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ABSTRACT

The rise of deep learning has caused a paradigm shift in robotics research, favoring methods
that require large amounts of data. Unfortunately, it is prohibitively expensive to generate such
data sets on a physical platform. Therefore, state-of-the-art approaches learn in simulation where
data generation is fast as well as inexpensive and subsequently transfer the knowledge to the
real robot (sim-to-real). Despite becoming increasingly realistic, all simulators are by construction
based on models, hence inevitably imperfect. This raises the question of how simulators can
be modified to facilitate learning robot control policies and overcome the mismatch between
simulation and reality, often called the ‘reality gap’. We provide a comprehensive review of
sim-to-real research for robotics, focusing on a technique named ‘domain randomization’ which is
a method for learning from randomized simulations.
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1 INTRODUCTION
Given that machine learning has achieved super-human performance in image classification (Ciresan et al.,
2012; Krizhevsky et al., 2012) and games (Mnih et al., 2015; Silver et al., 2016), the question arises why we
do not see similar results in robotics. There are several reasons for this. First, learning to act in the physical
world is orders of magnitude more difficult. While the data required by modern (deep) learning algorithms
could be acquired directly on a real robot (Levine et al., 2018), this solution is too expensive in terms of
time and resources to scale up. Alternatively, the data can be generated in simulation faster, cheaper, safer,
and with unmatched diversity. In doing so, we have to cope with unavoidable approximation errors that we
make when modeling reality. These errors, often referred to as the ‘reality gap’, originate from omitting
physical phenomena, inaccurate parameter estimation, or the discretized numerical integration in typical
solvers. Compounding this issue, state-of-the-art (deep) learning methods are known to be brittle (Szegedy
et al., 2014; Goodfellow et al., 2015; Huang et al., 2017), that is, sensitive to shifts in their input domains.
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Figure 1. Examples of sim-to-real robot learning research using domain randomization: (left) Multiple
simulation instances of robotic in-hand manipulation (OpenAI et al., 2020), (middle top) transformation to
a canonical simulation (James et al., 2019), (middle bottom) synthetic 3D hallways generated for indoor
drone flight (Sadeghi and Levine, 2017), (right top) ball-in-a-cup task solved with adaptive dynamics
randomization (Muratore et al., 2021a), (right bottom) quadruped locomotion (Tan et al., 2018).

Additionally, the learner is free to exploit the simulator, overfitting to features which do not occur in the
real world. For example, Baker et al. (2020) noticed that the agents learned to exploit the physics engine
to gain an unexpected advantage. While this exploitation is an interesting observation for studies made
entirely in simulation, it is highly undesirable in sim-to-real scenarios. In the best case, the reality gap
manifests itself as a performance drop, giving a lower success rate or reduced tracking accuracy. More
likely, the learned policy is not transferable to the robot because of unknown physical effects. One effect
that is difficult to model is friction, often leading to an underestimation thereof in simulation, which can
result in motor commands that are not strong enough to get the robot moving. Another reason for failure are
parameter estimation errors, which can quickly lead to unstable system dynamics. This case is particularly
dangerous for the human and the robot. For these reasons, bridging the reality gap is the essential step to
endow robots with the ability to learn from simulated experience.

There is a consensus that further increasing the simulator’s accuracy alone will not bridge this gap (Höfer
et al., 2020). Looking at breakthroughs in machine learning, we see that deep models in combination with
large and diverse data sets lead to better generalization (Russakovsky et al., 2015; Radford et al., 2019). In
a similar spirit, a technique called domain randomization has recently gained momentum (Figure 1). The
common characteristic of such approaches is the perturbation of simulator parameters, state observations, or
applied actions. Typical quantities to randomize include the bodies’ inertia and geometry, the parameters of
the friction and contact models, possible delays in the actuation, efficiency coefficients of motors, levels of
sensor noise, as well as visual properties such as colors, illumination, position and orientation of a camera,
or additional artifacts to the image (e.g., glare). Domain randomization can be seen as a regularization
method that prevents the learner from overfitting to individual simulation instances. From the Bayesian
perspective, we can interpret the distribution over simulators as a representation of uncertainty.

In this paper, we first introduce the necessary nomenclature and mathematical fundamentals for the
problem (Section 2). Next, we review early approaches for learning from randomized simulations, state the
practical requirements, and describe measures for sim-to-real transferability (Section 3). Subsequently, we
discuss the connections between research on sim-to-real transfer and related fields (Section 4). Moreover,
we introduce a taxonomy for domain randomization and categorize the current state of the art (Section 5).
Finally, we conclude and outline possible future research directions (Section 6). For those who want
to first become more familiar with robot policy learning as well as policy search, we recommend these
surveys: Kober et al. (2013), Deisenroth et al. (2013), and Chatzilygeroudis et al. (2020).
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2 PROBLEM FORMULATION AND NOMENCLATURE
We begin our discussion by defining critical concepts and nomenclature used throughout this article.

Markov Decision Processes (MDPs): Consider a discrete-time dynamical system

st+1 ∼ Pξ(st+1|st,at) , s0 ∼ µξ(s0) , at ∼ πθ(at|st) , ξ ∼ p(ξ) , (1)

with the continuous state st ∈ Sξ ⊆ Rns and continuous action at ∈ Aξ ⊆ Rna at time step t. The envi-
ronment, also called domain, is characterized by its parameters ξ ∈ Rnξ (e.g., masses, friction coefficients,
time delays, or surface appearance properties) which are in general assumed to be random variables
distributed according to an unknown probability distribution p(ξ) : Rnξ → R+. A special case of this is
the common assumption that the domain parameters obey a parametric distribution pφ(ξ) with unknown
parameters φ (e.g., mean and variance). The domain parameters determine the transition probability density
function Pξ : Sξ ×Aξ × Sξ → R+ that describes the system’s stochastic dynamics. The initial state s0
is drawn from the start state distribution µξ : Sξ → R+. In general, the instantaneous reward is a random
variable depending on the current state and action as well as the next state. Here we make the common sim-
plification that the reward is a deterministic function of the the current state and action rξ : Sξ ×Aξ → R.
Together with the temporal discount factor γ ∈ [0, 1], the system forms a MDP described by the tuple
Mξ =

〈
Sξ,Aξ,Pξ, µξ, rξ, γ

〉
.

Reinforcement Learning (RL): The goal of a RL agent is to maximize the expected (discounted) return,
a numeric scoring function which measures the policy’s performance. The expected discounted return of a
policy πθ(at|st) with the parameters θ ∈ Θ ⊆ Rnθ is defined as

J (θ, ξ) = Es0∼µξ(s0)
[
Est+1∼Pξ(st,at), at∼πθ(at|st)

[∑T−1

t=0
γtrξ(st,at)

∣∣∣θ, ξ, s0]] . (2)

While learning from experience, the agent adapts its policy parameters. The resulting state-action-reward
tuples are collected in trajectories, a.k.a. rollouts, τ = {st,at, rt}T−1t=0 ∈ T with rt = rξ(st,at). In a par-
tially observable MDP, the policy’s input would not be the state but observations there of ot ∈ Oξ ⊆ Rno ,
which are obtained through an environment-specific mapping ot = fobs(st).

Domain randomization: When augmenting the RL setting with domain randomization, the goal becomes
to maximize the expected (discounted) return for a distribution of domain parameters

J (θ) = Eξ∼p(ξ)[J (θ, ξ)] = Eξ∼p(ξ)
[
Eτ∼p(τ )

[∑T−1

t=0
γtrξ(st,at)

∣∣∣θ, ξ, s0]] . (3)

The outer expectation with respect to the domain parameter distribution p(ξ) is the key difference compared
to the standard MDP formulation. It enables the learning of robust policies, in the sense that these policies
work for a whole set of environments instead of overfitting to a particular problem instance.

3 FOUNDATIONS OF SIM-TO-REAL TRANSFER
Modern research on learning from (randomized) physics simulations is based on solid foundation of prior
work (Section 3.1). Parametric simulators are the core component of every sim-to-real method (Section 3.2).
Even though the details of their randomization are crucial, they are rarely discussed (Section 3.3). Esti-
mating the sim-to-real transferability during or after learning allows one to assess or predict the policy’s
performance in the target domain (Section 3.4).
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3.1 Early Methods
The roots of randomized simulations trace back to the invention of the Monte Carlo method (Metropolis

and Ulam, 1949), which computes its results based on repeated random sampling and subsequent statistical
analysis. Later, the concept of common random numbers, also called correlated sampling, was developed
as a variance reduction technique (Kahn and Marshall, 1953; Wright and T. E. Ramsay, 1979). The idea
is to synchronize the random numbers for all stochastic events across the simulation runs to achieve a
(desirably positive) correlation between random variables reducing the variance of an estimator based on a
combination of them. Many of the sim-to-real challenges which are currently tackled have already been
identified by Brooks (1992). In particular, Brooks addresses the overfitting to effects which only occur in
simulation as well as the idealized modeling on sensing and actuation. To avoid overfitting, he advocated
for reactive behavior-based programming which is deeply rooted in, hence tailored to, the embodiment.
Focusing on RL, Sutton (1991) introduced the Dyna architecture which revolves around predicting from a
learned world model and updating the policy from this hypothetical experience. Viewing the data generated
from randomized simulators as ‘imaginary’, emphasizes the parallels of domain randomization to Dyna.
As stated by Sutton, the usage of ‘mental rehearsal’ to predict and reason about the effect of actions dates
back even further in other fields of research such as psychology (Craik, 1943; Dennett, 1975). Instead
of querying a learned internal model, Jakobi et al. (1995) added random noise the sensors and actuators
while learning, achieving the arguably first sim-to-real transfer in robotics. In follow-up work, Jakobi
(1997) formulated the radical envelope of noise hypothesis which states that “it does not matter how
inaccurate or incomplete [the simulations] are: controllers that have evolved to be reliably fit in simulation
will still transfer into reality.” Picking up on the idea of common random numbers, Ng and Jordan (2000)
suggested to explicitly control the randomness of a simulator, i.e., the random number generator’s state,
rendering the simulator deterministic. This way the same initial configurations can be (re-)used for Monte
Carlo estimations of different policies’ value functions, allowing one to conduct policy search in partially
observable problems. Bongard et al. (2006) bridged the sim-to-real gap through iterating model generation
and selection depending on the short-term state-action history. This process is repeated for a given number
of iterations, and then yields the self-model, i.e., a simulator, which best explains the observed data.

Inspired by these early approaches, the systematic analysis of randomized simulations for robot learning
has become a highly active research direction. Moreover, the prior work above also falsifies the common
belief that domain randomization originated recently with the rise of deep learning. Nevertheless, the
current popularity of domain randomization can be explained by its widespread use in the computer vision
and locomotion communities as well as its synergies with deep learning methods. The key difference
between the early and the recent domain randomization methods (Section 5) is that the latter (directly)
manipulate the simulators’ parameters.

3.2 Constructing Stochastic Simulators
Simulators can be obtained by implementing a set of physical laws for a particular system. Given the

challenges in implementing an efficient simulator for complex systems, it is common to use general purpose
physics engines such as ODE, DART, Bullet, Newton, SimBody, Vortex, MuJoCo, Havok, Chrono, RaiSim,
PhysX, FleX, or Brax. These simulators are parameterized generative models, which describe how multiple
bodies or particles evolve over time by interacting with each other. The associated physics parameters
can be estimated by system identification (Section 4.6), which generally involves executing experiments
on the physical platform and recording associated measurement. Additionally, using the Gauss-Markov
theorem one could also compute the parameters’ covariance and hence construct a normal distribution
for each domain parameter. Differentiable simulators facilitate deep learning for robotics (Degrave et al.,
2019; Coumans, 2020; Heiden et al., 2021) by propagating the gradients though the dynamics. Current
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research extends the differentiability to soft body dynamics (Hu et al., 2019). Alternatively, the system
dynamics can be captured using nonparametric methods like Gaussian Processes (GPs) (Rasmussen and
Williams, 2006) as for example demonstrated by Calandra et al. (2015). It is important to keep in mind
that even if the domain parameters have been identified very accurately, simulators are nevertheless just
approximations of the real world and are thus always imperfect.

Several comparisons between various physics engines were made (Ivaldi et al., 2014; Erez et al., 2015;
Chung and Pollard, 2016; Collins et al., 2019; Körber et al., 2021). However, note that these results become
outdated quickly due to the rapid development in the field, or are often limited to very few scenarios and
partially introduce custom metrics to measure their performance or accuracy.

Apart from the physics engines listed above, there is an orthogonal research direction investigating
human-inspired learning of the physics laws from visual input (Battaglia et al., 2013; Wu et al., 2015) as
well as physical reasoning given a configuration of bodies (Battaglia et al., 2016), which is out of the scope
of this review.

3.3 Randomizing a Simulator
Learning from randomized simulations entails significant design decisions:

Which parameters should be randomized? Depending on the problem, some domain parameters have
no influence (e.g., the mass of an idealized rolling ball) while others are pivotal (e.g., the pendulum length
for a stabilization task). It is recommended to first identify the essential parameters (Xie et al., 2020). For
example, most robot locomotion papers highlight the importance of varying the terrain and contact models,
while applications such as drone control benefit from adding perturbations, e.g., to simulate a gust of
wind. Injecting random latency and noise to the actuation is another frequent modeling choice. Starting
from a small set of randomized domain parameters, identified from prior knowledge, has the additional
benefit of shortening the evaluation time which involves approximating an expectation over domains, which
scales exponentially with the number of parameters. Moreover, including at least one visually observable
parameter (e.g., an extent of a body) helps to verify if the values are set as expected.

When should the parameters be randomized? Episodic dynamics randomization, without a rigorous
theoretical justification, is the most common approach. Randomizing the domain parameters at every
time step instead would drastically increase the variance, and pose a challenge to the implementations
since this typically implies recreating the simulation at every step. Imagine a stack of cubes standing on
the ground. If we now vary the cubes’ side lengths individually while keeping their absolute positions
fixed, they will either lose contact or intersect with their neighboring cube(s). In order to keep the stack
intact, we need to randomize the cubes with respect to their neighbors, additionally moving them in space.
Executing this once at the beginning is fine, but doing this at every step creates artificial “movement” which
would almost certainly be detrimental. Orthogonal to the argumentation above, alternative approaches
apply random disturbance forces and torques at every time step. In these cases, the distribution over
disturbance magnitudes is chosen to be constant until the randomization scheme is updated. To the best of
our knowledge, event-triggered randomization has not been explored yet.

How should the parameters be randomized? Answering this question is what characterizes a domain
randomization method (Section 5). There are a few aspects that needs to be considered in practice when
designing a domain randomization scheme, such as the numerical stability of the simulation instances. Low
masses for example quickly lead to stiff differential equations which might require a different (implicit)
integrator. Furthermore, the noise level of the introduced randomness needs to match the precision of the
state estimation. If the noise is too low, the randomization is pointless. On the other side, if the noise level
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is too high, the learning procedure will fail. To find the right balance between these considerations, we can
start by statistically analyzing the incoming measurement signals.

What about physical plausibility? The application of pseudo-random color patterns, e.g., Perlin
noise (Perlin, 2002), has become a frequent choice for computer vision applications. Despite that these
patterns do not occur on real-world objects, this technique has improved the robustness of object detec-
tors (James et al., 2017; Pinto et al., 2018). Regarding the randomization of dynamics parameters, no
research has so far hinted that physically implausible simulations (e.g., containing bodies with negative
masses) are useful. On the other hand, it is safe to say that these can cause numerical instabilities. Thus,
ensuring feasibility of the resulting simulator is highly desirable. One solution is to project the domain
parameters into a different space, guaranteeing physical plausibility via the inverse projection. For example,
a body’s mass could be learned in the log-space such that the subsequent exp-transformation, applied
before setting the new parameter value, yields strictly positive numbers. However, most of the existing
domain randomization approaches can not guarantee physical plausibility.

Even in the case of rigid body dynamics there are notable differences between physics engines, as
was observed by Muratore et al. (2018) when transferring a robot control policy trained using Vortex to
Bullet and vice versa. Typical sources for deviations are different coordinate representations, numerical
solvers, friction and contact models. Especially the latter two are decisive for robot manipulation. For
vision-based tasks, Alghonaim and Johns (2020) found a strong correlation between the renderer’s quality
and sim-to-real transferability. Additionally, the authors emphasize the importance of randomizing both
distractor objects and background textures for generalizing to unseen environments.

3.4 Measuring and Predicting the Reality Gap
Coining the term ‘reality gap’, Koos et al. (2010) hypothesize that the fittest solutions in simulation often

rely on poorly simulated phenomena. From this, they derive a multi-objective formulation for sim-to-real
transfer where performance and transferability need to be balanced. In subsequent work, Koos et al.
(2013) defined a transferability function that maps controller parameters to their estimated target domain
performance. A surrogate model of this function is regressed from the real-world fitness values that are
obtained by executing the controllers found in simulation.

The Simulation Optimization Bias (SOB) (Muratore et al., 2018, 2021b) is a quantitative measure for the
transferability of a control policy from a set of source domains to a different target domain originating from
the same distribution. Building on the formulation of the optimality gap from convex optimization (Mak
et al., 1999; Bayraksan and Morton, 2006), Muratore et al. (2018) proposed a Monte Carlo estimator of the
SOB as well as an upper confidence bound, tailored to reinforcement learning settings. This bound can be
used as an indicator to stop training when the predicted transferability exceeds a threshold. Moreover, the
authors show that the SOB is always positive, i.e. optimistic, and in expectation monotonically decreases
with an increasing number of domains.

Collins et al. (2019) quantify the accuracy of ODE, (Py)Bullet, Newton, Vortex, and MuJoCo in a
real-world robotic setup. The accuracy is defined as the accumulated mean-squared error between the
Cartesian ground truth position, tracked by a motion capture system, and the simulators’ prediction. Based
on this measure, they conclude that simulators are able to model the control and kinematics accurately, but
show deficits during dynamic robot-object interactions.

To obtain a quantitative estimate of the transferability, Zhang et al. (2020) suggest to learn a probabilistic
dynamics model which is evaluated on a static set of target domain trajectories. This dynamics model is
trained jointly with the policy in the same randomized simulator. The transferability score is chosen to
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Figure 2. Topological overview of the sim-to-real research and a selection of related fields.

be the average negative log-likelihood of the model’s output given temporal state differences from the
real-world trajectories. Thus, the proposed method requires a set of pre-recorded target domain trajectories,
and makes the assumption that for a given domain the model’s prediction accuracy correlates with the
policy performance.

With robot navigation in mind, Kadian et al. (2020) define the Sim-vs-Real Correlation Coefficient
(SRCC) to be the Pearson correlation coefficient on data pairs of scalar performance metrics. The data
pairs consist of the policy performance achieved in a simulator instance as well as in the real counterpart.
Therefore, in contrast to the SOB (Muratore et al., 2018), the SRCC requires real-world rollouts. A high
SRCC value, i.e. close to 1, predicts good transferability, while low values, i.e. close to 0, indicates that
the agent is exploited the simulation during learning. Kadian et al. (2020) also report tuning the domain
parameters with grid search to increase the SRCC. By using the Pearson correlation, the SRCC is restricted
to linear correlation, which might not be a notable restriction in practice.

4 RELATION OF SIM-TO-REAL TO OTHER FIELDS
There are several research areas that overlap with sim-to-real in robot learning, more specifically domain
randomization (Figure 2). In the following, we describe those that either share the same goal, or employ
conceptually similar methods.

4.1 Curriculum Learning
The key idea behind curriculum learning is to increase the sample efficiency by scheduling the training

process such that the agent first encounters ‘easier’ tasks and gradually progresses to ‘harder’ ones. Hence,
the agent can bootstrap from the knowledge it gained at the beginning, before learning to solve more
difficult task instances. Widely known in supervised learning (Bengio et al., 2009; Kumar et al., 2010),
curriculum learning has been applied to RL (Asada et al., 1996; Erez and Smart, 2008; Klink et al., 2019,
2021). The connection between curriculum learning and domain randomization can be highlighted by
viewing the task as a part of the domain, i.e., the MDP, rendering the task parameters a subspace of the
domain parameters. From this point of view, the curriculum learning schedule describes how the domain
parameter distribution is updated. There are several challenges to using a curriculum learning approach for
sim-to-real transfer. Three such challenges are: (i) we can not always assume to have an assessment of
the difficulty level of individual domain parameter configurations, (ii) curriculum learning does not aim at
finding solutions robust to model uncertainty, and (iii) curriculum learning methods may require a target
distribution which is not defined in the domain randomization setting. However, adjustments can be made
to circumvent these problems. OpenAI et al. (2019) suggested a heuristic for the domain randomization
schedule that increases the boundaries of each domain parameter individually until the return drops more
than a predefined threshold. Executing this approach on a computing cluster, the authors managed to train
a policy and a vision system which in combination solve a Rubik’s cube with a tendon-driven robotic hand.
Another intersection point of curriculum learning and sim-to-real transfer is the work by Morere et al.
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(2019), where a hierarchical planning method for discrete domains with unknown dynamics is proposed.
Learning abstract skills based on a curriculum enables the algorithm to outperform planning and RL
baselines, even in domains with a very large number of possible states.

4.2 Meta Learning
Inspired by the human ability to quickly master new tasks by leveraging the knowledge extracted from

solving other tasks, meta learning (Santoro et al., 2016; Finn et al., 2017) seeks to make use of prior
experiences gained from conceptually similar tasks. The field of meta learning currently enjoys high
popularity, leading to abundant follow-up work. Grant et al. (2018) for example casts meta learning as
hierarchical Bayesian inference. Furthermore, the meta learning framework has been adapted to the RL
setting (Wang et al., 2017; Nagabandi et al., 2019). The optimization over an ensemble of tasks can
be translated to the optimization over an ensemble of domain instances, modeled by different MDPs
(Section 2). Via this duality one can view domain randomization as a special form of meta learning where
the robot’s task remains qualitatively unchanged but the environment varies. Thus, the tasks seen during the
meta training phase are analogous to domain instances experienced earlier in the training process. However,
when looking at the complete procedure, meta learning and domain randomization are fundamentally
different. The goal of meta learning, i.e., Finn et al. (2017), is to find a suitable set of initial weights, which
when updated generalizes well to a new task. Domain randomization on the other hand strives to directly
solve a single task, generalizing over domain instances.

4.3 Transfer Learning
The term transfer learning covers a wide range of machine learning research, aiming at using knowledge

learned in the source domain to solve a task in the target domain. Rooted in classification, transfer learning
is categorized in several subfields by for example differentiating (i) if labeled data is available in the
source or target domain, and (ii) if the tasks in both domains are the same (Pan and Yang, 2010; Zhuang
et al., 2021). Domain adaptation is one of the resulting subfields, specifying the case where ground truth
information is only available in the target domain which is not equal to the source domain while the task
remains the same. Thus, domain adaptation methods are in general suitable to tackle sim-to-real problems.
However, the research fields evolved at different times in different communities, with different goals in
mind. The keyword ‘sim-to-real’ specifically concerns regression and control problems where the focus
lies on overcoming the mismatch between simulation and reality. In contrast, most domain adaptation
techniques are not designed for a dynamical system as the target domain.

4.4 Knowledge Distillation
When executing a controller on a physical device operating at high frequencies, it is of utmost importance

that the forward pass finishes with the given time frame. With deep Neural Network (NN) policies, and
especially with ensembles of these, this requirement can become challenging to meet. Distilling the knowl-
edge of a larger network into a smaller one reduces the evaluation time. Knowledge distillation (Hinton
et al., 2015) has been successfully applied to several machine learning applications such as natural language
processing (Cui et al., 2017), and object detection (Chen et al., 2017). In the context of RL, knowledge
distillation techniques can be used to compress the learned behavior of one or more teachers into a single
student (Rusu et al., 2016a). Based on samples generated by the teachers, the student is trained in a super-
vised manner to imitate them. This idea can be applied to sim-to-real robot learning in a straightforward
manner, where the teachers can be policies optimal for specific domain instances (Brosseit et al., 2021).
Complementarily, knowledge distillation has been applied to multitask learning (Parisotto et al., 2016; Teh
et al., 2017), promising to improve sample efficiency when learning a new task. A technical comparison of
policy distillation methods for RL is provided by Czarnecki et al. (2019).
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4.5 Distributional Robustness
The term robustness is overloaded with different meanings, such as the ability to (quickly) counteract

external disturbances, or the resilience against uncertainties in the underlying model’s parameters. The field
of robust control aims at designing controllers that explicitly deal with these uncertainties (Zhou and Doyle,
1998). Within this field, distributional robust optimization is a framework to find the worst-case probabilistic
model from a so-called ambiguity set, and subsequently set a policy which acts optimally in this worst case.
Mathematically, the problem is formulated as bilevel optimization, which is solved iteratively in practice.
By restricting the model selection to the ambiguity set, distributional robust optimization regularizes the
adversary to prevent the process from yielding solutions that are overly conservative policies. Under the
lens of domain randomization, the ambiguity set closely relates to the distribution over domain parameters.
Abdulsamad et al. (2021) for example define the ambiguity set as a Kullback-Leibler (KL) ball the nominal
distribution. Other approaches use a moment-based ambiguity set (Delage and Ye, 2010) or introduce
chance constrains (Van Parys et al., 2016). For a review of distributional robust optimization, see Zhen et al.
(2021). Chatzilygeroudis et al. (2020) point out that performing policy search under an uncertain model is
equivalent to finding a policy that can perform well under various dynamics models. Hence, they argue
that “model-based policy search with probabilistic models is performing something similar to dynamics
randomization”.

4.6 System Identification
The goal of system identification is to find the set of model parameters which fit the observed data best,

typically by minimizing the prediction-dependent loss such as the mean-squared error. Since the simulator
is the pivotal element in every domain randomization method, the accessible parameters and their nominal
values are of critical importance. When a manufacturer does not provide data for all model parameters, or
when an engineer wants to deploy a new model, system identification is typically the first measure to obtain
an estimate of the domain parameters. In principle, a number of approaches can be applied depending on
the assumptions on the internal structure of the simulator. The earliest approaches in robotics recognized
the linearity of the rigid body dynamics with respect to combinations of physics parameters such as masses,
moments of inertia, and link lengths, thus proposed to use linear regression (Atkeson et al., 1986), and later
Bayesian linear regression (Ting et al., 2006). However, it was quickly observed that the inferred parameters
may be physically implausible, leading to the development of methods that can account for this (Ting et al.,
2011). With the advent of deep learning, such structured physics-based approaches have been enhanced
with NNs, yielding nonlinear system identification methods such as the ones based on the Newton-Euler
forward dynamics (Sutanto et al., 2020; Lutter et al., 2021b). Alternatively, the simulator can be augmented
with a NN to learn the domain parameter residuals, minimizing the one step prediction error (Allevato
et al., 2019). On another front, system identification based on the classification loss between simulated
and real samples has been investigated (Jiang et al., 2021; Du et al., 2021). System identification can also
be interpreted as an episodic RL problem by treating the trajectory mismatch as the cost function and
iteratively updating a distribution over models (Chebotar et al., 2019). Recent simulation-based inference
methods yield highly expressive posterior distributions that capture multi-modality as well as correlations
between the domain parameters (Section 4.8).

4.7 Adaptive Control
The well-established field of adaptive control is concerned with the problem of adapting a controller’s

parameters at runtime to operate initially uncertain or varying systems (e.g., aircraft reaching supersonic
speed). A prominent method is model reference adaptive control, which tracks a reference model’s output
specifying the desired closed-loop behavior. Model Identification Adaptive Control (MIAC) is a different
variant, which includes an online system identification component that continuously estimates the system’s
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parameters based on the prediction error of the output signal (Åström and Wittenmark, 2008; Landau
et al., 2011). Given the identified system, the controller is updated subsequently. Similarly, there exists a
line of sim-to-real reinforcement learning approaches that condition the policy on the estimated domain
parameters (Yu et al., 2017, 2019b; Mozifian et al., 2020) or a latent representation thereof (Yu et al.,
2019a; Peng et al., 2020; Kumar et al., 2021). The main difference to MIAC lies in the adaption mechanism.
Adaptive control techniques typically define the parameters’ gradient proportional to the prediction error,
while the approaches referenced above make the domain parameters an input to the policy.

4.8 Simulation-Based Inference
Simulators are predominantly used as forward models, i.e., to make predictions. However, with the

increasing fidelity and expressiveness of simulators, there is a growing interest to also use them for
probabilistic inference (Cranmer et al., 2020). In the case of simulation-based inference, the simulator and
its parameters define the statistical model. Inference tasks differ by the quantity to be inferred. Regarding
sim-to-real transfer, the most frequent task is to infer the simulation parameters from real-world time series
data. Similarly to system identification (Section 4.6), the result can be a point estimate, or a posterior
distribution. Likelihood-Free Inference (LFI) methods are a type of simulation-based inference approaches
which are particularly well-suited when we can make very little assumptions about the underlying generative
model, treating it as an implicit function. These approaches only require samples from the model (e.g., a non-
differentiable black-box simulator) and a measure of how likely real observations could have been generated
from the simulator. Approximate Bayesian computation is well-known class of LFI methods that applies
Monte Carlo sampling to infer the parameters by comparing summary statistics of synthetically generated
and observed data. There exist plenty of variants for approximate Bayesian computation (Marjoram et al.,
2003; Beaumont et al., 2009; Sunnåker et al., 2013) as well as studies on the design of low-dimensional
summary statistics (Fearnhead and Prangle, 2012). In order to increase the efficiency and thereby scale LFI
higher-dimensional problems, researchers investigated amortized approaches, which conduct the inference
over multiple sequential rounds. Sequential neural posterior estimation approaches (Papamakarios and
Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019) approximate the conditional posterior,
allowing for direct sampling from the posterior. Learning the likelihood (Papamakarios et al., 2019) can
be useful in the context for hypothesis testing. Alternatively, posterior samples can be generated from
likelihood-ratios (Hermans et al., 2020; Durkan et al., 2020). However, simulation-based inference does not
explicitly consider policy optimization or domain randomization. Recent approaches connected all three
techniques, and closed the reality gap by inferring a distribution over simulators while training policies in
simulation (Ramos et al., 2019; Barcelos et al., 2020; Muratore et al., 2021c).

5 DOMAIN RANDOMIZATION FOR SIM-TO-REAL TRANSFER

Domain Randomization

adaptivestatic adversarial

Figure 3. Topological overview of domain random-
ization methods.

We distinguish between static (Section 5.1),
adaptive (Section 5.2), and adversarial (Sec-
tion 5.3) domain randomization. Static, as well
as adaptive, methods are characterized by ran-
domly sampling a set of domain parameters
ξ ∼ p(ξ) at the beginning of each simulated
rollout. A randomization scheme is categorized
as adaptive if the domain parameter distribution is updated during learning, otherwise the scheme is
called static. The main advantage of adaptive schemes is that they alleviate the need for hand-tuning the
distributions of the domain parameters, which is currently a decisive part of the hyper-parameter search
in a static scheme. Nonetheless, the prior distributions still demand design decisions. On the downside,
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every form of adaptation requires data from the target domain, typically the real robot, which is signifi-
cantly more expensive to obtain. Another approach for learning robust policies in simulation is to apply
adversarial disturbances during the training process. We classify these perturbations as a form of domain
randomization, since they either depend on a highly stochastic adversary learned jointly with the policy, or
directly contain a random process controlling the application of the perturbation. Adversarial approaches
may yield exceptionally robust control strategies. However, without any further restrictions, it is always
possible to create scenarios in which the protagonist agent can never win, i.e., the policy can not learn the
task. Balancing the adversary’s power is pivotal to an adversarial domain randomization method, adding a
sensitive hyper-parameter.

Another way to distinguish domain randomization concepts is the representation of the domain parameter
distribution. The vast majority of algorithms assume a specific probability distribution (e.g., normal or
uniform) independently for every parameter. This modeling decision has the benefit of greatly reducing
the complexity, but at the same time severely limits the expressiveness. Novel LFI methods (Section 5.2)
estimate the complete posterior, hence allow the recognition of correlations between the domain parameters,
multi-modality, and skewness.

5.1 Static Domain Randomization

target domain

(real robot)

source domain

(rand. simulator)

train policy execute policy

Figure 4. Conceptual illustration of static domain
randomization.

Approaches that sample from a fixed domain pa-
rameter distribution typically aim at performing
sim-to-real transfer without using any real-world
data. Since running the policy on a physical device
is generally the most difficult and time-consuming
part, static approaches promise quick and rela-
tively easy to obtain results. In terms of final
policy performance in the target domain, these
methods are usually inferior to those that adapt the domain parameter distribution. Nevertheless, static
domain randomization has bridged the reality gap in several cases.

Randomizing Dynamics without Using Real-World Data at Runtime
More than a decade ago, Wang et al. (2010) proposed to randomize the simulator in which the training

data is generated. The authors examined the randomization of initial states, external disturbances, goals,
and actuator noise, clearly showing an improved robustness of the learned locomotion controllers in
simulated experiments (sim-to-sim). Mordatch et al. (2015) used a finite model ensembles to run (offline)
trajectory optimization on a small-scale humanoid robot, achieving one of the first sim-to-real transfers
in robotics powered by domain randomization. Similarly, Lowrey et al. (2018) employed the Natural
Policy Gradient (Kakade, 2001) to learn a continuous controller for a three-finger positioning task, after
carefully identifying the system’s parameters. Conforming with Mordatch et al. (2015), their results
showed that the policy learned from the identified model was able to perform the sim-to-real transfer,
but the policies learned from an ensemble of models was more robust to modeling errors. In contrast,
Peng et al. (2018) combined model-free RL with recurrent NN policies that were trained using hindsight
experience replay (Andrychowicz et al., 2017) in order to push an object by controlling a robotic arm.
Tan et al. (2018) presented an example for learning quadruped gaits from randomized simulations, where
particular efforts were made to conduct a prior system identification. They empirically found that sampling
domain parameters from a uniform distribution together with applying random forces and regularizing
the observation space can be enough to cross the reality gap. For quadrotor control, Molchanov et al.
(2019) trained feedforward NN policies which generalize over different physical drones. The suggested
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randomization includes a custom model for motor lag and noise based on an Ornstein-Uhlenbeck process.
Rajeswaran et al. (2017) explored the use of a risk-averse objective function, optimizing a lower quantile
of the return. The method was only evaluated on simulated MuJoCo tasks, however it was also one of
the first methods that draws upon the Bayesian perspective. Moreover, this approach was employed as
a baseline by Muratore et al. (2021b), who introduced a measure for the inter-domain transferability of
controllers together with a risk-neutral randomization scheme. The resulting policies have the unique
feature of providing a (probabilistic) guarantee on the estimated transferability and managed to directly
transfer to the real platform in two different experiments. Siekmann et al. (2021) achieved the sim-to-real
transfer of a recurrent NN policy for bipedal walking. The policy was trained using model-free RL in
simulation with uniformly distributed dynamics parameters as well as randomized task-specific terrain.
According to the authors, the recurrent architecture and the terrain randomization were pivotal.

Randomizing Dynamics Using Real-World Data at Runtime
The work by Cully et al. (2015) can be seen as both static and adaptive domain randomization, where a

large set of hexapod locomotion policies is learned before execution on the physical robot, and subsequently
evaluated in simulation. Every policy is associated with one configuration of the so-called behavioral
descriptors, which can be interpreted as domain parameters. Instead of retraining or fine-tuning, the
proposed algorithm reacts to performance drops, e.g., due to damage, by querying Bayesian Optimization
(BO) to sequentially select one of the pretrained policies and measure its performance on the robot. Instead
of randomizing the simulator parameters, Cutler and How (2015) explored learning a probabilistic model,
chosen to be a GP, of the environment using data from both simulated and real-world dynamics. A key
feature of this method is to incorporate the simulator as a prior for the probabilistic model, and subsequently
use this information of the policy updates with PILCO (Deisenroth and Rasmussen, 2011). The authors
demonstrated policy transfer for a inverted pendulum task. In follow-up work, Cutler and How (2016)
extended the algorithm to make a remote-controlled toy car learn how to drift in circles. Antonova et al.
(2019) propose a sequential Variational AutoEncoder (VAE) to embed trajectories into a compressed
latent space which is used with BO to search for controllers. The VAE and the domain-specific high-level
controllers are learned jointly, while the randomization scheme is left unchanged. Leveraging a custom
kernel which measures the KL divergence between trajectories and the data efficiency of BO, the authors
report successful sim-to-real transfers after 10 target domain trials for a hexapod locomotion task as well
as 20 trials for a manipulation task. Kumar et al. (2021) learned a quadruped locomotion policy that passed
joint positions to a lower level PD controller without using any real-wold data. The essential components
of this approach are the encoder that projects the domain parameters to a latent space and the adaption
module which is trained to regress the latent state from the recent history of measured states and actions.
The policy is conditioned on the current state, the previous actions, and the latent state which needs to
be reconstructed during deployment in the physical world. Emphasizing the importance of the carefully
engineered reward function, the authors demonstrate the method’s ability to transfer from simulation to
various outdoor terrains.

Randomizing Visual Appearance and Configurations
Tobin et al. (2017) learned an object detector for robot grasping using a fixed domain parameter distribu-

tion, and bridged the gap with a deep NN policy trained exclusively on simulated RGB images. Similarly,
James et al. (2017) added various distracting shapes as well as structured noise (Perlin, 2002) when
learning a robot manipulation task with an end-to-end controller that mapped pixels to motor velocities.
The approach presented by Pinto et al. (2018) combines the concepts of static domain randomization and
actor-critic training (Lillicrap et al., 2016), enabling the direct sim-to-real transfer of the abilities to pick,
push, or move objects. While the critic has access to the simulator’s full state, the policy only receives
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images of the environment, creating an information asymmetry. Matas et al. (2018) used the asymmetric
actor-critic idea from Pinto et al. (2018) as well as several other improvements to train a deep NN policy
end-to-end, seeded with prior demonstrations. Solving three variations of a tissue folding task, this work
scales sim-to-real visuomotor manipulation to deformable objects. Purely visual domain randomization has
also been applied to aerial robotics, where Sadeghi and Levine (2017) achieved sim-to-real transfer for
learning to fly a drone through indoor environments. The resulting deep NN policy was able to map from
monocular images to normalized 3D drone velocities. Similarly, Polvara et al. (2020) demonstrated landing
of a quadrotor trained in end-to-end fashion using randomized environments. Dai et al. (2019) investigated
the effect of domain randomization on visuomotor policies, and observed that this leads to more redundant
and entangled representations accompanied with significant statistical changes in the weights. Yan et al.
(2020) apply Model Predictive Control (MPC) to manipulate of deformable objects using a forward model
based on visual input. The novelty of this approach is that the predictive model is trained jointly with an
embedding to minimizing a contrastive loss (van den Oord et al., 2018) in the latent space. Finally, domain
randomization was applied to transfer the behavior from simulation to the real robot.

Randomizing Dynamics, Randomizing Visual Appearance, and Configurations
Combining Generative Adversarial Networks (GANs) and domain randomization, Bousmalis et al. (2018)

greatly reduced the number of necessary real-world samples for learning a robotic grasping task. The
essence of their method is to transform simulated monocular RGB images in a way that is closely matched to
the real counterpart. Extensive evaluation on the physical robot showed that domain randomization as well
as the suggested pixel-level domain adaptation technique were important to successfully transfer. Despite
the pixel-level domain adaptation technique being learned, the policy optimization in simulation is done with
a fixed randomization scheme. In related work James et al. (2019) train a GAN to transform randomized
images to so-called canonical images, such that a corresponding real image would be transformed to the
same one. This approach allowed them to train purely from simulated images, and optionally fine-tune the
policy on target domain data. Notably, the robotic in-hand manipulation conducted by OpenAI et al. (2020)
demonstrated that domain randomization in combination with careful model engineering and the usage of
recurrent NNs enables sim-to-real transfer on an unprecedentedly difficulty level.

5.2 Adaptive Domain Randomization

source domain

(rand. simulator)

target domain

(real robot)

train policy execute policy

collect dataadapt randomization

Figure 5. Conceptual illustration of adaptive domain
randomization.

Static domain randomization (Section 5.1) is
inherently limited and implicitly assumes knowl-
edge of the true mean of the domain parameters
or accepts biased samples. Adapting the random-
ization scheme allows the training to narrow or
widen the search distribution in order to fulfill one
or multiple criteria which can be chosen freely.
The mechanism devised for updating the domain
parameter distribution as well as the procedure
to collect meaningful target domain data are typi-
cally the center piece of adaptive randomization algorithms. In this process the execution of intermediate
policies on the physical device is the most likely point of failure. However, approaches that update the
distribution solely based on data from the source domain are less flexible and generally less effective.

Conditioning Policies on the Estimated Domain Parameters
Yu et al. (2017) suggested the use of a NN policy that is conditioned on the state and the domain

parameters. Since these parameters are not assumed to be known, they have to be estimated, e.g., with
online system identification. For this purpose, a second NN is trained to regress the domain parameters
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from the observed rollouts. By applying this approach to simulated continuous control tasks, the authors
showed that adding the online system identification module can enable an adaption to sudden changes
in the environment. In subsequent research, Yu et al. (2019a) intertwined policy optimization, system
identification, and domain randomization. The proposed method first identifies bounds on the domain
parameters which are later used for learning from the randomized simulator. In a departure from their
previous approach, the policy is conditioned on a latent space projection of the domain parameters. After
training in simulation, a second system identification step runs BO for a fixed number of iterations to find
the most promising projected domain parameters. The algorithm was evaluated on sim-to-real bipedal
robot walking. Mozifian et al. (2020) also introduce a dependence of the policy w.r.t. to the domain
parameters. These are updated by gradient ascent on the average return over domains, regularized by a
penalty proportional to the KL divergence. Similar to Ruiz et al. (2019), the authors update the domain
parameter distribution using the score function gradient estimator. Mozifian et al. (2020) tested their
method on sim-to-sim robot locomotion tasks. It remains unclear whether this approach scales to sim-to-
real scenarios since the adaptation is done based on the return obtained in simulation, thus is not physically
grounded. Bootstrapping from pre-recorded motion capture data of animals, Peng et al. (2020) learned
quadruped locomotion skills with a synthesis of imitation learning, domain randomization, and domain
adaptation (Section 4.3). The introduced method is conceptually related to the approach of Yu et al. (2019b),
but adds an information bottleneck. According to the authors, this bottleneck is necessary because without
it, the policy has access to the underlying dynamics parameters and becomes overly dependent on them,
which leads to brittle behavior. To avoid this overfitting, Peng et al. (2020) limit the mutual information
between the domain parameters and their encoding, realized as penalty on the KL divergence from a
zero-mean Gaussian prior on the latent variable.

The Bilevel Optimization Perspective
Muratore et al. (2021a) formulated adaptive domain randomization as a bilevel optimization that consists

of an upper and a lower level problem. In this framework, the upper level is concerned with finding the
domain parameter distribution, which when used for training in simulation leads to a policy with maximal
real-world return. The lower level problem seeks to find a policy in the current randomized source domain.
Using BO for the upper level and model-free RL for the lower level, Muratore et al. (2021a) compare their
method in two underactuated sim-to-real robotic tasks against two baselines. Picturing the real-world return
analogous to the probability for optimality, this approach reveals parallels to control as inference (Rawlik
et al., 2012; Levine and Koltun, 2013; Watson et al., 2021), where the control variates are the parameters
of the domain distribution. BO has also been employed by Paul et al. (2019) to adapt the distribution of
domain parameters such that using these for the subsequent training maximizes the policy’s return. Their
method models the relation between the current domain parameters, the current policy and the return of
the updated policy with a GP. Choosing the domain parameters that maximize the return in simulation is
critical, since this creates the possibility to adapt the environment such that it is easier for the agent to solve.
This design decision requires the policy parameters to be fed into the GP which is prohibitively expensive if
the full set of parameters are used. Therefore, abstractions of the policy, so-called fingerprints, are created.
These handcrafted features, e.g., a Gaussian approximation of the stationary state distribution, replace the
policy to reduce the input dimension. Paul et al. (2019) tested the suggested algorithm on three sim-to-sim
tasks, focusing on the handling of so-called significant rare events. Embedding the domain parameters
into the mean function of a GP which models the system dynamics, Chatzilygeroudis and Mouret (2018)
extended a black-box policy search algorithm (Chatzilygeroudis et al., 2017) with a simulator as prior.
The approach explicitly searches for parameters of the simulator that fit the real-world data in an upper
level loop, while optimizing the GP’s hyper-parameters in a lower level loop. This method allowed a

This is a provisional file, not the final typeset article 14



Muratore et al. Robot Learning from Randomized Simulations

damage hexapod robot to walk in less than 30 seconds. Ruiz et al. (2019) proposed a meta-algorithm
which is based on a bilevel optimization problem and updates the domain parameter distribution using
REINFORCE (Williams, 1992). The approach has been evaluated in simulation on synthetic data, except
for a semantic segmentation task. Thus, there was no dynamics-dependent interaction of the learned
policy with the real world. Mehta et al. (2019) also formulated the adaption of the domain parameter
distribution as an RL problem where different simulation instances are sampled and compared against
a reference environment based on the resulting trajectories. This comparison is done by a discriminator
which yields rewards proportional to the difficulty of distinguishing the simulated and real environments,
hence providing an incentive to generate distinct domains. Using this reward signal, the domain parameters
of the simulation instances are updated via Stein Variational Policy Gradient (Liu et al., 2017). Mehta
et al. (2019) evaluated their method in a sim-to-real experiment where a robotic arm had to reach a desired
point. In contrast, Chebotar et al. (2019) presented a trajectory-based framework for closing the reality gap,
and validated it on two sim-to-real robotic manipulation tasks. The proposed procedure adapts the domain
parameter distribution’s parameters by minimizing discrepancy between observations from the real-world
system and the simulation. To measure the discrepancy, Chebotar et al. (2019) use a linear combination of
the L1 and L2 norm between simulated and real trajectories. These values are then plugged in as costs for
Relative Entropy Policy Search (REPS) (Peters et al., 2010) to update the simulator’s parameters, hence
turning the simulator identification into an episodic RL problem. The policy optimization was done using
Proximal Policy Optimization (PPO) (Schulman et al., 2017), a step-based model-free RL algorithm.

Removing Restrictions on the Domain Parameter Distribution
Ramos et al. (2019) perform a fully Bayesian treatment of the simulator’s parameters by employing

Likelihood-Free Inference (LFI) with a Mixture Density Network (MDN) as model for the density estimator.
Analyzing the obtained posterior over domain parameters, they showed that the proposed method is, in a
sim-to-sim scenario, able to simultaneously infer different parameter configurations which can explain
the observed trajectories. An evaluation over a gird of domain parameters confirms that the policies
trained with the inferred posterior are more robust model uncertainties. The key benefit over previous
approaches is that the domain parameter distribution is not restricted to belong to a specific family, e.g.,
normal or uniform. Instead, the true posterior is approximated by the density estimator, fitted using
LFI (Papamakarios and Murray, 2016). In follow-up work, Possas et al. (2020) addressed the problem of
learning the behavioral policies which are required for the collection of target domain data. By describing
the integration policy optimization via model-free RL, the authors created an online variant of the original
method. The sim-to-real experiments were carried out using MPC where (only) the model parameters are
updated based on the result from the LFI routine. Matl et al. (2020) scaled the Bayesian inference procedure
of Ramos et al. (2019) to the simulation of granular media, estimating parameters such as friction and
restitution coefficients. Barcelos et al. (2020) presented a method that interleaves domain randomization,
LFI, and policy optimization. The controller is updated via nonlinear MPC while using the unscented
transform to simulate different domain instances for the control horizon. Hence, this algorithm allows one
to calibrate the uncertainty as the system evolves with the passage of time, attributing higher costs to more
uncertain paths. For performing the essential LFI, the authors build upon the work of Ramos et al. (2019)
to identify the posterior domain parameters, which are modeled by a mixture of Gaussians. The approach
was validated on a simulated inverted pendulum swing-up task as well as a real trajectory following task
using a wheeled robot. Since the density estimation problem is the center piece of LFI-based domain
randomization, improving the estimator’s flexibility is of great interest. Muratore et al. (2021c) employed a
sequential neural posterior estimation algorithm (Greenberg et al., 2019) which uses normalizing flows to
estimate the (conditional) posterior over simulators. In combination with a segment-wise synchronization
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between the simulations and the recorded real-world trajectories, Muratore et al. (2021c) demonstrated
the neural inference method’s ability to learn the posterior belief over contact-rich black-box simulations.
Moreover, the proposed approach was evaluated with policy optimization in the loop on an underactuated
swing-up and balancing task, showing improved results compared to BayesSim (Ramos et al., 2019) as
well as Bayesian linear regression.

5.3 Adversarial Domain Randomization

source domain

(rand. simulator)

target domain

(real robot)

train policy

train adversary

execute policy

Figure 6. Conceptual illustration of adversarial do-
main randomization.

Extensive prior studies have shown that deep
NN classifiers are vulnerable to imperceptible
perturbations their inputs, obtained via adver-
sarial optimization, leading to significant drops
in accuracy (Szegedy et al., 2014; Goodfellow
et al., 2015; Fawzi et al., 2015; Kurakin et al.,
2017; Ilyas et al., 2019). This line of research
has been extended to reinforcement learning,
showing that small (adversarial) perturbations are
enough to significantly degrade the policy perfor-
mance (Huang et al., 2017). To defend against such attacks, the training data can be augmented with
adversarially-perturbed examples, or the adversarial inputs can be detected and neutralized at test-time.
However, studies of existing defenses have shown that adversarial examples are harder to detect than
originally believed (Carlini and Wagner, 2017). It is safe to assume that this insight gained from computer
vision problems transfers to the RL setting, on which we focus here.

Adversary Available Analytically
Mandlekar et al. (2017) proposed physically plausible perturbations by randomly deciding when to

add a scaled gradient of the expected return w.r.t. the state. Their sim-to-sim evaluation on four MuJoCo
tasks showed that agents trained with the suggested adversarial randomization generalize slightly better
to domain parameter configurations than agents trained with a static randomization scheme. Lutter et al.
(2021a) derived the optimal policy together with different optimal disturbances from the value function
in a continuous state, action, and time RL setting. Despite outstanding sim-to-real transferability of the
resulting policies, the presented approach is conceptually restricted by assuming access to a compact
representation of the state domain, typically obtained through exhaustive sampling, which hinders the
scalability to high-dimensional tasks.

Adversary Learned via Two-Player Games
Domain randomization can be described using a game theoretic framework. Focusing on two-player

games for model-based RL, Rajeswaran et al. (2020) define a ‘policy player’ which maximizes rewards
in the learned model and a ‘model player’ which minimizes prediction error of data collected by policy
player. This formulation can be transferred to the sim-to-real scenario in different ways. One example is
to make the ‘policy player’ model-agnostic and to let the ‘model player’ control the domain parameters.
Pinto et al. (2017) introduced the idea of a second agent whose goal it is to hinder the first agent from
fulfilling its task. This adversary has the ability to apply force disturbances at predefined locations of the
robot’s body, while the domain parameters remain unchanged. Both agents are trained in alternation using
RL make this a zero-sum game. Similarly, Zhang et al. (2021) aim to train an agent using adversarial
examples such that it becomes robust against test-time attacks. As in the approach presented by Pinto et al.
(2017), the adversary and the protagonist are trained alternately until convergence at every meta-iteration.
Unlike prior work, Zhang et al. (2021) build on state-adversarial MDPs manipulating the observations
but not the simulation state. Another key property of their approach is that the perturbations are applied
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after a projection to a bounded set. The proposed observation-based attack as well as training algorithm is
supported by four sim-to-sim validations in MuJoCo environments. Jiang et al. (2021) employed GANs
to distinguish between source and target domain dynamics, sharing the concept of a learned domain
discriminator with Mehta et al. (2019). Moreover, the authors proposed to augment an analytical physics
simulator with a NN that is trained to maximize the similarity between simulated and real trajectories,
turning the identification of the hybrid simulator into an RL problem. The comparison on a sim-to-real
quadruped locomotion task showed an advantage over static domain randomization baselines. On the other
hand, this method added noise to the behavioral policy in order to obtain diverse target domain trajectories
for the simulator identification, which can be considered dangerous.

6 DISCUSSION AND OUTLOOK
To conclude this review, we discuss practical aspects of choosing among the existing domain randomization
approaches (Section 6.1), emphasizing that sim-to-real transfer can also be achieved without random-
izing (Section 6.2). Finally, we sketch out several promising directions for future sim-to-real research
(Section 6.3).

6.1 Choosing a Suitable Domain Randomization Approach
Every publication on sim-to-real robot learning presents an approach that surpasses its baselines. So, how

should we select the right algorithm given a task? Up to now, there is no benchmark for sim-to-real methods
based on the policy’s target domain performance, and it is highly questionable if such a comparison could
be fair, given that these algorithms have substantially different requirements and goals. The absence of
one common benchmark is not necessarily bad, since bundling a set of environments to define a metric
would bias research to pursue methods which optimize solely for that metric. A prominent example for
this mechanism is the OpenAI Gym (Brockman et al., 2016), which became the de facto standard for RL.
Contrarily, a similar development for sim-to-real research is not desirable since the overfitting to a small
set of scenarios would be detrimental to the desired transferability and the vast amount of other scenarios.

When choosing from the published algorithms, the practitioner is advised to check if the approach has
been tested on at least two different sim-to-real tasks, and if the (sometimes implicit) assumptions can be
met. Adaptive domain randomization methods, for example, will require operating the physical device
in order to collect real-world data. After all, we can expect that approaches with randomization will be
more robust than the ones only trained on a nominal model. This has been shown consistently (Sections 5).
However, we can not expect that these approaches work out of the box on novel problems without adjusting
the hyper-parameters. Another starting point could be the set of sim-to-sim benchmarks released by Mehta
et al. (2020), targeting the problem of system identification for state-of-the-art domain randomization
algorithms.

6.2 Sim-to-Real Transfer without Domain Randomization
Domain randomization is one way to successfully transfer control policies learned in simulation to the

physical device, but by no means the only way.

Action Transformation
In order to cope with the inaccuracies of a simulator, Christiano et al. (2016) propose to train a deep

inverse dynamics model to map the action commanded by policy to a transformed action. When applying
the original action to the real system and the transformed action to the simulated system, they would lead
to the same next robot state, thus bridging the reality gap. To generate the data for training the inverse
dynamics model, preliminary policies are augmented with hand-tuned exploration noise and executed in
the target domain. Their approach is based on the observation that a policy’s high-level strategy remains
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valid after sim-to-real transfer, and assumes that the simulator provides a reasonable estimate of the next
state. With the same goal in mind, Hanna and Stone (2017) suggest an action transformation that is learned
such that applying the transformed actions in simulation has the same effects as applying the original
actions had on the real system. At the core approach is the estimation of neural forward and inverse models
based on rollouts executed with the real robot.

Novel Neural Policy Architectures
Rusu et al. (2017) employ a progressively growing NN architecture (Rusu et al., 2016b) to learn an

end-to-end approach mapping from pixels to discretized joint velocities. This NN framework enables the
reuse of previously gained knowledge as well as the adaptation to new input modalities. The first part of
the NN policy is trained in simulation, while the part added when transferring needs to be trained using
real-world data. For a relatively simple reaching task, the authors reported requiring approximately four
hours of runtime on the physical robot.

Identifying and Improving the Simulator
Xie et al. (2019) describe an iterative process including motion tracking, system identification, RL, and

knowledge distillation, to learn control policies for humanoid walking on the physical system. This way,
the authors can rely on known building blocks resulting in initial and intermediate policies which are
reasonably safe to execute. To run a policy on the real robot while learning without the risk of damaging
or stopping the device, Kaspar et al. (2020) propose to combine operational space control and RL. After
carefully identifying the simulator’s parameters, the RL agent learns to control the end-effector via forces
on a unit mass-spring-damper system. The constrains and nullspace behavior are abstracted away from the
agent, making the RL problem easier and the policy more transferable.

6.3 Promising Future Research Directions
Learning from randomized simulations still offers abundant possibilities to enable or improve the sim-

to-real transfer of control policies. In the following section, we describe multiple opportunities for future
work in this area of research.

Real-to-Sim-to-Real Transfer
Creating randomizable simulation environments is time-intensive, and the initial guesses for the domain

parameters as well as their variances are typically very inaccurate. It is of great interest to automate this
process grounded by real-world data. One viable scenario could be to record an environment with a RGBD
camera, and subsequently use the information to reconstruct the scene. Moreover, the recorded data can be
processed to infer the domain parameters, which then specifies the domain parameter distributions. When
devising such a framework, we could start from prior work on 3D scene reconstruction Kolev et al. (2009);
Haefner et al. (2018) as well as methods to estimate the degrees of freedom for rigid bodies (Martin-Martin
and Brock, 2014). A data-based automatic generation of simulation environments (real-to-sim-to-real)
not only promises to reduce the workload, but would also yields a meaningful initialization for domain
distribution parameters.

Policy Architectures with Inductive Biases
Deep NNs are by far the most common policy type, favored because of their flexibility and expressiveness.

However, they are also brittle w.r.t. changes in their inputs (Szegedy et al., 2014; Goodfellow et al., 2015;
Huang et al., 2017). Due to the inevitable domain shift in sim-to-real scenarios this input sensitivity is
magnified. The success of domain randomization methods for robot learning can largely be attributed to
their ability of regularizing deep NN policies by diversifying the training data. Generally, one may also
introduce regularization to the learning by designing alternative models for the control policies, e.g., linear
combination of features and parameters, (time varying) mixtures of densities, or movement primitives.
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All of these have their individual strengths and weaknesses. We believe that pairing the expressiveness of
deep NNs with physically-grounded prior knowledge leads to controllers that achieve high performance
and suffer less from transferring to the real world, since they are able to bootstrap from their prior. There
are multiple ways to incorporate abstract knowledge about physics. We can for example restrict the
policy to obey stable system dynamics derived from first principles (Greydanus et al., 2019; Lutter et al.,
2019). Another approach is to design the model class such that the closed-loop system is passive for all
parameterizations of the learned policy, thus guaranteeing stability in the sense of Lyapunov as well as
bounded output energy given bounded input energy (Brogliato et al., 2007; Yang et al., 2013; Dai et al.,
2021). All these methods would require significant exploration in the environment, making it even more
challenging to learn successful controllers in the real-world directly. Leveraging randomized simulation is
likely going to be a critical component in demonstrating solving sequential problems on real robots.

Towards Dual Control via Neural Likelihood-Free Inference
Continuing the direction of adaptive domain randomization, we are convinced that neural LFI powered by

normalizing flows are auspicious approaches. The combination of highly flexible density estimators with
widely applicable and sample-efficient inference methods allows one to identify multi-modal distributions
over simulators with very mild assumptions (Ramos et al., 2019; Barcelos et al., 2021; Muratore et al.,
2021c). By introducing an auxiliary optimality variable and making the policy parameters subject to the
inference, we obtain the posterior over policies quantifying their likelihood of being optimal. While this
idea is well-known in the control-as-inference community (Rawlik et al., 2012; Levine and Koltun, 2013;
Watson et al., 2021), prior methods were limited to less powerful density estimation procedures. Taking
this idea one step further, we could additionally include the domain parameters for inference, and thereby
establish connections to dual control (Feldbaum, 1960; Wittenmark, 1995).

Accounting for the Cost of Information Collection
Another promising direction for future research is the combination of simulated and real-world data

collection with explicit consideration of the different costs when sampling from the two domains, subject
to a restriction of the overall computational budget. One part of this problem was already addressed by
Marco et al. (2017), showing how simulation can be used to alleviate the need for real-world samples when
finding a set of policy parameters. However, the question of how to schedule the individual (simulated or
real) experiments and when to stop the procedure, i.e., when does the cost of gathering information exceed
its expected benefit, is not answered for sim-to-real transfer yet. This question relates to the problems of
optimal stopping (Chow and Robbins, 1963) as well as multi-fidelity optimization (Forrester et al., 2007),
and can be seen as a reformulation thereof in the context of simulation-based learning.

Solving Sequential Problems
The problem settings considered in the overwhelming majority of related publications, are (continuous)

control tasks which do not have a sequential nature. In contrast, most real-world tasks such as the ones
posed at the DARPA Robotics Challenge (Krotkov et al., 2017) consist of (disconnected) segments, e.g., a
robot needs to turn the knob before it can open a door. One possible way to address these more complicated
tasks is by splitting the control into high and low level policies, similar to the options framework (Sutton
et al., 1999). The higher level policy is trained to orchestrate the low-level policies which could be learned
or fixed. Existing approaches typically realize this with discrete switches between the low-level policies,
leading to undesirable abrupt changes in the behavior. An alternative would be a continuous blending
of policies, controlled by a special kind of recurrent NN which has originally been proposed by Amari
(1977) to model activities in the human brain. Used as policy architectures they can be constructed to
exhibit asymptotically stable nonlinear dynamics (Kishimoto and Amari, 1979). The main benefits of
this structure are its easy interpretability via exhibition and inhibition of neural potentials, as well as the
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relatively low number of parameters necessary to create complex and adaptive behavior. A variation of this
idea with hand-tuned parameters, i.e., without machine learning, has been applied by Luksch et al. (2012)
to coordinate the activation pre-defined movement primitives.

SELECTION OF REFERENCES
We chose the references based on multiple criteria: (i) Our primary goal was to covering all milestones
of the sim-to-real research for robotics. (ii) In the process, we aimed at diversifying over subfields and
research groups. (iii) A large proportion of papers came to our attention by running Google Scholar alerts
on “sim-to-real ” and “reality gap” since 2017. (iv) Another source were reverse searches starting from
highly influential publications. (v) Some papers came to our attention because of citation notifications we
received on our work. (vi) Finally, a few of the selected publications are recommendations from reviewers,
colleagues, or researchers met at conferences. (vii) Peer-reviewed papers were strongly preferred over
pre-prints.
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