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Abstract: Exploration-based reinforcement learning on real robot systems is
generally time-intensive and can lead to catastrophic robot failures. Therefore,
simulation-based policy search appears to be an appealing alternative. Unfor-
tunately, running policy search on a slightly faulty simulator can easily lead to
the maximization of the ‘Simulation Optimization Bias’ (SOB), where the pol-
icy exploits modeling errors of the simulator such that the resulting behavior can
potentially damage the robot. For this reason, much work in robot reinforcement
learning has focused on model-free methods that learn on real-world systems. The
resulting lack of safe simulation-based policy learning techniques imposes severe
limitations on the application of robot reinforcement learning.
In this paper, we explore how physics simulations can be utilized for a robust
policy optimization by perturbing the simulator’s parameters and training from
model ensembles. We propose a new algorithm called Simulation-based Policy
Optimization with Transferability Assessment (SPOTA) that uses a biased estima-
tor of the SOB to formulate a stopping criterion for training. We show that the
new simulation-based policy search algorithm is able to learn a control policy ex-
clusively from a randomized simulator that can be applied directly to a different
system without using any data from the latter.
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1 Introduction
Exploration-based learning of control policies on a physical robot is expensive in two ways. For one
thing, real-world experiments are time-consuming and need to be executed by experts. Additionally,
these experiments require expensive equipment which is subject to wear and tear. In comparison,
training in simulation provides the possibility to speed up the process and save resources. A major
drawback of robot learning from simulations is that small errors can lead to unstable behavior. A
simulation-based learning algorithm is free to exploit any infeasibility during training and will utilize
the flawed physics model if it yields an improvement during simulation. This exploitation capability
can lead to policies that damage the robot when later deployed in the real world. The described
problem is exemplary of the difficulties that occur when transferring robot control policies from
simulation to reality, which have been the subject of study for the last two decades under the term
‘reality gap’. Early approaches in robotics suggest using minimal simulation models and adding
artificial i.i.d. noise to the system’s sensors and actuators while training in simulation [1]. The
aim here is to prevent the learner from focusing on small details, which would lead to policies
with only marginal applicability. This over-fitting can be described by the Simulation Optimization
Bias (SOB), which is similar to the bias of an estimator. While already formulated under the name
‘optimality gap’ by the optimization community in the 1990s [2, 3], the concept of the SOB has
neither been transfered to robotics nor Reinforcement Learning (RL) yet.
Deep RL algorithms recently demonstrated super-human performance in playing games [4, 5] and
promising results in (simulated) robotic control tasks [6, 7, 8, 9]. However, when transferred to
real-world robotic systems, most of these approaches become less attractive due to high sample
complexity and a lack of explainability of state-of-the-art deep RL algorithms.
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mailto:muratore@ias.tu-darmstadt.de


Figure 1: Illus-
tration of the
ball-on-plate task

As a consequence, the research field of ‘domain randomization’, also called
‘perturbed simulations’, is gaining interest [10, 11, 12, 13, 14, 15]. This class of
approaches promises to transfer control policies learned in simulation (source
domain) to the real world (target domain) by randomizing the simulator’s pa-
rameters (e.g., masses, extents, or friction coefficients) and hence train from an
ensemble of models instead of just one nominal model. The randomization of
the physics parameters is motivated by the fact that the corresponding true pa-
rameters of the target domain are unknown. However, instead of relying on an
accurate estimation of one fixed parameter set, we take a Bayesian point of view
and assume that each parameter is drawn from an unknown underlying distri-
bution. Thereby, the expected effect is an increase in robustness of the learned
policy when applied to a different domain. Throughout this paper, we use the term robustness to
describe a policy’s ability to maintain its performance under model uncertainties. In that sense, a
robust control policy is more likely to overcome the reality gap.
We propose a new policy search meta-algorithm called Simulation-based Policy Optimization with
Transferability Assessment (SPOTA) that uses the estimated SOB as a measure of the policy’s trans-
ferability between domains (i.e., realizations of the randomized simulator). SPOTA enables robots
to learn a control policy from a randomized source domain such that it can directly operate in an
unknown target domain. While prior methods mostly train one policy for a given number of steps
with a fixed number of domains, SPOTA progressively increases the number of domains while train-
ing and employs an Upper Confidence bound on the Simulation Optimization Bias (UCSOB) as a
stopping criterion. As soon as the UCSOB is lower than a provided threshold of trust, the policy
search meta-algorithm terminates. We employ a Monte-Carlo estimator of the SOB in the context
of RL and show its expected monotonous decrease with the number of samples.
One of the main benefits of SPOTA is the easily interpretable stopping criterion, which directly fol-
lows from formulating the RL problem as a stochastic program. Another benefit of SPOTA is that
it can be wrapped around existing policy search algorithms (e.g., Trust Region Policy Optimiza-
tion (TRPO) [16], Relative Entropy Policy Search [17], or Deep Deterministic Policy Gradient [6])
and thereby augment them with the concept of domain randomization without the need to change
the existing policy search algorithm.
We validate the proposed algorithm on the so-called ‘ball-on-plate’ problem, a balancing task in
which the robot has to stabilize a ball at the center of a plate depicted in Figure 1. Using a simulation
of the ball-on-plate problem, we compare our approach against the well-studied Linear-Quadratic
Regulator (LQR), TRPO [16], and a policy search meta-algorithm called Ensemble Policy Opti-
mization (EPOpt) [11]. Our last contribution is a cross-evaluation between the Vortex [18] and the
Bullet [19] physics engine in the scope of domain randomization.

1.1 Related Work

Hereinafter, we review excerpts of the literature regarding the transfer of control policies from sim-
ulation to reality, the concept of SOB in stochastic programs, and the application of randomized
physics simulations.
Reality Gap. Physics simulations have already been successfully used in robot learning. Tradi-
tionally, simulators are operating on a single nominal model, which makes the direct transfer of
policies from simulation to reality highly vulnerable to model uncertainties. The mismatch between
the simulated and the real world has been addressed by robotics researchers from different view-
points. Prominent examples are (i) randomly perturbing the observations and actions by adding
i.i.d. noise [1, 20], (ii) model generation and selection depending on the short-term state-action his-
tory [21], and (iii) learning a transferability function [22].
Simulation Optimization Bias. Hobbs and Hepenstal [2] proved for linear programs that opti-
mization is optimistically biased, given that there are errors in estimating the objective function
coefficients. Furthermore, they demonstrated the “optimistic bias” of a nonlinear program, and
mentioned the effect of errors on the parameters of linear constraints. The optimization problem
introduced in Section 2 belongs to the class of Stochastic Programs (SPs) for which the assumption
required in [2] are guaranteed to hold. The most common approaches to solve convex SPs are Sam-
ple Average Approximation (SAA) methods, including: (i) the Multiple Replications Procedure and
its derivatives [3, 23] which assess a solution’s quality by comparing with sampled alternative solu-
tions, (ii) Retrospective Approximation [24, 25] which iteratively improved the solution by lowering
the error tolerance. Bastin et al. [26] extended the existing convergence guarantees from convex to
non-convex SPs, showing almost sure convergence of the SAA problem’s minimizers.
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Domain Randomization. There is a large consensus that further increasing the simulator’s ac-
curacy will not bridge the reality gap. Instead, the idea of domain randomization has recently
gained momentum. The common characteristic of such approaches is the perturbation of the pa-
rameters that determine the physics simulator, including but not limited to the system dynam-
ics. While the idea of randomizing the sensors and actuators dates back to at least 1995 [1],
the systematic analysis of perturbed simulations in robot RL is a relatively new research direc-
tion [27, 28, 10, 11, 15, 29, 14, 12, 13, 30, 31]. Wang et al. [27] proposed sampling initial states,
external disturbances, goals, as well as actuator noise from probability distributions and learned
walking policies in simulation. Regarding robot RL, recent domain randomization methods focus
on perturbing the parameters defining the system dynamics. Approaches cover: (i) trajectory opti-
mization on finite model-ensembles [10] (ii) learning a Feed-forward Neural Network (FNN) policy
for under-actuated problem [28], (iii) using a risk-averse objective function [11], (iv) employing re-
current NN policies trained with experience replay [15], (v) optimizing a policy from samples of a
model randomly that is chosen from an ensemble which is repeatedly fitted to world data [30]. From
the listed approaches [10, 28, 15] were able to cross the reality gap without using samples from the
real world. Domain randomization is also applied in computer vision. One example is the work by
Tobin et al. [29] where an object detector for robot grasping is trained using multiple variants of the
environment and applied to the real world. The approach presented by Pinto et al. [14] combines
the concepts of randomized environments and actor-critic training, enabling the direct sim-to-real
transfer of the abilities to pick, push, or move objects. Sadeghi and Levine [31] achieved the sim-to-
real transfer by learning to fly a drone in visually randomized environments. The resulting deep NN
policy was able to map from monocular images to normalized 3D drone velocities.
Adversarial Perturbations. Another approach of learning robust policies in simulation is to apply
adversarial disturbances to the training process. Mandlekar et al. [12] proposed physically plausible
perturbations by randomly deciding when to add a rescaled gradient of the expected return. Pinto
et al. [13] introduced the idea of a second agent whose goal is to hinder the first agent from fulfilling
its task. Both agents are trained simultaneously and make up a zero-sum game. In general, adversar-
ial approaches may provide a particularly robust policy. However, without any further restrictions,
it is always possible create scenarios in which the protagonist agent can never win, i.e., the policy
will not learn the task.

1.2 Problem Statement and Notation

We consider a time-discrete dynamical system given by

st+1 ∼ Pξ (st+1| st,at, ξ) , at ∼ πξ(at| st, ξ;θ) , s0 ∼ µ0,ξ(s0| ξ), (1)

with the continuous state st ∈ Sξ ⊆ Rns , and continuous action at ∈ Aξ ⊆ Rna at time step t.
The physics parameters ξ ∈ Rnξ (e.g., masses, friction coefficients, or time delays) define the
environment a.k.a. the domain. They also parametrize the transition probability density func-
tion Pξ : Sξ ×Aξ × Sξ → R+ which describes the system’s stochastic dynamics. The ini-
tial state s0 is drawn from the distribution µ0,ξ : Sξ → R+. In order to formulate the system
from (1) as a Markov Decision Process (MDP), we further define a deterministic reward function
r : Sξ ×Aξ → R, and a discount factor γ ∈ [0, 1]. Finally, a MDP is fully described by the tuple
Mξ :=

〈
Sξ ,Aξ ,Pξ , µ0,ξ , r, γ

〉
. Simulators can be obtained by implementing a set of physics laws

and estimating their associated parameters by system identification. It is important to keep in mind,
that even if this procedure yields a very accurate model parameter estimate, simulators are neverthe-
less just approximations of the real world and are thus always flawed. Here, the physics parameters
are drawn from a probability distribution ξ ∼ p (ξ;ψ), parametrized by ψ (e.g., mean, variance).
As done in [10, 11, 14, 15], we use this distribution as a prior that ensures the physical plausibility of
each parameter. Additionally, using the Gauss-Markov theorem one could also compute the param-
eters’ covariance and hence construct a normal distribution for each physics parameter. Either way,
specifying the distribution p (ξ;ψ) in the current state-of-the-art requires the researcher to make
design decisions.
In general, the goal of an RL agent is to maximize the expected (discounted) return, a numeric
scoring function which measures the policy’s performance. The expected discounted return of a
stochastic policy π(at| st;θ), characterized by its parameters θ ∈ Rnθ , is defined as

J(θ, ξ) = Eτ
[∑T−1

t=0
γtr(st,at)

∣∣∣θ, ξ] .
The resulting state-action pairs are collected in trajectories a.k.a. rollouts τ = {st,at}T−1

t=0 .
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2 Simulation-Based Policy Optimization with Transferability Assessment
We introduce Simulation-based Policy Optimization with Transferability Assessment (SPOTA), a
new policy search meta-algorithm that returns a set of policy parameters such that the resulting
policy is able to directly transfer from an ensemble of source domains to an unseen target domain.
The key novelty is the utilization of an Upper Confidence bound on the Simulation Optimization
Bias (UCSOB) as a stopping criterion for the training procedure of an RL agent. The goal of SPOTA
is not only to maximize the agent’s expected discounted return under the influence of perturbed
physics simulations, but also to provide an approximate probabilistic guarantee on the loss in terms
of expected discounted return when applying the found policy to a different domain.
We aim to augment the standard RL setting with the concept of domain randomization, i.e. we want
to maximize the expectation of the expected discounted return over all (feasible) realizations of the
source domain

J(θ) = Eξ [J(θ, ξ)] . (2)
This score quantifies how well the policy would perform over an infinitely large ensemble of varia-
tions of the nominal worldMξ̄. When training exclusively in simulation, we do not know the true
physics model, and thus do not have access to the true J(θ) from (2). Instead, we maximize the
estimated expected return from samples obtained by a randomized physics simulator. Thereby we
update the policy parameters θ according to a policy optimization algorithm. The inevitable im-
perfections of physics simulations will be exploited by any policy search method if it could thereby
achieve a ‘virtual’ improvement, i.e., an increase of J(θ) in simulation. To counter this undesirable
behavior, we define a Stochastic Program (SP)

J(θ?) = maxθ∈Θ Eξ [J(θ, ξ)] ,

where θ is the decision variable, Θ ⊆ Rnθ is the associated feasible set, ξ is a random variable, and
J(θ, ξ) is a real-valued function. The SP above can be approximated by

Ĵn(θ?n) = maxθ∈Θ
1

n

∑n

i=1
J(θ, ξi) (3)

where the expectation is replaced by Monte-Carlo average over the sampled parameters ξ1, . . . , ξn,
and θ?n is the solution to the approximated SP. For the algorithm proposed in this paper, we require
the same mild assumptions as in [3]. Framing the RL problem in (2) as an SP, allows for the
utilization of the SOB as the convergence criterion for the policy search meta-algorithm introduced
in Section 2. The SOB at a solution candidate θc is defined as

G(θc) = maxθ∈Θ Eξ [J(θ, ξ)]− Eξ [J(θc, ξ)] ≥ 0, (4)

where the first term is the SP’s optimal objective function value and the second term is the SP’s
objective function evaluated at the candidate solution. In order to use the SOB in our approach, we
estimate an upper bound

Ĝn(θc) = maxθ∈Θ Ĵn(θ)− Ĵn(θc) ≥ G(θc) , (5)

applying the Monte-Carlo approximation of J(θ) and J(θc) with n i.i.d. samples of the random
physics parameters ξ . In the Appendix A, we derive the formulation of an upper bound on the SOB
and show its monotonous decrease with increasing sample size. Moreover, we show that the ap-
proximation Ĝn(θc) can not underestimate the true SOB G(θc), hence it is a safe approximation of
the stopping criterion for our algorithm SPOTA. Note that the SOB as defined in (4) always exists
unless the solution candidate θc is a global optimum and the difference G(θc) − Ĝn(θc) will only
diminish for an infinite number of samples, i.e., n→∞.
One interpretation of (source) domain randomization is to see it as a form of uncertainty repre-
sentation. If a control policy is trained successfully on multiple variations of the scenario, i.e., an
ensemble of models, it is legitimate to assume that this policy will be able to handle modeling errors
better than policies that have only been trained on the nominal model ξ̄. With this rationale in mind,
we propose the SPOTA procedure, summarized in Algorithm 1.
SPOTA performs a repetitive comparison of solution candidates against reference solutions in do-
mains that are the references’ training set but unknown to the candidates. As inputs, we assume a
given probability distribution over the physics parameters p (ξ;ψ), a policy optimization sub-routine
BatchPolOpt (e.g., TRPO), the batch sizes nc, nr, nτ , nG, nJ in conjunction with a nondecreasing
sequence NonDecrSeq (e.g., nk+1 = 2nk) for nc and nr, the confidence level (1−α), the threshold
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Algorithm 1: Simulation-based Policy Optimization with Transferability Assessment (SPOTA)
input : probability distribution p (ξ;ψ), algorithm BatchPolOpt, sequence NonDecrSeq,

hyper-parameters nc, nr, nτ , nG, nJ , nb, α, β
output: policy π

(
θ?nc
)

with an (1− α)-level confidence on Ḡnr
(
θ?nc
)

that is at maximum β

1 Initialize π
(
θnc
)

randomly
2 do . next epoch
3 Sample nc i.i.d. physics simulators described by ξ1, . . . , ξnc from p (ξ;ψ)
4 Solve the approx. SP using ξ1, . . . , ξnc and BatchPolOpt to obtain θ?nc . candidate

5 for k = 1, . . . , nG do
6 Sample nr i.i.d. physics simulators described by ξk1 , . . . , ξ

k
nr from p (ξ;ψ)

7 Initialize θknr with θ?nc and reset the exploration strategy
8 Solve the approx. SP using ξk1 , . . . , ξ

k
nr and BatchPolOpt to obtain θk?nr . reference

9 for i = 1, . . . , nr do
10 with synchronized random seeds . sync. init. states and obs. noise

11 Estimate the candidate solution’s return ĴnJ
(
θ?nc , ξ

k
i

)
← 1/nJ

∑nJ
j=1 Ĵ

(
θ?nc , ξ

k
i

)
12 Estimate the reference solution’s return ĴnJ

(
θk?nr , ξ

k
i

)
← 1/nJ

∑nJ
j=1 Ĵ

(
θk?nr , ξ

k
i

)
13 end
14 Compute the difference in return Ĝknr,i

(
θ?nc
)
← ĴnJ

(
θk?nr , ξ

k
i

)
− ĴnJ

(
θ?nc , ξ

k
i

)
15 if Ĝknr,i

(
θ?nc
)
< 0 then Ĝknr,i

(
θ?nc
)
← 0 . outlier rejection

16 end
17 end
18 Bootstrap nb times from G = {Ĝ1

nr,1

(
θ?nc
)
, . . . , ĜnGnr,nr

(
θ?nc
)
} to yield ∗G1, . . . ,

∗Gnb
19 Compute the sample mean Ḡnr

(
θ?nc
)

for the original set G
20 Compute the sample means ∗Ḡnr,1

(
θ?nc
)
, . . . , ∗Ḡnr,nb

(
θ?nc
)

for the sets ∗G1, . . . ,
∗Gnb

21 Select the α-th quantile of the bootstrap samples’ means and obtain the upper bound for the
one-sided (1− α)-level confidence interval ḠUnr

(
θ?nc
)
← 2Ḡnr

(
θ?nc
)
−Qα

[∗Ḡnr(θ?nc)] ;
22 Set the new sample sizes nc ← NonDecrSeq(nc) and nr ← NonDecrSeq(nr)

23 while ḠUnr
(
θ?nc
)
> β

of trust β, and the number of bootstrap samples nb. SPOTA consists of four blocks: (i) finding a
candidate solution, (ii) finding multiple reference solutions, (iii) comparing the candidate against the
reference solutions, and (iv) assessing the candidate solution quality.
Candidate Solution. First, a randomly initialized candidate solution is optimized based on an en-
semble of nc source domains (Lines 3 to 4). Practically, the locally optimal policy parameters are
optimized on the sample-based approximation (3).
Reference Solutions. Second, nG reference solutions are gathered by solving the same approxi-
mated SP with different realizations of the random variable ξ (Lines 6 to 8). These nG non-convex
optimization processes all use the same candidate solution θ?nc as initial guess.
Solution Comparison. Each reference solution θk?nr with k = 1, . . . , nG gets evaluated against the
candidate solution θ?nc for each realization of the random variable ξki with i = 1, . . . , nr on which
the reference solution has been trained. In this step, the performances per domain ĴnJ

(
θ?nc , ξ

k
i

)
and ĴnJ

(
θk?nr , ξ

k
i

)
are estimated from nJ Monte-Carlo simulations with synchronized random seeds

(Lines 10 to 13). Thereby, both solutions are evaluated using the same random initial states and ob-
servation noise. Due to the potential suboptimality of the reference solutions, the resulting difference
in performance

Ĝknr,i
(
θ?nc
)

= ĴnJ
(
θk?nr , ξ

k
i

)
− ĴnJ

(
θ?nc , ξ

k
i

)
(6)

may become negative. This issue did not appear in previous work on assessing solution qualities of
SPs [3, 23], because they only covered convex problems, where all reference solutions are guaran-
teed to be global optima. Utilizing the definition of the SOB in (5) for SPOTA demands for globally
optimal reference solutions. Due to the non-convexity of the introduced RL problem the obtained
solutions by the optimizer only are locally optimal. In order to alleviate this dilemma, all negative
samples of the approximated SOB are clipped to zero (Line 15). Alternatives for this method of
processing the negative samples are discussed in the Appendix C.
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Solution Quality. Next, a (1−α)-level confidence interval
[
0, ḠUnr

(
θ?nc
)]

for the estimated SOB
at θ?nc is constructed. While the lower confidence bound is fixed to the theoretical minimum,
the Upper Confidence bound on the Simulation Optimization Bias (UCSOB) is computed using
the statistical bootstrap method [32]. Regarding the statistical bootstrap method, we denote boot-
strapped quantities with a left superscript asterisk and optima yielded by solving optimization prob-
lems with a right superscript star. There are multiple ways to yield a confidence interval by ap-
plying the bootstrap [33]. Here, the ’basic’ nonparametric method was chosen, since the afore-
mentioned clipping changes the distribution of the samples and hence a method relying on the
estimation of population parameters such as the standard error is inappropriate. Applying (6) to
each reference solution and realizations yields a set of nGnr samples of the approximated SOB
G = {Ĝ1

nr,1

(
θ?nc
)
, . . . , ĜnGnr,nr

(
θ?nc
)
}. Through uniform random sampling with replacement from

G , we generate nb bootstrap samples ∗G1, . . . ,
∗Gnb . Thus, for our statistic of interest, the mean

approximated SOB Ḡnr
(
θ?nc
)
, the UCSOB becomes

ḠUnr
(
θ?nc
)

= 2Ḡnr
(
θ?nc
)
−Qα

[∗Ḡnr(θ?nc)] ,
where Ḡnr

(
θ?nc
)

is the mean over all (nonnegative) samples from the empirical distribution, and
Qα
[∗Ḡnr(θ?nc)] is the α-th quantile of the means calculated for each of the nb bootstrap samples

(Lines 19 to 21). Consequently, the true SOB is covered by the obtained one-sided confidence
interval with the approximate probability of (1−α), i.e.,

P
(
G
(
θ?nc
)
≤ ḠUnr

(
θ?nc
))
≈ 1− α,

which is analogous to (4) in [23]. Finally, the sample sizes nr and nc of the next epoch are set
according to the nondecreasing sequence. The procedure stops if the UCSOB at θ?nc is less than or
equal to the specified threshold of trust β. Fulfilling this condition, the candidate solution at hand
does not lose more than β in terms of performance with approximate probability (1−α), when it is
applied to a different domain sampled from the same distribution.
Intuitively, the question arises why one should not use all samples for training a single policy and
thus most likely yield a more robust result. To answer this question we want to point out that the
key difference of SPOTA to the related methods is the assessment of the solution’s transferability to
different domains. While the approaches reviewed in Section 1.1 train one policy until convergence
(e.g., for a fixed number of steps), SPOTA repeats this process and suggests new policies as long as
the UCSOB is above a specified threshold. Thereby, SPOTA only uses 1/(1 + nGn/nc) of the total
samples to learn the candidate solution, i.e., the policy that will be deployed. If we would use all
samples for training, hence not learn any reference solutions, we would not be able to estimate the
SOB and therefore lose the main feature of SPOTA.
The hyper-parameters chosen for the experiments in Section 3 as well as further details on the
implementation of SPOTA can be found in the Appendix C.

3 Experiments
Within this section we introduce the ball-on-plate task (Figure 1), a balancing task in which the agent
has to stabilize a ball at the center of a plate which is attached to a robotic arm. The agent sends
task-space acceleration commands to the simulated robot, while the robot’s joints are controlled by
an inverse kinematics algorithm and low-level PD-controllers. To demonstrate the applicability of
SPOTA, we compare it against a LQR and NN policies trained by TRPO as well as EPOpt. We
first describe the system’s physical modeling as well as the setup. Next, we explain the conducted
experiments and finally summarize their results.

3.1 Modeling and Setup Description

The state is defined as s = [αp, βp, xb, yb, zb − rb, α̇p, β̇p, ẋb, ẏb, żb]T, where αp, βp are the plate’s
angles around the x- and y-axis of the inertial frame receptively, xb, yb, zb are the ball’s Center of
Mass (CoM) position w.r.t. the plate’s frame, which is located at the plate’s center, and rb is the
ball’s radius. Accordingly, the actions are defined as a = [α̈p, β̈p]

T. A picture of the setup showing
the reference frames can be found in the Appendix B. We use an exponential reward function, where
the exponent is a weighted sum of squared state errors and actions.
All our simulations are set up in the Rcs framework [34]. The robotic arm is mounted on the ground
and initialized holding the plate upright with the ball on top. To avoid singularities, the robot’s
initial pose is set to be not fully stretched out (Figure 1). The ball’s initial x-y position on the plate
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Figure 2: Performance measured in average return of a policy trained with SPOTA, evaluated on
grids of various instances of the ball-on-plate task. The UCSOB of this policy was 55.34. Note, that
the plotted parameter range exceeds the one experienced during training. The reported values were
generated with Vortex by executing 180 rollouts for each grid cell using different initial states.

is drawn from a manifold defined by the space between two concentric circles around the plate’s
center ensuring that all trajectories start with a similar distance to the goal (s = 0,a = 0). As a
consequence the variance of the returns is reduced and learning is facilitated. While training, we
add zero-mean i.i.d. normal noise with constant covariance to the observations, whereas for testing
no noise is injected. The policies’ hyper-parameters are documented in the Appendix C.

3.2 Experiments Description

We conducted three experiments on the ball-on-plate setup using (perturbed) physics simulations:

1. evaluating one SPOTA policy on multiple 2D-grids of simulator parameters,
2. comparing LQR, TRPO, EPOpt, and SPOTA policies while varying one simulator parameter,
3. cross-evaluation of policies trained in Vortex and in Bullet then tested in both.

In all experiments, the agent’s goal is to stabilize the randomly initialized ball at the plate’s center.
For the sake of comparability, we measured the performance of each policy using the sum of rewards,
called (undiscounted) return. Note that the LQR is only optimal for linear systems and quadratic
cost functions, hence we can not expect it to perform best but are nevertheless interested in a well-
known baseline from classical control. The motivation of the experiments is to find out which policy
is able to transfer to unseen environments. Roughly speaking, the return values R =

∑T−1
t=0 rt

can be categorized as follows: R > 350 excellent performance (fast stabilization of the ball at
the center), R ∈ [300, 350] good performance (ball stabilized in the center at latest on t = T ),
R ∈ [200, 300[ mediocre performance (mostly due to oscillations around the center),R ∈ [100, 200[
bad performance (borderline stable or unstable behavior), R < 100 complete failure.

3.3 Results

The following figures summarize the results obtained from the experiments described in the previ-
ous section. Additional videos can be found at https://www.ias.informatik.tu-darmstadt.
de/Team/FabioMuratore.
Experiment 1 conducts a sensitivity analysis of a policy trained using SPOTA w.r.t. changes of the
domain. In Figure 2, the performance is plotted as a heat map across grids of configurations gen-
erated by varying two simulator parameters simultaneously. It can be seen that SPOTA is able to
handle significant changes in sensitive parameters (e.g., CoM offset), as well as every test case for
insensitive parameters (e.g., ball mass). Task failures occur for example, when both friction coeffi-
cients are too high, i.e., the plate’s deflection angle induced by the policy is too small to get the ball
rolling. A common cause for complete failure is very slippery environments with high action delay,
which leaves little room for corrections computed on the current state feedback.
Experiment 2 provides a comparison of different control policies’ robustness against model uncer-
tainties. Figure 3 shows the dependency of the achieved return on varying a set of selected simulator
parameters. On the LQR side, there is potentially high performance, but total trust in the dynamics
model. This can be observed regarding the action delay (Figure 3 – right) which is assumed to be
zero in the LQR model. The TRPO policy trained without domain randomization behaves similarly
to the LQR in most cases. In contrast, the SPOTA policy is able to maintain its performance across
a wider range of parameter values. Regarding the variation of the ball’s rolling friction coefficient
(Figure 3 – middle), it can be seen that the risk-averse EPOpt procedure leads to higher robustness
for a limited subset of the possible problem instances (e.g., very low rolling friction). This effect can
be explained by the fact that EPOpt optimizes the conditional value at risk of the return [11]. On the
other side, the risk-neutral approaches outperform the EPOpt in most other cases.
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Figure 3: Performance measured in return of SPOTA, EPOpt, TRPO, and LQR policies when vary-
ing the ball’s CoM offset in z direction (left), the ball’s rolling friction coefficient (middle), and the
policy’s action delay (right).1

Figure 4: Cross-evaluation of SPOTA, EPOpt TRPO, and LQR
policies trained in Vortex and then tested in Bullet. The simula-
tors were set up to maximize the similarity between the physics
engines as much as possible. Moreover, the simulator parame-
ters used for evaluating are the same as for determining the LQR
and TRPO policy, and equal to the nominal parameters used for
the SPOTA as well as EPOpt procedure.1

Experiment 3 investigates if the application of domain randomization improves the transferabil-
ity of a control policy between two different physics engines. The results in Figure 4 confirm two
hypotheses. First, learned policies perform worse when tested using a different physics engine. Sec-
ond, domain randomization alleviates this effect. The LQR baseline does well in both evaluations
since the depicted rollouts are based on the nominal parameter values, and the LQR’s feedback gains
are not learned from samples, i.e., independent of physics engine. Compared to policy trained with
SPOTA or EPOpt, the TRPO policy is not able to maintain the level of performance. Note that
the definition SOB (4) requires the candidate’s and references’ simulator parameters to be from the
same distribution. Practically, this assumption is violated as soon as one switches the physics en-
gine, since the some parameters, e.g., the friction coefficients, are processed differently.
In conclusion, the results show that, compared to policies which were trained for a single fixed
simulator, domain randomization algorithms like SPOTA are better at maintaining their level of
performance across a variety of different domains.

4 Conclusion and Future Work
We presented a new policy search meta-algorithm called Simulation-based Policy Optimization with
Transferability Assessment (SPOTA) which is able to learn a control policy that directly transfers
from a randomized source domain to an unseen target domain. The gist is to frame the training
over an ensemble of models as a stochastic program and to use an upper confidence bound on the
estimated Simulation Optimization Bias (SOB) as stopping criterion for the training process. Fur-
thermore, the resulting SOB can be interpreted as a measure of the obtained policy’s robustness to
variations of the source domain. To the best of our knowledge, SPOTA is the only domain random-
ization approach that provides this quantitative measure for over-fitting to the domains experienced
in the training phase. This measure is of high importance, since sample-based optimization is always
optimistically biased [2, 3]. We evaluated our method as well as three baselines on a simulation of
the introduced ball-on-plate task, a robotic balancing task. The results show that policies trained
with SPOTA are able to generalize to unknown target domains, while baselines acquired without
domain randomizations fail.
In future work we will test SPOTA on the real-world counterpart of the ball-on-plate task. Apart
from that, we plan to investigate modifications to the presented algorithm such as using adaptive
probability distributions for sampling the simulator parameters while training. This would allow to
sample according to an objective, e.g., maximizing the information gain.

1 The reported values were generated with Vortex (Figure 3) or Bullet (Figure 4) by executing 180 rollouts
for each parameter value, using identical equally-spaced initial states, and the same random seeds for all
policies. The solid lines indicate the mean and the shaded areas cover ±1 standard deviation.
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– Appendix –
Domain Randomization for Simulation-Based Policy

Optimization with Transferability Assessment

A Additional Details on the Simulation Optimization Bias
In this section, we derive an upper bound on the SOB in the context of RL and show its monotonic
decrease with increasing number of samples from the random variable. In what follows, we build
upon the results of [2, 3] where the SOB appears under the name ‘optimality gap’.

A.1 Estimation of the Simulation Optimization Bias

Consider a real-valued function J(θ, ξ) quantifying the expected (discounted) return of a policy, de-
termined by the policy’s parameters θ , the domain’s parameters ξ , and the initial state distribution
(omitted for a more concise notation). The optimal solution of the true Stochastic Program (SP) is
denoted as θ? = arg maxθ Eξ [J(θ, ξ)]. Likewise, the optimal solution of the approximated SP is
denoted as θ?n = arg maxθ Ĵn(θ), where Ĵn(θ) = 1/n

∑n
i=1 J(θ, ξi) is the Monte-Carlo approxi-

mation of J(θ) using n samples of ξ . The SOB at the candidate solution θc

G(θc) = maxθ Eξ [J(θ, ξ)]− Eξ [J(θc, ξ)] ≥ 0 (7)

expresses the difference between the optimal value of the true SP and its value at the candidate
solution. When replacing the arbitrary θc with θ?n, the inequality above reveals that θ?n is a biased
estimator of θ?. For i.i.d. samples ξ1, . . . , ξn, we can write

maxθ Eξ [J(θ, ξ)] = maxθ Eξ
[
Ĵn(θ)

]
(8)

Plugging (8) into the first term of (7) yields

G(θc) = maxθ Eξ
[
Ĵn(θ)

]
− Eξ [J(θc, ξ)] ≤ Eξ

[
maxθ Ĵn(θ)

]
− Eξ [J(θc, ξ)] (9)

as an upper bound to the SOB. In order to compute this upper bound, we use the law of large
numbers for the first term and replace the second expectation in (9) with the sample average

G(θc) ≤ maxθ Ĵn(θ)− Ĵn(θc) = Ĝn(θc) , (10)

where Ĝn(θc) ≥ 0 holds. This result is consistent with Theorem 1 and equation (9) in [3] as well
as the “type A error” mentioned in [2].

A.2 Decrease of the Estimated Simulation Optimization Bias with Increasing Sample Size

Next, we show that the SOB decreases in expectation when the sample size of the physics parameters
ξ is increased. The expectation over ξ of the minuend in (10) estimated from n+ 1 i.i.d. samples is

Eξ
[
Ĵn+1

(
θ?n+1

)]
= Eξ

[
maxθ

1

n+ 1

n+1∑
i=1

J(θ, ξi)

]
= Eξ

maxθ
1

n+ 1

n+1∑
i=1

1

n

n+1∑
j=1,j 6=i

J
(
θ, ξj

)
≤ Eξ

 1

n+ 1

n+1∑
i=1

maxθ
1

n

n+1∑
j=1,j 6=i

J
(
θ, ξj

) = Eξ
[
Ĵn(θ?n)

]
. (11)

Taking the expectation over the SOB estimated from n + 1 samples of ξ and plugging in the upper
bound from (11), we obtain the upper bound

Eξ
[
Ĝn+1(θc)

]
≤ Eξ

[
maxθ Ĵn(θ)− Eξ [J(θc, ξ)]

]
= Eξ

[
Ĝn(θc)

]
which shows that the estimator of the SOB in expectation monotonously decreases with increasing
sample size. This result is consistent with Theorem 2 in [3].
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B Further Modeling and Setup Description

Figure 5: Wire-
frame display of the
ball-on-plate sys-
tem. The x, y, and
z axes are colored
in red, green, and
blue, respectively.

The system’s equations of motion can be derived using the Euler-Lagrange
formalism. In order to model the dynamical system for the calculation of the
LQR’s feedback gains, we make the following assumptions: (i) there is no
kinetic energy from the bodies rotational motions around their vertical axis,
(ii) the ball rolls on the plate without slipping, (iii) there is only linear-viscous
friction between the ball and the plate, and (iv) the ball and the plate are sym-
metric and homogeneous rigid bodies.
The system state is defined as s = [αp, βp, xb, yb, zb − rb, α̇p, β̇p, ẋb, ẏb, żb]T,
where αp, βp are the plate’s angles around the x- and y-axis of the inertial
frame respectively, xb, yb, zb are the ball’s CoM position w.r.t. the plate’s
frame, which is located at the plate’s center, and rb is the ball’s radius. Ac-
cordingly, the actions are defined as a = [α̈p, β̈p]

T in the plate’s frame. The
obtained model is linearized around the equilibrium (s = 0,a = 0). Finally,
the feedback gains of the LQR are computed by solving the discrete-time
Riccati equation, using the weight matrices Q and R for the state errors and
actions, respectively. The same weight matrices are used to define the reward
function for the policies trained by RL algorithms.

r(st,at) = exp
(
c
(
sT
tQst + aT

tRat

))
with c =

ln (rmin)

maxs∈Sξ̄,a∈Aξ̄
sTQs+ aTRa

.

Given a lower bound for the reward rmin ∈ [0, 1], the reward function above yields values in [0, 1]
at each time step. We found that the scaling constant c < 0 is beneficial for the learning procedure,
since it prohibits the reward from going to zero too quickly. The constant’s denominator can be easily
inferred from the nominal state and action set’s boundaries, specified in the problems’ associated Rcs
simulation environment2. The ball’s initial position on the plate is drawn from a manifold defined
by the space between two concentric circles around the plate’s center

[xb,0, yb,0]T = d[cos(φ) , sin(φ)]T with d ∼ U
(
d
∣∣dL, dU) and φ ∼ U

(
φ
∣∣0, 2π) ,

ensuring that all trajectories start with a similar distance to the goal (s = 0,a = 0). As a con-
sequence, the variance of the returns is reduced, hence learning is facilitated. To provide a fair
comparison, all policies receive the same state observations as inputs. While training, we add zero-
mean i.i.d. normal noise with constant covariance to the observations ε ∼ N

(
ε
∣∣0,Σε), whereas for

testing no noise is injected.
We employed the Vortex [18] and the Bullet [19] physics engine to simulate the rollouts for training
and evaluation. As to be expected, the accessible physics parameters for Vortex and Bullet vary. The
most significant difference are the physics engines’ contact models, especially regarding friction.
While Vortex offers provides the option to specify material tables as well as contact materials for
specific pairings of materials, Bullet only allows for the specification of a subset of material prop-
erties available in Vortex, without the possibility to create custom exceptions. Another difference is
between the engine-specific simulation damping factors, which were left unchanged for all exper-
iments. Unfortunately, Vortex is closed source and Bullet is lacking proper documentation, hence
an in-depth investigation of the differences is prohibitive. However, our goal is neither to make a
qualitative statement nor to provide a detailed comparison of the two physics engines, but rather to
evaluate the transferability of the control polices.

C Complementary Implementation Details on SPOTA
As batch policy optimization sub-routine, called BatchPolOpt in Algorithm 1, we used the
TRPO [16] implementation within the rllab framework3. In principle, any batch policy optimization
algorithm is applicable for SPOTA.
For each iteration, dT/∆tenτn samples are fed to the optimizer, where T is the maximum runtime
of an episode, ∆t is the simulation’s step size, nτ is a constant factor, and n is either nc or nc
depending on which policy is currently optimized. In other words, each optimizer iteration receives
as many time steps as nτ full-length trajectories for n different domains consist of. This implies

2 https://github.com/HRI-EU/Rcs
3 https://github.com/rll/rllab

12

https://github.com/HRI-EU/Rcs
https://github.com/rll/rllab


a nondecreasing batch size, which resembles the core idea of retrospective approximation methods
[25] where the problem is solved to satisfy error tolerances converging to zero.
As described in Section 2, some samples of the SOB in (6) might be negative. Since we know that
a policy’s SOB can theoretically not be smaller than zero, we decided to clamp all negative SOB
samples to zero. One alternative approach is to recompute negative samples using the other nG − 1
reference solutions. The rationale behind this approach is that one of those reference solutions, al-
though trained on a different domain, could perform better on the current domain than the candidate
solution. One could argue that this approach yields better SOB estimates than just clamping them to
zero. For simplicity and the reduction of computation time, we decided against this alternative.
The hyper-parameters values used for the experiments are listed in Table 1. Concerning EPOpt, we
first used the hyper-parameters extracted from the original paper [11], but did not achieve satisfy-
ing results. Therefore, we tuned the number of optimizer iterations niter, the number of optimizer
iterations in which all trajectories are used niter, the optimizer batch size, and the EPOpt-specific
CVaR-parameter ε. In order to maintain a fair comparison, we similarly adapted the parameters
of the TRPO baseline. Regarding the Coulomb friction, we set the static and the sliding friction
coefficients equal.

Table 1: Hyper-parameter values for the experiments in Section 3. All simulator parameters were
randomized such that they stayed physically plausible. We use n as shorthand for nc or nr depending
on the context. Normal distributions, are parametrized with mean and standard deviation, uniform
distributions with lower and upper bound.

Parameter Value Parameter Distribution / Value

BatchPolOpt TRPO [16] ε (EPOpt) 0.2

policy architecture FNN: 16-16 with nskipiter (EPOpt) 300
tan-h nonlinearities ball mass [kg] N

(
ξ1
∣∣0.2, 0.05

)
niter (optimizer) SPOTA: 200 ball radius [m] N

(
ξ2
∣∣0.08, 0.02

)
EPOpt & TRPO: 600 ball CoM offset in N

(
ξ3, ξ4, ξ5

∣∣0, 8e−3
)

runtime T 10 s x-, y-, z-direction [m]
step size ∆t 0.02 s Coulomb frict. U

(
ξ6
∣∣0, 0.6)discount factor γ 0.998 coeff. [-]

initial nc (SPOTA) 2 rolling frict. coeff. [-] U
(
ξ7
∣∣0, 0.01

)
initial nr (SPOTA) 1 slip coeff. [s N−1 m−1] U

(
ξ8
∣∣0, 150

)
nτ

SPOTA: 10 action delay [∆t] U
(
ξ9
∣∣0, 6)

EPOpt & TRPO: 1 dU [m] 0.45 plate width
n (EPOpt & TRPO) 240 dL [m] dU − 0.01 m
batch size in steps dT/∆tenτn NonDecrSeq nk+1 ← n0(k + 1)
nG (SPOTA) 10 min reward rmin 1e−4
nJ (SPOTA) 120 confidence level α 0.05
bootstrap samples nb 1000 threshold of trust β 0.15 maxξ ĴnJ

(
θ?nc , ξ

)
weight matrixR diag(1e−4, 1e−4)
weight matrixQ diag (0.01, 0.01, 1, 1, 1, 1e−3, 1e−3, 0.1, 0.1, 0.1)

obs. noise cov. Σε (diag (5e−4, 5e−4, 5e−4, 5e−4, 5e−4, 0.01, 0.01, 0.01, 0.01, 0.01))
2
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D Supplementary Results of Experiment 3
In experiment 3, we investigated to what extent SPOTA, EPOpt, TRPO, and LQR policies are able
to maintain their performance when evaluated using a different physics engine. Figure 6 displays
the full cross-evaluation between Vortex and Bullet, i.e., the extended version of Figure 4. It can
be seen from the figures that policies trained using domain randomization generalize better to the
other physics engine. In particular the SPOTA policy is able to maintain the performance level of the
LQR controller, which’s parameters are invariant to the physics engine. Regarding the relatively low
performance of the EPOpt policy, we want to add that it is common for this algorithm to yield lower
rewards for the nominal domain parameters, but to be robust against variations of these parameters
(not depicted in Figure 6). Interestingly, the evaluation in Vortex yields notably better results. One
explanation for that could be that, despite using identical physics parameter values, we found that
the simulation in Bullet appears to have less friction. Additional videos are provided at https:
//www.ias.informatik.tu-darmstadt.de/Team/FabioMuratore.

(a) Trained in Vortex, tested in Vortex (b) Trained in Vortex, tested in Bullet

(c) Trained in Bullet, tested in Vortex (d) Trained in Bullet, tested in Bullet

Figure 6: Cross-evaluation of SPOTA, EPOpt TRPO, and LQR policies trained in Vortex and then
tested in Bullet. The simulators were set up to maximize the similarity between the physics engines
as much as possible. Moreover, the simulator parameters used for evaluating are the same as used
for determining the LQR and TRPO policy, and equal to the nominal parameters for the SPOTA as
well as EPOpt procedure.

14

https://www.ias.informatik.tu-darmstadt.de/Team/FabioMuratore
https://www.ias.informatik.tu-darmstadt.de/Team/FabioMuratore

	Introduction
	Related Work
	Problem Statement and Notation

	Simulation-Based Policy Optimization with Transferability Assessment
	Experiments
	Modeling and Setup Description
	Experiments Description
	Results

	Conclusion and Future Work
	Additional Details on the Simulation Optimization Bias
	Estimation of the Simulation Optimization Bias
	Decrease of the Estimated Simulation Optimization Bias with Increasing Sample Size

	Further Modeling and Setup Description
	Complementary Implementation Details on SPOTA
	Supplementary Results of Experiment 3

