
FULL PAPER

Learning Policies for Object Manipulation with Robot Swarms

Gregor H. W. Gebhardta, Kevin Dauna and Marius Schnaubelta and Gerhard Neumannb

aTechnische Universitat Darmstadt, Hochschulstr. 10, 64289 Darmstadt, Germany; bLCAS, University
of Lincoln, Brayford Pool, LN6 7TS, Lincoln, UK

ARTICLE HISTORY
Compiled October 22, 2018

ABSTRACT
Themanipulation of objects with a swarm of simple agents is a challenging task. The simplicity
of the robots usually prohibits to learn such manipulations skills directly on the agents. In this
paper, we assume a swarm that is guided by a common input signal such as the gradient of a
light source. We propose a new method for learning control policies for such input signals that
lead to the desired object manipulation by the swarm. Therefore, we introduce a representation
of the swarm which is based on Hilbert space embeddings of distributions. This representation
is invariant to the number of agents and to the allocation of the agents to the agent positions.
Furthermore, the learned policy are robust to changes in the swarm and the search space for the
learningmethod is significantly reduced.We learn control policies for several object shapes and
show to which extend a policy learned on a simple shape generalizes to more complex shapes.
We further, apply the learned control policies in a hierarchical controller to solve the task of
autonomous object assembly. Finally, we demonstrate that the policies learned in simulation
are robust enough to be transferred directly to the real robots.

KEYWORDS
swarm robotics; multi-agent systems; policy search; reinforcement learning

1. Introduction

An important characteristic of swarms is that the abilities of the collective are usually much
larger than the abilities of the individual. Examples are large structures built by ants or
termites or the defense behavior of fish schools or bees. This synergy effect which is also
called superadditivity (‘the entire team should be able to achieve much more than individual
robots working alone’ [1]), is a main principle that swarm robotics aims to exploit. The
field of nano-robotics which makes use of biological or synthetic molecular machines is one
particularly interesting area of research. An example for such biological molecular machines
are flagellated bacteria, i.e., bacteria that are propelled by a filament attached to a rotating
molecular motor [2]. While the flagella motors provide propulsion, magnetotactic bacteria,
for example, have a chain of ferromagnetic particles in their body that serves as an interface
for controlling their orientation using a weak magnetic field [3].

In contrast to traditional robotics, which usually is based on robust machines with sufficient
sensory equipment, swarm robots are usually simple agents with limited actuation and sensors.
Instead, robotic swarms leverage from the high redundancy and the distributed nature of their
hardware. Because state-of-the-art learning algorithms usually rely on computational powerful
machines, their application to learn a behavior directly on swarm robots is limited. Learning

CONTACT G. Gebhardt. Email: gebhardt@ias.tu-darmstadt.de

a policy that externally guides a swarm to achieve a complex behavior is a feasible way to
overcome this limitation. In this paper, we consider the task of autonomous object assembly
with robot swarms. A swarm of Kilobots [4] has been used in an object assembly experiment
[5], where a human operator controls a light source as global input signal to the swarm.
Formulating the control rules to automate the assembly process is, however, a hard task.

Figure 1. Kilobots pushing an object in an assem-
bly task. The robots have a diameter of 3.3cm, the
object in the background is a square of 15cm width.

Motivated by this application, we present an ap-
proach based on policy search to find a control strat-
egy for the external signal. We split the assembly pro-
cess in two subtasks: generating a top-level assembly
plan using simple planning strategies, and learning a
low-level object movement policy. The assembly plan
encodes way points for each object while the object
movement policy controls the trajectory execution by
guiding the Kilobots with the light source. In this
study, we treat the assembly plan as given and only
learn object movement policies through policy search.

Learning to push an object is a complex task as we
have to coordinate a large number of agents, which
results in many state variables. While we need infor-
mation about the configuration of the swarm (e.g., the positions of the agents) in our state
representation, it is of no importance which individuals of the swarm are at which positions.
Furthermore, our policy should be independent of the number of agents participating in push-
ing the object. Hence, instead of representing the state by the positions of every agent, we
represent it as a distribution over the agent locations which we embed into a reproducing kernel
Hilbert space [6]. This allows us to compare the swarm configurations independently of the
number of individuals and of their specific locations. Our reinforcement learning algorithm
is based on the recently introduced actor-critic relative entropy policy search (AC-REPS)
algorithm [7] and learns a non-parametric Gaussian Process (GP) policy for controlling the
light source. We evaluate our approach in simulation on different assembly tasks with different
object shapes. Additionally, we demonstrate that the learned policies can be transferred to the
real Kilobots which shows that the learning process is robust enough to allow a direct transfer
from simulation to the real world. Parts of this work have been presented by the authors in
[8,9].

2. Related Work

While swarm robotics have been studied over the last three to four decades, using machine
learning techniques to control robot swarms is a very recent field of research. In contrast to
our approach, related work often directly learns the policies of the agents instead of a policy
for a common control signal. For example, [10,11] both learn actor and critic functions based
on feature mappings using fuzzy-nets. The authors assume that the state is fully observable
to the critic and the actor. In contrast, [12] proposes a multi-agent learning approach based
on deep Q-learning in which only the critic has access to the full information about the state,
while the actor has local observations. In [13], a method for multi-robot learning based on
particle swarm optimization is presented. Each robot acts as a particle that rolls out a certain
set of controller parameters. After each iteration the best performing parameters are shared
with the robots in the neighborhood. The particle swarm approach is furthermore compared
to genetic algorithms in [14]. However, this approach requires that each agent is able to asses
the quality of the action it has performed and communicate the result with its neighbors.

2

The significant difference of ourmethod is that we do not learn the policies for the individual
agents. Instead, we assume that the same behavior runs on each agent and a desired swarm
behavior is achieved by learning the controller for the global input. This setup—simple policy
on the robots, complex control using an external signal—allows to use a much simpler
hardware for the agents. The Kilobots, for example, can only sense the ambient light and
communication is limited to robots in the close neighborhood. Evaluating a policy on the
agent or communicating values between a global critic and the agents would be very difficult.
In [15], a swarm of flagellated magnetotactic bacteria was used to to build a pyramid of
building blocks in the micrometer range. The bacteria have a flagatella-based propulsion
motor and their direction is controlled by a magnetic field that acts on nanoparticles in the
cellular body. In the pyramid-building experiment the magnetic lines are controlled according
to a planned trajectory to move the swarm. In [16] a control method for a swarm of phototactic
agents is presented. The paper proposes a set of different PD controllers for manipulating an
object with different goals (i.e., rotating, or translating the object, or a combination of both).

3. Preliminaries

This section provides a short discussion of the policy search method we use for learning
the low-level object movement policy and gives a quick overview of the embeddings of
distributions which we use to represent the state of the swarm. Additionally, we will depict the
planning strategies for generating swarm and object trajectories from the high-level assembly
policy.

3.1. Actor-Critic Relative Entropy Policy Search

We use actor-critic relative entropy policy search (AC-REPS) [7] to learn a continuous, non-
parametric, probabilistic policy π(a |s) from samples. This model-free reinforcement learning
algorithm is based on relative entropy policy search (REPS) [17] and consists of three steps:

(1) Least-squares temporal policy iteration (LSPI) is used to estimate the Q-function from
the observed samples [18–20].

(2) REPS optimizes the policy with respect to the expected Q-function while staying close
to the old policy [17]. For the sample-based case this results in a discrete distribution
over the state-action samples.

(3) A sparse weighted Gaussian process learns the new continuous policy by regressing
from states to actions using the weights obtained from REPS [21].

Additionally, these three steps can be iterated until convergence of the resulting policy for a
given SARS sample set similar to a policy iteration approach. In the next paragraphs, we will
discuss these three steps in more detail. Note that they assume some feature mapping of either
a state or of a state-action pair. While AC-REPS is applicable to a wide range of problems,
naturally, the feature mapping is very specific to the problem domain. We will discuss the
feature mapping that we have used for the domain of swarm robotics later in Section 4.1.3.

3.1.1. Least-Squares Policy Iteration

We want to estimate the Q-function from a data set of SARS tuples D = {(st, at, rt, s′t)}Tt=0
sampled from the environment. These tuples consist of the state st and the action at taken by
the agent at time t which results in a reward rt and the transition to the next state s′t . Given
a feature mapping φ(s, a), the Q-function can be approximated as a linear function in feature

3

space Q(s, a) = φ(s, a)ᵀθ, where θ are the parameters of the function. We write the features
of the state-action pairs as matrixΦ = [φ(s0, a0), . . . , φ(sT , aT)]

ᵀ and the rewards rt as vector
R = [r0, . . . , rT]ᵀ. We can obtain the parameters θ as [18,19]

u = (Φᵀ(Φ − γΦ′))−1ΦᵀR (1)
θ = (ΦᵀΦ)−1Φᵀ (R + γΦ′u) (2)

with discount factor γ and the feature matrixΦ′ that consists of the expected feature mappings
Ea′t∼π(s′t)[φ(s

′
t, a
′
t)]with the next states s′t from the SARS samples and the policy π. In practice,

estimating the expected feature mapping with a single sample from the policy or, in case of
a Gaussian process policy, with the mean action is usually sufficient. Here, Equation 1 is the
fixed-point equation of the Bellman operator and Equation 2 is an orthogonal projection into
the space spanned by the features.

However, as this solution often overfits to ‘the noise of the system rather than the underlying
system itself’, [20] propose to regularize both, the fixed-point equation and the orthogonal
projection. Using l2 regularization on both terms, they arrive at

θ = (XᵀX + β′I)−1Xᵀ y, (3)
X = Φ − γΣΦ′, (4)
y = ΣR, (5)
Σ = Φ(ΦᵀΦ + βI)−1Φᵀ . (6)

Here, Σ is the orthogonal projection into the space spanned by the features, regularized by β,
and Equation 3 is the fixed-point equation of the Bellman operator regularized by β′.

3.1.2. Policy Improvement

In the policy improvement step, we want to optimize the policy such that the Q-function
is maximized. However at the same time, large changes in the policy might lead to loss of
information [17]. Inspired by the episodic REPS algorithm [22], AC-REPS solves this problem
by using information-theoretic constraints. AC-REPS updates the policy by optimizing the
expected Q-values of the samples with the constraint that the new policy π(a |s) is close to
the old policy q(a |s) in terms of the Kullback-Leibler divergence (KL). Assuming a state
distribution µ(s), we want to maximize the expected Q-value

Eµ,π[Q(s, a)] =
∫

µ(s)

∫
π(a |s)Q(s, a) ds da. (7)

However, instead of optimizing the policy for each state independently, we resort to maximize
over the joint state-action distribution p(s, a) = p(s)π(a |s). As we don’t want to optimize
the state distribution, we need to ensure that the optimized marginal state distribution p(s) =∫

p(s, a)da is the same as the state distribution µ(s) that has generated the data. This constraint
is implemented by matching feature averages of the distributions p(s) and µ(s) as∫

p(s)φ(s) d s = φ̂, (8)

4

where φ̂ is the average feature vector of all state samples. Similarly, we bound the KL between
the new and the old joint state-action distributions instead of the new and old policy, i.e.,

KL [p(s, a)| |q(s, a)] ≤ ε (9)

With a final constraint that ensures that p(s, a) is a probability distribution, the resulting
constraint optimization problem is

arg max
p

∬
p(s, a)Q(s, a) ds da, (10)

s.t. KL [p(s, a)| |q(s, a)] ≤ ε,∫
p(s)φ(s) d s = φ̂,∬
p(s, a) d s da = 1.

The upper bound ε for the KL divergence is a parameter of REPS that controls the exploration-
exploitation trade-off by restricting the greediness of the method. This parameter is usually
chosen heuristically. The constraint optimization problem can be solved in closed form with
the method of Lagrange multipliers, yielding

p(s, a) = q(s, a) exp
[
Q(s, a) − V(s)

η

]
Z−1 (11)

where V(s) = νᵀφ(s) is a state dependent baseline similar to a value function, ν, η, and
λ are the Lagrangian multipliers, and Z = exp[(η + λ)/η] is a normalizing therm. Using
Z =

∬
p(s, a)dsda, we can obtain the dual function by substituting p(s, a) in the Lagrangian

with Equation 11. The Lagrangian multipliers η and v can then be obtained efficiently by
minimizing the dual

g(ν, η) = η log

(
1
N

N∑
i=1

exp
(
Q(si, ai) − νᵀφ(si)

η

)
+ ηε + νᵀ φ̂

)
(12)

using the Broyden-Fletcher-Goldfarb-Shannon algorithm.

3.1.3. Matching a Continuous Stochastic Policy

Solving the optimization problem obtained from REPS gives the desired probabilities
p(si, ai) = p(si)π̂(ai |si) only for the discrete samples in D. For sample (si, ai) we want
to take action ai in state si with probability

π̂(ai |si) ∝ exp
(
Q(si, ai) − νᵀφ(si)

η

)
(13)

We can ignore the old policy q(a |s) here because the actions in D have been samples from
q(a |s) and the state distributions p(s) and q(s) are equal due to the constraint in Equation 8.

By fitting a weighted linear model in the feature space of the states, we obtain a continuous
policy for the whole state space. With the assumptions of Gaussian exploration noise and of
a Gaussian prior over the actions we arrive at a weighted linear Gaussian model which turns

5

into a weighted Gaussian process by using a kernel function to compute the inner product of
the features, i.e.,

π(a |s) = N(µ(s),Σ(s)), where (14)
µ(s) = k(s)ᵀ (K + lW)−1 A,

Σ(s) = k(s, s) + k(s)ᵀ (K + lW)−1 k(s) + l .

Here, k(si, s j) denotes the kernel function of the two states si and s j , k(s) is the kernel vector
of the states si ∈ D and state s and K is the kernel matrix of the states in D. Note that the
prior over the actions is a scalar in the kernel function k(si, s j) = bK(si, s j), we will discuss
the kernel function K in Section 4.1.3. Furthermore, l is the variance of the exploration noise,
W is a diagonal matrix of the weights Wii = π̂(ai |si), and A is a matrix with the actions as
row vectors.

A common drawback of kernel functions is that they do not scale well with the number of
samples used for training. Several sparsification approaches have been proposed to overcome
this issue, e.g., the method of projected latent variables by [23], the sparse Gaussian processes
(SPGP) by [24], or the sparse greedy Gaussian process regression by [25]. They use a set of
pseudo inputs (also called latent variables, inducing inputs or active set) to approximate the
full covariance of the Gaussian process. Effectively, given a set of m pseudo inputs, the kernel
function in the predictive mean and covariance of a sparse GP is substituted by

k(si, s j) = km(si)
ᵀK−1

mmkm(s j), (15)

where km(si) is a kernel vector of state si with the pseudo inputs and Kmm is the kernel matrix
of the pseudo inputs. Following the derivations in [21], this allows to define a sparse, weighted
Gaussian processes as

µ(s) = km(s)
ᵀQ−1Kmn(lW + Λ)−1A (16)

Σ(s) = k(s, s) − km(s)
ᵀ

(
K−1

mm + Q−1
)
km(s) + l (17)

Q =
(
Kmm + Kmn(lW + Λ)−1Knm

)
, (18)

with diagonal matrix Λii = k(si, si) − km(si)
ᵀK−1

mmkm(si).

3.2. Kernel Embeddings of Distributions

We will represent the configuration of the swarm as a distribution where each agent refers
to a single sample of that distribution. Using moments of the distribution as representation,
e.g., the mean and the variance as in [16], allows for a compact representation of the swarm.
However, this representation is also quite limited if the swarm is not distributed similar to a
Gaussian distribution. For example, if the swarm is separated into two or more groups, this
representation is not able to distinguish between quite different configurations.

The recent technique of kernel embeddings [6] allows a nonparametric representation of
distributionswith arbitrary shapes. A reproducing kernelHilbert space (RKHS)H of functions
is uniquely defined by a positive definite kernel function k(x, x ′) := 〈ψ(x),ψ(x ′)〉H [26]. Here,
the feature mappings ψ(x) are often intrinsic to the kernel functions and might map into an
infinite dimensional feature space (e.g., the squared exponential kernel.) The embedding of a
marginal distribution p(X) is defined as the expected feature mapping of its random variable

6

µX := Ep [ψ(X)] =
∫
Ω
ψ(x) dp(x) [6]. In practice we estimate the embedding using samples

from p(X) as

µ̂X =
1
m

m∑
i=1

ψ(xi) =
1
m

m∑
i=1

k(xi, ·). (19)

We will use the mean embedding as representation later to define a kernel function for the
state of the swarm. Given infinite dimensional features in the kernel function, such mean
embeddings are infinite dimensional as well and cannot be represented explicitly. Still, we can
asses the discrepancy of two distributions p(X) and q(Y) using themaximum mean discrepancy
(MMD) as

MMD(µX, µY) = 〈µX − µY, µX − µY 〉 (20)
= Ep,p

[
k(xi, xj)

]
− 2Ep,q

[
k(xi, yj)

]
+ Eq,q

[
k(yi, yj)

]
(21)�MMD(µX, µY) =

1
m2

m∑
i=1

m∑
j=1

k(xi, xj) −
2

mn

m∑
i=1

n∑
j=1

k(xi, yj) +
1
n2

n∑
i=1

n∑
j=1

k(yi, yj) (22)

Note, that the MMD can also be seen as the squared error between two mean embeddings.

3.3. Planning Strategies

A* is a heuristic search algorithm commonly applied for graph search problems [27]. The
algorithm selects which node ns to expand by minimizing the cost f (ns) = g(ns) + h(ns),
where g(ns) is the cost for reaching node ns from the start and h(ns) is a heuristic that provides
a lower bound to the costs from s to the goal state sG . The cost g(ns) can be computed by

g(ns) = g(pred(ns)) + c(pred(ns), ns), (23)

where pred(ns) is the parent node of ns and c(ns1, ns2) is the cost to get from ns1 to ns2 .
Potential fields [28] are a fast planning method for mobile robots. The robots move along a

hypothetical force field, being attracted to the goal position and repulsed from the obstacles.
The repulsive potential for an object o is defined as

Urep(s, o) =

1
2 χ

(
1

d(s,o) −
1
do

)2
if d(s, sG) < do

0 else
, (24)

respectively. Here, d(a, b) is a measure for the distance between a and b, do is the maximum
distance to the obstacle, and χ is a scaling factor. In our approach, we use the repulsive
potential in the cost term for the path segments c(ns1, ns2) of A* (see Section 4.2 for more
details).

4. Learning Control Policies for Object Assembly

We split the task of object assembly into three components (an overview is given in Figure 2):
(1) an assembly policy that describes how the individual objects should move, (2) a path
planning strategy to guide the swarm around the objects and to arrange them for the next

7

Figure 2. The three components of our approach. Left: the assembly policy defines way points for the objects; middle: a path
planning strategy computes collision free paths for the objects but is also used to position the Kilobots for the next push; right:
the object movement policy controls the light source when the swarm is pushing the objects.

pushing task, and (3) an object movement policy that realizes basic movements of an object
by controlling a light source that guides the robot swarm.

4.1. The Object Movement Policy

The object movement policy controls the global input signal, e.g., the position of the light
source such that the swarm,which follows this signal, pushes the object along a given trajectory.
We reduce the search space for the object movement policies by considering only pushes in
positive x-direction or counterclockwise rotations. Later, we apply the learned policies to
arbitrary movements by rotating and flipping the state representation accordingly. We further
introduce a trade-off parameter ρ ∈ [0, 1] that weighs between translational and rotational
movements. This trade-off is achieved by the design of the reward function which we introduce
in Section 4.1.1. In our experiments we usually learned object movement policies for three
settings of ρ, i.e., ρ = 0.0, ρ = 0.5, ρ = 1.0.

4.1.1. The Reward Function

The reward function reflects the setting of the trade-off parameter ρ ∈ [0, 1]. The function
rewards only rotational movements for ρ = 1 and only translational movement for ρ = 0. For
values in between, ρ trades off the rotational and the translational term. Given the translational
movements dx in x-direction, dy in y-direction and the rotational movement dθ , we define the
reward as

r(ρ) = ρ rrot + (1 − ρ)rtrans − cydy, (25)

with the translational and rotational reward terms

rtrans = dx − cθ dθ, and (26)
rrot = dθ − cx dx, (27)

respectively. The weights cx , cy , and cθ scale the costs for undesired translational or rotational
movements.

4.1.2. States and Actions

We define our state relative to the center of the object part that we want to push. Given the
relative light position l = (xl, yl) and a swarm configuration with n agents, where agent i has
the relative position bi = (xi, yi), the state vector is defined as s := [l, b1, . . . , bn]. The action
vector a = (ax, ay) is the desired displacement of the light source in x- and y-direction.

8

4.1.3. Features and Kernels

To learn an object movement policy that generalizes to different swarm sizes, we need to
employ a feature mapping that abstracts from the number of individuals in the swarm and
also from the allocation of the single robots to their positions (i.e., which agent is at which
position). Therefore, we represent the state of the swarm as a distribution embedded into a
RKHS [6] where we treat each agent as a sample of that distribution, i.e.,

µb(·) =
1
n

n∑
i=1

k(bi, ·) =
1
n

n∑
i=1

ψ(bi), (28)

where k is a kernel function (e.g., the Gaussian kernel) and ψ is the intrinsic feature mapping
of k. This representation is invariant to both, the allocation of the individual agent to the
position as well as to the number of agents in the swarm. We can compute the difference
between two swarm distributions independently from the number of agents by computing the
squared difference of their embeddings

db(b, b
′) =

1
n2

n∑
i=1

n∑
j=1

k(bi, b j) −
2

nm

n∑
i=1

m∑
j=1

k(bi, b′j) +
1

m2

m∑
i=1

m∑
j=1

k(b′i, b
′
j). (29)

Here, b and b′ are two swarm configurations with n andm individuals, respectively. In addition
to the state of the swarm, we also need to represent the current relative position of the light l
and the desired displacement of the light a (i.e., the action) in the feature vector. For both, we
can obtain the squared distance simply by

dv(v, v
′) = −0.5(v − v′)ᵀdiag

(
σ−2

v

)
(v − v′), (30)

where v can be either the composition of l and a or only the light position l, depending if we
need a feature function for state-action pairs or only states. We can now combine these two
distance measures into a kernel function

K(s, s′) = exp
(
−
α

2
dv(v, v

′) −
1 − α

2
db(b, b

′)

)
, (31)

where α ∈ [0, 1] weighs the importance of the non-agent dimensions v and the agent dimen-
sions b of the state s.

At each learning iteration of the AC-REPS algorithm, we select a kernel reference set
Dref = (si, ai)

N
i=1 randomly from the SARS samples. With this, we can define the feature

vector φ(s, a) for approximating the Q-function, where the i-th entry of the feature vector

φ(s, a)i = K((si, ai), (s, a)), i = 1, . . . , N (32)

is the kernel function evaluated at the reference sample (si, ai). For the policy improvement
step, we need a state-dependent feature function which we define as

ϕ(s)i = K(si, s), i = 1, . . . , N . (33)

9

4.2. Assembly Policy and Path Planning Strategy

The assembly policy contains the construction information stored as a list of oriented way
points with required accuracies for each object. These way points are processed consecutively
by applying either the object movement policy or the path planning strategy. When the object
movement strategy is applied, we have to minimize the translational error etrans and the
rotational error erot until the next way point is reached. We compute the desired translation-
rotation ratio as ρdes = ηerot/(etrans+ηerot) and choose the object movement policy with closest
ration ρ. The parameter η scales the rotational error with the translational error, usually a value
of 0.1 leads to good results.

For guiding the swarm from one object to the next, we use a path planning strategy
to obtain a collision free path to the target. We use A* in combination with the repulsive
potential of the potential fields in the cost term c(s1, s2). Naively, we could also simply follow
the gradient of the potential field. However, this approach is prone to issues such as local
minima, narrow passages, or oscillations around obstacles [29]. Instead, we define the cost
function c(s1, s2) = d(s1, s2) + Urep(s2), where d(s1, s2) is the distance between s1 and s2,
and Urep(s2) is the repulsive potential. As heuristic h(s) we use the Euclidean distance to the
target state.

5. Experimental Setup & Results

We evaluate the proposed learning method in simulation as well as on a robotic platform. As
robotic platform, we chose the Kilobot platform [4]. The Kilobots are an affordable and open
source platform developed specifically for the evaluation of algorithms on large swarms of
robots. Each robot is approximately 3 cm in diameter, 3 cm tall and moves up to 1 cm/s by
using two vibration motors.

We have implemented a 2D simulator of the Kilobot platform in Python1 compatible with
the OpenAI gym[30]. To simulate the interactions of the agents and the objects in the world,
we use the physics engine Box2D2. We use this simulation to evaluate the learning algorithm
and to learn the policies that we will later apply directly to the real Kilobots. The simulator
internally runs at 10Hz, but only takes action and returns state and rewards at 1Hz.

5.1. Evaluation of the Learning Algorithm

We learn the object movement policy for six object types, i.e., square (w = 0.15), rectangle
(w = 0.05, h = 0.3), triangle (w = 0.14, h = 0.21), L-shape, T-shape, and C-shape (each with
overall w = 0.14, h = 0.21) (c.f. Table 1) and for three ratios ρ ∈ [0.0, 0.5, 1.0]. The object is
initialized at (0, 0)with a random orientation uniformly sampled from [π,−π]. To simulate the
light source, we use a circular gradient with radius r = 0.2. If an agent is within this radius,
it senses the gradient towards the center. The initial position of the light and the swarm is
sampled normally around the worlds center with standard deviation max(wworld, hworld)/3.
The agents are sampled normally around the light position with standard deviation r/3.

We learn the object movement policies with 10 agents over 60 iterations. In each iteration
we sample 200 episodes with 60 steps/episode. Afterwards, we keep a set of 10000 SARS
tuples which we choose randomly from the new samples and the old SARS tuples. To define
the feature function for LSTD, we select 1000 samples from the SARS data randomly. We
choose 1000 inducing inputs for the sparse GP later by importance sampling using the weights

1The Kilobot Gym, https://github.com/gregorgebhardt/gym-kilobots
2Box2D – A 2D Physics Engine for Games, http://box2d.org/

10

obtained from REPS. After each learning iteration, we evaluate the learned policy on 50
episodes of length 125.

Tables 1–3 show the learned policies, the learned value function, as well as the light
and object trajectories of the learning episodes and of the evaluation episodes for the ratios
ρ = 0.0, ρ = 0.5, ρ = 1.0. The depicted results are taken from the iteration with the highest
mean reward of the evaluation episodes. Note that we use artificial configurations in which all
agents and the light are at the same position (x, y) to visualize the policies and value functions.

Figure 3. Learning curves for square, rectangle, triangle, C-shape, T-shape, and L-shape for ρ ∈ [0.0, 0.5, 1.0]. Note the
different scalings of the y-axis.

Figure 3 shows the learning curves for each object shape and ratios ρ ∈ [0.0, 0.5, 1.0]. Note
the differently scaled y-axes which depicts the different difficulties in learning the policies
for different object types. It can be seen that the relation of the different policy types varies
strongly between the object shapes. This relates to the object geometries which make it harder
for some objects to be pushed without rotational movement (e.g. triangle), or which make it
easier to be rotated with only little translational movement (e.g. rectangle).

We have evaluated how well each learned set of policies can pushing the objects along
a straight line and along a circular path. In addition, we have compared how well a policy
learned on the square would generalize to the other shapes. Figure 4 shows the trajectories
obtained from the straight-line-task. While we get good results for the square, the rectangle
and the T-shape using policies learned for the respective shapes, the task is harder to solve
with the triangle, the L-shape and the C-shape. The policies learned for the square perform
worse for the rectangle, the L-shape, and the C-shape. For the triangle, the square policies
yield similar results as the triangle policies. Except for two outliers, the square policies also
yield similar results as the learned policies for the T-shape.

Figure 5 shows the trajectories for the circular-path-task with radii 0.2, 0.4, 0.6, and 0.8.
The circular paths are defined by 10 way points in equiangular distance with an orientation
accuracy of 1.5 (roughly ± π2) and a position accuracy of 0.1. Except for the last way point
which has a position accuracy of 0.05 only in the y coordinate. While the square tracks the
circular path nicely, the rectangle only succeeds in tracking the circular paths with radii 0.4,
0.6, and 0.8 adequately. The triangle manages to follow the paths although with a much larger
variance than square or rectangle. The L-shape policies seem to be able to track the paths
somehow, however, they often fail to meet the quite broad orientation accuracy of the way
points. This results in maneuvering around the way points and thus in the loopy trajectories.
The same can be observed for the T-shape. In contrast, the C-shape policies manage to follow
the circular paths with errors but stay inside the given accuracy windows.

A pose controller (PC) for a swarm of simple agents has been proposed in [16].We compare

11

Table 1. Results from learning the object movement policy for ρ = 0.0. The first column depicts the learned policy and the
value function. The policy is shown as quiver plot where the arrows denote the mean action and the color denotes the variance
of the GP. The second column shows the trajectories of the light center during the evaluation episodes (i.e., taking the mean of
the GP as action) relative to the object. The third column shows the object trajectories during the evaluation episodes. The color
of the trajectories denotes the reward obtained at that time step. Likewise, the fourth and fifth columns depict the trajectories of
the light source and the object, respectively, during the sampling episodes (i.e. with actions samples from the GP.)

12

Table 2. Results from learning the object movement policy for ρ = 0.5. The first column depicts the learned policy and the
value function. The policy is shown as quiver plot where the arrows denote the mean action and the color denotes the variance
of the GP. The second column shows the trajectories of the light center during the evaluation episodes (i.e., taking the mean of
the GP as action) relative to the object. The third column shows the object trajectories during the evaluation episodes. The color
of the trajectories denotes the reward obtained at that time step. Likewise, the fourth and fifth columns depict the trajectories of
the light source and the object, respectively, during the sampling episodes (i.e. with actions samples from the GP.)

13

Table 3. Results from learning the object movement policy for ρ = 1.0. The first column depicts the learned policy and the
value function. The policy is shown as quiver plot where the arrows denote the mean action and the color denotes the variance
of the GP. The second column shows the trajectories of the light center during the evaluation episodes (i.e., taking the mean of
the GP as action) relative to the object. The third column shows the object trajectories during the evaluation episodes. The color
of the trajectories denotes the reward obtained at that time step. Likewise, the fourth and fifth columns depict the trajectories of
the light source and the object, respectively, during the sampling episodes (i.e. with actions samples from the GP.)

14

Figure 4. Evaluation of pushing the objects along a straight line with a policy learned for the specific object shape and with a
policy learned for the square object.

against this PC by pushing the rectangle object to three target poses. Figure 6, shows the results
of this comparison. While both approaches successfully push the object to the first target pose
in each of the 10 trials, the PC produces a much longer trajectory as it first pushes the object
towards a line through the target pose, before it starts pushing the object towards its final pose.
In the second experiment, the PC only succeeds in 4 out of 10 trials to position the object in
the target pose. In the third experiment, the PC fails all 10 trials since the target point on the
auxiliary line is located outside of the environment. In general, the PC is not able to recover
from situations in which the object has been pushed into an undesired position as maneuvering
of the object has not been considered in the algorithm.

To evaluate how well our approach generalizes to different swarm sizes, we have applied
policies learned with 15 agents on the square object to swarms with 5 to 80 agents. Figure 7
shows the average reward per step for ρ = 0 and for ρ = 1. Until a swarm size of about 40
agents the reward increases. The more agents are able to push the object the higher is the
combined force and, hence, the object moves faster. However, from a swarm size of roughly
50 agents on, the average reward starts to decline. With too many agents in the swarm, the
swarm distributes around the object so that the agents push from opposing directions and
obstruct the desired motion. Figure 8 depicts this evaluation.

5.2. The Assembly Task in Simulation

We have evaluated the learned policies for triangle, L-shape, C-shape and T-shape on three
object assembly tasks in simulation. Furthermore, we have also executed these tasks with
policies learned on the square object to asses how good policies learned on a simple shape
generalize to more complex shapes.

The first task is to assemble two triangular objects. The assembly policy contains two way
points for each of the triangular objects, where the first ensures that the objects are positioned
well before they are pushed into the target position. An exemplary execution of the assembly is
shown in Figure 9. The swarm pushes the first object to its target position passing through the

15

Figure 5. Evaluation of pushing the objects along circular paths with radii r ∈ [0.2m, 0.4m, 0.6m, 0.8m]with a policy learned
for the specific object shape and with a policy learned for the square object. The black dots denote the way points that define the
circular path.s Note that some of the trajectories overshoot the target of the circular path since we set the orientation accuracy at
the target to ±1.5 (roughly ±π/2) which was not met in these trajectories.

intermediate way point. The swarm is then guided to the second object along a path obtained
from the path planning strategy. The positioning of the second object at the intermediate way
point requires maneuvering which is done by the learned object movement policy. Finally,
the second object is pushed to the target position to assemble it with the first object. In our
experiments, the assembly process succeeded in 4 of 5 trials when using the policy learned for
the triangle shape and in 0 of 5 trials when using the policies learned with the square shape.

In the second task, the goal is to assemble two L-shapes, exemplary executions of the task
are depicted in Figure 10 The first L-shape is pushed directly to the target position. The second
L-shape is first rotated to an intermediate way point before pushed against the first L-shape
at the target position. The depicted assembly process with square policies nearly succeeds but
eventually fails at positioning the second L-shape at the target position. A frequent issue during
the execution of this task for both, L-shape policies and square policies, was that the second
L-shape could not be positioned adequately at the target way point. During the maneuvering
of the object the swarm then pushed the first L-shape away from its target pose and thus breaks
the assembly process. In our experiments the assembly process succeeded in 5 of 5 trials for
the L-shape policy, however in 2 trials the first L-shape was pushed away during maneuvering
the second L-shape. With the square policy, the assembly task succeeded in 2 of 5 trials,
although in both successful trials the first L-shape was pushed away from its target position.

The third task is the assembly of a C-shape with a T-shape as depicted in Figure 11. First,
the C-shape has to be pushed through a way point to guide the rotation into the final pose. Then
the swarm is repositioned at the T-shape which is pushed to an intermediate way point with
the right orientation for pushing it into the final position. In our experiments, the CT-shape-
assembly task succeeded in 3 of 5 trials with policies learned on C- and T-shapes, respectively.
With the square policy, the CT-shape-assembly task succeeded in 0 of 5 trials.

16

Figure 6. Evaluation of the object movement policy learned on the rectangular object against the pose controller proposed in
[16]. The top row shows exemplary runs with the object movement policy for the three target locations. The second row shows
exemplary runs with the pose controller [16]. The bottom row shows a comparison of the object trajectories with 10 runs for each
controller and each target object position.

5.3. The Kilobot Setup

We use a horizontally mounted 2m × 1.5m whiteboard as environment for the Kilobots. The
whiteboard provides a reflective surface with low friction which is beneficial for the slip-stick
motion of the robots. We further emulate a light source using a projector mounted vertically
to the ceiling. To control the swarm, we project a circular gradient with radius 0.2m and use
the phototaxis algorithm on the Kilobots [31]. Figure 12 depicts the setup.

In contrast to the original design developed at Harvard [32], the commercially manufactured
Kilobots3 have a surface-mounted device (SMD) light sensor at the side of the battery instead
of the through hole (TH) diode at the back. However, this change in the design significantly

3Distributed by K-Team, http://www.k-team.com/

20 40 60 80
0

2

4

6

8
·10−3

#Kilobots

Re
w
ar
d/
St
ep

ρ = 0 ρ = 1

Figure 7. Average reward per time-step of a pure trans-
lation (ρ = 0) and a pure rotation (ρ = 1). All policies are
learned with 15 agents and evaluated with 5 to 80 agents.

Figure 8. With a size of 50 agents and more, the swarm distributes
around the object and obstructs the intended push. A video including
these evaluations is available at https://youtu.be/kuU8wsR9dD4.

17

Figure 9. Assembly task with two triangle objects. In the top row, the task is executed successfully with a policy learned on the
triangle shape, in the bottom row the task fails when executed with a policy learned with a square object. The red line is the trace
of the light source, the green line is the trace of the swarm. The blue circles depict the way points with the required accuracy for
position and orientation, the green/red line inside of the way points depicts the current orientation of the object.

Figure 10. Assembly task with two L-shape objects objects. In the top row, the task is executed successfully with a policy
learned on the L-shape, in the bottom row the task fails when executed with a policy learned with a square object.

Figure 11. Assembly task of a C-shape with a T-shape. In the top row, the task is executed successfully with polices learned on
C- and T-shape. In the bottom row the task fails when executed with a policy learned with a square object.

18

Figure 12. The Kilobot swarm (A)
pushes the assembly objects (B) on a
2m×1.5mwhiteboard. The circular light
gradient (C) is projected onto the table
by a video projector (D). The scene is
observed with an RGB camera (E).

Figure 13. Modification of the Kilo-
bot hardware, to achieve a good photo-
taxis behavior. Left: commercially avail-
able Kilobot with an SMD light sensor.
Right: modified Kilobot with a through-
hole diode as in the original design.

0 50 100 150
0

0.5

1 ·103

projector brightness

se
ns
or

re
sp
on

se

Figure 14. Sensor response curves of
SMD sensor and TH diode. The TH diode
has a much greater dynamic range. The
plots show mean and average over 5 and
runs for SMD sensor and TH diode, re-
spectively.

Figure 15. The assembly task of four squares into a big square in simulation. The Kilobots are depicted by gray circles and the
light position by a yellow circle. A video of both experiments is available at https://youtu.be/kuU8wsR9dD4.

decreases the performance of the phototaxis algorithm. Additionally, the chosen SMD sensor
has a roughly three-times-reduced dynamic range in comparison to the TH sensor which we
chose as replacement (see Figure 14).

To obtain the positions of theKilobots and the objects in the scene,we apply simple detection
and tracking algorithms. However, the low illumination of the scene (which is required for the
phototaxis behavior of the Kilobots) and the bright circular gradient projected onto the table
exceeds the dynamic range of the RGB camera. To overcome this problem, we generate HDR
images from images with different exposure times.

To achieve a stable and robust tracking of the pose of arbitrary objects, we mark the objects
with Chilitags [33]. Chilitags are precise, reliable and illumination tolerant 2D fiducial markers
and thus are well suited for the experimental setup. We track the Kilobots using a Hough circle
transform (HCT) which is well suited for the round geometry of the robots. HCT is not as
precise and robust as the Chilitag tracking, but since the policy uses a distribution-based state
representation, it is less sensitive to noise in the Kilobot state.

5.4. The Assembly Task on the Kilobots

We have evaluated the assembly task on the real Kilobot platform with the modifications
described in the previous section. We have learned the object movement policies with ratios
ρ = 0, ρ = 0.25, ρ = 0.5, ρ = 0.75, and ρ = 1 in simulation with a swarm size of 15 Kilobots
and evaluated on the real Kilobots using swarms of 12, 15, and 24 agents. For the experiment
with the real Kilobots, the swarm size is limited as the area of the circular gradient is limited
and the robots outside of the gradient are not controllable anymore. Still, the phototaxis
performance is not sufficient to keep all robots reliably in the area of the gradient. We apply
policies learned in simulation directly to the Kilobot platform. No further optimization on the
real robots is required. Figure 15 depicts a simulation of the assembly task that we later applied

19

Figure 16. Assembly of a square part with three similar parts into a big square with different swarm sizes. In the first row: 12
Kilobots, in the second row: 15 Kilobots, in the third row: 24 Kilobots Multiple robots are lost during the run, larger swarm sizes
lead to better performances and faster execution. A video is available at https://youtu.be/kuU8wsR9dD4.

to the real Kilobot platform. The experiment on the real Kilobots is depicted in Figure 16.
With 12 Kilobots, our approach was able to push the fourth square close to the remaining

three squares. Yet, only around half of the swarm remains in an area of the gradient when
approaching the final position. Consequently, the swarm is not able to finish the assembly by
correcting the orientation of the square. With a swarm size of 15 agents the assembly task has
succeeded. Although again many robots fail to follow the light source, the number of Kilobots
that remain in the area of the gradient is sufficiently large to finish the assembly task. With 24
Kilobots in the swarm, the assembly task has been completed successfully as well and also
the time consumption of the task could be reduced to ca. 700s in contras to ca. 950s that were
required by the assembly process with 15 Kilobots.

6. CONCLUSION

In this paper, we have presented a novel method for solving the assembly task using a common
input signal to a swarm of simple agents. Our method learns policies for the input signal
such that the swarm, by following this input signal, pushes an object into a given direction or
rotational movement. For this learning method, we have introduced a swarm representation
that is invariant to the number of agents in the swarm and their specific locations. This
representation simplifies not only the search space for the learning method, it also allows to
transfer the learned policy to different swarm sizes. We could show that a policy learned on
a simple shape generalizes to a certain extend, still, policies specifically learned for a certain
object shape outperforms a general object movement policy. We applied the learned object
movement policies in a hierarchical Kilobot controller. We could show in simulation and on
the real Kilobot platform, that the Kilobot controller is able to solve the object assembly task.
The learned policies could be transfered directly to the real robots without any additional
learning.

20

ACKNOWLEDGMENT

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 645582. Calculations for this research were
conducted on the Lichtenberg high performance computer of the TU Darmstadt.

References

[1] Parker LE. Multiple mobile robot systems. In: Siciliano B, Khatib O, editors. Springer handbook
of robotics. Springer Berlin Heidelberg; 2008. p. 921–941.

[2] Mavroidis C, Dubey A, Yarmush M. Molecular machines. Annual Review of Biomedical Engi-
neering. 2004;6(1):363–395.

[3] Martel S, Mohammadi M, Felfoul O, et al. Flagellated magnetotactic bacteria as controlled
mri-trackable propulsion and steering systems for medical nanorobots operating in the human
microvasculature. The International Journal of Robotics Research. 2009;28(4):571–582.

[4] Rubenstein M, Ahler C, Hoff N, et al. Kilobot: A low cost robot with scalable operations designed
for collective behaviors. Robotics and Autonomous Systems. 2014;.

[5] RubensteinM, Cabrera A,Werfel J, et al. Collective transport of complex objects by simple robots:
Theory and experiments. In: Proceedings of the International Conferenece onAutonomous Agents
and Multi-Agent Systems; 2013.

[6] Smola A, Gretton A, Song L, et al. A hilbert space embedding for distributions. In: International
Conference on Algorithmic Learning Theory; 2007.

[7] Wirth C, Fürnkranz J, Neumann G. Model-free preference-based reinforcement learning. In:
Proceedings of the 30th AAAI Conference on Artificial Intelligence; 2016.

[8] Gebhardt GH, Daun K, Schnaubelt M, et al. Learning robust policies for object manipulation
with robot swarms. In: Proceedings of the 2018 IEEE International Conference on Robotics and
Automation (ICRA); Brisbane; 2018.

[9] Gebhardt GHW, Daun K, Schnaubelt M, et al. Learning to assemble objects with a robot swarm.
In: Proceedings of the 16th Conference on Autonomous Agents and Multi-Agent Systems; 2017.

[10] Kawakami T, Kinoshita M, Watanabe M, et al. An actor-critic approach for learning coopera-
tive behaviors of multiagent seesaw balancing problems. In: IEEE International Conference on
Systems, Man and Cybernetics; 2005.

[11] Kuremoto T, Obayashi M, Kobayashi K, et al. A reinforcement learning system for swarm behav-
iors. In: IEEE International Joint Conference on Neural Networks; 2008.

[12] Lowe R, WU Y, Tamar A, et al. Multi-agent actor-critic for mixed cooperative-competitive envi-
ronments. In: Advances in Neural Information Processing Systems 30; 2017.

[13] Pugh J, Martinoli A. Multi-robot learning with particle swarm optimization. In: Proceedings of
the 5th International Conference on Autonomous Agents and Multi-Agent Systems; 2006.

[14] Pugh J, Martinoli A. Parallel learning in heterogeneous multi-robot swarms. In: IEEE Congress
on Evolutionary Computation; 2007.

[15] Martel S, Mohammadi M. Using a swarm of self-propelled natural microrobots in the form of
flagellated bacteria to perform complex micro-assembly tasks. 2010;.

[16] Shahrokhi S, Becker AT. Object manipulation and position control using a swarm with global
inputs. 2016;.

[17] Peters J, Mülling K, Altun Y. Relative entropy policy search. In: Proceedings of the 24th AAAI
Conference on Artificial Intelligence; 2010.

[18] Lagoudakis MG, Parr R. Least-squares policy iteration. Journal of Machine Learning Research.
2003;.

[19] Boyan JA. Least-squares temporal difference learning. In: Proceedings of the 16th International
Conference on Machine Learning; 1999.

[20] Hoffman MW, Lazaric A, Ghavamzadeh M, et al. Regularized least squares temporal difference
learning with nested l2 and l1 penalization. In: European Workshop on Reinforcement Learning;

21

2011.
[21] van Hoof H, Neumann G, Peters J. Non-parametric policy search with limited information loss.

2017;.
[22] Kupcsik A, Deisenroth M, Peters J, et al. Model-based contextual policy search for data-efficient

generalization of robot skills. Artificial Intelligence. 2015;.
[23] SeegerM,Williams CK, Lawrence ND. Fast forward selection to speed up sparse gaussian process

regression. Workshop on AI and Statistics 9. 2003;9.
[24] Snelson E, Ghahramani Z. Sparse gaussian processes using pseudo-inputs. In: Advances in Neural

Information Processing Systems 18. MIT Press; 2006. p. 1257–1264.
[25] Smola AJ, Bartlett PP. Sparse greedy gaussian process regression. In: Advances in Neural Infor-

mation Processing Systems 13; Vol. 13. MIT Press; 2001. p. 619–625.
[26] Aronszajn N. Theory of reproducing kernels. Transactions of the American mathematical society.

1950;.
[27] Hart PE, Nilsson NJ, Raphael B. A formal basis for the heuristic determination of minimum cost

paths. IEEE Transactions on Systems Science and Cybernetics. 1968;.
[28] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots. The International

Journal of Robotics Research. 1986;.
[29] Koren Y, Borenstein J. Potential field methods and their inherent limitations for mobile robot

navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation;
1991.

[30] Brockman G, Cheung V, Pettersson L, et al. Openai gym. arXiv:160601540 [cs]. 2016;.
[31] Becker A, Habibi G, Werfel J, et al. Massive uniform manipulation: Controlling large populations

of simple robots with a common input signal. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems; 2013.

[32] Rubenstein M, Ahler C, Nagpal R. Kilobot: A low cost scalable robot system for collective
behaviors. In: Proceedings of the IEEE International Conference on Robotics and Automation;
2012.

[33] Bonnard Q, Lemaignan S, Zufferey G, et al. Chilitags 2: Robust fiducial markers for augmented
reality and robotics. ; 2013.

22

