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Abstract

Quadrupeds are capable of performing complex tasks in challenging environments. Many
of the state-of-the-art approaches are based on Model Predictive Control to navigate
through these environments. Model Predictive Control predicts the robot’s behavior at
each time step. This prediction requires large computational resources during execution
and a high level of expert knowledge to design the model. These requirements can lead to
a slow reaction time, less computational resources for other tasks, and a vulnerability to
model errors. This thesis uses Imitation Learning to generate behavior that is comparable
to the results of Model Predictive Control. More precisely, it uses Inverse Reinforcement
Learning with a model of the Unitree A1 to imitate an expert. It produces a policy that
can walk in eight different directions, independent of the robot’s yaw. The result is a fast
and computationally inexpensive agent with comparable results to the expert. The model
requires no expert knowledge. Additionally, the thesis prepares for further experiments
with more complex tasks.
This work implements a model of the Unitree A1 with all necessary properties for Inverse
Reinforcement Learning. It embeds this model in the learning environment with the
required algorithms. To generate expert data, it adapts an existing Model Predictive
Control model. For the final goal, it compares several different training settings and
properties. The end result is an agent that is capable of walking forward, backward,
sideways, and diagonally, regardless of the robot’s yaw.



Zusammenfassung

Vierbeinige Roboter sind in der Lage komplexe Aufgaben in anspruchsvollen Umgebungen
auszuführen. Viele aktuelle Ansätze basieren auf Model Predictive Control um durch diese
Umgebungen zu navigieren. Model Predictive Control sag das Verhalten des Roboter in
jedem Zeitschritt voraus. Diese Vorhersage erfordert einen hohen Rechenaufwandwährend
der Laufzeit und viel Expertenwissen um das Model zu designen. Diese Anforderungen
können zu einer langsamen Reaktionszeit, weniger Rechenkapzität für andere Aufgaben
und zu einer Anfälligkeit für Modellfehler führen. Diese Thesis nutzt Imitation Learning um
Verhalten zu erzeugen, das mit den Ergebnissen von Model Predictive Control vergleichbar
ist. Genauer gesagt wird Inverse Reinforcement Learning verwendet um mit einem Modell
des Unitree A1 einen Experten zu imitieren. Dadurch wird ein Verhalten erzeugt, das
unabhängig von der Rotation um die vertikale Achse in acht verschiedenen Richtungen
laufen kann. Das Ergebnis ist ein reaktionsschneller und recheneffizienter Agent mit
vergleichbaren Ergebnissen zu dem Experten. Das Modell benötigt kein Expertenwissen.
Darüber hinaus bereitet die Thesis den Weg für weitere Experimente mit komplexeren
Aufgaben vor.
Diese Arbeit implementiert ein Modell des Unitree A1mit allen notwendigen Eigenschaften
für das Inverse Reinforcement Learning. Sie bettet dieses Modell in die Lernumgebung mit
den entsprechenden Algorithmen ein. Zur Erzeugung der Expertendemonstrationen wird
ein bestehendes Model Predictive Control Modell adaptiert. Für das Endziel vergleicht sie
verschiedene Trainingseinstellungen und -eigenschaften. Das Endergebnis ist ein Agent,
der fähig ist vorwärts, rückwärts, seitwärts und diagonal zu laufen unabhängig von der
Rotation um die vertikale Achse.
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1. Introduction

Figure 1.1.: A picture series of the final agent walking in a straight line.

Inspired by their animal counterparts, robotic quadrupeds can perform complex tasks such
as various running gaits [5], stair climbing [8], and jumping over obstacles [15]. These
abilities are of great interest for navigating through challenging environments. For example,
robotic quadrupeds can be used in environments that are inaccessible to humans and to
challenging for robots with wheels. Many of the current approaches are based on Model
Predictive Control (MPC) systems [7][19][29]. These models predict a tree of possible
trajectories per step, starting in the current state. Then they select the first action from the
best trajectory and recalculate all trajectories for the new state again [2]. Since this leads
to an exponential growth in the length of the predicted trajectories, MPC models require
a large amount of computational resources while performing. Additionally, designing
internal predictive models requires a high degree of expertise. If the model is inaccurate,
the robot’s performance will suffer significantly due to incorrect predictions. The first step
towards reducing computational resources and towards a model-free approach are neural
networks. They are computational inexpensive during the runtime. A common approach
to train these neural networks is Reinforcement Learning (RL)[25]. Many successes have
shown its suitability for various challenging tasks [12][14][18]. However, RL has one
disadvantage for training complex tasks with multiple desiderata like quadruped walking.
It is difficult to define a suitable goal description that balances the different requirements
[1]. This often leads to fine tuning this goal description until the resulting behavior is the
desired behavior. That is why we use Inverse Reinforcement Learning (IRL) to imitate the

2



behavior of an expert. As demonstrations we can use any data from similar locomotion,
for example from real animals with four legs [21]. In this work we use data generated by
an adapted MPC model. IRL is model-free, computationally efficient to run and generates
an entire behavior based on some expert data [13]. The result is an agent that can react
fast to uncertain situations, while reducing the computational costs during execution and
keeping the required expert knowledge about the model low.

1.1. Goal of the Thesis

This thesis is about applied Inverse Reinforcement Learning from observation on the
Unitree A1 robot [24]. The final goal is to obtain a trained agent that can produce gaits
comparable to an expert. It should be able to walk in eight different directions, each with
a different gait, regardless of the trunk’s yaw. This goal is divided into multiple subgoals:
First, expert demonstrations that can be used for the training are needed. We generate
the data with a data generation pipeline that uses an adapted MPC model. Second, a
model of the Unitree A1 robot must be built and embedded in the environment with the
necessary algorithms. Third, agents that control the model need to be trained with IRL.
They should be able to produce a periodic and stable gait that behaves similarly to the
expert. The training starts with a straight forward walk and increases the complexity
step-wise by adding more walking directions until the final goal is reached. An example
of the desired agent walking on a straight line is shown in Figure 1.1.

We will start in Chapter 2 with a short overview of related work. Then we continue in
Chapter 3 with the necessary foundations on which we build later. We explain the algo-
rithms and the structure of a basic IRL environment. Chapter 4 describes the methodology
to achieve the goal. More precisely, it explains how the expert data is generated, how
the Unitree A1 model is designed, and how the learning environment is constructed. In
Chapter 5, we discuss different learning experiments, their settings, and their results. We
start with justified design choices about the following experiments and continue with
different complex tasks until we achieve the desired behavior. We conclude the results of
this thesis in Chapter 6 and provide an outlook on possible future work.
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2. Related Work

This chapter introduces different approaches that are related to our work. They deal with
the same learning problem as we do: imitating an expert’s behavior. We explain these
approaches and compare their benefits. Section 2.1 introduces a fundamental idea to solve
the Inverse Reinforcement Learning problem. Section 2.2 deals with the state-of-the-art
approach Adversarial Imitation Learning (AIL) and mentions work that is based on this
approach. The next Section 2.3 comprises Imitation Learning (IL) with Sparse Rewards.
The last Section 2.4 introduces two state-of-the-art algorithms to solve IRL problems with
implicit rewards.

2.1. Apprenticeship Learning via Inverse Reinforcement Learning

The first paper by Abbeel and Ng [1] realizes Apprenticeship Learning via Inverse Re-
inforcement Learning. They prove that they can use the so called feature expectations
to compare the expert’s performance with the learned performance. So the goal is to
generate a policy with a feature expectation close to the expert’s feature expectation. This
approach alternates between an reward optimization step and a whole RL computation
to learn the corresponding policy. Their approach assumes that the reward function of the
expert is linear in the features, so the algorithm can not learn a behavior with a nonlinear
reward function.

2.2. Adversarial Imitation Learning

Another approach for IRL that is worth mentioning is Adversarial Imitation Learning (AIL).
It trains two different operators: the first operator tries to imitate an expert’s behavior
and the second operator tries to distinguish between the expert data and the data of
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the first operator [13]. Many state-of-the-art algorithms are following this idea. One
algorithm we use for training, Generative Adversarial Imitation Learning (GAIL), uses
Generative Adversarial Networks (GAN) to train the two operators [13]. Since it is often
very easy for the second operator to distinguish between the data, Variational Adversarial
Imitation Learning (VAIL) by Peng et al. implements an information bottleneck to restrict
the attention of the second operator to the most important features [22]. That leads to
better improvement steps of the first operator. Kostrikov et al. propose an algorithm, called
Discriminator-Actor-Critic, that prevents a reward bias of other approaches in the second
operator and reduces environmental interaction through an off-policy variant of AIL [17].
Adversarial Motion Priors introduced by Peng et al. combine AIL with a high-level task
objective. A task objective defines the goal and short unstructured motion clips are used
to learn how to reach that goal [20]. Chapter 3 explains GAIL and VAIL in more detail.

2.3. SQIL: Imitation Learning via Reinforcement Learning with
Sparse Rewards

Reddy et al. [23] presenting another approach to IRL. Their algorithm, Soft Q Imitation
Learning (SQIL), motivates the agent to return to the demonstrated data. To achieve this
behavior, they apply RL with a reward function based on the expert data. The reward
function assigns a constant reward of 1 for matching the expert action in the demonstrated
state. All other state-action pairs receive a reward of 0. Because they use the off-policy
RL algorithm soft-Q for learning, the expert data can be kept in the learning buffer and
does not need to be reachable for the agent under the current policy. The algorithm is
applicable to high-dimensional problems with a continuous state space and stochastic
unknown dynamics. According to the authors, it achieves comparable results to GAIL [13]
while the implementation is less complex.

2.4. Inverse Reinforcement Learning with Implicit Rewards

Many state-of-the-art algorithms formulate an implicit reward instead of using an explicit
reward function to train the agent [9][11][16]. The two approaches we mention here
use the Q-function to express this implicit reward. Similar to Apprenticeship Learning in
Section 2.1, they transform the IRL problem into a occupancy measure matching problem.
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Inverse soft-Q Learning for Imitation The first approach by Garg et al. [9] learns the
desired policy directly instead of learning a reward that indicates the desired policy. To do
this reformulation, it directly recovers the expert’s Q-function. This Q-function evaluates
each state-action pair in terms of its expected discounted reward and can represent
the reward function and the policy. The authors prove a one-to-one relation between
the Q-function and the reward function. Thus, the targeted optimum is the same as
in standard approaches such as GAIL [13] and VAIL [22], but they use a simpler way
to reach it. The algorithm by Garg et al., called Inverse soft-Q Learning for Imitation
(IQLearn), uses a modified version of a soft actor-critic update rule to learn the Q-function.
According to their benchmarks, IQLearn achieves a high positive correlation between the
learned and the true reward function, uses only few expert samples for training, and
can scale to complex behaviors. One disadvantage of IQLearn is that the behaviors are
not generalizable to other environments, because the recovered reward depends on the
environment’s dynamics.

LS-IQ: Implicit Reward Regularization for Inverse Reinforcement Learning The last al-
gorithm by Al-Hafez et al. [11] combines ideas from IQLearn[9], GAIL[13], and SQIL[23].
They discover properties of the IQLearn regularizer and use these properties to eliminate
sources of instability, by limiting the rewards and the Q-function targets. The resulting
objective can be seen as a least-squares Bellman error minimization. The authors also
prove a close similarity between this objective and the SQIL approach. The new approach
they propose is called Least Squares Inverse Q-Learning (LS-IQ). It avoids the survival
bias of IQLearn by actively assigning a reward depending on the reward bounds and
the discount factor. Their approach results in more stable training with less variance in
the Q-function estimation. The authors also introduce a version for training from states
only. It predicts the actions based on an Inverse-Dynamics Model and shows comparable
performance to the state-action training.

6



3. Preliminaries

In the following, we introduce the basic concepts on which we will build later. We start
in Section 3.1 with a description of the learning environment. The we continue with an
explanation of the idea behind Reinforcement Learning and IRL in Sections 3.2 and 3.3.
In the last Sections 3.4 and 3.5 with an explanation of the concrete learning algorithms
we use for training.

3.1. Markov Decision Process

A Markov Decision Process (MDP) describes the learning environment for our learning
algorithms and for the performing agents [25]. The environment is fully observable. An
MDP is a tuple (S,A,P, r, γ, S0) consisting of the state space S, the action space A, a state
transition function P : S×A× S → [0, 1], a reward function r : S×A → R, a discount
factor γ ∈ [0, 1), and an initial state distribution S0 : S → R+, where R+ contains all
positive elements in R. S contains all possible states that the agent can observe. MDPs
are fully observable, which means the observed state completely describes the process
of the environment. The agent can perform all actions a ∈ A and depending on the
current state s and the performed action a it reaches the next state s′ with probability
P(s′ | s, a). The reward function r(s, a) gives away rewards for the agent. The discount
factor γ determines how important the future rewards are for the agent in the current
state. A reward i steps in the future is only worth γi−1 times the original value. The agent
starts with the probability S0(s) in state s.
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3.2. Reinforcement Learning

Agent

Environment

action
a

reward
r(s)

state
s

Figure 3.1.: Interaction between an RL en-
vironment and an agent. The
agent observes the state and re-
ceives a reward. Depending on
this observation, it chooses an
action to interact with the envi-
ronment. This environment is an
MDP.

The task of Reinforcement Learning (RL)
[25] is to find a policy π : S × A → R+

that maximizes the expected reward in the
MDP. An agent following π selects action a
in state s corresponding to the probability
density π(s, a). To do so, the agent can
interact with the environment with the ac-
tions A to optimize the expected reward
via trial and error. Figure 3.1 shows the
interaction between an agent and the MDP
environment. So the learning algorithms
do not need training data, it generates the
data itself. Another characteristic of RL are
delayed rewards. In contrast to other learn-
ing concepts like supervised learning, the
agent only receives feedback through the
rewards. The agent does not know whether the decision was the best one. The reward
function weights transitions with a reward to describe the desired behavior, but it should
not explain how to reach the behavior. This reward definition can be a problem in RL: If
the task that should be solved gets more complex, it gets more difficult to define a suitable
reward function for multiple desiderata. For example for robot walking there are multiple
desiderata, such as keeping a velocity in the desired direction, walking in a periodical gait,
preventing unnecessary movements of the motors, not falling et cetera. These complex
goal behavior often leads to reward function fine tuning until the agent generates the
wanted behavior [1]. This problem is addressed later in Section 3.3.
The maximum entropy Reinforcement Learning problem is to maximize the expected
discounted reward under the discounted causal entropy H(π) = Eπ[− log π(a | s)] corre-
sponding to the policy π. It is defined as

J(s) = Eπ[r(s, a)] = E

[︄ ∞∑︂
t=0

γtr(st, at)

]︄
. (3.1)

The desired policy is element of the policy space π ∈ Π. To get a policy that maximizes J
from Equation (3.1), the following equation needs to be optimized [13]

RL(r) = argmax
π∈Π

ηH(π) + Eπ[r(s, a)] , (3.2)
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while η is a constant factor used in practice to prevent the Reinforcement Learning
algorithms to overestimate the importance of the entropy. To solve the RL problem there
are three main approaches: First, action-value methods are based on the Q-function
Q(s, a). The function evaluates each state s and action a with its expected discounted
reward starting in state s with action a and following π after that. Second, policy gradient
methods try to optimize the policy function based on gradients. Third, actor-critic methods
as a combination of these two approaches. This is the approach we employ in this thesis.
Those methods use a Q-function as well as policy gradients. We utilize parameterized
policies πθ for infinite state and action spaces. The RL algorithm tries to find a policy
function with the maximum expected reward by finding the appropriate parameters θ.
Additionally, the occupancy measure [13] ρπ : S × A → R corresponding to a policy π
can be used. The measure is closely related to the distribution of the state-action pairs
that occur when following policy π. It is defined by

ρπ(s, a) = π(a | s)
∞∑︂
t=0

γtP(st = s | π) .

There is a one-to-one relationship between the occupancy measure ρπ and its correspond-
ing policy π

πρ(a | s) = ρ(s, a)/
∑︂
a′

ρ(s, a′) .

So ρπ can be used to make statements about the policy and vice versa.
In the terms of RL, a trajectory is a sequence of successive states the agent receives when
following π and the corresponding rewards ri in time step i. An important parameter
to fine tune for the RL training is the learning rate α. It determines how fast the agent
learns, so how big the correction step based on the new knowledge is. With a too large
learning rate the agent will overestimate the importance of the new data and the learning
will probably not converge. If the learning rate is too slow the training takes longer than
necessary.

3.3. Maximum Entropy Inverse Reinforcement Learning

Inverse Reinforcement Learning addresses the problem to design the reward function
for complex tasks. It is a part of Imitation Learning, which tries to imitate a behavior
from an expert agent πE. IRL assumes that the expert’s behavior πE tries to optimize an
unknown reward function rE. So basic IRL algorithms alternate between an estimation
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improvement of the reward function and a calculation of its policy. The goal is to produce
a policy that is at least as good as πE on the expert’s reward function rE. Therefore IRL
has a slightly different environment than RL: an MDP\R (S,A,P, γ, S0) denotes an MDP
without a reward function.
The first IRL principle we employ later is from Ziebert et al.[30]. It uses the principle of
Maximum Entropy for a probabilistic approach to Inverse Reinforcement Learning. One
behavior can be described by multiple reward functions. To resolve this ambiguity Ziebert
et al. use the principle of Maximum Entropy: they maximize the policy’s entropy H(π)
so they get the state distribution that has the single preference to match the occupancy
measure of the expert. To find the reward function that has the smallest difference from
the expected discounted reward of the expert, the IRL problem with Maximum Entropy is
defined as [13]

IRL(πE) = arg min
r∈RS×A

(︃
max
π∈Π

ηH(π)Eπ[r(s, a)]
)︃
− EπE [r(s, a)] . (3.3)

After the expert’s reward function is calculated, an RL step (3.2) is needed to get the
corresponding policy. So the desired policy is calculated by RL ◦ IRL(πE).

3.4. Generative Adversarial Imitation Learning

The first learning algorithm, called Generative Adversarial Imitation Learning (GAIL),
by Jonathan Ho and Stefano Ermon [13] connects Imitation Learning and Generative
Adversarial Networks. We use this algorithms for the IRL training. It is model-free, sample
efficient, and usable for learning complex behavior as well as for large, high-dimensional
environments. The algorithm allows all possible reward functions r ∈ RS×A. Instead
of learning the policy for the learned reward function until convergence per step, the
approach by Jonathan Ho and Stefano Ermon alternates between one reward improvement
step and one policy improvement step.
To do so, GAIL uses the concept of Generative Adversarial Networks [10]. It generates
a new data distribution as close as possible to a given desired data distribution. That
makes it usable for many kinds of model and optimization problems. The idea is to train a
generator G to produce a new data distribution imitating the expert’s distribution. At the
same time it trains a discriminatorD to differentiate between the expert’s data distribution
and the data distribution created by G.
To prevent the agent from overfitting due to the large reward function space, the authors
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employ an adaptive regularizer ψ on the Maximum Entropy objective (3.3). So the new
objective regularized with ψ for IRL is

IRLψ(πE) = arg min
r∈RS×A

ψ(r) +

(︃
max
π∈Π

ηH(π) + Eπ[r(s, a)]
)︃
− EπE [r(s, a)] .

The one-to-one relation between a policy π and the occupancy measure ρπ shown in
Equation (3.1) allows to use the occupancy measure ρπ analogous to the data distribution
in Generative Adversarial Networks, which the generator G tries to imitate. Thereby
the Inverse Reinforcement Learning problem is transformed to an occupancy measure
matching problem.
The new regularizer has to be suitable for large environments and achieve high accuracy
for occupancy matching. To make these properties possible, ψ adapts to the expert data

ψGA(r) =

{︄
EπE [g(−r(s, a))] if r > 0

+∞ otherwise
with g(x) =

{︄
−x− log(1− ex) if x < 0

+∞ otherwise
.

This definition little penalizes reward functions that assign high rewards to the expert’s
data and strongly penalizes reward functions that assign low rewards to the expert’s data.
Furthermore, it allows any reward function r as long as it is positive everywhere. With the
convex conjugate ψ∗

GA(ρπ − ρπE), the goal can be redefined as

RL ◦ IRLψ(πE) = argmin
π
ψ∗
GA(ρπ − ρπE) .

With discriminator D : S × A → (0, 1), the policies causal entropy H weighted by η as
policy regularizer, they get a new expression used for the optimization of D and π

EπE [− log(D(s, a))] + Eπ[− log(1−D(s, a))] + ηH(π) . (3.4)

Since there are two objectives to improve, two learning rates needs to be fine-tuned. απ
weights the gradient improvement step on the policy and αD weights the improvement
step on the discriminator. GAIL uses a parameterized policy πθ with weights θ and a
parameterized discriminator Dω with weights ω. These parameters ensure the policy and
the discriminator are suitable for large environments. The authors alternate between an
Adam gradient step on ω to decrease the objective in Equation (3.4) and a Trust Region
Policy Optimization (TRPO) step on θ to increase Equation (3.4) with the reward function
r = − log(1−D(s, a)). The TRPO is a gradient-based RL method that additionally avoids
too large policy improvement steps that could be caused by noise in the policy gradient.
The result is the following specific algorithm. Notice that the trajectories τ approximate
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the occupancy measure ρ based on monte-carlo-rollouts because in practice, the exact ρ
are not given:

input :Expert trajectories τE, initial policy and discriminator parameter θ0,ω0

for i = 0,1,2,... do
Sample trajectories τi corresponding to πθi

Update parameter ωi from D to ωi+1 with gradient

ÊτE [∇ω − log(Dω(s, a))] + Êτi [∇ω − log(1−Dω(s, a))] .

Take a policy step from θi to θi+1, using the TRPO rule with reward function
− log(1−Dωi+1(s, a)). Specifically, take a KL-constrained natural gradient step
with

Êτi [∇θ log πθ(a | s)Q(s, a)] + η∇θH(πθ),

where Q(s̄, ā) = Êτi [− log(1−Dωi+1(s, a)) | s0 = s̄, a0 = ā] .

Algorithm 1: Generative Adversarial Imitation Learning by Jonathan Ho and Stefano
Ermon [13]. It alternates between an Adam gradient step on ω and a TRPO step on
θ.

Torabi et al. [27] additionally introduce an only-state version of GAIL called Generative
Adversarial Imitation from Observation (GAILfO). This algorithm uses only the expert’s
states for training. In contrast to this version, the state-action algorithm above trains with
states and actions. The goal is not to imitate exactly the same policy πE and actions, but to
imitate the expert’s effect on the environment. This property makes it especially suitable
for training with expert data generated by another model that may react differently to the
same actions. They define a new state-transition reward rS : S× S→ R, which rewards
state-transitions based on how close they are to the expert’s state-transition distribution.
To do so they define the state-transition occupancy measure ρSπ : S× S→ R

ρSπ(si, sj) =
∑︂
a

P(sj | si, a)π(a | si)
∞∑︂
t=0

γtP(st = si | π) .

It is closely related to the distribution of state-transitions that occur when following policy
π. Additionally, they introduce a slightly new regularizer adapted to the state-transition
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reward

ψS
GA(r

S) =

{︄
EπE [g(−rS(s, s′))] if rS > 0

+∞ otherwise
with g(x) =

{︄
−x− log(1− ex) if x < 0

+∞ otherwise
.

And like before with the convex conjugate of this regularizer and a discriminator D :
S× S→ (0, 1) over states, there is a new expression to optimize

EπE [− log(D(s, s′))] + Eπ[− log(1−D(s, s′))] + ηH(π) . (3.5)

The discriminator tries to minimize the objective in Equation (3.5) and the TRPO step
on θ tries to maximize it. The algorithm is pretty similar to the pseudo-code 1 for GAIL,
except that the discriminator is adapted.

3.5. Variational Adversarial Imitation Learning

One remaining challenge for adversarial learning remains to balance the generator and the
discriminator. The training can be unstable because the discriminator can easily distinguish
between the expert’s and the generator’s data. If that is the case the discriminator
produces uninformative gradients for improvement. As a stabilization method, Peng et
al. [22] propose to use an information bottleneck before the input of the discriminator.
So the discriminator gets less information and has to concentrate on the most important
differences resulting in more informative gradients. This information bottleneck is called
Variational Discriminator Bottleneck (VDB). An Imitation Learning algorithm based on
GAIL extended with the VDB is called Variational Adversarial Imitation Learning (VAIL).
The following section explains the Variational Discriminator Bottleneck and how it is
integrated into GAIL.
The discriminator is built of the encoder E , the prior distribution χ, the info-constraint IC
and the decoder D. An overview of the structure of the discriminator is given in Figure 3.2.
The Encoder E maps the sample (s, a) ∈ S × A to a stochastic encoding z ∼ E(z | s, a).
The prior distribution χ maps the encoding z to the wanted shape. Then a constraint IC
on the mutual information between the encoding and the original features is applied. The
larger IC is the more information the constraint lets through. The decoder D gets the
stochastic encoding after the information constraint and trains to distinguish between the
expert’s data and the policy’s data. This Variational Discriminator Bottleneck formulates a
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Figure 3.2.: The structure of the Variational Discriminator Bottleneck. The encoder maps
samples from the expert and the trained policy. The information bottleneck
reduces the information for the decoder, and the decoder tries to distinguish
between the expert’s data and the agent’s data. The gradient of the discrimi-
nator is used to improve the agent. This figure is based on a figure of Peng
et al. [22].

new objective for VAIL to optimize

min
D,E

max
β≥0

EπE

[︁
Ez∼E(z|s,a)[− log(D(z))]

]︁
+ Eπ

[︁
Ez∼E(z|s,a)[− log(1−D(z))]

]︁
+ ηH(π)

+ β (Eπ̃[KL[E(z | s, a) || χ(z)]]− IC) ,

with π̃ = 0.5πE + 0.5π representing a mixture of the learned policy and the expert
policy and KL being the Kullback-Leiber divergence. That is the objective from GAIL
(3.5) extended with the encoder E and the additional condition that Eπ̃[KL[E(z | s, a) ||
χ(z)]] ≤ IC. To maintain this condition the authors use the Lagrange multiplier β. This
multiplier must be adaptively updated to maintain the specific constraint IC. Therefore
they apply a dual gradient descent

β ← max (0, β + αβ (Eπ̃[KL[E(z | s, a) || χ(z)]]− IC)) , (3.6)

with αβ as the step size for the dual variable in the dual gradient descent. So after the
gradient improvement step on D, β adapts with Equation (3.6). For the policy update,
they take r = − log(1 − D(µ(s, a))) as a reward while µ is the mean from the encoder
distribution. That satisfies a simplified objective. It approximates the expectation over z
with µ, which is sufficient for this task.
In practice, the encoder E(z | s, a) = N (µ(s, a),

∑︁
E(s, a)) is modeled as a Gaussian

distribution with mean µ and diagonal covariance matrix
∑︁

E(s, a). The encoder D(z) =
σ(wTD + bD) is realized by a sigmoid function with a linear input depending on weights
wD and bD. The prior distribution χ(z) = N (0, I) is a standard Gaussian.
As for GAIL in Section 3.4, there is also a version of VAIL that trains with only states:
Variational Adversarial Imitation Learning from Observation (VAILfO). The only difference
is the encoder E maps samples (s, s′) ∈ S× S to the stochastic encoding z ∼ E(z | s, s′).
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4. Methodology

IRL 
Algortihms

Expert
Data

Model & 
Environment

Agent

trains

generates

feedback

educates

Hyper-
parameters

Data Generation 
Pipeline

finetunes

Figure 4.1.: The collaboration of the com-
ponents of IRL. The IRL algo-
rithms use expert data to train
an agent that interacts through
the model with the environment
which gives feedback in form
of observed states to the algo-
rithms.

For Inverse Reinforcement Learning, we
need to design the agent model, generate
expert data, and embed it in the learning
environment with the learning algorithms.
How these components collaborate is visu-
alized in Figure 4.1. We already explained
the algorithms in the Preliminaries Section
3. In this chapter, we present the remaining
requirements. We start with a specification
of the Unitree A1model and its state and ac-
tion spaces in Section 4.1. To generate the
demonstrations we use a Data Generation
Pipeline and adapt a Model Predictive Con-
trol model. How we adapted it, what data
we collect, and how this data is prepared
for training is explained in Section 4.2. In
the last Section 4.3, we describe the In-
verse Reinforcement Learning framework,
the model’s environment and the physics
simulator.

4.1. Specification of the Uni-
tree A1

We use the MuJoCo [26] model of the Unitree A1 by Deepmind [6] as a foundation and
adapt it to our needs. The quadruped model has 4 legs, each with 3 joints. These joints can
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be divided into 3 different types that are shown in Figure 4.2: First, the abduction, which
moves the whole leg laterally to the trunk with a range of SA = [−0.802851, 0.802851].
Then there is the hip, which moves the upper part of the leg forward and backward
with a range of SH = [−1.0472, 1.0472]. And the last type is the knee that moves
the lower part of the leg back and forth with a range of SK = [−2.69653, 2.69653].

Figure 4.2.: The joints in the Unitree A1
model. In addition to the 3 joints
per leg, this image shows the
joints needed to observe the po-
sition of the trunk.

In addition, we can observe the 3-
dimensional position of the trunk. For train-
ing, we omit the x- and y-coordinates of
the robot, to avoid unnecessary complex
states and to allow the agent to train the
gait independently of the x and y position.
The range for the height is SP = R. We
observe the rotation of the trunk in the 3-
dimensions with the range SR = (−π, π]3,
where π denotes the ratio of a circle’s cir-
cumference. Also important for the states
are the velocities of the features just men-
tioned. Notice, the x and y velocities are
important features to describe the state and
that they are independent of the x and y
position. Our velocity state space contains
the change ratio of all previous features, in-
cluding the x and y velocities of the trunk.
The range is defined by SV = R16. So we
can describe the current state s ∈ S of the
robot, while the state space S is defined by
the height and rotations of the trunk, the
positions of the 12 joints, and the corresponding change rates of the previous features

S = SP × SR × (SA × SH × SK)4 × SV . (4.1)

These 36 features describe our state space of the MDP\R mentioned in Chapter 3.3.
To interact with the environment the robot can move the 12 joints with actions a ∈ A. We
clip the actions for torque control as well as for position control to the range [−1, 1] and
scale the actions to the joint ranges. This way we can avoid having different action ranges
per joint. Therefore we define our action spaces in both cases with

A = [−1, 1]12 . (4.2)
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Additionally, we use a goal state space G to distinguish between different desired goals
in training. Each separate goal has different values in the goal state so that the agent
can differentiate between them and learn different behaviors for different goals. We
distinguish between different direction angles in which the robot is able to walk and
additionally store the desired velocity per direction. The maximum speed of the robot
is 0.6. To avoid a gap between the direction angles near to π and −π, we represent the
direction angle as the cosine and the sine of the angle. So we define the goal state space as

G = [−1, 1]× [−1, 1]× [−0.6, 0.6] , (4.3)

to define the desire behavior. The model is currently implemented in this Git repository1,
but it will be merged with the mushroom library [4] in the near future.

4.2. Data Generation Pipeline

As mentioned in Section 3.3, IRL needs demonstrations to learn from. So we need a
dataset containing states in the state space S (4.1) as well as torque and position actions
in the action space A (4.2) and goals in the goal space G (4.3). Therefore, we have a Data
Generation Pipeline of four steps: We use an adapted MPC model to generate the gait, we
add some noise to the actions to make the states more diverse, we scale the data to the
desired control frequency, and we augment the dataset with different yaws. This pipeline
is shown in Figure 4.3.

Augment
Data

MPC
model

Action
Noise

Frequency
Scaling

Figure 4.3.: The Data Generation Pipeline to create the expert demonstrations.

To generate the data, we use an already implemented Model Predictive Control model
by Yuxiang Yang [28]. It is able to control a model of the Unitree A1 by desired velocity
vectors and to store the desired states and actions. The MPC model runs in the pybullet
[3] physics engine. That will be important later, because we use another physics simulator.
Thus the model to create the data behaves different too. However, the model in its original
form had some properties that could harm our training: First, the robot could not walk in

1https://github.com/robfiras/mushroom-rl/tree/tim
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a straight line. The MPC model interprets the desired velocity vectors from the robot’s
point of view. In addition, there are small deviations between the desired velocity vector
and the actual velocity vector. So if the model gets a constant desired velocity vector,
the deviations will accumulate and the robot will walk in a big circle. This behavior
results in too less similar state examples to learn the desired behavior and it is not the
behavior the agents should imitate. Second, the model walks at different velocities in
different directions. So the MPC model has a higher velocity when walking to the left
than its velocity when walking to the right, despite the same desired absolute velocity.

x distance

y
 d

is
ta

n
c
e

prev. desired pos

desired pos
robot pos

desired velocities
MPC velocities

Figure 4.4.: The adaption on the MPC model.
The required velocities are calcu-
lated with the previous desired
position, the desired velocity and
the robot’s position.

This thesis implements a new controller
on top of the existing one. This controller
solves both of the problems. It takes a de-
sired velocity vector and interprets it in the
overall coordinate system. It also ensures
that the robot’s velocity is the desired ve-
locity. We use the desired velocity vector
to calculate a desired position. This posi-
tion is defined by the x and y coordinates
and the rotation of the trunk. In every time
step, we obtain the next desired position
by adding the velocity vector to the pre-
vious desired position, starting from the
robot’s initial position. Then we use three
PID-controllers to calculate the velocities
needed to reach this position. Thus, we
are aiming for a straight line beginning at
the initial position in the direction of the
velocity vector. Additionally, our desired
position depends only on the time and the
maximum velocity, so for different direc-
tions, we want to be at the same distance. This approach also guarantees the same
velocities although the MPC model interprets the commands differently. This process of
calculating the next desired position is also visualized in Figure 4.4. For our demonstration
data, we store the torque and position control actions (4.2), and all of the above mentioned
features in the state space (4.1) at each time step. Additionally, we store the cosine and
the sinus of the desired velocity direction angle and the absolute velocity of the robot for
the goal states in (4.3).
To generate a more diverse dataset and to cover as many states as possible, we add some
noise to the actions. So we make sure that the expert data is more widely distributed.
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The noise is in the order of magnitude 1e-1 so that the MPC model is still able to build a
stable gait. We always generate one trajectory without noise and 2 with different random
noise per walking direction.
The next step is the interpolation of the dataset. The MPC model collects the data at a
500 Hz control frequency. We train our model with a control frequency of 100 Hz. So we
need to interpolate the states and actions from 500 Hz to 100 Hz with a third order spline
interpolation.
We generate trajectories for 8 different directions with 50.000 data points per trajectory
and 3 different noises per direction. Additionally we start in each trajectory in a default
position. So we are able to learn the initialization of the gait as well.
The adapted MPC model is implemented at the Git repository 2 with the generated datasets
we use for training.

4.3. The Inverse Reinforcement Learning Framework

To complete the description of our MDP\R environment, we still need to define the tran-
sition function P, the discount factor γ, and the initial state distribution S0. We use the
MuJoCo [26] physics simulator, so our P is defined by its physics. We use a discount factor
of γ = 0.99. As an initial state, we draw a random state from a random trajectory of the
expert data. To be sure that there are enough expert states left after this state, we draw
the sample from the first 0.45 part of the trajectory. The MuJoCo environment runs at a
frequency of 1000 Hz, so it simulates the physics in 1000 steps per second. To simulate
the ground contact, the environment simulates and observes the collision forces between
the four feet and the ground.
We use the mushroom library [4] as our learning environment. It provides an interface
to the MuJoCo simulator and the algorithmic environment to implement the described
model of the Unitree A1. We use different models for torque control and position control.
The model that can be controlled with torques has a 34 Newton meter action range. The
position control model has a force range of -20 to 20 and uses a proportional gain of 100.
The remaining gains are determined by MuJoCo. We create the Unitree A1 model with an
arrow above its trunk to visualize the goal direction.
To reduce the complexity of the imitation training, we define absorbing states. In our
case, the state is absorbing if the robot has fallen. We use the roll and pitch rotation of the
trunk as well as the height of the trunk to define these absorbing states. The roll range

2https://github.com/tja72/locomotion_simulation
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of the trunk in the demonstration data is approximately from −11 to 11 degrees. When
the trunk’s roll is above 16 degrees, the state is absorbing. The maximum observed pitch
of the trunk in the expert data is about 7.6 degrees. In this case we allow a 2.4 degrees
buffer before the state is interpreted as fallen. The minimum height in the data is −0.197.
As soon as the height goes below −0.24, the state is absorbing. This limits the possible
training space to this range.
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5. Experiments and Results

In this chapter, we explain how we train the agents. First, we have to decide on the type
of training, then we increase the complexity of the training task step-wise until the task is
the final goal task. For the design decision experiments in the first two sections, the task
is to walk a straight line. We compare agents trained with position control and torque
control in Section 5.1. We weigh between the only-states algorithms and the state-action
algorithms in Section 5.2. With these two comparisons, we decide on a setting for the rest
of the experiments. In the last Section 5.3, we increase the complexity of the task to be
learned. We start with walking in a straight line. After we get acceptable results for this
task, the agents learn to walk in 8 different directions. While the agent’s yaw remains
the same, it walks forward, backward, sideways and diagonal. The last task is to walk in
these 8 directions regardless of the trunk’s yaw. We compare the results of all tasks and
algorithms. In the end, we show that one agent fulfills the final goal of this thesis. The
actual launcher files for the experiments are implemented here 1.
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Figure 5.1.: The reward function depending on the er-
ror x.

We evaluate the learned agents
by initializing a random position
of the expert data and observing
their behavior for 1000 steps. Ad-
ditionally, we use a metric reward
R during the training to roughly
filter out bad agents. The differ-
ence between the desired velocity
v∗ and the actual velocity vs per
step tells us whether the robot is
moving in the right direction. To have a reward range of (0,1] per step we weight the
difference as follows: r(v∗, vs) = e−|v∗−vs|2 , while e denotes Euler’s number. Figure 5.1

1https://github.com/tja72/IRL_unitreeA1
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visualizes how this function weights the errors. We use the accumulated reward over 1000
steps to compare the agents

R =
1000∑︂
i=0

r(si) , (5.1)

for states si observed while evaluating the agent. The plots in the following sections
visualize the mean and the confidence interval of R of 5 different agents that are trained
with the same settings, but with different seeds of randomness. The reward of an agent in
an epoch is the mean reward of 25 trajectories performed by that agent with a maximum
length of 1000. Note that the discounted reward J is a worse metric because it forgets
past behavior. Importantly, the metric we use is not the true reward that we want to learn.
So if R is high, it does not mean that the evaluated agent is similar to the expert. It is
possible that the agent is moving at the right speed in the desired direction, but has a bad
gait. For example, it could be doing mini-steps or walking on its knees. But we want to
learn the gait from the expert data, so these results are not desired. Therefore we use R
only as a metric, not as a reward for Reinforcement Learning. The mean length of the
trajectories generated by the 5 agents are for clarity in the Appendix A.
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Figure 5.2.: The height of the expert’s feet. This graph
is not reachable by a stable agent in our
environment.

We use a second metric to visual-
ize the quality of the agent. Since
the first metric R (5.1) tells us if
the robot is moving in the right di-
rection with the desired velocity,
the second metric addresses the
quality of the gait. The height of
the feet visualizes the movement,
the periodicity, and the stability
of the gait. To get comparable re-
sults, this metric is always evalu-
ated for walking in a straight line
from the starting position. So it
also includes the gait initializa-
tion. Since we use a different
model and a different physics sim-
ulator, the expert’s foot height in
Figure 5.2 is not reachable for a stable agent in our environment. For example, we use
more elastic feet, so the default position without movement is lower than for the MPC
model. The red line visualizes this default position for our model. The image of the expert’s
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foot height is an orientation of what to expected. The legend describes the position of the
foot, the first letter stands for front (F) or rear (R), and the second letter stands for right
(R) or left (L). We refer to a good gait or agent if the agent is able to produce a stable,
periodic gait that gets a high reward and is similar to the expert. A bad agent or gait is
an agent that produces a gait with a low reward and not periodic movement like double
steps or small jumps.
We fine-tuned the hyperparameters for GAIL, VAIL, GAILfO, and VAILfO. For all experi-
ments, we evaluate 5 different seeds with 300 epochs each. One epoch contains 100.000
policy improvement steps and each improvement step is performed with 1.000 states. For
every 3 policy improvement steps, we improve the discriminator. We store and compare
the best agents according to our metric (5.1) for every 50 epoch intervals. The learned
agent is evaluated with the average reward over 25 runs. The discount factor is γ = 0.99.
GAIL and GAILfO use a policy learning rate of απ = 1e− 4 and a discriminator learning
rate of αD = 5e−5. Both of them also use an entropy weight for the discriminator entropy
with a value of 1e− 3. VAIL and VAILfO use a policy learning rate of απ = 1e− 4 and a
discriminator learning rate of αD = 5e− 5. The information constraint is IC = 1. We only
evaluate the stochastic policies, because the graphs and agents are better than for the
deterministic policies.

5.1. Torque versus Position Control

Since we have two different control methods, we want to decide on one of them for the
rest of the training. In this section, we compare the results of GAILfO and VAILfO with
torque and position control. The next Section 5.2 shows that the state-only training is
more stable which is why we only use these algorithms for comparison here. The goal
is to walk in a straight line. The experimental parameters are described in the chapter’s
introduction.
The cumulative reward of all 4 experiments is shown in Figure 5.3. We can see that

VAILfO learns quicker to reach a high reward than GAILfO. That was to be expected since
VAILfO is forced by the info constraint IC to focus on the most important features. So
it learns quicker to imitate a similar behavior and to move in the right direction. Both
position control experiments reach a lower maximum reward than the other two torque
control experiments. Figure A.1 shows that VAILfO with position control has trajectories
with the same length as torque control. That means position control is worse in walking
with the desired speed in the desired direction than torque control. GAILfO with position
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Figure 5.3.: The mean accumulated reward for GAILfO and VAILfO with torque and posi-
tion control over 300 epochs.

control needs much more time to reach a the maximum length than torque control. So it
learns a behavior that tends to fall in the first 200 epochs. The agents with torque control
generate good gaits for GAILfO and VAILfO. In contrast, the agents with torque control
are very unstable. They lift their feet for an expert like gait, but every movement is shaky
and insecure. The feet vibrate with each movement. The agents can move in the right
direction at the right speed, but their feet shake so much that they fall in some trajectories.
VAILfO learns quicker not to fall but still has vibrating feet. Figure 5.4 visualizes the effect
by showing the height of the right feet. The good agent with torque control on the left
has a periodical foot movement and does not lift its feet above the default height if not for
a step. The position control agent on the right has nearly no periodical movement and
lifts multiple times both feet above the ground. That is not the behavior we desire.
So the torque control model provides more stable and better results. We use this kind of
control method for the rest of the experiments.
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(a) An GAILfO agent at epoch 163 trained with
torque control.
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(b) An GAILfO agent at epoch 152 trained with
position control.

Figure 5.4.: Comparison of the feet heights of a torque control agent and a position
control agent. The red line denotes the default height of our model. To
maintain clarity only the right feet are shown.

5.2. Only-States versus State-Action Training

The previous Section 5.1 reasons for our decision for the torque control model. In this
section, we compare the training with only states of GAILfO and VAILfO with the training
with states and actions of GAIL and VAIL. We highlight at this point again that the expert’s
physics engine and the expert’s model are different from our setting. So the exact states
are probably not reachable for the same agent in different environments and the actions
can cause different reactions.
Figure 5.5 shows the accumulated reward R for both learning algorithms with state-only
training and state-action training. As in the previous section, VAIL and VAILfO learns
quicker than GAIL and GAILfO. All agents reach the maximum cumulative reward. Both
of the state-action experiments reach the maximum reward quicker than the state-only
agents. State-only training has to learn without any foreknowledge which actions cause
which reaction. In contrast, state-actions training can use the expert’s actions as an
orientation to find the right actions. That’s probably why the state-action training reaches
the maximum reward more quicker. There are no significant differences between the mean
accumulated reward and the mean length of trajectories from the learned agents in Figure
A.2. So the lower reward is caused by behavior that tends to fall. As the previous section
mentioned, the state-only agents for straight walking show results similar to the expert
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Figure 5.5.: The mean accumulated reward for GAILfO, VAILfO, GAIL, and VAIL over 300
epochs.

for GAILfO and VAILfO. In the contrast, most of the GAIL agents make little jumps after
every step. One of these jumps is visualized in Figures 5.6. The worse agent from GAIL
has multiple times all feet above the ground, while GAILfO producs periodical and stable
movement with one foot at the ground all the time. Additionally, the gait initialization of
GAIL is bad, so the robot falls very often. The algorithms also want to match the actions,
not only the states. Since the actions are not usable in our environment, it seems that
causes wrong behavior. VAIL generates similar good agents to VAILfO. We assume VAIL
learns to concentrate on the differences between the states. That would result in training
similar to state-only training.
We want to compare different learning algorithms in the other tasks. Since the GAILfO
has a better gait than GAIL and VAILfO and VAIL agents have a similar quality, we decide
on state-only, torque control training.
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(a) The feet heights of a GAILfO agent.
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(b) The feet heights of a GAIL agent.
Figure 5.6.: The height of the four feet of the robot over 200 simulation steps. On the left

is a good agent. On the right is an agent that makes little jumps. At steps 60,
100, 140, and 175 no feet of the GAIL agent touches the ground at a height of
0.01. We leave out the red line to highlight the jumps of the bad agent

5.3. Different Tasks

After the explanation of why we choose state-only, torque control training, we want to
train an agent that can perform the final goal behavior. It should be able to walk in 8
different directions, regardless of the yaw of the trunk. To prevent mistakes in the model,
fine-tune the parameters and control the complexity of the task, we divide the goal task
into multiple smaller ones. The first task is to walk a straight line. The second task is to
walk in 8 different directions with always the same yaw rotation. So it learns different
gaits for walking forward, backward, sideways, and diagonally. The last task is to train an
agent that is capable of walking in 8 directions, regardless of the trunk’s yaw.

5.3.1. Walking in a Straight Line

The last two sections already compared the torque control, state-only agents to the other
approaches. This section analyzes the results of GAILfO and VAILfO as well as the quality
differences between multiple epochs.
According to the accumulated reward in Figure 5.7, GAILfO learns to move in the right
direction with the right speed from epoch 100. Between the learning epochs 100 and
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Figure 5.7.: The mean accumulated reward for GAILfO and VAILfO over 300 epochs. The
goal is to walk in a straight line.

200, the accumulated reward is mostly at a high level, although the reward is not stable.
From epoch 200 to the end of the training, the agents get a less constant reward. Figure
A.3 helps to understand why these agents get a lower reward. Their average length per
trajectory when evaluating the learned agents is not constant at the maximum of 1000.
That means the agents learn a behavior that is more likely to fall. When testing the agents
with the highest reward in these last 100 epochs, we observe a higher rate of agents
that tend to make double steps. A double step describes a ground contact where the
foot bounces off the ground and makes a mini step. That may help the agents to prevent
behavior that causes them to fall in the previous epochs. The agents between epoch 100
and epoch 250 from GAILfO are good. Most of them generate a periodic gait without
double steps and with large enough steps. Some of them are not as good as others but
there is no recognizable pattern in the quality of the agents. Figure 5.8 compares two
different agents. 5.8a shows the feet height of a GAILfO agent at epoch 163 and 5.8b
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(a) GAILfO agent at epoch 163.
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(b) GAILfO agent at epoch 208.
Figure 5.8.: The height of the four feet of the robot over 200 simulation steps. On the left

is a good agent. On the right is an agent that makes double steps. The bad
agent exceeds the default height of the ground multiple times while these
feet should stay on the ground.

shows the same of an agent at epoch 208. In the latter graph, the feet are more often
above the ground while they should stay on the ground. That’s the behavior we name
double steps. At this level of complexity, these double steps are small and only slightly
noticeable. But we can also see in Figure 5.8a that GAILfO produces a very nice, periodical
gait with a good initialization.
The agents from VAILfO receive a mostly constant high reward between epochs 40 and
275. Although the length of the trajectories stays the same, the reward gets lower after
epoch 275. That means the agents in this range do not walk with the desired speed or they
do not walk in the desired direction. The agents between epochs 50 and 150 generate the
most periodic and stable gaits. The agents from epochs 150 to 250 are also good but tend
to make smaller steps than the previous agents. After epoch 250, more agents tend to
make double steps or they make smaller steps than necessary. The agents before epoch 50
are more likely to vibrate during their steps and some of them do not generate a gait at
all.
In summary, the GAILfO and the VAILfO agents are equally good. They generate a stable
gait with periodic movement. Both algorithms tend to generate less stable agents at the
end of the training, even though VAILfO gets still a high reward.
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5.3.2. Walking in 8 Different Directions

For the next experiments, we increase the number of possible goal states. The task is to
learn 8 different gaits in different directions. The robot’s desired yaw stays the same during
this task. That means we want to learn a gait for walking forward, backward, sideways,
and diagonally. So every direction has a different goal state with different desired angles
and corresponding maximum velocities. This new task increases the complexity of the
behavior to be learned.
The cumulative reward in Figure 5.9 shows that GAILfO generates agents with a good
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Figure 5.9.: The mean accumulated reward for GAILfO and VAILfO over 300 epochs. The
goal is to walk in 8 different directions.

reward at epoch 175 and above. The agents get the highest reward between epochs 175
and 250. After epoch 250 the reward decreases and has a larger confidence interval. The
length in Figure A.4 shows the same properties. That means the reward decreases because
the agents learn a behavior that is more likely to fall. Overall the maximum reward is
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lower than in the previous experiments. Since the complexity of the problem is increased,
that was to be expected. The length in this range is at the maximum, so the lower reward
has to be caused by slower agents or agents that do not walk perfectly in the desired
directions. In comparison to the previous experiment, GAILfO learns slower to reach a
high reward. The evaluation of the learned agents reflects these results. The best agents
are between epochs 150 and 250. After that, most of the agents unlearn their gait. The
agent limps, moves not periodically, or makes double steps. Overall the agents in the
epoch range 150 to 250 are worse than before. More agents learn to make double steps
or have vibrating feet during their movement. But some of these agents are still good. As
in the experiment before they can produce a stable and periodical gait in all 8 directions.
According to Figure 5.9, the VAILfO agents reach their average maximum reward between
epochs 50 to 150. After that the reward has a bigger confidence interval and the average
reward decreases. The length in Figure A.4 stays at most of the time at its maximum
and it is more unstable than in the previous experiment. That means the lower and more
unstable reward after epoch 150 is caused by a learned behavior that moves slower than
desired or in the wrong direction. In comparison to the last experiment, the reward and
the length are more unstable. As for GAILfO, VAILfO reaches a lower maximum reward in
comparison to walking in a straight line. The agents from VAILfO make in the first 100
epochs very small steps and vibrates to the goal. That causes a high reward but is not our
desired behavior. After that, it starts to learn the expert’s behavior and makes bigger steps.
But 3 out of 5 agents are still insecure and make a lot of double steps. They move slower in
the right direction, which results in a lower reward. But there are also some good agents.
After epoch 250 the agents produce undesired, not periodical gaits with little jumps and
double steps. They move way slower in the desired directions, and sometimes they prefer
to stay at a place instead of risking to fall. In Figure 5.10, a bad agent at epoch 292 with
double steps is compared with a good agent with a nice gait at epoch 121. Figure 5.10b
shows that the feet of the worse agent exceed the default height every time they touch the
ground before they go down to the default height again. The behavior of the bad seeds
could be explained by the survival bias. Algorithms like GAILfO and VAILfO prefer an
agent that stays alive over one that imitates the expert’s behavior but falls. So these mini
steps help the agents not to fall, but they do not produce the desired behavior.
The best agents of both algorithms are comparable again. But overall GAILfO generates
more agents that are closer to the expert’s behavior than VAILfO. Both algorithms reach a
little lower reward but since the complexity increased that is acceptable.
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(a) VAILfO agent at epoch 121.
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(b) VAILfO agent at epoch 292.
Figure 5.10.: The height of the two left feet of the robot over 200 simulation steps. On

the left is a good agent. On the right is an agent that makes double steps.
The bad agent exceeds the default height of the ground multiple times while
these feet should stay on the ground.

5.3.3. Walking in 8 Different Directions regardless of the Yaw

We continue to increase the complexity of the desired behavior by adding trajectories
with random yaw. So the agents should be able to perform gaits for 8 different directions,
independent of the robot’s yaw. In practice, we add a random yaw rotation in the discrim-
inator improvement step to the expert data and initialize the agent with a random yaw,
instead of producing a larger dataset.
Figure 5.11 shows a good reward for GAILfO between epochs 190 and 265. Before and
after these epochs the reward decreases. Figure A.5 shows a very similar graph for the
length of the trajectories. That indicates the lower reward is caused by behavior that tends
to fall. The graphs indicate a similar behavior to the previous experiments, except that
the agents learn a little slower and have a slightly lower maximum reward. Additionally,
the reward decreases stronger than before after episode 265. The agents between epochs
150 and 200 make very small steps and the feet vibrate during every movement. All of the
agents remove most of the vibration till epoch 260, but some agents still tend to make
some undesired behavior like double steps or a small vibrating. The best and most stable
agents are in epochs 200 to 265. Most of them generate a stable, periodical walk in all
directions, regardless of the robot’s yaw. Since some agents in this area also tend to make
very small steps, the reward is lower than in the previous experiment.
VAILfO does not get any good cumulative reward according to Figure 5.11. The reward
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Figure 5.11.: The mean accumulated reward for GAILfO and VAILfO over 300 epochs. The
goal is to walk in 8 different directions, independent of the yaw.

has a maximum of 800. The length of the trajectories in Figure A.5 has its maximum at
the beginning, but quickly decreases and is very unstable after that. Till epoch 50, all
agents are very insecure. They do not move in any direction and only vibrate with their
feet. That behavior explains the low reward and the high length. The longer the agents
train, the smaller the vibration in their feet becomes. In the range of 100 to 200 epochs,
all agents have less vibrating but still do not move in the right direction. They only lift
their feet but put them down again immediately. It looks like they are over careful. After
epoch 250 some agents start to develop a recognizable gait. They make very very small
steps in the right direction, but they sometimes get stuck in a position or fall. Since not all
agents learn this behavior and these agents fall sometimes the average reward does not
increase.
Because the default parameters do not deliver good results, we also try other combina-
tions. Figure 5.12 shows that none of them reaches a good result. We use a higher and a
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lower info constraint of the VDB. Because the complexity and the dataset size of the task
increased, it may be possible that the discriminator has too much or too less information to
learn from. Additionally, we compared training with different learning rates: all of them
result in a similar low reward. We used an increased and decreased discriminator learning
rate because the learning speed of the discriminator is critical to get good gradients to
improve the policy. Also, a lower policy learning rate with a lower discriminator learning
rate does not result in a good reward.
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Figure 5.12.: The mean accumulated reward for a variation of VAILfO parameters. The
goal is to walk in 8 different directions, independent of the yaw. The I in
the legend describes the information constraint IC, the second letter the
learning rates of the policy απ , and the discriminator αD

In summary, both algorithms get a lower reward than in the previous experiments. But in
contrast to VAILfO, GAILfO is able to train some good and stable agents that can perform
the desired task with a periodical gait.

The best agent that learned the desired behavior is from GAILfO at epoch 259. The agent
has a mean reward of 969 over 50 runs in different directions with different yaws. The
corresponding mean trajectory length is 1000. Figure 5.13 shows a periodic movement of
the feet for walking in a straight line. But the agent makes some slight double steps that
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are barely noticeable. We propose an idea how to make the training less complex and
probably improve the gait in the future work Section 6. Figure 5.14 is a series of images
of the agent walking to the right. This agent fulfills the goal of this thesis with a stable,
periodic gait.
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Figure 5.13.: The feet heights for the best agent. The agent walks in a straight line and
initializes the gait.

Figure 5.14.: A picture series of the final agent walking to the right.
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6. Conclusion and Outlook

In this thesis, we describe how to imitate locomotion on the Unitree A1 robot using Inverse
Reinforcement Learning.
We implement two models of the Unitree A1 in the mushroom environment. One model
uses torque control and the other model uses position control. We define the possible
states and actions and use a goal space to distinguish between different desired behaviors.
Our Data Generation Pipeline uses an adapted Model Predictive Control model to produce
the demonstration data. It generates trajectories with different noise, scales them to the
desired control frequency, and augments them with different yaws of the trunk.
We define the Markov Decision Process without reward function as the learning environ-
ment. For the specification of the absorbing states, we examine the expert data and add a
buffer to the roll, pitch, and height of the maxima.
We use the algorithms Generative Adversarial Imitation Learning and Variational Adver-
sarial Imitation Learning for training. After the comparison of different control methods
and different learning sets, we decide to train the torque control model with states only.
With this setting, we increase the complexity of the tasks step-wise: We start with learning
to walk straight forward, continue with walking in 8 different directions, and end up with
walking in 8 different directions independent of the robot’s yaw.
We show that we obtain an agent with GAIL that can perform this tasks with a periodical
and stable gait similar to the expert.

In future work, we want to further fine-tune the hyperparameters of VAIL. In addition,
we will remove the robot’s yaw from the observation space to decrease the complexity
of the problem to obtain similar or better results. Then, we will increase the complexity
of the task further and fine tune the experiment settings until a good agent is retrieved.
At the moment the robot can walk in straight lines in 8 directions with a constant speed.
The first step will be to vary the desired velocity. Then we can add a new goal state,
the desired yaw velocity of the robot. So the task will be to learn to walk curves. The
last step will be to combine all the previous different gaits to switch between the goals.
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Thus, instead of pursuing only one goal per trajectory, we want to change it during the
execution. Additionally, the resulting agents can be tested on the real Unitree A1 robot
once the torque interface is implemented.
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A. Graphs of the Mean Length of the
Experiments
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Figure A.1.: The mean length of trajectories from the agents. The agents are trained with
GAILfO and VAILfO with torque and position control over 300 epochs.
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Figure A.2.: The mean length of trajectories from agents from GAILfO, VAILfO, GAIL, and
VAIL over 300 epochs.
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Figure A.3.: The mean length of trajectories of agents learned with GAILfO and VAILfO.
The goal is to walk in a straight line.
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Figure A.4.: The mean length of trajectories of agents learned with GAILfO and VAILfO.
The goal is to walk in 8 directions.
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Figure A.5.: The mean length of trajectories of agents learned with GAILfO and VAILfO.
The goal is to walk in 8 directions, independent of the yaw.
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