (4.14) is designed by using

the Matlab systune command. Table D.2 describes the inputs and outputs of this function.

The control circuit that is used to design the robust controller is depicted in Figure 4.16.

The so derived K is then used to construct the control law

u= −(−K)y+ Fw ,

14 A weight is e.g. the Q or R matrix in theH2 design of the previous section.
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Figure 4.16.: Block diagram of the control circuit that is used to design the fixed-structureH2 controller

that is applied to the actual control circuit depicted in Figure 4.9. The prefilter matrix F is

designed in a way that the closed control circuit has no steady state error. F is given by

F= −(C(A+BK) ·B)−1 .

With respect to Figure 4.16 the optimization problem can be formulated as

min
K∈K
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.

Using systune this optimization problem can be numerically approximated by considering the

ASL as HardGoals and the SRR as SoftGoals15. Additionally, TuingGoal.Poles was used to define

a desired pole region, that prevents eigenvalues being close to the origin. The Matlab script of

the fixed-structure H2 controller design is given in script h2_systune.m. Additionally, the RS of

this controller could be proven with robstab 16. Figure 4.17 illustrates the balancing behaviour

of the linear cBoP for an initial position of the ball of x0 = −0.1, y0 = 0.1. The SRR could

be achieved for this system. Additionally, Figure 4.18 shows that the task-space ASL are not

exceeded.

15 In particular a PT2 function can be definded as desired step response.
16 The script h2_systune_lin.m shows the specific systune adjustments to full fill the ASL and SRR as well as the

RS-analysis for this system.
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4.10 Summary

The design of the MMPP controller revealed that it is desirable to be able to weight the states

and the control input. The LQR and the fixed-structure H2 controller offer these possibilities.

Additionally, tuning a generalized plant with systune it is possible to consider saturation limits

and step response requirements.

Thus, using systune to design fixed-structure H2 controller represents a powerful method to

consider ASL and SRR. In particular Table 6.1 compares the designed controllers. The SRR

such as the worst overshoot, undershoot etc. are listed of all analysed system responses for

each controller. The H2 controller model of this table is a redesigned H2 robust controller as

discussed in Section 6.3.

4.10. Summary 39



0 2 4 6 8 10 12 14 16 18 20
−0.12

−0.1

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

2 · 10−2

4 · 10−2

t in sec

x
B

al
lp

os
it

io
n

in
m

H2 systune controller for x0 = -0.1, xdes =0

20 random systems
x for sys a, tr=0.6s o=39.2% Ts=12.1s
x for sys b, tr=0.8s o=32.2% Ts=10.1s
x for sys c, tr=0.6s o=37.2% Ts=12.2s
x for sys d, tr=0.8s o=30.1% Ts=9.8s
x for sys nom, tr=0.6s o=38.9% Ts=12.1s
xdes=0

Figure 4.17.: Balancing behaviour of fixed-structureH2 controller for an initial position of the ball of x0 =

−0.1, y0 = 0.1 (simulated)
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Ẍ for (d)
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Figure 4.18.: Control input u of fixed-structureH2 controller (simulated)
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5 Robust controller design with methods from

Reinforcement Learning

Training a robust policy on real robots is time-consuming as the world state has to be reset

after each rollout and of the risk that the robot is damaging itself or its environment during

exploration. One approach to solve these problems is to create a model of the robot and train

the policy in simulation. Policies which use exact physics constants to train the parameters

of a neuronal network tend to overfit. Hence, a policy that has been trained to achieve a

high performance in the simulation might fail in the real world. One approach to bridge this

phenomena known as the reality-gap is modularizing the task1 [14], training a policy with

random initial states and learning a policy that is robust to changes in physics parameters. This

approach was investigated for the decoupled Ball-on-Plate (dBoP) system in [4] and [15]. In

simulation a neuronal network was trained using Proximal Policy Optimization (PPO). The

reward function is based on the quadratic cost function[15, p. 12]

r(st ,at) = exp(c(sT
t Qst + aT

t Rat)) (5.1)

Here r(st ,at) is the reward, st are the continuous states at time step t, at are the continuous

actions at time step t and Q and R are matrices to weight the states and the control inputs

(similar to the LQR controller design). For more details refer to [4] and [15].

In this thesis a trained neuronal network (see Figure 6.8) for the cBoP system was given to

compare the classical robust controllers with the approach above. The neuronal network was

designed in Pytorch.

Training directly the physics simulation is one major advantage of designing a robust controller

with RL techniques: non-linear behaviour as well as discretisation can be learned as well. Thus,

there is no simulation gap between the linearised models and the physics simulation compared

to the classical robust controllers (as discussed above). Moreover, no complex friction model

of the BoP-system has to be derived. Additionally, the trained neural network can be easily

extended with additional hidden layers or nodes if the learned policy does not maximize the

reward. Disadvantages are that tuning hyperparameters of RL methods is tedious and the time

expensive training.

The result of the simulated neuronal network is discussed in Section 6.4.

1 Modularizing the task means that a policy is not learned end-to-end (sensor inputs to direct motor commands),

but learned from the sensor input to desired position’s of the robot in task space.
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6 Simulation results

Before applying the designed controllers to the real robot, the controllers are first tested with the

Robot Control System (Rcs). Rcs is an open source1 set of C and C++ libraries for robot control

and simulation. One major advantage is that the real hardware can directly be integrated

instead of a physics-engine that is used for simulation. In this thesis Rcs was used to verify if

the joint space Actuator Saturation Limit (ASL) (as defined in Section 4.3) are exceeded. For

the simulation the Vortex2 physics engine was utilized. The simulation parameters of Vortex

can be found in the Appendix B. Whereas Chapter 4 evaluates the behaviour of the continuous

linearised model, the Rcs simulation considers the non-linear behaviour of the BoP system and

discretely obtains the feedback with 100 Hz. Additionally, the measurement noise (for the ball

or the joints), the time delay of the measurements of the ball as well as errors of the motor

(time-delay, discretization) were neglected in this chapter. The control circuit that was used in

the Rcs simulation is given in Figure 4.9.

6.1 Linear Quadratic Regulator (LQR) controller

The balancing behaviour of the LQR controller depicted in Figure 6.1 and simulated by Rcs is

slightly different to the model of the LQR controller. As the desired position was not reached

for higher rolling friction coefficients, it can be assumed that the influence of the rolling friction

coefficient in the Rcs simulation was higher than in the model. The joint space ASL were not

exceeded for the system responses.

In order to decrease the steady-state error an additional integral part can be added to the

controller as depicted in Figure 6.2.

Thus, the control law becomes3

u= −K · x+
∫

KI · (F ·w− xB), with xB =
�

x y
�T

. (6.1)

1 Rcs can be downloaded from https://github.com/HRI-EU/Rcs.
2 In this thesis Vortex 6.8.1 was used.
3 Note that for this control law the F matrix has to be redesigned and becomes a 2x2 Matrix.
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Figure 6.1.: Rcs simulation of LQR controller as designed in Section 4.6
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Figure 6.2.: Control circuit with additional integral part and KI matrix to cope steady-state errors.

If the set-point is not reached the position error is integrated and should be added to the angle

accelerations of the control input vector (adding it to the position accelerations often causes the

robot to move to unreachable end-effector positions.). Thereby an integral matrix of
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(6.2)

was selected. The balancing behaviour of this LQR-I controller is illustrated in Figure 6.3. The

44 6. Simulation results



5 10 15 20 25 30 35 40 45

−0.1

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

2 · 10−2

4 · 10−2

t in sec

x
po

si
ti

on
in

m

LQR-I controller for x0 = -0.1, xdes =0

25 random systems
x, for sys a
x, for sys b
x, for sys c
x, for sys d
x, for sys nom
xdes=0

Figure 6.3.: Rcs simulation of LQR-I controller as designed in Section 4.6 with KI of (6.2)

integrative part forces also the system (b) and (d) to move towards the origin. Thus, the steady-

state error using an integral part can be reduced for these systems to sse≤ ±2 cm. With respect

to the response of the nominal system in Figure 6.3 it is suspicious that integrating the position

error for a long time leads to small jumps around the desired position ( see (nom) for t>30 s).

This disadvantage however does not cause instability.

It can be summarized that the simulated LQR controller responds less intensive to higher fric-

tion coefficients than the simulation of the linearised model. Using an additional integrative

decreases the worst steady-state error of the analyses systems and forces the ball to move (even

for higher rolling friction coefficients). The LQR and LQR-I controller are both stable for the

uncertainties and the joint space ASL are not exceeded. It should be noted that the integrative

part can wind-up and finally destabilize the system. In this case an Anti-Windup filter should

be included. However, in the Rcs experiments this problem was not observed.

6.2 Multi-Model Pole Placement (MMPP) controller

The Rcs simulation of the MMPP controller manages the ball to move for all rolling friction

coefficients as illustrated in Figure 6.4. The corresponding control input vector u as well as the

actual joint positions q̇ velocities q̈ and q̈ accelerations for the nominal system is given in Figure

C.2. As the task-space limits of the linearised model are already exceeded, it is not surprising
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that the joint and task space limits of the simulated controller are also exceeded. In particular

comparing the acceleration task-space limits of the linearised and the simulated controller, one

observes that they are similar. However, at the example of the MMPP controller effects that only

occur in the simulation can be shown:

• in Figure 6.4 one can observe, that the MMPP controller responses aggressive to steady-

state errors. This dynamic response results in a magnification of non-linear effects that

cause the ball to swing. These non-linear effects can be additionally amplified if the

distance of the ball to the origin (which is the EP) is higher.

• another reason for the different response of the simulated controller is the discretisation.

Figure C.3 shows the Rcs simulation sampled with 1 kHz. The corresponding control

input vector u is given in Figure C.4. The figures show that the discretisation impacts the

simulated controller. With a smaller time step in the simulation, the controller responds

similar to the model. However, in this case one can still observe that for the maximum

rolling friction coefficient and the minimum radius the ball does not move at all (see

Figure C.3). Additionally, it should be noted that with a lower time step, the joint ASL

decrease (see Figure C.4).
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Figure 6.4.: Rcs simulation of MMPP controller with 100 Hz

The simulation of the MMPP controller revealed a strong impact of the discretisation and non-

linear effects. Additionally, it showed that the chosen constant ASL in task space can be used to

estimate the joint space ASL: as well as the modelled MMPP controller exceeds the task-space
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limits, the simulated MMPP controller exceeds the joint-space limits. For this reason the MMPP

controller should not be applied to the real robot.

6.3 Fixed-structureH2 controller

Applying the fixed-structure H2 controller as designed in Section 4.9 to the Rcs simulation

results in an unstable response. The reason for this is a high overshooting which is additionally

increased by non-linearities. As the step response goal causes these high overshoots, the fixed-

structure controller was redesigned with different tuning goals. Additionally, the desired region

of the eigenvalues was shifted to the left on the real axis. Thereby the controller becomes more

stable and can be applied to the discrete Rcs simulation. Moreover, the position of the end-

effector (in task-space) was limited, in order to prevent that the robot moves to positions which

are physically not possible4. The modelled balancing behaviour of this redesigned controller is

given in Figure C.6.

Figure 6.5 shows the balancing behaviour of the Rcs simulation of this redesigned controller.
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Figure 6.5.: Rcs simulation of fixed-structureH2 controller

4 The script h2_systune_re.m shows the tuning goals of the redesigned controller.
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Similar to the LQR controller the influence of the rolling friction coefficient is higher compared

to the model. This causes high steady-state errors or prevents the ball to move (e.g. for system

(b) or (d)). For this reason an integral part (as described in Section 6.1) of

KI =
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(6.3)

was added. It was observed that adding an integral part only for β̈ is sufficient enough to

decrease the steady state errors in x and y direction. Figure 6.6 illustrates that thereby the

steady-state error could significantly be decreased.
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Figure 6.6.: Rcs simulation of fixed-structureH2-I controller

For both controllers the ASL in joint space were not exceeded. As an example the accelerations

of the joint and task-space for the nominal system of the H -2-I controller are illustrated in

Figure 6.7. One can observe that even though the ASL of velocity task-space are exceeded, the

corresponding joint limits are not crossed. Thus, the limits of the task-space might be chosen to

conservative or the controller balances the position of the ball in a way that prevents the need

of high joint accelerations and velocities.
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Figure 6.7.: ASL of the task- and joint-space of the Rcs Simulation of the fixed-structureH2-I controller

Further investigations (see Appendix C.4) revealed that linearising the model around just one

EP causes an exceeding of the joint space ASL if the initial position of the ball has a grater

distance (y = 0.2 m) to the origin.

Comparing the balancing behaviour of the H -2-I controller with the LQR-I controller, it is

conspicuous that the responses of the H -2-I controller are all similar and lie between a tight

band. On the other hand the LQR-I controller responds different for higher and lower rolling

friction coefficients. Thus, comparing these two controller designs one can observe that using

robust control does not only guarantee stability for the modelled uncertainty but also allows to

define a minimum performance (e.g. in terms of SRR).

6.4 Robust controller designed with Reinforcement Learning

The control circuit that was used to evaluate the robustness of the fully-connected neuronal

network (input layer 14 nodes, 2 hidden layers with each 64 nodes, output layer 5 nodes) is

depicted in Figure 6.8.

The balancing behaviour of this neuronal network is tested by evaluating the system response

of the four corner uncertainty systems (a)-(d), the nominal system (nom) and additionally 20
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Figure 6.8.: Control circuit with the trained neuronal network

random systems within the uncertainty bounds (see Section 4.2). The result is depicted in

Figure 6.9.
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Figure 6.9.: Rcs simulation of robust controller designed with PPO
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One can observe that the neuronal network trained with PPO overshoots up to 55 % for low

rolling friction coefficients. Additionally, the system response for low radii and low rolling

friction coefficients have a higher steady state error5. The task and joint space limits for the

controller were not exceeded. Thus, the controller designed with methods from RL is a ro-

bust controller that is competitive to the H2-I controller: Input states and output states can be

weighted using (5.1), the network can be scaled easily (by adding additional nodes, or hidden

layers), non-linear behaviour as well as discretization can be learned directly and no model of

the system has to be derived. However, it was not yet investigated how to formulate additional

goals (such as a certain step response behaviour). Moreover, the controller designed with meth-

ods from RL learned much more parameters compared to the 70 parameters of the K feedback

matrix. For this reason it was already suspected to outperform theH2-I controller.

6.5 Summary

When simulating the linearised controllers, it can be observed, that the discretisation of 100 Hz

causes an unstable response of the MMPP controller. Furthermore, the impact of the rolling fric-

tion coefficient was significantly higher for the LQR and fixed-structure H2 controller. Adding

an integrative part revealed a system response with less steady state error. The only linearised

controller that fulfils the joint-space ASL and the SRR in the Rcs simulation is the fixed-structure

H2-I controller. Benchmarking the classical robust controller (H2-I) against the controller de-

signed with methods from RL, one can observe that the H2-I is slower and undershoots less as

depicted in Table 6.1. As the controller trained with PPO is able to learn non-linear behaviour

as well as discretization and is much more easy to extend it is expected to outperform theH2-I

controller on the real robot.

5 This error might be removable by adding an integrative part. Within this thesis this possibility was not inves-

tigated.
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LQR LQR LQR-I MMPP MMPP H2 H2 H2-I PPO

Model Sim Sim Model Sim Model Sim Sim Sim

Figure 4.10 6.1 6.3 4.13 6.4 C.6 6.6 6.6 6.9
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x x
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x
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Weight inputs
p p p

x x
p p p p

Weight states
p p p

x x
p p p p

Worst overshoot [%] 7 29.0 39.0 16.4 151.1 0.1 0.0 11.0 55.16

Worst undershoot [%] 0.0 0.1 0.1 0.0 61.6 0.0 0.7 1.4 0.1

Longest time to reach

±5 cm band[s]

1.5 Inf 20.4 3.2 9.8 4.1 Inf 9.2 4.9

Worst steady-state

error[cm]

0.0 10 3.2 0.0 6.1 0.0 10 3.4 3.7

Table 6.1.: Comparison of different robust controllers. The worst case balancing behaviour (overshoot,

undershoot, longest time to reach, worst steady-state error) of all system responses for one

controller is listed. Sim is the result of the Rcs Simulation. PPO corresponds to the controller

designed with methods from RL.
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7 Robot results

This chapter discusses how noise and time delay of the image processing impacts the Rcs sim-

ulation. In a next step robot control modes as well as motor restrictions are explained. Finally,

the LQR controller is evaluated on the real robot.

7.1 Measurement noise

The following noise effects are observed:

• noise of the position measurements of the end-effector with a static STD of < 0.1 mm

• noise of the position measurements of the ball with a static STD of 0.9 mm and of the

velocity measurements of the ball with a static STD of 2.2 mm
s (see Figure 3.3).
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Figure 7.1.: Rcs Simulation of fixed-structure H2-I controller of the nominal system with additional noise

and delayed position and velocity of the ball compared to the end-effector position measure-

ments.

Figure 7.1 illustrates how the balancing behaviour of the simulated fixed-structure H2-I con-

troller is influenced by this noise. The above noise effects impact the system to react earlier and

causes a higher steady-state error. It can be summarized that the noise of this amount has no

critical influence to the system.
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7.2 Time Delay of image processing

In order to obtain the delay between the position of the end-effector and the position of the ball,

the ball was fixed at the origin. By moving the position of the plate in a sinusoidal way along

the Y position and measuring the position of the end-effector Y −Yoffset as well as the position of

the ball y f relatively to a fixed initial coordinate system, the delay of the image processing can

be calculated by cross-correlation. Figure 7.2 illustrates both, the measurements and the cross-

correlation. The maximum time difference (delay) of these measurements sampled with 100 Hz

is 70 ms. To align both, the measurements of the ball should be either predicted into the future

using the Kalman Filter or the measurements of the end-effector should be delayed by using

e.g. a First In - First Out (FIFO) filter. If the measurements are not aligned the system response

countersteers with a delay in order to control the position of the ball. If this delay is to high the

system response tends to swing up. If the position and velocity of the ball is delayed by 70 ms

or 200 ms the simulated fixed-structure H2-I controller is still able to balance the ball. Figure

7.1 illustrates that this time delay causes a higher steady-state error. In particular, it should be

noted, that if the system response overshoots, this time delay is critical as the response might

swing up and cause instability.
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Figure 7.2.: Top: Y − offset-position of the end-effector of the robot and y f position of the ball around

a static coordinate system. Bottom: Cross-correlation between both position measurement

curves.

It can be summarised that a time delay of 70 ms does not disturb the simulated fixed-structure

H2-I controller. This low impact, however, is due to the fact that this controller does not over-

shoot and magnify the time delay by swinging. Tests on the real robot (see Section C.5) revealed
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that this time delay of the image processing does not have a huge impact and was therefore ne-

glected.

7.3 Real motor restrictions

Rcs offers two different control modes to apply the desired joint positions to the Schunk motors:

• the mode Control Velocity offers three filters for the velocity: Slow, Medium and Fast.

Depending on the filter, the motor commands are internally smoothed and decelerated

before being applied to the motors.

• the mode Move Step is a non filtered mode and directly passes the commands (unfiltered)

to the motors.

In an experiment the plate was moved around the inclination angle α in a sinusoidal way once

using the Control Velocity - Fast mode and once using the Move Step mode. Figure 7.3 illustrates

the result of this experiment.
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Figure 7.3.: Moving the plate around angle α in a sinusoidal way. Top: α in Simulation (Sim) and on real

robot with control mode Velocity Fast (Vel) and Move Step (Move), Middle: α̇ of the same

experiment. Additionally, α̇ of the Move Step control mode with a median filter of window size

15 is illustrated, Bottom: joint angle q1 of same experiment.

From this experiment one can observe:

1. using the Control Velocity Fast mode there is a delay of up to 0.5 sec between the desired

and the actual task-space and joint space value. In Figure 7.3 only q1 is shown as an

example. However, this delay is present for all joints. It is too high to balance the ball on

the plate. Thus, the Control Velocity Fast mode should not be used.
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2. the velocity of the angle α̇ is very noisy1 and there are non-linear jumps (at around

9.5 sec). These jumps cannot be smoothed significantly using a median filter of win-

dow size 15. Increasing the window size has the downside of an undesired delay. Thus, a

KF or a reduced Luenberger observer should be used to measure the states more exactly.

3. the black rectangle in the bottom plot illustrates a deadband or dead zone behaviour of

the brushless DC servo Schunk motors: In order to turn the motors, a certain minimum

amount of a current deviation is needed. Thus, if the desired angle is smaller than 0.1 ◦

the motor does not turn. This effect causes a non-linear behaviour which is not desirable

and not avoidable. In particular, it results in more jerkily movements that are delayed by

up to 0.2 sec.

It can be summarized that the real motors have a non linear behaviour that causes noisy velocity

measurements with occasionally jumps of α̇ and β̇ . Thus, these states have to be measured more

precisely e.g. using a Kalman Filter. Moreover, the unfiltered Move Step control mode should

be used 2. Experiments on the real robot (see Section C.5) revealed that the ball could only be

balanced by using the Move Step control mode. Within this thesis using a KF to measure α̇ and

β̇ was not further investigated.

7.4 Including the model

In order to successfully apply the controllers to the robot, the control circuit of Figure 4.9 could

not be used. The problem of this method is, that the noisy measurement vector x is multiplied

with −K and two times integrated before being applied to the robot. This noisy measurement

and double integration causes a xP,des that was to slow to balance the ball. Analysing the the

Rcs simulation of the LQR controller with the control circuit with an included model (see Figure

7.4) makes it clearer: including the model in the control circuit forces the controller to follow

this model and results in a faster and more smooth step response as illustrated in Figure 7.5.
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Figure 7.4.: Control circuit that includes the model.

1 Note that the pose of the end-effector is measured by using FK. The velocity of this pose is then simply be

derived by using finite differences. This method results in noisy measurements.
2 In the current Rcs simulation the deadband of the motors was not included. For further work with the BoP

system it is advised to incooperate these non-linearities in the simulation.
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On the real robot the positive effect of not integrating noisy data twice but interpreting u as the

input of a model that the plant should follow made a balancing of the ball possible.

7.5 LQR-I controller

With the above considerations the LQR-I controller that is designed for the pool ball assuming

no rolling friction and the following

Q= diag(0.1 0.1 0.1 0.1 0.1 2.0 2.0 0.1 0.1 0.1 0.1 0.1 1 1)

R= diag(80 80 80 1 1)

matrices to weight the states and the inputs is utilized to evaluate robust control on the real

robot. It was necessary to redesign the LQR controller in order to apply it successfully to the

real robot. If the parameters of the simulation (4.11) were utilized, it was observed that the

robot reacts to aggressive and thereby exceeds the maximum joint velocity limits. One reason

for this behaviour are the non-linear effects explained in Section 7.3. For this experiment the

control circuit of Figure 7.4 was used.

The feedback matrix K that was designed in that way is used for different friction coefficients

(from µ1 (low) over µ2 (middle, tissue under the ball), to µ3 (high, piece of cloth material

under the ball)) and different balls (described in B) as depicted in Figure 7.6.

Figure 7.6.: Balls and friction coefficients used for the real robot experiment

The LQR-I controller was able to balance ball 3, 4 (except for µ3) and 6 (except for µ3) as

depicted in Figure 7.7.

Thus, it can be concluded that the LQR-I controller could not handle the high rolling friction

coefficient for different ball sizes.
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It can be summarized that the LQR-I controller revealed a robust balancing behaviour for dif-

ferent ball and physics parameters. Thus, this controller could be used to cross the reality

gap.

Due to the camera construction the robust fixed-structureH2 controller as well as the controller

designed with RL methods could not be tested so far. Both controllers required the position of

end-effector to move in a bigger region that was not covered by the camera. Thus, the ball could

not be tracked for these controllers. Additionally, it should be noted that a camera construction

that has a greater distance to the plate causes more noisy measurements (especially for small

balls) as the resolution of the image decreases.

Additionally, a LQR controller that allows more movement of the position of the end-effector is

analysed in Appendix C.5. Moreover, plate imperfections are investigated in Appendix C.6.

7.6 How to cross the reality gap

With the results of the above chapter and the experience gained from the experiments a guide-

line to cross the reality gap is presented:

1. identify the real system

• determine the discretisation, resolution, limits(max. acceleration, max. speed etc.),

time delays etc. of your sensors and motors.

• try to measure (or estimate) physics parameters (dimensions, contact frictions,

masses etc.).

• with respect to the identified values determine parametric and dynamic uncertainties

of the system.

2. try to include the non-linear effects of the identified behaviour of the system as well as

motor limits in the simulation as good as possible.

3. design a robust controller for the parametric and dynamic uncertainties. If the simula-

tion does not simulate non-linear behaviour correctly (such as contact friction or motor

resolution, deadbands etc.) extend the uncertainty range for these parameters.

In order to design a robust controller using control theory the following guideline is advised:

• derive the equations of motion (e.g. by Lagrange) of your system.

• design a continuous LQR-I controller as a base line of the linearised nominal model.

• using the identified parametric and dynamic uncertainties design a robust controller (e.g.

a fixed-structureH2 controller).

• test the performance of the controllers in simulation.

• in case the discretization error is to high: discretise the system.
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• in case the impact of the non-linearities is to high: Linearise the system around many EP

and interpolate between them (Gain-scheduling controller)3.

• evaluate the controllers on the real system.

• measure the states required for the controller. If the measurements are too noisy consider

to design an observer (reduced or KF).
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Figure 7.7.: Balancing behaviour of LQR-I controller on real robot.

3 In this case a robust controller has to be designed for each system. Thus, RS cannot be proven anymore.
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8 Discussion and Outlook

In this thesis the model of the 4-DoF and the 7-DoF Ball-on-Plate system which additionally

includes the rolling friction of the ball is derived. Using this model two robust controllers are

designed for the parametric uncertainties of the radius and the rolling friction coefficient of the

ball. The first one is designed with the multi-model pole placement method and the second

one is a H2 fixed-structure controller. Simulating these controllers in Matlab revealed that the

first controller was not able to meet the actuator saturation limits in task-space. Moreover, the

first controller has the disadvantage of not being able to weight certain states or control inputs.

In contrast the introduced design method of a H2 fixed-structure controller offers to weight

the states, the control inputs and to formulate additional goals to meet e.g. step response re-

quirements. With respect to the uncertainties robust stability is proven for this controller. Both

controllers were compared with a linear quadratic regulator that was designed as a baseline.

In a next step the controllers were evaluated in the Robot Control System simulation which

utilizes the Vortex physics engine. As expected the controller designed with the multi-model

pole placement method was not able to meet the joint space actuator saturation limits. Ad-

ditionally, it turned out that the impact of the rolling friction coefficient in the Robot Control

System simulation was higher compared to the linearised model. Thus, the linear quadratic

regulator and the H2 fixed-structure controller were not able to move the ball for high fric-

tion coefficients. This issue could be solved by adding an additional integrative part. In total

the robust H2 fixed-structure controller had the fastest and smoothest system response (of the

classical controllers) for the different radii and rolling friction coefficients of the balls. In terms

of robustness it was determined, that especially the controller designed with multi-model pole

placement has higher discretization errors, that caused the robot to exceed its joint space actu-

ator saturation limits. In order to decrease non-linear effects, the H2 fixed-structure controller

was designed to prevent dynamic behaviour (such as overshooting). Moreover, it was observed

that linearising the equations of motion around just one equilibrium point, results in instability,

if the ball has a greater distance of ±20 cm to its equilibrium point. As these design handicaps,

restrict the minimum performance of the linearised controllers, it can be concluded that their

robust performance is limited, too.

In contrast the controller designed with methods from reinforcement learning does not suf-

fer from linearisation and discretization errors, because it is able to directly learn non-linear

and discrete behaviour. For this reason the neuronal network trained with policy proximal op-

timization was able to control the balls for different radii and rolling friction coefficients faster.

Additionally, the task-space actuator saturation limits were not exceeded. However, as the cur-
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rent reward function does not consider overshoot, the controller designed with methods from

reinforcement learning overshot more compared to the fixed-structure H2 controller. Compar-

ing the scalability of both designs (classical and RL) it was concluded, that a neuronal network

can more easily be extended (by adding additional hidden layers or nodes).

It can be summarized, that designing a robust controller with methods from reinforcement

learning is a competitive approach compared to methods from classical control theory. As neu-

ronal networks are more easily to scale and able to learn non-linear and discrete behaviour, they

have the potential to significantly outperform static robust controllers designed with methods

from classical control theory.

However, both designs revealed that the rolling friction coefficient impacts the balancing be-

haviour most. In particular, the maximum rolling friction coefficient and the minimum radius

was the most problematic case. Applying the controllers to the real robot imposed a series of

challenges. It was investigated that the measurement of the pose of the end-effector as well as

the position and velocity of the ball had a minor impact. The same applies to the time delay

between the measurements of the robot and the ball. However, the impact of the deadband of

the motors, that causes non-linear artefacts of the velocity of the inclination angles of the plate

(α̇, β̇), is more critical.

Nevertheless, the reality gap could be crossed by a control circuit that includes the model.

Thereby, the noisy measurement data is not just double integrated but forced to follow the

model. On the real robot the LQR-I controller was able to robustly balance balls of different

radii and rolling friction coefficients.

In the future, the fixed-structure H2 controller as well as the trained neuronal network should

be tested on the real robot. In order to improve the performance of the classical controllers,

it should be evaluated to discretize and linearise the equations of motion of the Ball-on-Plate

system around a grid of equilibrium points. For each equilibrium point a fixed-structure H2

robust controller can be designed. Combining these controllers by using the gain-scheduling

method non-linear effects can be decreased. The robust controller designed with methods from

reinforcement learning can be further improved by extending the reward function to consider

step response requirements (such as overshoot). The robustness of both controllers can be fur-

ther improved by including not only parametric uncertainties but also dynamic uncertainties

(such as time-delays, non-linear motor behaviour) in the design. Thereby the reality gap can

be narrowed. Regarding the real robot, a different initial position that provides a higher opera-

tional area should be chosen and it should be considered to use motors with a higher maximum

velocity speed to achieve a higher performance.
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A Equations of motion of the coupled

Ball-on-Plate system

The equations of motion of the cBoP system derived by Matlab are given as:

FX = (mB+mP )Ẍ+((mB(2rcos(α)cos(β)−2sin(β)x+2cos(β)sin(α)y))/2)β̈+mB cos(β) ẍ+mBsin(α)sin(β) ÿ−(mB(2(sin(β) ẋ+

cos(β)xβ̇ − cos(β)sin(α) ẏ + rcos(β)sin(α)α̇ + rcos(α)sin(β)β̇ − cos(α)cos(β)yα̇ + sin(α)sin(β)yβ̇)β̇ + 2sin(β) ẋ β̇ −

2cos(α)sin(β)α̇ ẏ − 2cos(β)sin(α) ẏβ̇))/2

(A.1)

FY = (mB +mP )Ÿ + (−(mB(2rcos(α)cos(β)− 2sin(β)x + 2cos(β)sin(α)y))/2)α̈+mB cos(α) ÿ + (mB(2(sin(β) ẋ + cos(β)xβ̇ −

cos(β)sin(α) ẏ + rcos(β)sin(α)α̇+ rcos(α)sin(β)β̇ − cos(α)cos(β)yα̇+ sin(α)sin(β)yβ̇)α̇− 2sin(α) ẏα̇))/2

(A.2)

FZ = (mB + mP )Z̈ + (−(mB(2rsin(α) − 2cos(α)y))/2)α̈ + (−(mB(2cos(β)x + 2rcos(α)sin(β) + 2sin(α)sin(β)y))/2)β̈ +

(−mBsin(β)) ẍ + mB cos(β)sin(α) ÿ + gmB + gmP − (mB(2β̇(cos(β) ẋ − sin(β)xβ̇ + sin(α)sin(β) ẏ − rsin(α)sin(β)α̇ +

cos(α)sin(β)yα̇+cos(β)sin(α)yβ̇+rcos(α)cos(β)β̇)+2α̇(sin(α)yα̇−cos(α) ẏ+rcos(α)α̇)+2cos(β)β̇ ẋ−2cos(α)cos(β)α̇ ẏ+

2sin(α)sin(β)β̇ ẏ))/2

(A.3)

τx = (−(mB(2rcos(α)cos(β)− 2sin(β)x + 2cos(β)sin(α)y))/2)Ÿ + (−(mB(2rsin(α)− 2cos(α)y))/2)Z̈ + (IP x x + jb +mB(r2 +

x2)+(mB(2(rsin(α)−cos(α)y)2+2(rcos(α)cos(β)−sin(β)x+cos(β)sin(α)y)2))/2)α̈+mB(rsin(α)−cos(α)y)(cos(β)x+

rcos(α)sin(β) + sin(α)sin(β)y)β̈ + mBsin(β)(rsin(α) − cos(α)y) ẍ + (− jb/r − (mB(2cos(α)(rcos(α)cos(β) − sin(β)x +

cos(β)sin(α)y)+2cos(β)sin(α)(rsin(α)−cos(α)y)))/2) ÿ+(mB(2(cos(α) ẏ−α̇(rcos(α)cos(β)−sin(β)x+cos(β)sin(α)y)+

Ẏ )(sin(β) ẋ + cos(β)xβ̇ − cos(β)sin(α) ẏ + rcos(β)sin(α)α̇ + rcos(α)sin(β)β̇ − cos(α)cos(β)yα̇ + sin(α)sin(β)yβ̇) −

2((sin(β) ẋ + cos(β)xβ̇ − cos(β)sin(α) ẏ + rcos(β)sin(α)α̇ + rcos(α)sin(β)β̇ − cos(α)cos(β)yα̇ + sin(α)sin(β)yβ̇)α̇ −

sin(α) ẏα̇)(rcos(α)cos(β)−sin(β)x+cos(β)sin(α)y)+2(sin(α)yα̇−cos(α) ẏ+rcos(α)α̇)((rsin(α)−cos(α)y)α̇+(cos(β)x+

rcos(α)sin(β) + sin(α)sin(β)y)β̇ + sin(β) ẋ − Ż − cos(β)sin(α) ẏ) + 2(rsin(α) − cos(α)y)(β̇(cos(β) ẋ − sin(β)xβ̇ +

sin(α)sin(β) ẏ − rsin(α)sin(β)α̇ + cos(α)sin(β)yα̇ + cos(β)sin(α)yβ̇ + rcos(α)cos(β)β̇) + α̇(sin(α)yα̇ − cos(α) ẏ +

rcos(α)α̇) + cos(β)β̇ ẋ − cos(α)cos(β)α̇ ẏ + sin(α)sin(β)β̇ ẏ)))/2− gmB(rcos(β)sin(α)− cos(α)cos(β)y) + 2mB xα̇ ẋ

(A.4)

τy = ((mB(2rcos(α)cos(β)−2sin(β)x +2cos(β)sin(α)y))/2)Ẍ +(−(mB(2cos(β)x +2rcos(α)sin(β)+2sin(α)sin(β)y))/2)Z̈+

mB(rsin(α)− cos(α)y)(cos(β)x + rcos(α)sin(β) + sin(α)sin(β)y)α̈+ (IP y y + jb +mB(r2 + y2) + (mB(2(rcos(α)cos(β)−

sin(β)x+cos(β)sin(α)y)2+2(cos(β)x+rcos(α)sin(β)+sin(α)sin(β)y)2))/2)β̈+((mB(2cos(β)(rcos(α)cos(β)−sin(β)x+

cos(β)sin(α)y) + 2sin(β)(cos(β)x + rcos(α)sin(β) + sin(α)sin(β)y)))/2 + jb/r) ẍ + (−(mB(2cos(β)sin(α)(cos(β)x +

rcos(α)sin(β) + sin(α)sin(β)y) − 2sin(α)sin(β)(rcos(α)cos(β) − sin(β)x + cos(β)sin(α)y)))/2) ÿ + (mB(2(cos(β)x +

rcos(α)sin(β)+sin(α)sin(β)y)(β̇(cos(β) ẋ−sin(β)xβ̇+sin(α)sin(β) ẏ−rsin(α)sin(β)α̇+cos(α)sin(β)yα̇+cos(β)sin(α)yβ̇+

rcos(α)cos(β)β̇)+α̇(sin(α)yα̇−cos(α) ẏ+rcos(α)α̇)+cos(β)β̇ ẋ−cos(α)cos(β)α̇ ẏ+sin(α)sin(β)β̇ ẏ)−2(β̇(rcos(α)cos(β)−

sin(β)x + cos(β)sin(α)y) + cos(β) ẋ + Ẋ + sin(α)sin(β) ẏ)(sin(β) ẋ + cos(β)xβ̇ − cos(β)sin(α) ẏ + rcos(β)sin(α)α̇ +

rcos(α)sin(β)β̇−cos(α)cos(β)yα̇+sin(α)sin(β)yβ̇)−2(rcos(α)cos(β)−sin(β)x+cos(β)sin(α)y)((sin(β) ẋ+cos(β)xβ̇−

cos(β)sin(α) ẏ+ rcos(β)sin(α)α̇+ rcos(α)sin(β)β̇− cos(α)cos(β)yα̇+sin(α)sin(β)yβ̇)β̇+sin(β) ẋβ̇− cos(α)sin(β)α̇ ẏ−

cos(β)sin(α) ẏβ̇)+2((rsin(α)−cos(α)y)α̇+(cos(β)x+rcos(α)sin(β)+sin(α)sin(β)y)β̇+sin(β) ẋ−Ż−cos(β)sin(α) ẏ)(cos(β) ẋ−

sin(β)xβ̇+sin(α)sin(β) ẏ− rsin(α)sin(β)α̇+ cos(α)sin(β)yα̇+ cos(β)sin(α)yβ̇+ rcos(α)cos(β)β̇)))/2− gmB(cos(β)x+

rcos(α)sin(β) + sin(α)sin(β)y) + 2mB yβ̇ ẏ

(A.5)

0= mB cos(β)Ẍ +(−mBsin(β))Z̈+mBsin(β)(rsin(α)−cos(α)y)α̈+((mB(2cos(β)(rcos(α)cos(β)−sin(β)x+cos(β)sin(α)y)+

2sin(β)(cos(β)x+rcos(α)sin(β)+sin(α)sin(β)y)))/2+ jb/r)β̈+((mB(2cos(β)2+2sin(β)2))/2+ jb/r
2) ẍ+(mB(2sin(β)(β̇(cos(β) ẋ−

sin(β)xβ̇ + sin(α)sin(β) ẏ − rsin(α)sin(β)α̇ + cos(α)sin(β)yα̇ + cos(β)sin(α)yβ̇ + rcos(α)cos(β)β̇) + α̇(sin(α)yα̇ −

cos(α) ẏ + rcos(α)α̇)+ cos(β)β̇ ẋ − cos(α)cos(β)α̇ ẏ + sin(α)sin(β)β̇ ẏ)−2cos(β)((sin(β) ẋ + cos(β)xβ̇ − cos(β)sin(α) ẏ +

rcos(β)sin(α)α̇+rcos(α)sin(β)β̇−cos(α)cos(β)yα̇+sin(α)sin(β)yβ̇)β̇+sin(β) ẋβ̇−cos(α)sin(β)α̇ ẏ−cos(β)sin(α) ẏβ̇)−

2sin(β)β̇(β̇(rcos(α)cos(β)−sin(β)x+cos(β)sin(α)y)+cos(β) ẋ+ Ẋ +sin(α)sin(β) ẏ)+2cos(β)β̇((rsin(α)−cos(α)y)α̇+

(cos(β)x+rcos(α)sin(β)+sin(α)sin(β)y)β̇+sin(β) ẋ−Ż−cos(β)sin(α) ẏ)))/2+kA ẋ−gmBsin(β)+(kRacos((cos(α)cos(β))/(1−

sin(α)2sin(β)2)(1/2)) ẋ)/(2( ẋ2 + ẏ2)(1/2))

(A.6)
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0= mBsin(α)sin(β)Ẍ +mB cos(α)Ÿ +mB cos(β)sin(α)Z̈ +(− jb/r − (mB(2cos(α)(rcos(α)cos(β)− sin(β)x + cos(β)sin(α)y)+

2cos(β)sin(α)(rsin(α)−cos(α)y)))/2)α̈+(−(mB(2cos(β)sin(α)(cos(β)x+rcos(α)sin(β)+sin(α)sin(β)y)−2sin(α)sin(β)(rcos(α)cos(β)−

sin(β)x+cos(β)sin(α)y)))/2)β̈+((mB(2cos(α)2+2cos(β)2sin(α)2+2sin(α)2sin(β)2))/2+ jb/r
2) ÿ+kA ẏ+(mB(2cos(α)((sin(β) ẋ+

cos(β)xβ̇ − cos(β)sin(α) ẏ + rcos(β)sin(α)α̇ + rcos(α)sin(β)β̇ − cos(α)cos(β)yα̇ + sin(α)sin(β)yβ̇)α̇ − sin(α) ẏα̇) −

2cos(β)sin(α)(β̇(cos(β) ẋ−sin(β)xβ̇+sin(α)sin(β) ẏ−rsin(α)sin(β)α̇+cos(α)sin(β)yα̇+cos(β)sin(α)yβ̇+rcos(α)cos(β)β̇)+

α̇(sin(α)yα̇−cos(α) ẏ+rcos(α)α̇)+cos(β)β̇ ẋ−cos(α)cos(β)α̇ ẏ+sin(α)sin(β)β̇ ẏ)−2sin(α)sin(β)((sin(β) ẋ+cos(β)xβ̇−

cos(β)sin(α) ẏ+ rcos(β)sin(α)α̇+ rcos(α)sin(β)β̇− cos(α)cos(β)yα̇+sin(α)sin(β)yβ̇)β̇+sin(β) ẋβ̇− cos(α)sin(β)α̇ ẏ−

cos(β)sin(α) ẏβ̇)− 2sin(α)α̇(cos(α) ẏ − α̇(rcos(α)cos(β)− sin(β)x + cos(β)sin(α)y) + Ẏ )− 2cos(α)cos(β)α̇((rsin(α)−

cos(α)y)α̇+ (cos(β)x + rcos(α)sin(β) + sin(α)sin(β)y)β̇ + sin(β) ẋ − Ż − cos(β)sin(α) ẏ) + 2sin(α)sin(β)β̇((rsin(α)−

cos(α)y)α̇+(cos(β)x+rcos(α)sin(β)+sin(α)sin(β)y)β̇+sin(β) ẋ−Ż−cos(β)sin(α) ẏ)+2cos(α)sin(β)α̇(β̇(rcos(α)cos(β)−

sin(β)x+cos(β)sin(α)y)+cos(β) ẋ+ Ẋ+sin(α)sin(β) ẏ)+2cos(β)sin(α)β̇(β̇(rcos(α)cos(β)−sin(β)x+cos(β)sin(α)y)+

cos(β) ẋ+Ẋ+sin(α)sin(β) ẏ)))/2+(kRacos((cos(α)cos(β))/(1−sin(α)2sin(β)2)(1/2)) ẏ)/(2( ẋ2+ ẏ2)(1/2))+gmB cos(β)sin(α)

(A.7)
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The solution of (A.6) and (A.7) is given as

ẍ = −(((mB(2cos(β)(rcos(α)cos(β)−sin(β)x+cos(β)sin(α)y)+2sin(β)(cos(β)x+

rcos(α)sin(β) + sin(α)sin(β)y)))/2 + jb/r)β̈ + (mB(2sin(β)(β̇(cos(β) ẋ −

sin(β)xβ̇+sin(α)sin(β) ẏ−rsin(α)sin(β)α̇+cos(α)sin(β)yα̇+cos(β)sin(α)yβ̇+

rcos(α)cos(β)β̇)+α̇(sin(α)yα̇−cos(α) ẏ+rcos(α)α̇)+cos(β)β̇ ẋ−cos(α)cos(β)α̇ ẏ+

sin(α)sin(β)β̇ ẏ)−2cos(β)(β̇(sin(β) ẋ+cos(β)xβ̇−cos(β)sin(α) ẏ+rcos(β)sin(α)α̇+

rcos(α)sin(β)β̇−cos(α)cos(β)yα̇+sin(α)sin(β)yβ̇)+sin(β)β̇ ẋ−cos(α)sin(β)α̇ ẏ−

cos(β)sin(α)β̇ ẏ) − 2sin(β)β̇(β̇(rcos(α)cos(β) − sin(β)x + cos(β)sin(α)y) +

cos(β) ẋ+ Ẋ + sin(α)sin(β) ẏ)+2cos(β)β̇(α̇(rsin(α)− cos(α)y)+ β̇(cos(β)x+

rcos(α)sin(β) + sin(α)sin(β)y) + sin(β) ẋ − Ż − cos(β)sin(α) ẏ)))/2 + kA ẋ +

mBcos(β)Ẍ − mBsin(β)Z̈ − gmBsin(β) + mBsin(β)(rsin(α) − cos(α)y)α̈ +

(kRacos((cos(α)cos(β))/(1−sin(α)2sin(β)2)(1/2)) ẋ)/(2( ẋ2+ ẏ2)(1/2)))/((mB(2cos(β)2+

2sin(β)2))/2+ jb/r
2) ,

(A.8)

ÿ = −(kA ẏ − ( jb/r + (mB(2cos(α)(rcos(α)cos(β) − sin(β)x + cos(β)sin(α)y) +

2cos(β)sin(α)(rsin(α)−cos(α)y)))/2)α̈+(mB(2cos(α)(α̇(sin(β) ẋ+cos(β)xβ̇−

cos(β)sin(α) ẏ+rcos(β)sin(α)α̇+rcos(α)sin(β)β̇−cos(α)cos(β)yα̇+sin(α)sin(β)yβ̇)−

sin(α)α̇ ẏ)−2cos(β)sin(α)(β̇(cos(β) ẋ−sin(β)xβ̇+sin(α)sin(β) ẏ−rsin(α)sin(β)α̇+

cos(α)sin(β)yα̇+cos(β)sin(α)yβ̇+rcos(α)cos(β)β̇)+α̇(sin(α)yα̇−cos(α) ẏ+

rcos(α)α̇)+cos(β)β̇ ẋ−cos(α)cos(β)α̇ ẏ+sin(α)sin(β)β̇ ẏ)−2sin(α)sin(β)(β̇(sin(β) ẋ+

cos(β)xβ̇−cos(β)sin(α) ẏ+rcos(β)sin(α)α̇+rcos(α)sin(β)β̇−cos(α)cos(β)yα̇+

sin(α)sin(β)yβ̇)+sin(β)β̇ ẋ−cos(α)sin(β)α̇ ẏ−cos(β)sin(α)β̇ ẏ)−2sin(α)α̇(cos(α) ẏ−

α̇(rcos(α)cos(β)−sin(β)x+cos(β)sin(α)y)+Ẏ )−2cos(α)cos(β)α̇(α̇(rsin(α)−

cos(α)y) + β̇(cos(β)x + rcos(α)sin(β) + sin(α)sin(β)y) + sin(β) ẋ − Ż −

cos(β)sin(α) ẏ)+2sin(α)sin(β)β̇(α̇(rsin(α)−cos(α)y)+β̇(cos(β)x+rcos(α)sin(β)+

sin(α)sin(β)y)+sin(β) ẋ−Ż−cos(β)sin(α) ẏ)+2cos(α)sin(β)α̇(β̇(rcos(α)cos(β)−

sin(β)x+cos(β)sin(α)y)+cos(β) ẋ+Ẋ+sin(α)sin(β) ẏ)+2cos(β)sin(α)β̇(β̇(rcos(α)cos(β)−

sin(β)x + cos(β)sin(α)y)+ cos(β) ẋ + Ẋ + sin(α)sin(β) ẏ)))/2+mBcos(α)Ÿ −

(mB(2cos(β)sin(α)(cos(β)x+rcos(α)sin(β)+sin(α)sin(β)y)−2sin(α)sin(β)(rcos(α)cos(β)−

sin(β)x+cos(β)sin(α)y))β̈)/2+(kRacos((cos(α)cos(β))/(1−sin(α)2sin(β)2)(1/2)) ẏ)/(2( ẋ2+

ẏ2)(1/2))+mBcos(β)sin(α)Z̈+mBsin(α)sin(β)Ẍ+gmBcos(β)sin(α))/((mB(2cos(α)2+

2cos(β)2sin(α)2 + 2sin(α)2sin(β)2))/2+ jb/r
2) .

(A.9)
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B Parameters and constants

The inertia is calculated as follows:

• if the Ball is solid: jb =
2
5 mbr2

• if the ball is hollow jb =
2
3 mbr2.

Ball constants

Number Ball Radius of ball Mass of ball Inertia Solid/Hollow

1 Small basket ball 45.5 mm 55 g 75.9092 kg/mm2 hollow

2 Tennis ball 33.4 mm 57 g 42.391 kg/mm2 hollow

3 Pool ball 29.8 mm 181 g 64.294 kg/mm2 solid

4 Table tennis ball 21.2 mm 2 g 0.59925 kg/mm2 hollow

5 Golf ball 20.5 mm 6 g 1.681 kg/mm2 hollow

6 Hand ball 77.99 mm 165 g 669.068 kg/mm2 hollow

Plate parameters

Symbol Description gazebo plexiglass plate real wood plate

mP Mass of the Plate 2.975 kg 0.91 kg

IP,x x Inertia of the Plate 0.062 kg/m2 0.018961 kg/m2

IP,y y Inertia of the Plate 0.062 kg/m2 0.018961 kg/m2

l Length of the plate 0.5 m 0.5 m

w Width of the plate 0.5 m 0.5 m

h Height of the plate 0.01 m 0.006 m
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Vortex parameters

Table B.1 shows the most relevant Vortex parameters that are used in the Rcs Simulation in

Chapter 6. For a detailed description of the parameters see Vortex Studio SDK Classes Docu-

mentation, Vortex contact parameters description and [4]. The value refers to the parameter

value that is used in the Rcs simulation for the material of the plate and the ball. As the plate

and the ball are assumed to be in contact all the time, both should have the same contact

material properties.

Parameter Description Value

friction model friction model along this axis ScaledBoxFast

friction

coefficient(µ f c)

The static friction (stiction) coefficient µH is calcu-

lated by: µH = µ f c · k. This coefficient is equal to the

kinetic friction coefficient as defined in the Coulomb

friction law. Note that this coefficient is used for the

Vortex ScaledBox and ScaledBoxFast friction model.

0.2

rolling friction co-

efficient

The rolling friction coefficient used in Vortex is the ac-

tual dimensionless rolling friction coefficient µr mul-

tiplied with the curvature radius of the contacting ob-

ject which was in our case the radius of the ball.

0 - r ·µr

static friction

scale (k)

The static friction scale parameter k is used to obtain

the stiction by multiplying k with the friction coeffi-

cient µ f c. For the BoP system it is assumed that the

ball is not sliding. Thus there is no kinetic friction.

This means the kinetic and static friction is the same.

For this reason k was set to 1.0.

1.0

slip When greater than 0.0, this value adds viscosity (in

s/kg). If set to 0.0, the friction is dry.

0.0

integrated slip

displacement

Enable or disable slip displacement detection true

compliance The reciprocal of Stiffness (material softness) (in

m/N).

0.0001

damping Value at the contact point to get the system to reach

equilibrium (in kg/s). As a rule of thumb, Damping

should be ten times Stiffness.

100000

Table B.1.: Vortex parameters that are used in Simulation
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C Additional results

C.1 LQR controller

Figure C.1 shows the balancing behaviour of another LQR controller that was designed with

µr =
µr,max+µr,min

2 .
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Figure C.1.: Balancing behaviour of LQR controller that was designed with µr =
µr,max+µr,min

2 for an initial

position of the ball of x0 = −0.1

C.2 MMPP controller

In order to compare discretization errors, the MMPP controller was once sampled with 100 Hz

(see Figure C.2) and once with 1 kHz (see Figure C.4). When comparing the joint limits of both

it is conspicuous that the joint limits of the MMPP controller sampled with 1 kHz are exceeded

much less.
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Figure C.2.: Rcs Simulation of MMPP controller sampled with 100 Hz of the nominal system

C.3 Fixed-structureH2 controller

Figure C.6 shows the redesignedH2 controller. The tuning goals for this controller are given in

the script h2_systune_re.m (see Appendix E).

C.4 Linearisation problems

In an additional experiment, the Ball was placed at the initial position of x0 = −0.2, y0 = 0.2.

The y-trajectory for system (c) of this experiment is illustrated in Figure C.5. It was observed,

that if the ball has a greater distance to the origin, the ball is accelerated more in order to

be balanced. These higher dynamics cause a system response with high overshooting. For
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Figure C.3.: Rcs Simulation of MMPP controller sampled with 1 kHz
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Figure C.4.: Rcs Simulation of MMPP controller sampled with 1 kHz for nominal system joint sates

this reason, high dynamics should be prevented in order to decrease non-linear effects. The

experiment was executed with the fixed-structureH2-I controller.
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Figure C.5.: Balancing behaviour of the fixed-structureH2-I controller for different initial positions

C.5 LQR controller (real robot)

A different LQR controller with

Q= diag(0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.1 0.1 1 1)

R= diag(1 1 1 1 1) .

is analysed. Allowing the position of the end-effector to move in a wider range has the advan-

tage of not using the noisy acceleration of the measurements of the angles α̈, β̈ . This positive

effect results in a much smoother balancing behaviour (the ball is balancing in a certain band of

±3cm around the origin1) as depicted in Figure C.7. As the position of the end-effector is very

limited, the robot is more likely to reach its joint limits. Another disadvantage is that in case of

a higher rolling-friction coefficient (red line) the ball is not rolling at all.

C.6 Plate imperfections

The angles of inclination of the real robot could not be aligned perfectly to be 0.0◦. The initial

position of the plate was always a little bit inclined by α ≈ 1.8◦,β ≈ 0.2◦. This fact was

evaluated by controlling the position of the ball in a square. Figure C.8 shows the x-position of

1 The reason that this band is not perfectly around the origin is due to plate imperfections (screws etc.).
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the ball plotted over the y-position of the ball. One can observe that the x-position in simulation

is often on the left side of the x-position of the real robot. Figure C.8 shows the x, and y position

of the ball plotted over the time. The differences of the simulation and the real robot are caused

by a wrong initialization position of the plate, imperfections of the shape of the plate and the

ball as well as the noisy measurement data.

For this experiment a LQR controller with

Q= diag(0.1 0.1 0.1 0.1 0.1 5.0 5.0 0.1 0.1 0.1 0.1 0.1 2 2)

R= diag(5 5 5 1 1)

was utilized.
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Figure C.8.: Controlling the position of the plate to follow a square: The x-position is plotted over the

y-position of the ball.

0 5 10 15 20 25 30 35 40
−0.2

−0.1

0

0.1

0.2

t in sec

x
po

si
ti

on
in

m

Rcs simulation
real robot

0 5 10 15 20 25 30 35 40
−0.2

−0.1

0

0.1

0.2

t in sec

y
po

si
ti

on
in

m

Rcs simulation
real robot

Figure C.9.: Controlling the position of the plate to follow a square: The x-position and the y-position is

plotted over the time.
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D Matlab function explanation

Table D.1 explains the Matlab robstab and robgain commands. Within this thesis Matlab R2018b

was utilized. Note that in older Matlab versions robstab is replaced by robuststab. For more

detailed information of these commands see robstab doc and robgain doc.

[stabmarg, wcu, info] = robstab(usys, w)

stabmarg stabmarg specifies the scalar factor (γ) by which the uncertainties can be am-

plified until the limit (γ·∆) of RS is reached. A LowerBound and UpperBound

is given which specifies the region of this factor. The exact stability margin

is guaranteed to be no smaller than the LowerBound. In other words, for

all modeled uncertainty with normalized magnitude up to LowerBound, the

system is guaranteed stable. If the LowerBound and LowerBound are greater

than one, the system has RS. Assume a LowerBound of 1.59 and a Upper-

Bound of 1.6. This means that the system can tolerate up to 60% more of

parameter uncertainty until it reaches instability.

wcu Specifies the uncertain parameters which are closest to the nominal values,

for which the system no longer has RS.

[perfmarg, wcu] = robgain(usys, gamma)

perfmarg perfmarg specifies the scalar factor (γ) by which the requirements of un-

certainty and performance can be amplified (γ · ∆̂) until the limit of RP is

reached (with respect to the input gamma). A LowerBound and UpperBound

is given which specifies the region of this factor. The exact margin is guar-

anteed to be no smaller than the LowerBound. In other words, for all mod-

eled uncertainty with normalized magnitude up to LowerBound, the system is

guaranteed to have peak gain below gamma. The exact margin is guaranteed

to be no larger than UpperBound. In other words, some uncertain-element

values associated with this magnitude exist that drive the peak gain above

gamma. If the LowerBound and UpperBound are below the specified gamma,

the system achieves RP.

wcu Specifies the uncertain parameters which are closest to the nominal values,

for which the system has no longer RP.

Table D.1.: Explanation of Matlab robstab and robgain commands.
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Table D.2 explains the Matlab systune funtion. For more details see Matlab systune function.

[CL, fSoft, gHard, info] = systune(CL0, SoftGoals, HardGoals, Options)

CL0 System model (of type gnss) that can contain uncertainties as well as a fixed

controller structure with adjustable parameters. systune internally optimizes

certainH2 orH∞ norms to find these adjustable parameters.

SoftGoals Many different sub constrains in frequency or time domain can be spec-

ified to find a controller with the desired behaviour. E.g. using Tuning-

Goal.StepResp a desired step response can be formulated.

HardGoals Hard Goals as e.g. ASL can be formulated.

Options Options allow to specify internal parameters of the optimization process.

CL The closed loop system (with the designed controller inserted).

fSoft Contains the value of each soft goal for the best overall run. Each tuning

goal evaluates to a scalar value, and systune minimizes the maximum value

of the soft goals, subject to satisfying all the hard goals.

gHard gHard contains the value of each hard goal for the best overall run (the run

that achieved the smallest value for max(fSoft), subject to max(gHard)<1.

All entries of gHard are less than 1 when all hard goals are satisfied. Entries

greater than 1 indicate that systune could not satisfy one or more design

constraints.

info Structure with additional information of the optimization process as e.g.

wcPert, which contains the worst combinations of uncertain parameters.

Table D.2.: Explanation of the Matlab systune function.
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E Code snippets

The Matlab code that is used in this thesis is attached with a CD. If you do not have the CD

please send me (MarkusLamprecht@live.de) a request to receive the code. Table E.1 lists the

different Matlab functions and scripts.

Name Description

dBoP.m Code of the modelling of the dBoP system.

cBoP.m Code of the modelling of the cBoP system.

getBall.m Code of the modelling of the getBall function.

getPlate.m Code of the modelling of the getPlate function.

lqr_design.m LQR design main script.

getBoPFriction.m getBoPFriction function used for LQR design.

getUncertainty.m getUncertainty function used for LQR design.

mmpp_design.m MMPP main optimization script.

mmpp_opt.m optimization function used for MMPP design.

h2_systune.m H2 systune main optimization script.

h2_systune_lin.m H2 systune Hard and Soft Goals as well as RS-analysis for

the controller of Section 4.9.

h2_systune_re.m H2 systune Hard and Soft Goals the redesigned controller

of Section 6.3.

genP.m generate generalized plant function.

Table E.1.: Matlab functions and scripts that are used in this thesis
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